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1. Introduction

Let us first introduce the main character of this story, the p-curve shortening
flow, with p a positive integer. So, we let

x : S
1 × [0, T ) −→ R

2

be a family of smooth convex embeddings of S1, the unit circle, into R
2. We

say that x satisfies the p-curve shortening flow, p ≥ 1, if x satisfies
∂x

∂t
= −1

p
kpN, (1)

where k is the curvature of the embedding and N is the normal vector pointing
outwards the region bounded by x (·, t).

The p-curve shortening flow is just a natural generalisation of the well
known and well studied curve shortening flow. A solution to (1) starting from
an embedded convex simple curve will contract, via embedded convex curves,
towards a round point in finite time: this means that if we start with a sim-
ple convex curve, via the p-curve shortening, after a convenient normalisa-
tion, which includes a time reparametrisation, the embedded curves converge
smoothly to a circle (see [1]). It is also known that this convergence is expo-
nential in the following sense (here k̃ denotes the curvature of the embedded
curves after normalisation)

∥
∥
∥k̃(n)

∥
∥
∥

∞
≤ Ce−δt,
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with where k̃(n) represents the n-derivative of k̃ with respect to the arclength
parameter in S

1, n ≥ 1, and δ > 0. For the curve shortening flow, we can use as
δ any 2α for 0 < α < 1, this was proved by Gage and Hamilton [6] in their by
now famous (by mathematical standards) paper. For the p-curve shortening,
Huang in [7] showed that δ can be taken as 2αp, with the same restrictions on α.
Interestingly enough, with the exception of the curve shortening flow (p = 1),
it has not been showed that k̃ → 1 exponentially! For the curve shortening
flow (p = 1), in the book [3] exponential convergence of the curvature towards
1 is shown (see Chapter 3, Section 3 in [3]), and Andrews and Bryan showed
in [2] (although they did not stated explicitly) that k̃ → 1 as fast as e−2τ .

Related to this problem is the mean curvature flow, and Sesum in [9],
using Huisken’s work as a departure point, has given sharp rates of convergence
for this flow.

The main goal of this paper to give better rates of convergence for the
p-curve shortening flow, p ≥ 1 an integer, than the ones previously known.
Our main result, from which the said rates of convergence can be deduced, is
the following (for the notation employed in the statement of the theorem, in
particular the meaning of ‖ψ‖2 and ‖·‖Cl(S1), please see the end of Sect. 2).

Theorem 1. Let ψ > 0 be the curvature of the initial condition to (1). Then
there exists a constant cp > 0 such that if

ψ̂(0) ≥ cp ‖ψ‖2 , (2)

then the solution to the normalised p-curve shortening flow (p a positive in-
teger), that is for the curvature k̃ of the curves given by the rescaled embed-

ding
(

p + 1
p

) 1
p+1

(T − t)− 1
p+1 x, with rescaled time parameter τ = − 1

p + 1

log
(

1 − t

T

)

, where 0 < T < ∞ is the maximum time of existence for (1), it

holds that
∥
∥
∥k̃ − 1

∥
∥
∥

Cl(S1)
≤ Cp,le

−(3p−1)τ ,

where Cp,l is a constant that only depends on p, l and ψ.

Together with Theorem I1.1 from [1], this gives the following

Theorem 2. For any simple convex curve as initial data, the normalised version
of (1), converges towards a circle smoothly and the curvature of the normalised
embeddings satisfy

∥
∥
∥k̃ − 1

∥
∥
∥

Cl(S1)
≤ Cp,le

−(3p−1)τ ,

where Cp,l is a constant that only depends on p, l and the curvature of the
initial condition.

Indeed, by the theorem of Andrews referred to above, (2) eventually holds
if we start (1) with a given convex simple curve as initial data. The rate of
convergence given by our main result seems to be the sharpest possible rate of
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convergence for the p-curve shortening flow (see the remark at the end of this
paper). Theorem 2 sharpens the convergence results given in [6,7].

A naive idea for proving Theorem 1 would be to use the Parabolic PDE
to which the normalised version of p-curve shortening flow is equivalent to
(see Eq. (14) in Sect. 3.2), and then linearise around the steady solution to
obtain exponential convergence. However, if we linearise around the steady
solution, the elliptic part of the parabolic operator corresponding to the p-
curveshortening flow has a negative eigenvalue, so no exponential convergence
should be expected (see the discussion in [5] right after Theorem 2.2, and notice
that when λ = 1, a negative eigenvalue occurs). The good news here is that,
being k a curvature, it satisfies an important identity which is responsible for
us being able to obtain this exponential convergence.

Our methods are based on the techniques employed in [5], that is to
say on the Fourier method. Hence, we will transform our problem into (finite
dimensional) approximations of an infinite dimensional dynamical system, for
which appropriate estimates will be proved, and which will finally lead to a
proof of Theorem 1, proof which is given in the final section of this paper. The
intermediate sections are devoted to show these appropriate estimates, which,
in short, amount to controlling the Fourier coefficients of a solution to (1) in
terms of the average of the curvature; from this we will be able to show a
time decay for the Fourier coefficients different from the average (which in fact
blows-up), and which, as we said before, will lead to a proof of Theorem 1.

2. Basic definitions and notation

When the initial curve is convex, the p-curve shortening flow is equivalent to
the following boundary value problem:
⎧

⎪⎨

⎪⎩

∂k

∂t
= k2

(

kp−1 ∂2k

∂θ2
+ (p − 1)kp−2

(
∂k

∂θ

)2

+
1
p
kp

)

in [0, 2π] × (0, T )

k(θ, 0) = ψ(θ) on [0, 2π] ,
(3)

with p ∈ Z
+, imposing periodic boundary conditions, and with ψ a strictly

positive function. Notice that the Maximum Principle implies that k must
remain positive for all times (i.e. a convex curve remains convex). We will
need to compute finite dimensional approximations of the previous partial
differential equation in Fourier space, so we must establish some definitions
and notation. Recall that For f ∈ L2 [0, 2π], its Fourier expansion is given by

∑

n∈Z

f̂ (n) einθ,

where

f̂(n) =
1
2π

∫ 2π

0

f(θ)e−inθ dθ.
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We shall refer to f̂ (n) as the Fourier coefficients of f (and we call n the
index of the coefficient).

We will also adopt the notation

û∗(m)(q1, q2, . . . , qm, t) = û(q1, t)û(q2, t) · · · û(qm, t),

H(p, q1, q2) =
1
p

− (p − 1)q1q2 − q21 ,

and define the following sets

Bn =
{

(q1, . . . , qp+2) ∈ Z
p+2 : qp+2 = n − q1 − · · · − qp+1

}

,

An = {q ∈ Bn : there are 1 ≤ i < j ≤ p + 2 such that bi �= 0 and bj �= 0},

and,

Cn = {q ∈ An : qj �= 0,±1, for all 1 ≤ j ≤ p + 2}.

From now on Z will denote a finite set of integers which contains 0 (i.e, 0 ∈ Z),
and which is symmetric around 0 (i.e., if n ∈ Z then −n ∈ Z).

Using this notation, in Fourier space, the p-curve shortening flow can be
approximated by the following finite dimensional dynamical system:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt
k̂(0, t) =

1
p
k̂ (0, t)p+2 +

∑

q∈A0∩Zp+2 H (p, q1, q2) k̂∗(p+2) (q, t) ,

d

dt
k̂(n, t) =

(
p + 2

p
− n2

)

k̂ (0, t)p+1
k̂ (n, t)

+
∑

q∈An∩Zp+2 H (p, q1, q2) k̂∗(p+2) (q, t) , if n �= 0, n ∈ Z,

(4)
with initial condition

k̂(n, 0) = ψ̂(n), if n ∈ Z,

Formally, the k̂ in the system right above should bear, for instance, a subindex
which makes its dependence on Z explicit, but as this is understood from now
on, we will suppress it in what follows (and as our estimates will not depend
on Z, this should be of no importance).

Notice also that (4) is an autonomous system, so there is a unique and
smooth solution for a short time (see [4]). We will also make use of the semi-
norms ‖·‖β , which are defined as in [5] as follows:

‖f‖β = max

{

sup
ξ∈Z

|ξ|β
∣
∣
∣Re

(

f̂ (ξ)
)∣
∣
∣ , sup

ξ∈Z

|ξ|β
∣
∣
∣Im

(

f̂ (ξ)
)∣
∣
∣

}

.

As usual, we define Cl ([0, 2π]), l = 0, 1, 2, . . . , as the space of functions with
continuous derivatives of order l, equipped with the norm

‖f‖Cl([0,2π]) = max
j=0,...,l

sup
θ∈[0,2π]

∣
∣
∣
∣

djf(θ)
dθj

∣
∣
∣
∣
.
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3. Technical lemmas and intermediate results

We shall follow closely the arguments presented in [8]. Therefore we must show
that for given a solution to (4), we can control the Fourier coefficients different
from 0 in terms of the 0-th coefficient. The fact that the first eigenvalue λ1

of the elliptic operator related to (3) satisfies λ1 < 0 is the main difficulty
we must face, as this makes difficult to control the ±1-Fourier coefficients in
terms of the 0 th Fourier coefficients. Once we have done this, all that is left
is to follow the arguments presented in [5,8]. The key to our proofs is that a
curvature function of a locally convex curve satisfies (see [6])

Q(k) =
∫ 2π

0

eiθ

k(θ, t)
dθ = 0,

since this identity, once we have control over the higher Fourier coefficients
(those with |n| ≥ 2) assuming control over the ±1 coefficients, allows us to
control the ±1 Fourier coefficients.

The careful reader must notice that is some of the proofs given in this
paper our estimates are given for system (4), that this estimates are indepen-
dent of Z, and that this allows us to take a limit so the results are valid for
the full system (3).

3.1. Controlling the Fourier coefficients

We start with a technical lemma.

Lemma 1. There is a δ > 0 such that if the initial condition ψ of (3) satisfies:

2δ · ψ(0) ≥ q2|k̂(q, t)|,
and

k̂(0, t) ≥ (1 − δ) ψ̂(0),

for t ∈ (0, τ), then k̂ (0, t) is non decreasing.

Proof. From the hypothesis of the lemma,

U :=
∑

q∈A0∩Zp+2

H (p, q1, q2) k̂∗(p+2) (q, t) = O
(

δk̂(0, t)p+2
)

,

and the implicit constant in the big O notation does not depend on Z. Hence,

for δ > 0 small enough, the term
1
p
k̂ (0, t) dominates the the term U in the

differential equation for k̂ (0, t). This implies that
d

dt
k̂ (0, t) > 0, and the con-

clusion of the lemma follows. �

Now we show some estimates that give us some control over the Fourier coef-
ficients of k.

Lemma 2. There is a δ > 0 such that if the initial condition ψ of (3) satisfies:

2δ · ψ̂(0) ≥ |ψ̂(±1)| and δ · ψ̂(0) ≥ q2|ψ̂(q)| for |q| ≥ 2
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holds, and for t ∈ (0, τ)

2δ · ψ̂(0) ≥ |k̂(±1, t)|,
and

k̂(0, t) ≥ (1 − δ) ψ̂(0).

Then

δ · ψ̂(0) ≥ q2|k̂(q, t)|.

Proof. Let us consider the quantity Rn =

∣
∣
∣
∣
∣

k̂ (n, t)

ψ̂(0)

∣
∣
∣
∣
∣
, and we prove that is

nonincreasing for n fixed.
We compute:

d

dt
log Rn =

(
p + 2

p
− n2

)

k̂ (0, t)p+1 +
2∑

i=1

Bi,

where the Bi terms are given by:

B1 =
1

k̂ (n, t)

∑

q∈Cn∩Zp+2

H (p, q1, q2) k̂∗(p+2) (q, t) ,

B2 =
1

k̂ (n, t)

∑

q∈An\Cn∩Zp+2

H (p, q1, q2) k̂∗(p+2) (q, t) .

We bound B1,
∣
∣
∣k̂ (n, t)

∣
∣
∣ |B1| ≤ 1

p

∑

q∈Cn∩Zp+2

∣
∣
∣k̂∗(p+2) (q, t)

∣
∣
∣

+ (p − 1)
∑

q∈Cn∩Zp+2

|q1| |q2|
∣
∣
∣k̂∗(p+2) (q, t)

∣
∣
∣

+
∑

q∈Cn∩Zp+2

q21

∣
∣
∣k̂∗(p+2) (q, t)

∣
∣
∣ .

Now if q ∈ Cn ∩ Zp+2, then
∣
∣
∣k̂∗(p+2) (q, t)

∣
∣
∣ =

2p+2δp+2ψ̂(0)p+2

q21 · · · q2p+1 (n − q1 − · · · − qp+1)
2 ,

and hence
∣
∣
∣k̂ (n, t)

∣
∣
∣ |B1| ≤ δp+2C ′

pψ̂(0)p+2,

with C ′
p independent of Z. Since |k̂ (n, t) | = |k̂ (0, t) |/n2, we get

|B1| ≤ δp+2C ′
pn

2ψ̂(0)p+1. (5)

Splitting the sums and using similar calculations as in (5), we obtain

|B2| ≤ δC ′′
p n2ψ̂(0)p+1, (6)
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and again C ′′
p is independent of Z.

Since the sum of the absolute value of all these terms can be made smaller
than

(

n2 − p + 2
p

)

k̂(0, t)p+1,

for n ≥ 2 by taking δ > 0 small enough, then the Rn term is non increasing
for δ > 0 small enough. From this the conclusion of the lemma follows. �

As we have been doing so far, in what follows the indices of the coefficients of
our Fourier expansions are restricted to a fixed but arbitrary set Z, so keep
this in mind. And, as announced at be beginning of this section, since the
estimates are independent of Z, a limiting procedure will give the result for
when we take as Z the whole set of integers.

The following lemma shows that once we have control over the Fourier
coefficients k̂ (n, t) for |n| ≥ 2 on an interval of time, we also have control over
the coefficients k̂ (±1, t) on the same interval of time.

Lemma 3. Let ψ be such that Q (ψ) = 0. There is a δ′ > 0 such that if
0 < δ ≤ δ′ and δψ̂ (0) ≥

∣
∣
∣ψ̂ (±1)

∣
∣
∣ then whenever

∣
∣
∣k̂ (n, t)

∣
∣
∣ n2 ≤ δk̂ (0, t) for all

|n| ≥ 2, for all t ∈ [0, τ ], then we also have
∣
∣
∣k̂ (q, t)

∣
∣
∣ q2 ≤ δk̂ (0, t) for q = ±1

on the same time interval.

Proof. Since we have that δψ̂ (0) ≥
∣
∣
∣ψ̂ (±1)

∣
∣
∣, we can choose a τ ′ ∈ [0, τ ] such

that
∣
∣
∣k̂ (±1, t)

∣
∣
∣ ≤ 2δk̂ (0, t) on [0, τ ′] (remember we are working with an arbi-

trary but final dimensional approximation of the p-curve shortening flow). We
have the following identity

1
k (θ, t)

=
1

k̂ (0, t)

1

1 +
∑

q �=0
k̂(q,t)

k̂(0,t)
eiqθ

=
1

k̂ (0, t)

1
1 + z

=
1

k̂ (0, t)

∞∑

n=0

(−1)nzn,

where z = z(θ, t) =
∑

q �=0

k̂(q, t)

k̂ (0, t)
eiqθ. It can be easily seen that for the Fourier

coefficients of z are given by:

ẑ(p, t) =

{

0 if p = 0
k̂(p,t)

k̂(0,t)
otherwise

.

Taking Fourier transform, this implies

̂
(

1
k

)

(−1, t) =
1

k̂ (0, t)

×
(

−ẑ(−1, t) +
∞∑

m=2

(−1)m
∑

q1+···+qm=−1

ẑ(q1, t) · · · ẑ(qm, t)

)

.
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Since k is the curvature of a convex curve, we have Q (k) = 0, so

̂
(

1
k

)

(−1, t) =
∫

S1

e−(−1)iθ

k (θ, t)
dθ = Q(k) = 0,

then

|ẑ(−1, t)| =

∣
∣
∣
∣
∣

∞∑

m=2

(−1)m
∑

q1+···+qm=−1

ẑ(q1, t) · · · ẑ(qm, t)

∣
∣
∣
∣
∣
.

In order to estimate the sum in the right side, let us notice that

∑

q1+···+qm=−1

ẑ(q1, t) · · · ẑ(qm, t) =
m−1∑

j=0

(
m

j

)

ẑ(1, t)j

m−j−1
∑

l=0

(
m − j

l

)

ẑ(−1, t)j

∑

qj+l+1+···+qm=−1−j+l

ẑ(qj+l+1, t) · · · ẑ(qm, t).

Now we proceed to estimate Sm =
∑

q1+···+qm=−1

ẑ(q1, t) · · · ẑ(qm, t),

|Sm| ≤
m−1∑

j=0

(
m

j

)

|ẑ(1, t)|j
m−j−1
∑

l=0

(
m − j

l

)

|ẑ(−1, t)|l

∑

qj+l+1+···+qm

=−1−j+l

δm−j−l 1
q2j+l+1

· · · 1
q2m

≤
m∑

j=0

(
m

j

)

|ẑ(1, t)|j
m−j
∑

l=0

(
m − j

l

)

|ẑ(−1, t)|l δm−j−lCm−j−l
1

= (|ẑ(1, t)| + |ẑ(−1, t)| + δC1)
m

,

where C1 is a constant independent of Z and δ.
As we have that |ẑ(±1, t)| ≤ 2δ, we get

|Sm| ≤ (|ẑ(1, t)| + |ẑ(−1, t)| + δC1)
m ≤ δm (4 + C1)

m
.

Therefore

|ẑ(−1, t)| ≤ δ2(4 + C1)2

1 − δ(4 + C1)
≤ δ

as long as δ ≤ 1
2 (4 + C1)

. �

Lemma 4. There is a δ > 0, independent of Z, such that if the initial condition
ψ of (3) satisfies Q(ψ) = 0 and

δ · ψ̂(0) ≥ q2|ψ̂(q)|,
then for all times t (as long as the solution to (4) exists),

δψ(0) ≥ q2
∣
∣
∣k̂(q, t)

∣
∣
∣ .
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Proof. There exists a τ > 0 such that the interval [0, τ ] is maximal with respect
to the following property: for all t ∈ [0, τ ] we have

2δ · ψ̂(0) ≥ q2|k̂(q, t)|,
and

k̂(0, t) ≥ (1 − δ)ψ̂(0).

Now applying Lemmas 1 and 2, we obtain that

δψ(0) ≥ q2
∣
∣
∣k̂(q, t)

∣
∣
∣ ,

whenever |q| ≥ 2. Applying Lemma 3, we get that

δψ(0) ≥
∣
∣
∣k̂(±1, t)

∣
∣
∣ ,

when t ∈ [0, τ ]. Hence we have that δψ(0) ≥ q2
∣
∣
∣k̂(q, τ)

∣
∣
∣ and if we apply the

same arguments as before we can show that there is a τ1 > τ such that if
t ∈ [0, τ1] then δ · ψ̂(0) ≥ q2

∣
∣
∣k̂(q, t)

∣
∣
∣, contradicting the maximality of [0, τ ]. �

For δ > 0 small enough, assuming that for the initial condition we have
δψ̂ (0) ≥ q2|ψ̂(q)|, we have now control over all the Fourier coefficients of the
solution. The arguments in [5] now apply almost verbatim: see the upcoming
sections.

3.2. Decay of the Fourier coefficients

Again, all the estimates proved in this section are valid for any choice of Z,
and are also independent of the choice. Our main purpose is to show that the
Fourier coefficients k̂ (n, t), n �= 0, go to 0 as t → T . To begin, we have, as in
[5], the Trapping Lemma (Lemma 3.2 in [5]). Keep in mind that we are always
under the assumption that ψ > 0 is the curvature function of a simple convex
closed curve (or equivalently, the identity Q (ψ) = 0 holds).

Theorem 3. (Trapping Lemma) There exists a constant cp > 0 independent of
the choice of Z such that if the initial datum ψ satisfies the inequality

ψ̂(0) ≥ cp ‖ψ‖2 ,

then there exists a γ > 0 that depends on ψ such that the solution to (4)
satisfies

∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ ψ̂(0)e−γ|n|t

cp|n|2 , n �= 0. (7)

Also, in the same way as Lemmas 3.3 and 3.4 are obtained in [5], we have a
Blow-up Lemma.

Lemma 5. (Blow-up) There is a cp > 0 (the same as in the Trapping Lemma)
such that if the initial condition ψ of (3) satisfies

·ψ̂(0) ≥ cp

∥
∥
∥ψ̂

∥
∥
∥
2
,
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then there are constants c, c′ > 0 such that

c

T − t
≤ k̂ (0, t)p+1 ≤ c′

T − t
. (8)

From now on, we assume that ψ satisfies

ψ̂(0) ≥ cp ‖ψ‖2 ,

where cp is such that the Trapping Lemma holds.
We have a few important observations. First, integrating the ODE for

k̂ (n, t), we obtain

k̂ (n, t) = k̂(n, τ)e−(n2− p+2
p )

∫ t
τ

k̂(0,σ)p+1 dσ +
∫ t

τ

h(s)e−(n2− p+2
p )

∫ t
s

k̂(0,σ)p+1 dσ ds

(9)
where h(t) is given by

h(t) =
∑

q∈An∩Zp+2

H (p, q1, q2) Φ(q, t)k̂∗(p+2) (q, t) ,

Applying the Trapping Lemma we get

|h(t)| ≤ Cpk̂ (0, t)p
.

Also, from the Trapping Lemma, there exists C, μ > 0, such that
∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ Ce−|μ|, for t ≥ T

2
. (10)

We shall use these observations in proving the following decay (in time) esti-
mates for the Fourier coefficients of k.

Proposition 6. There exists ε0 > 0 which depends on p, and a μ > 0 that
depends also on p and on ψ, such that if t > T

2 > 0 then there is a constant
b > 0 such that for any 0 < ε < ε0, for n �= 0,±1, the following estimate holds
for the solution of (3),

∣
∣
∣k̂ (n, t)

∣
∣
∣ < be−μ|n|(T − t)ε whenever t >

T

2
.

Proof. (See also the proof of Lemma 3.6 in [5]) First we have, for δ > 0 small
enough, by the Blow-up Lemma,

∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤

∣
∣
∣k̂(n, T − δ)

∣
∣
∣ e−(n2− p+2

p )
∫ t
T −δ

k̂(0,s)p+1 ds

+
∫ t

T−δ

|h(s)| e−(n2− p+2
p )

∫ t
s

k̂(0,σ)p+1 dσ ds

≤
∣
∣
∣k̂(n, T − δ)

∣
∣
∣

(
T − t

δ

)ηα(n,p)

+
∫ t

T−δ

|h(s)| e−(n2− p+2
p )

∫ t
s

k̂(0,σ)p+1 dσ ds,
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where η > 0 is a constant and

α(n, p) =
(

n2 − p + 2
p

)
p

p + 1
.

We are going to estimate the term inside the integral in the last inequality. As
before we split h(s) into sums of the form

Ji1,i2,...,il
=

∑

q∈A0∩Zp+2;
qj=0⇔j=i1,i2,...,il

H (p, q1, q2) k̂∗(p+2) (q, s) .

Using this, the Trapping Lemma and the observations after its statement, we
get

|Ji1,i2,...,il
| ≤ Ce−μ|n|

(T − s)
l

p+1
,

and since l ≤ p, we finally obtain

|h(s)| ≤ Ce−μ|n|

(T − s)
p

p+1
.

Then we have
∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤

∣
∣
∣k̂(n, T − δ)

∣
∣
∣

(
T − t

δ

)ηα(n,p)

+ C (T − t)ηα(n,p)
e−μ|n|

∫ t

T−δ

1

(T − s)ηα(n,p)+ p
p+1

ds.

Using again (10) and the fact that α(n, p) ≥ α(2, p) > 0, we obtain

∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤

∣
∣
∣k̂ (n, T − δ)

∣
∣
∣

(
T − t

δ

)ηα(n,p)

+ Ce−μ|n|(T − t)1− p
p+1

≤ b

2
e−μ|n|

(

(T − t)ηα(n,p) + (T − t)1− p
p+1

)

,

for a constant b > 0. Then we have
∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ be−μ|n|(T − t)ε,

for any 0 < ε < min
{

ηα (2, p) , 1 − p
p+1

}

= ε0. �

Next we are going to improve on the decay estimates so far for the Fourier
coefficients. To be able to do this, we will need the following lemma.

Lemma 7. There is a t0 such that if t ∈ (t0, T ), then we have the estimates
(

p + 1
p

) 1
p+1

k̂ (0, t) ≤ 1
[

(T − t) − c1 (T − t)1+
2

p+1

] 1
p+1

,
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and
(

p + 1
p

) 1
p+1

k̂ (0, t) ≥ 1
[

(T − t) + c1 (T − t)1+
2

p+1

] 1
p+1

.

Proof. We have that the following differential inequality
d

dt
k̂ (0, t) ≤ 1

p
k̂ (0, t)p+2 + Ak̂ (0, t)p

,

holds for a constant A > 0 independent of t. This is equivalent to
1

k̂ (0, t)p+2

d

dt
k̂ (0, t) ≤ 1

p
+ Ak̂ (0, t)−2

.

Using Lemma 5, from the previous differential inequality we obtain
1

k̂ (0, t)p+2

d

dt
k̂ (0, t) ≤ 1

p
+ C (T − t)

2
p+1 ,

The result follows by integration. For the other inequality, notice that there
exists a constant A′ so we also have the following differential inequality

d

dt
k̂ (0, t) ≥ 1

p
k̂ (0, t)p+2 + A′k̂ (0, t)p

.

�

In order to proceed and to improve on our decay estimates, we need to estimate
the integral

I =
p + 1

p

∫ t

T−δ

k̂(0, τ)p+1 dτ

from below. From the previous lemma, and since δ is small, using Taylor’s
Theorem, we arrive at

I ≥
∫ t

T−δ

dτ

T − τ + (T − τ)1+
2

p+1
≥ − ln

(
T − t

δ

)

− c,

where c > 0, is a constant that only depends on p and δ. Using this and (9),
we get

∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ C

∣
∣
∣k̂(n, T − δ)

∣
∣
∣

(
T − t

δ

)α(n,p)

(11)

+C(T − t)α(n,p)

∫ t

T−δ

(
1

T − s

)α(n,p)

h(s) ds

here
α(n, p) = (n2 − p + 2

p
)

p

p + 1
. (12)

Using the estimate of Proposition 6 and the fact that if q ∈ An then q has at
least two entries different from 0,we get

|h(s)| ≤ Ce−μ′|n|

(T − s)
p

p+1
(T − s)2ε.
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If we introduce the bound from Proposition 6 in (11) we get
∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ C

∣
∣
∣k̂(n, T − δ)

∣
∣
∣

(
T − t

δ

)α(n,p)

+C(T − t)α(n,p)e−μ′|n|
∫ t

T−δ

(T − t)2ε

(T − s)α(n,p)+ p
p+1

ds,

for a well chosen 0 < μ′ < μ, and from which we obtain the estimate (we use
again the fact α(n, p) ≥ α(2, p))

∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ C ′e−μ′|n|(T − t)min{α(2,p),1− p

p+1+2ε}.

If it happens that α(2, p) > 1 − p
p+1 + 2ε, using this new bound an pluggin it

into (11), we improve again our estimate on k̂ (n, t):
∣
∣
∣k̂ (n, t)

∣
∣
∣ ≤ C ′′e−μ′′|n|(T − t)min{α(2,p),3(1− p

p+1 )+4ε} (0 < μ′′ < μ′) .

Hence, if we repeat this procedure a finite number of times we arrive at an
estimate ∣

∣
∣k̂ (n, t)

∣
∣
∣ ≤ De−ξ|n|(T − t)α(2,p), n �= 0,±1. (13)

where ξ > 0 is a constant independent of n, and α (2, p) is defined by (12) (so
its value is (3p − 2) / (p + 1)).

Now, we must show now that the Fourier coefficients k̂ (±1, t) satisfy the
same estimate. In this case we write

z (n, t) =
(

p + 1
p

) 1
p+1

(T − t)
1

p+1 k̂ (n, t) .

We also have an identity which follows from Q (k) = 0 (here we use that
ẑ (−1, t) is the conjugate of ẑ (1, t), as z is real valued)

∞∑

n=0

(
2n

n

)

|z (1, t)|2n
z (1, t) =

∞∑

m=2

′∑

q1+q2+···+qm=1

z (q1) · · · z (qm, t) ,

where the prime (′) in the inner sum of the righthand side indicates that at
least one of the qj �= ±1. Using similar computations as in the proof of Lemma
3, together with (13), we can conclude that

∞∑

n=0

(
2n

n

)

|z (1, t)|2n
z (1, t) = O

(

(T − t)
3p−1
p+1

)

,

hence, if δ > 0 is small enough, we can deduce that

z (1, t) = O
(

(T − t)
3p−1
p+1

)

,

which is just that
∣
∣
∣k̂ (±1, t)

∣
∣
∣ ≤ C (T − t)

3p−2
p+1 . So we have proved

Proposition 8. Let ψ > 0 is a smooth 2π-periodic function which satisfies that
Q (ψ) = 0. There exists a positive constant cp such that if

ψ̂(0) ≥ cp ‖ψ‖2 ,
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then a solution to (3) satisfies
∥
∥
∥k (θ, t) − k̂ (0, t)

∥
∥
∥

Ck[0,2π]
≤ Mp,k(T − t)

3p−2
p+1

where T is the blow-up time and Mp,k is a constant that depends only on p, k
and ψ.

We normalise the solution of (3) by means of the following transformation:

k̃ (θ, t) =
(

p + 1
p

) 1
p+1

(T − t)
1

p+1 k (θ, t) , τ = − 1
p + 1

log
(

1 − t

T

)

.

Applying chain rule, we obtain the following normalised version of (3)
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂k̃

∂τ
= pk̃p+1 ∂2k̃

∂θ2
+ p(p − 1)k̃p

(

∂k̃

∂θ

)2

+ k̃p+2 − k̃ in [0, 2π] × (0,∞)

k̃(θ, 0) =
(

(p + 1)T
p

) 1
p+1

ψ (θ) .

(14)
Using this normalisation, Proposition 8 translates into:

Corollary 9. Let ψ > 0 is a smooth 2π-periodic function which satisfies that
Q (ψ) = 0. There exists a positive constant cp such that if

ψ̂(0) ≥ cp ‖ψ‖2 ,

then the normalization k̃ of k satisfies:
∥
∥
∥k̃ − ˆ̃

k(0, t)
∥
∥
∥

Ck[0,2π]
≤ Mp,ke−(3p−1)τ ,

where Mp,k is a positive constant that depends only on p, k and ψ.

4. Exponential convergence of the normalised curvature
towards 1: proof of the main result

We will need the following improvement over Lemma 7.

Lemma 10. There are constants c0, c1 > 0 for which the following estimates
hold on (0, T )

(
p + 1

p

) 1
p+1

k̂ (0, t) ≤ 1
[

(T − t) − c1 (T − t)1+
6p−2
p+1

] 1
p+1

,

and
(

p + 1
p

) 1
p+1

k̂ (0, t) ≥ 1
[

(T − t) + c0 (T − t)1+
6p−2
p+1

] 1
p+1

.
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Proof. Notice that using (13) and the equation satisfied by k̂ (0, t), we have
the following differential inequality, which is valid for a constant A > 0,

d

dt
k̂ (0, t) ≤ 1

p
k̂ (0, t)p+2 + A (T − t)

6p−4
p+1 k̂ (0, t)p

.

Integrating, from t to T , we obtain the second inequality. Analogously, for a
constant A′, we have the differential inequality

d

dt
k̂ (0, t) ≥ 1

p
k̂ (0, t)p+2 − A′ (T − t)

6p−4
p+1 k̂ (0, t)p

,

which by integration gives the first inequality. �
Finally we have our main result.

Theorem 4. Let ψ > 0 be the initial condition of (3) (so it is the curvature
function of a convex simple curve). Then there exists a constant cp > 0 such
that if

ψ̂(0) ≥ cp ‖ψ‖2 ,

then the solution to (14) satisfies
∥
∥
∥k̃ − 1

∥
∥
∥

Cl[0,2π]
≤ Cp,le

−(3p−1)τ ,

where Cp,l is a constant that only depends on the initial condition ψ and p and
l.

Proof. Let

ũ(0, t) =
1
2π

∫ 2π

0

k̃ (θ, t) dθ =
(

p + 1
p

) 1
p+1

(T − t)
1

p+1 k̂ (0, t) .

Using Lemma 10 we can estimate

ũ(0, t) − 1 =
(

p + 1
p

) 1
p+1

k̂ (0, t) (T − t)
1

p+1 − 1

≤ (T − t)
1

p+1

[

(T − t) − c1(T − t)1+
6p−2
p+1

] 1
p+1

− 1 ≤ C(T − t)
6p−2
p+1 .

Analogously,

1 − ũ(0, t) ≤ C(T − t)
6p−2
p+1 .

Since e−τ =
(

T − t

T

) 1
p+1

, then

∣
∣
∣
∣

1
2π

∫ 2π

0

k̃(θ, τ) dθ − 1
∣
∣
∣
∣
≤ Ce−(6p−2)τ .

Applying the triangular inequality and Corollary 9 we can conclude that
∥
∥
∥k̃ − 1

∥
∥
∥

Cl[0,2π]
≤

∥
∥
∥k̃ − ũ

∥
∥
∥

Cl[0,2π]
+ ‖ũ − 1‖Cl[0,2π] ≤ Cp,le

−(3p−1)τ

for some constant Cp,l that depends on p and l. �
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4.1. Final remarks

The rate of convergence obtained in Theorem 1, seems to be the best possible
in general. We have not been able to produce an example where the rate given
in Theorem 1 is met; however, to justify our claim, we refer to the comments
after the statement of Theorem 2.2 in [5]: The first positive eigenvalue of the
elliptic part of (14), i.e., the left hand side of the equation, when linearised
around the steady solution k̃ ≡ 1 is precisely 3p − 1.
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