Nonlinear Differ. Equ. Appl. (2017) 24:41 -c 2017 Springer International Publishing AG 1021-9722/17/040001-12 *published online* June 23, 2017 DOI 10.1007/s00030-017-0465-7

Nonlinear Differential Equations and Applications NoDEA

Global existence and blow-up for a fourth order parabolic equation involving the Hessian

Guangyu Xu and Jun Zhou

Abstract. This paper deals with a fourth order parabolic equation involving the Hessian, which was studied in Escudero et al. (J Math Pures Appl 103(4):924–957, [2015\)](#page-10-0) recently, where the initial conditions for $W_0^{2,2}$ norm and $W_0^{1,4}$ -norm blow-up were got when the initial energy $J(u_0) \leq d$, where $d > 0$ is the mountain-pass level. The purpose of this paper is to study two of the open questions proposed in the paper, that is, L^p -norm blow-up and the behavior of the solutions when $J(u_0) > d$. For the case of $J(u_0) < 0$, we prove the solution blows up in finite time with L^2 -norm. Moreover, we estimate the blow-up time and the blow-up rate. For the case of $J(u_0) > d$, we find two sets Ψ_α and Φ_α , and prove that the solution blows up in finite time if the initial value belongs to Ψ_{α} , while the solution exists globally and tends to zero as time $t \to +\infty$ when the initial value belongs to Φ_{α} .

Mathematics Subject Classification. 35J30, 35K25, 35K35, 35K55, 35G31, 35Q70.

Keywords. Fourth order parabolic equation, Global existence, Blow-up.

1. Introduction

In this paper, we study the following fourth order parabolic equation

$$
\begin{cases}\n u_t + \Delta^2 u = \det(D^2 u), \ x \in \Omega, t > 0, \\
 u(x, 0) = u_0(x), \quad x \in \Omega, \\
 u = u_\nu = 0, \quad x \in \partial\Omega, t > 0,\n\end{cases}
$$
\n(1.1)

This work is partially supported by the Basic and Advanced Research Project of CQC-STC Grant cstc2016jcyjA0018, NSFC Grant 11201380, Fundamental Research Funds for the Central Universities grant XDJK2015A16.

where $\Omega \subset \mathbb{R}^2$ is an open, bounded domain with smooth boundary $\partial\Omega$. The initial value $u_0(x) \in W_0^{2,2}(\Omega)$, ν is the unit out normal vector on $\partial\Omega$.

Problem [\(1.1\)](#page-0-0) describes the process of epitaxial growth, which is a technique by means of which the deposition of new material on existing layers of the same material takes place under high vacuum conditions. Problem [\(1.1\)](#page-0-0) and its related problems have been studied in [\[1](#page-10-2)[–5,](#page-10-0)[10](#page-10-3)]. Especially, in [\[5\]](#page-10-0), the authors studied the behavior of the solutions to problem [\(1.1\)](#page-0-0), and they proposed seven open questions, the purpose of this paper is to study two of them. In order to introduce the main results of [\[5](#page-10-0)] and the two open questions, let's firstly introduce some notations, sets and functionals. Throughout this paper, we denote by (x, y) the element of \mathbb{R}^2 . The norm of $W^{m,p}(\Omega)$ is denoted by $\|\cdot\|_{W^{m,p}(\Omega)}$ except for the $W_0^{2,2}$ -norm, which is denoted by $\|\cdot\|$, and

$$
||u||^2 = ||\Delta u||_2^2 = \int_{\Omega} |\Delta u|^2.
$$

For $p \in [1, +\infty)$, we denote by $\|\cdot\|_p$ the L^p -norm and

$$
||u||_p^p = \int_{\Omega} |u|^p.
$$

Next, we define the energy functional related to the stationary equation of (1.1) by

$$
J(u) := \frac{1}{2} ||u||^2 - I(u), \quad \forall u \in W_0^{2,2}(\Omega),
$$
\n(1.2)

where

$$
I(u) := \int_{\Omega} u_x u_y u_{xy}.
$$

The corresponding mountain-pass level is given by (see [\[5\]](#page-10-0))

$$
d := \inf_{\gamma \in \Gamma} \max_{0 \le s \le 1} J(\gamma(s)) \tag{1.3}
$$

where

$$
\Gamma := \left\{ \gamma \in C([0,1], W_0^{2,2}(\Omega)); \gamma(0) = 0, J(\gamma(1)) < 0 \right\}.
$$

By $[5,$ Theorem 2.6, we know that d can be lower bounded in terms of the best constant for embedding $W_0^{2,2}(\Omega) \hookrightarrow W_0^{1,4}(\Omega)$, namely

$$
d \ge \frac{8}{27} \min_{u \in W_0^{2,2}(\Omega) \backslash \{0\}} \frac{\left(\int_{\Omega} |\Delta u|^2\right)^2}{\int_{\Omega} |\nabla u|^4} > 0. \tag{1.4}
$$

The Nehari manifold is defined by

$$
\mathcal{N} := \left\{ u \in W_0^{2,2}(\Omega) \backslash \{0\}, \langle J'(u), u \rangle = ||u||^2 - 3I(u) = 0 \right\},\qquad(1.5)
$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $W^{-2,2}(\Omega)$ and $W_0^{2,2}(\Omega)$. Moreover, we define

$$
\mathcal{N}_{+} := \left\{ u \in W_{0}^{2,2}(\Omega); \|u\|^{2} > 3I(u) \right\},\tag{1.6}
$$

$$
\mathcal{N}_{-} := \left\{ u \in W_0^{2,2}(\Omega); \|u\|^2 < 3I(u) \right\}. \tag{1.7}
$$

In [\[5\]](#page-10-0), for the subcritical initial energy case $(J(u_0) < d)$ and the critical initial energy case $(J(u_0) = d)$, the authors obtained the initial conditions for global existence and finite time blow-up of solutions to problem [\(1.1\)](#page-0-0). In detail, they proved that the solution of problem (1.1) blows up in finite time with $W_0^{2,2}$ -norm and $W_0^{1,4}$ -norm if $u_0 \in \mathcal{N}_-$ and $J(u_0) \leq d$. Moreover, they proved that if $u_0 \in \mathcal{N}_+$, $J(u_0) \leq d$, then the solution $u(t)$ of problem [\(1.1\)](#page-0-0) exists globally and $u(t) \to 0$ in $W^{4,2}(\Omega)$ as $t \to +\infty$.

Furthermore, the authors proposed seven open questions and two of them are as follows:

- (Q1) **Blow-up in** L^p -norms: From [\[5,](#page-10-0) Theorems 4.8 and 4.10], we learn that when $W_0^{2,2}$ -norm blow-up occurs, then also the $W_0^{1,4}$ -norm blows up. What about the L^p -norm blow-up?
- (Q2) **High energy initial data:** In order to prove global existence or finite time blow-up for problem [\(1.1\)](#page-0-0) we assumed that $J(u_0) \leq d$. What happens for $J(u_0) > d$?

We will give answers to the above questions in this paper. Let

$$
J^{\alpha} := \left\{ u \in W_0^{2,2}(\Omega), J(u) \le \alpha \right\},\tag{1.8}
$$

where α is a positive constant. For all $\alpha > d$, it is easy to see that

$$
\mathcal{N}_{\alpha} := \mathcal{N} \cap J^{\alpha} = \left\{ u \in \mathcal{N} \, \middle| \, \|u\| \le \sqrt{6\alpha} \right\} \neq \emptyset, \tag{1.9}
$$

and then we define

$$
\lambda_{\alpha} := \inf \left\{ \left. \frac{1}{2} ||u||_2^2 \right| u \in \mathcal{N}_{\alpha} \right\}, \quad \Lambda_{\alpha} := \sup \left\{ \left. \frac{1}{2} ||u||_2^2 \right| u \in \mathcal{N}_{\alpha} \right\}. \tag{1.10}
$$

Clearly we have the following monotonicity properties

 $\alpha \mapsto \lambda_{\alpha}$ is nonincreasing, $\alpha \mapsto \Lambda_{\alpha}$ is nondecreasing. (1.11)

We denote by $T = T(u_0)$ the maximal existence time of the solutions to problem (1.1) . If $T = +\infty$, we denote by

$$
\omega(u_0) = \bigcap_{t \ge 0} \overline{\{u(s) : s \ge t\}},
$$

the ω -limit set of $u_0 \in W_0^{2,2}(\Omega)$, where the closure is taken in $W_0^{2,2}(\Omega)$.

Now, we are ready to state the main results of this paper. The first result is about **(Q1)**, which can be stated as the following theorem.

Theorem 1.1. Let $u_0 \in W_0^{2,2}(\Omega)$ be such that $J(u_0) < 0$, then the solution to *problem* [\(1.1\)](#page-0-0) *blows up at a finite time* T *with* L^2 -norm. Moreover, the blow-up *time can be estimated by*

$$
T \le -\frac{||u_0||_2^2}{3J(u_0)},
$$

and the blow-up rate can be estimated by

$$
||u(\cdot,t)||_2\leq -\frac{||u_0||_2^3}{3J(u_0)}(T-t)^{-1}.
$$

Next, we give the result about **(Q2)**.

Theorem 1.2. For any $\alpha \in (d, +\infty)$, the following conclusions hold:

- (i) If $u_0 \in \Phi_\alpha$, then the solution $u(t)$ to problem [\(1.1\)](#page-0-0) exists globally and $u(t) \to 0$ with $W_0^{2,2}$ -norm as $t \to +\infty$;
- (ii) *If* $u_0 \in \Psi_\alpha$, then the solution $u(t)$ to problem [\(1.1\)](#page-0-0) blows up in finite *time,*

where

$$
\Phi_{\alpha} := \mathcal{N}_{+} \cap \left\{ \phi \in W_{0}^{2,2}(\Omega) \, \middle| \, \frac{1}{2} ||\phi||_{2}^{2} < \lambda_{\alpha}, \ d < J(\phi) \leq \alpha \right\},\
$$
\n
$$
\Psi_{\alpha} := \mathcal{N}_{-} \cap \left\{ \phi \in W_{0}^{2,2}(\Omega) \, \middle| \, \frac{1}{2} ||\phi||_{2}^{2} > \Lambda_{\alpha}, \ d < J(\phi) \leq \alpha \right\},\tag{1.12}
$$

and λ_{α} , Λ_{α} *are two constants defined in* [\(1.10\)](#page-2-0)*, J is defined in* [\(1.2\)](#page-1-0)*.*

Remark 1.3. *We make two remarks about* Theorem [1.2](#page-3-0)*.*

(i) Lemma [2.1](#page-4-0) *shows that*

$$
\frac{64}{243\alpha\kappa^8} \le \lambda_\alpha \le \Lambda_\alpha \le \frac{3}{\lambda_1}\alpha,
$$

where λ_1 *and* κ *are two positive constants given in* [\(2.2\)](#page-4-1) *and* [\(2.4\)](#page-4-2) *respectively. Then the definitions of* Φ_{α} *and* Ψ_{α} *make sense.*

(ii) *In* [\[5,](#page-10-0) Theorem 4.7]*, the authors gave the following result: Assume that* $u_0 \in W_0^{2,2}(\Omega)$ *and*

$$
\lambda_1 \|u_0\|_2^2 > 6J(u_0),\tag{1.13}
$$

where λ_1 *is defined in* [\(2.2\)](#page-4-1)*, then the solution* $u = u(t)$ *to problem* [\(1.1\)](#page-0-0) *blows up in finite time, that is, there exists* $T > 0$ *such that* $||u|| \rightarrow +\infty$ $and \|u\|_{W_0^{1,4}(\Omega)} \to +\infty \text{ as } t \to T.$

We can prove that if u_0 *satisfies* [\(1.13\)](#page-3-1) *and* $J(u_0) > d$ *, then* $u_0 \in \Psi_{J(u_0)}$. Therefore, by (ii) of Theorem [1.2](#page-3-0), the solution blows up in *finite time, which means the blow-up condition of* Theorem [1.2](#page-3-0) *is weaker than the blow-up condition of* [\[5](#page-10-0), Theorem 4.7] *under the assumption* $J(u_0) > d$.

In fact, by the definition of λ_1 *in* [\(2.2\)](#page-4-1)*,* [\(1.13\)](#page-3-1) *and the definition of* $J(u_0)$ *we have*

$$
||u_0||^2 \ge \lambda_1 ||u_0||_2^2 > 6J(u_0),
$$

and

$$
6J(u_0) = 3||u_0||^2 - 6I(u_0).
$$

Combining these two relations, we get $3I(u_0) > ||u_0||^2$, *i.e.*,

$$
u_0 \in \mathcal{N}_-\tag{1.14}
$$

On the other hand, by [\(1.13\)](#page-3-1) *we obtain*

$$
\frac{1}{2}||u_0||_2^2 > \frac{3}{\lambda_1}J(u_0).
$$

By Lemma [2.1](#page-4-0)*, we get* $\frac{3}{\lambda_1} J(u_0) \geq \Lambda_{J(u_0)}$ *, then we have*

$$
\frac{1}{2}||u_0||_2^2 > \Lambda_{J(u_0)}.\tag{1.15}
$$

By [\(1.14\)](#page-4-3) *and* [\(1.15\)](#page-4-4)*, we get* $u_0 \in \Psi_{J(u_0)}$ *.*

The rest of this paper is organized as follows. In Sect. [2,](#page-4-5) we give some important lemmas, which will be used in the proof of the main results. In Sect. [3,](#page-6-0) we give the proof of the above theorems.

2. Preliminaries

We begin this section with the following eigenvalue problem:

$$
\begin{cases}\n\Delta^2 u = \lambda u, & x \in \Omega, \\
u = u_\nu = 0, & x \in \partial\Omega.\n\end{cases}
$$
\n(2.1)

Let λ_1 be the first eigenvalue of problem [\(2.1\)](#page-4-6). By [\[8](#page-10-4)], we know that λ_1 is positive, simple and it can be characterized in the following variational form

$$
\lambda_1 = \inf_{u \in W_0^{2,2}(\Omega) \setminus \{0\}} \frac{\|u\|^2}{\|u\|_2^2},\tag{2.2}
$$

which implies

$$
||u||_2^2 \le \frac{1}{\lambda_1} ||u||^2, \quad \forall u \in W_0^{2,2}(\Omega). \tag{2.3}
$$

Let $\kappa > 0$ be the optimal constant of the following Gagliardo–Nirenberg inequality $[6]$ $[6]$, i,e.,

$$
\|\nabla u\|_{4} \leq \kappa \|u\|_{4}^{\frac{3}{4}} \|u\|_{2}^{\frac{1}{4}}, \quad \forall u \in W_{0}^{2,2}(\Omega). \tag{2.4}
$$

Lemma 2.1. *Let* $\lambda_{\alpha}, \Lambda_{\alpha}$ *be defined in* [\(1.10\)](#page-2-0)*. For any constant* $\alpha > d$ *, we have*

$$
\frac{64}{243\alpha\kappa^8} \le \lambda_\alpha \le \Lambda_\alpha \le \frac{3}{\lambda_1}\alpha,
$$

where d, λ_1 *and* κ *are given in* [\(1.3\)](#page-1-1), [\(2.2\)](#page-4-1) *and* [\(2.4\)](#page-4-2) *respectively.*

Remark 2.2. *It holds that*

$$
\frac{64}{243\alpha\kappa^8} \le \frac{3}{\lambda_1}\alpha.
$$
 (2.5)

In fact, by [\(2.3\)](#page-4-7) *and* [\(2.4\)](#page-4-2)*, we have*

$$
\|\nabla u\|_4^4 \sqrt{\lambda_1} \le \kappa^4 \|u\|^4, \quad \forall u \in W_0^{2,2}(\Omega),
$$

then it follows from $\alpha > d$ *and* [\(1.4\)](#page-1-2) *that*

$$
\alpha > d \geq \frac{8}{27} \min_{u \in W^{2,2}_0(\Omega) \backslash \{0\}} \frac{\|u\|^4}{\|\nabla u\|_4^4} \geq \frac{8\sqrt{\lambda_1}}{27 \kappa^4},
$$

i.e., [\(2.5\)](#page-4-8) *holds.*

Proof of Lemma [2.1.](#page-4-0) By the definitions of λ_{α} and Λ_{α} in [\(1.10\)](#page-2-0), we obviously have $\lambda_{\alpha} \leq \Lambda_{\alpha}$, then it follows from Remark [2.2](#page-4-9) that we only need to prove

$$
\lambda_{\alpha} \ge \frac{64}{243\alpha\kappa^8}
$$
 and $\Lambda_{\alpha} \le \frac{3}{\lambda_1}\alpha$.

We firstly show that $\Lambda_{\alpha} \leq \frac{3}{\lambda_1} \alpha$. For any $u \in \mathcal{N}_{\alpha} \subset W_0^{2,2}(\Omega)$, by [\(1.9\)](#page-2-1) and (2.3) , we know that

$$
\frac{1}{2}||u||_2^2 \le \frac{1}{2\lambda_1}||u||^2 \le \frac{3}{\lambda_1}\alpha.
$$

So it follows from the definition of Λ_{α} in [\(1.10\)](#page-2-0) that $\Lambda_{\alpha} \leq \frac{3}{\lambda_1} \alpha$.

Next we prove that $\lambda_{\alpha} \ge \frac{64}{243 \alpha \kappa^8}$. By the inequality [\[5](#page-10-0), (17)], we have

$$
I(u) \le \frac{1}{4} ||\nabla u||_4^2 ||u||, \quad \forall u \in W_0^{2,2}(\Omega),
$$

which combines with (2.4) implies

$$
I(u) \le \frac{\kappa^2}{4} \|u\|^{\frac{5}{2}} \|u\|^{\frac{1}{2}}_{2}, \quad \forall u \in W_0^{2,2}(\Omega). \tag{2.6}
$$

By the definition of $\mathcal N$ in [\(1.5\)](#page-1-3) and [\(2.6\)](#page-5-0), we obtain

$$
||u||^2 = 3I(u) \le \frac{3\kappa^2}{4} ||u||^{\frac{5}{2}} ||u||_2^{\frac{1}{2}}, \ \forall u \in \mathcal{N} \subset W_0^{2,2}(\Omega),
$$

i.e.,

$$
\left(\frac{4}{3\kappa^2}\right)^4 \|u\|^{-2} \le \|u\|_2^2, \quad \forall u \in \mathcal{N}.\tag{2.7}
$$

Now, for all $u \in \mathcal{N}_{\alpha} \subset \mathcal{N}$, by [\(1.9\)](#page-2-1) we have $||u|| \leq \sqrt{6\alpha}$, then it follows from (2.7) that

$$
||u||_2^2 \ge \left(\frac{4}{3\kappa^2}\right)^4 (6\alpha)^{-1} = \frac{128}{243\alpha\kappa^8}.
$$

So by the definition of λ_{α} in [\(1.10\)](#page-2-0), we have

$$
\lambda_{\alpha} = \inf_{u \in \mathcal{N}_{\alpha}} \frac{1}{2} ||u||_2^2 \ge \frac{64}{243\alpha \kappa^8}.
$$

Lemma 2.3. *For any* $\alpha > 0$ *, if* $u \in J^{\alpha} \cap \mathcal{N}_{+}$ *, then*

$$
||u|| < \sqrt{6\alpha}.
$$
 (2.8)

Proof. For any $u \in \mathcal{N}_+$, by the definition of \mathcal{N}_+ in [\(1.6\)](#page-2-2) we have

$$
||u||^2 > 3I(u).
$$

Then it follows from the definition of J^{α} in [\(1.8\)](#page-2-3) that

$$
\alpha \ge J(u) = \frac{1}{2} ||u||^2 - I(u) > \frac{1}{6} ||u||^2, \ \ \forall u \in J^{\alpha} \cap \mathcal{N}_+,
$$

which implies (2.8) .

Lemma 2.4. ([\[5,](#page-10-0) Theorem 2.5]) *For all* $u \in W_0^{2,2}(\Omega)$ *, the following implications hold:*

- (i) *If* $0 < ||u||^2 < 6d$, then $u \in \mathcal{N}_+$;
- (ii) *If* $u \in \mathcal{N}_+$ *and* $J(u) < d$ *, then* $0 < ||u||^2 < 6d$ *;*
- (iii) *If* $u \in \mathcal{N}_-$, then $||u||^2 > 6d$.

By Lemma $2.4(iii)$ $2.4(iii)$ we have

$$
dist(0, \mathcal{N}_{-}) = \min_{u \in \mathcal{N}_{-}} \|u\| \ge \sqrt{6d} > 0.
$$
 (2.9)

Lemma 2.5. ([\[5](#page-10-0), Lemma 4.1]) *If* $u = u(t)$ *solves problem* [\(1.1\)](#page-0-0) *then its energy* J(u(t)) *satisfies*

$$
\frac{d}{dt}J(u(t)) = -\|u_t(t)\|_2^2 \le 0.
$$
\n(2.10)

Lemma 2.6. ([\[5,](#page-10-0) Lemma 4.4]) *Let* $u_0 \n\in W_0^{2,2}(\Omega)$ *and let* $u = u(t)$ *be the corresponding solution to problem* [\(1.1\)](#page-0-0)*. Then for all* $t \in [0, T)$ *we have*

$$
\frac{1}{2}\frac{d}{dt}\|u(t)\|_{2}^{2} + \|u\|^{2} - 3I(u) = 0.
$$
\n(2.11)

Lemma 2.7. ([\[5](#page-10-0), Theorem 4.6]) Let $u_0 \in \mathcal{N}_-$ be such that $J(u_0) \leq d$. Then the *solution* $u = u(t)$ *to problem* [\(1.1\)](#page-0-0) *blows up in finite time, that is, there exists* $T > 0$ such that $||u(t)|| \rightarrow +\infty$ as $t \rightarrow T$. Moreover, the blow up also occurs in *the* $W_0^{1,4}$ -norm, that is, $||u(t)||_{W_0^{1,4}(\Omega)} \to +\infty$ as $t \to T$.

3. Proofs of the main results

In this section we will prove our main results. We firstly prove Theorem [1.1](#page-3-2) by utilizing the methods in [\[9,](#page-10-6)[11](#page-10-7)[,12](#page-11-0)].

Proof of Theorem [1.1.](#page-3-2) Let $u(t)$ be the solution of problem (1.1) with initial value $u_0 \in W_0^{2,2}(\Omega)$ satisfying $J(u_0) < 0$. We define

$$
f(t) = \frac{1}{2} ||u||_2^2,
$$
\n(3.1)

and

$$
g(t) = -3J(u) = 3I(u) - \frac{3}{2}||u||^2.
$$
 (3.2)

Then by (2.11) we have

$$
f'(t) = 3I(u) - ||u||^2,
$$
\n(3.3)

and by (2.10) we have

$$
g'(t) = -3\frac{d}{dt}J(u(t)) = 3||u_t||_2^2 \ge 0.
$$
\n(3.4)

Since $J(u_0) < 0$, by the definition of $g(t)$ in (3.2) we have $g(0) = -3J(u_0) > 0$. Then it follows from [\(3.4\)](#page-7-0) that $g(t) > 0$ for all $t \in [0, T)$. Combining [\(3.2\)](#page-6-4) and (3.3) we get

$$
f'(t) \ge g(t) > 0, \quad \forall t \in [0, T), \tag{3.5}
$$

then $f(t) > 0$ for all $t \in [0, T)$.

For any $t \in [0, T)$, by (3.1) , (3.4) , Schwartz's inequality and (3.5) we obtain

$$
f(t)g'(t) = \frac{3}{2}||u||_2^2||u_t||_2^2 \ge \frac{3}{2} \left(\int_{\Omega} uu_t \right)^2
$$

= $\frac{3}{2} [f'(t)]^2 \ge \frac{3}{2} f'(t)g(t),$

which can be rewritten as

$$
\frac{g'(t)}{g(t)} \ge \frac{3}{2} \frac{f'(t)}{f(t)}.
$$

Integrating above inequality from 0 to t we get

$$
\frac{g(t)}{[f(t)]^{\frac{3}{2}}} \ge \frac{g(0)}{[f(0)]^{\frac{3}{2}}},
$$

then by (3.5) we have

$$
\frac{f'(t)}{[f(t)]^{\frac{3}{2}}} \ge \frac{g(0)}{[f(0)]^{\frac{3}{2}}}.
$$
\n(3.6)

Integrating inequality (3.6) from 0 to t, we see

$$
\frac{1}{[f(t)]^{\frac{1}{2}}} \le \frac{1}{[f(0)]^{\frac{1}{2}}} - \frac{1}{2} \frac{g(0)}{[f(0)]^{\frac{3}{2}}} t.
$$
 (3.7)

Clearly, (3.7) cannot hold for all time, this means $f(t)$ blows up at some finite time T , i.e.,

$$
\lim_{t \to T} f(t) = +\infty,\tag{3.8}
$$

then by the definition of $f(t)$ in [\(3.1\)](#page-6-6), we know that $u(t)$ blows up at T with L^2 -norm.

Next, we estimate T and the blow-up rate. Let $t \to T$ in [\(3.7\)](#page-7-3), then by (3.8) and the definition of $f(t), g(t)$ we get

$$
T \le \frac{2f(0)}{g(0)} = -\frac{\|u_0\|_2^2}{3J(u_0)}.
$$

Moreover, by integrating the inequality (3.6) from t to T and (3.8) we have

$$
f(t) \le (T-t)^{-2} \left[\frac{g(0)}{2[f(0)]^{\frac{3}{2}}} \right]^{-2},
$$

so it follows from the definition of $f(t)$ and $g(t)$ that

$$
||u(\cdot,t)||_2 \le -\frac{||u_0||_2^3}{3J(u_0)}(T-t)^{-1}.
$$

Next, we prove Theorem [1.2](#page-3-0) and the idea of the proof comes from [\[7\]](#page-10-8).

Proof of Theorem [1.2.](#page-3-0) Let $u(t)$ be a solution of problem [\(1.1\)](#page-0-0), it follows from [\(2.11\)](#page-6-2) that

$$
\frac{1}{2}\frac{d}{dt}\|u\|_2^2 = 3I(u) - \|u\|^2.
$$
\n(3.9)

By Lemma [2.5,](#page-6-7) we know that $J(u(t))$ is non-increasing with respect to t, so we get

$$
J(u(t)) \le J(u_0) \quad \forall t \in [0, T). \tag{3.10}
$$

(i). If $u_0 \in \Phi_\alpha$, then by the definition of Φ_α in [\(1.12\)](#page-3-3) and the properties of λ_{α} in [\(1.11\)](#page-2-4), we have $d < J(u_0) \leq \alpha$ and

$$
u_0 \in \mathcal{N}_+, \quad \frac{1}{2} \|u_0\|_2^2 < \lambda_\alpha \le \lambda_{J(u_0)}.\tag{3.11}
$$

We claim that $u(t) \in \mathcal{N}_+$ for all $t \in [0, T)$. Arguing by contradiction, if the claim is not true, then there is a $t_0 \in (0, T)$ such that $u(t) \in \mathcal{N}_+$ for $0 \le t < t_0$ and $u(t_0) \in \mathcal{N}$. Then by the definition of \mathcal{N}_+ in [\(1.6\)](#page-2-2) and [\(3.9\)](#page-8-0), we know that $||u(t)||_2^2$ is strictly decreasing on [0, t₀]. So, it follows from [\(3.10\)](#page-8-1) and [\(3.11\)](#page-8-2) that

$$
\frac{1}{2}||u(t_0)||_2^2 < \frac{1}{2}||u_0||_2^2 < \lambda_{J(u_0)},\tag{3.12}
$$

$$
J(u(t_0)) \le J(u_0). \tag{3.13}
$$

Then by $u(t_0) \in \mathcal{N}$ and (3.13) , we get $u(t_0) \in \mathcal{N}_{J(u_0)}$. Hence, it follows from the definition of $\lambda_{J(u_0)}$ in [\(1.10\)](#page-2-0) that

$$
\lambda_{J(u_0)} \leq \frac{1}{2} ||u(t_0)||_2^2,
$$

which contradicts [\(3.12\)](#page-8-4), so the claim is true. Then by (3.10) we obtain $u(t) \in$ $J^{(u_0)} \cap \mathcal{N}_+$. Hence, by Lemma [2.3](#page-5-3) we can obtain

$$
||u(t)|| < \sqrt{6J(u_0)}, \quad \forall t \in [0, T).
$$
 (3.14)

Since the right-hand of (3.14) is independent of T, then we get $T = +\infty$, and we further have (3.14) holds for $0 \le t < +\infty$,

$$
u(t) \in J^{J(u_0)} \cap \mathcal{N}_+, \quad \forall t \in [0, +\infty), \tag{3.15}
$$

and $||u(t)||_2^2$ is strictly decreasing on $[0, +\infty)$

Now for any $\omega \in \omega(u_0)$, by the above discussions, we get

$$
\frac{1}{2}||\omega||_2^2 < \lambda_{J(u_0)} \quad \text{and} \quad J(\omega) \le J(u_0),
$$

so we get $\omega \notin \mathcal{N}_{J(u_0)}$ and $\omega \in J^{J(u_0)}$, then it follows from the definition of $\mathcal{N}_{J(u_0)}$ in [\(1.9\)](#page-2-1) that $\omega(u_0) \cap \mathcal{N} = \emptyset$. Namely, for any $\omega \in \omega(u_0)$ we have $\omega \notin \mathcal{N}$.

$$
\omega(u_0) = \{0\} \tag{3.16}
$$

In fact, it follows from $u(t) \in \mathcal{N}_+$ and the definitions of J and \mathcal{N}_+ that

$$
J(u(t)) = \frac{1}{2} ||u(t)||^2 - I(u(t)) > \frac{1}{2} ||u(t)||^2 - \frac{1}{3} ||u(t)||^2 = \frac{1}{6} ||u(t)||^2, \quad (3.17)
$$

then we have $J(u(t)) > 0$, i.e., $J(u(t))$ is bounded below. Since the $J(u(t))$ is non-increasing with respect to t we know that there is a constant c such that

$$
\lim_{t \to +\infty} J(u(t)) = c.
$$

So for any $\omega \in \omega(u_0)$, we have $J(u_\omega(t)) = c$ for all $t \geq 0$, where $u_\omega(t)$ is the solution of [\(1.1\)](#page-0-0) with initial value ω . Then combining [\(2.10\)](#page-6-3) we get $u_{\omega}(t) \equiv \omega$, and then it follows from [\(3.9\)](#page-8-0) that

$$
\|\omega\|^2 - 3I(\omega) = 0, \quad \forall \omega \in \omega(u_0). \tag{3.18}
$$

Combining [\(3.18\)](#page-9-0), $\omega \notin \mathcal{N}$ and the definition of \mathcal{N} in [\(1.5\)](#page-1-3) we get [\(3.16\)](#page-9-1). In other words, the solution $u(t) \to 0$ as $t \to +\infty$.

(ii). Similar to the proof of the first part, if $u_0 \in \Psi_\alpha$, then by the definition of Ψ_{α} in [\(1.12\)](#page-3-3) and the properties of Λ_{α} in [\(1.11\)](#page-2-4), we have $d < J(u_0) \leq \alpha$ and

$$
u_0 \in \mathcal{N}_-, \quad \frac{1}{2} \|u_0\|_2^2 > \Lambda_\alpha \ge \Lambda_{J(u_0)}.\tag{3.19}
$$

We claim that $u(t) \in \mathcal{N}_-$ for all $t \in [0, T)$. Arguing by contradiction, if the claim is not true, then there exists $t_1 > 0$ such that $u(t) \in \mathcal{N}_-$ for $0 \le t < t_1$ and $u(t_1) \in \mathcal{N}$. Then by the definition of \mathcal{N}_- in [\(1.7\)](#page-2-2) and [\(3.9\)](#page-8-0) we know that $||u(t)||_2^2$ is strictly increasing on $[0, t_1]$. So it follows from (3.10) and (3.19) that

$$
\frac{1}{2}||u(t_1)||_2^2 > \frac{1}{2}||u_0||_2^2 > \Lambda_{J(u_0)},
$$
\n(3.20)

$$
J(u(t_1)) \le J(u_0). \tag{3.21}
$$

Then by $u(t_1) \in \mathcal{N}$ and (3.21) we get $u(t_1) \in \mathcal{N}_{J(u_0)}$, hence it follows from the definition of $\Lambda_{J(u_0)}$ in [\(1.10\)](#page-2-0) that

$$
\Lambda_{J(u_0)} \geq \frac{1}{2} ||u(t_1)||_2^2,
$$

which contradicts (3.20) , then the claim is true.

Now we assume $T = +\infty$, then

$$
u(t) \in J^{J(u_0)} \cap \mathcal{N}_-, \quad \forall t \in [0, +\infty), \tag{3.22}
$$

and $||u(t)||_2^2$ is strictly increasing on $[0, +\infty)$. So for every $\omega \in \omega(u_0)$, have

$$
\frac{1}{2} ||\omega||_2^2 > \frac{1}{2} ||u_0||_2^2 > \Lambda_{J(u_0)} \quad \text{and} \quad J(\omega) \le J(u_0),
$$

so we get $\omega \in J^{J(u_0)}$ and $\omega \notin \mathcal{N}_{J(u_0)}$, then it follows from the definition of $\mathcal{N}_{J(u_0)}$ in [\(1.9\)](#page-2-1) that $\omega(u_0) \cap \mathcal{N} = \emptyset$.

Since $J(u(t))$ is non-increasing with respect to t, then we have following two cases:

- (a) there is a constant c such that $\lim_{t\to+\infty} J(u(t)) = c$;
- (b) $\lim_{t\to+\infty} J(u(t)) = -\infty$.

Next we will prove both the above cases contradict to $T = +\infty$, then we get the solution $u(t)$ blows up in finite time.

We first consider case (a). If $\lim_{t\to+\infty} J(u(t)) = c$, then by the similar discussions as in the proof of (i), we can get [\(3.18\)](#page-9-0), and then combining $\omega(u_0) \cap$ $\mathcal{N} = \emptyset$ and the definition of $\mathcal N$ in [\(1.5\)](#page-1-3) we get $\omega(u_0) = \{0\}$. However, by [\(2.9\)](#page-6-8) we know dist $(0, \mathcal{N}_-) > 0$, which implies $0 \notin \omega(u_0)$, so we get a contradiction.

Finally we consider case (b). If $\lim_{t\to+\infty} J(u(t)) = -\infty$, then must exist a time t_1 such that $J(u(t_1)) \leq d$. Since we have proved that $u(t) \in \mathcal{N}_-$ for all $t \in [0, +\infty)$, then $u(t_1) \in \mathcal{N}_-$. Taking $u(t_1)$ as the initial value, by Lemma [2.7](#page-6-9) we know that the corresponding solution $U(t) = u(t + t_1)$ blows up in finite time, which contradicts $T = +\infty$, thus Theorem [1.2](#page-3-0) is proved. \Box

References

- [1] Escudero, C.: Geometric principles of surface growth. Phys. Rev. Lett. **101**(19), 196102 (2008)
- [2] Escudero, C., Peral, I.: Some fourth order nonlinear elliptic problems related to epitaxial growth. J. Differ. Equ. **254**(6), 2515–2531 (2013)
- [3] Escudero, C., Hakl, R., Peral, I., Torres, P.J.: On radial stationary solutions to a model of nonequilibrium growth. Eur. J. Appl. Math. **24**(3), 437–453 (2013)
- [4] Escudero, C., Hakl, R., Peral, I., Torres, P.J.: Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth. Math. Methods Appl. Sci. **37**(6), 793–807 (2014)
- [5] Escudero, C., Gazzola, F., Peral, I.: Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian. J. Math. Pures Appl. **103**(4), 924–957 (2015)
- [6] Evans, L.: Partial differential equations, second edition. Wadsworth Brooks/cole Math. **19**(1), 211–223 (2010)
- [7] Gazzola, F., Weth, T.: Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ. Integral Equ. **18**(9), 961–990 (2005)
- [8] Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, Berlin (2010)
- [9] Jian, Y.H., Yang, Z.D.: Bounds for the blow-up time and blow-up rate estimates for nonlinear parabolic equations with Dirichlet or Neumann boundary conditions. Br. J. Math. Comput. Sci. **12**(2), 1–12 (2016)
- [10] Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. **56**(9), 889 (1986)
- [11] Luo, P.: Blow-up phenomena for a pseudo-parabolic equation. Math. Methods Appl. Sci. **38**(12), 2636–2641 (2015)

[12] Song, X.F., Lv, X.S.: Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl. Math. Comput. **236**(236), 78–92 (2014)

Guangyu Xu and Jun Zhou School of Mathematics and Statistics Southwest University Chongqing 400715 People's Republic of China e-mail: jzhouwm@163.com

Guangyu Xu e-mail: guangyuswu@126.com

Received: 3 December 2016. Accepted: 13 June 2017.