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Global existence and blow-up for a fourth
order parabolic equation involving the
Hessian
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Abstract. This paper deals with a fourth order parabolic equation in-
volving the Hessian, which was studied in Escudero et al. (J Math Pures

Appl 103(4):924–957, 2015) recently, where the initial conditions for W 2,2
0 -

norm and W 1,4
0 -norm blow-up were got when the initial energy J(u0) ≤ d,

where d > 0 is the mountain-pass level. The purpose of this paper is to
study two of the open questions proposed in the paper, that is, Lp-norm
blow-up and the behavior of the solutions when J(u0) > d. For the case
of J(u0) < 0, we prove the solution blows up in finite time with L2-norm.
Moreover, we estimate the blow-up time and the blow-up rate. For the
case of J(u0) > d, we find two sets Ψα and Φα, and prove that the so-
lution blows up in finite time if the initial value belongs to Ψα, while
the solution exists globally and tends to zero as time t → +∞ when the
initial value belongs to Φα.
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1. Introduction

In this paper, we study the following fourth order parabolic equation
⎧
⎨

⎩

ut + Δ2u = det
(
D2u

)
, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
u = uν = 0, x ∈ ∂Ω, t > 0,

(1.1)
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where Ω ⊂ R
2 is an open, bounded domain with smooth boundary ∂Ω. The

initial value u0(x) ∈ W 2,2
0 (Ω), ν is the unit out normal vector on ∂Ω.

Problem (1.1) describes the process of epitaxial growth, which is a tech-
nique by means of which the deposition of new material on existing layers of
the same material takes place under high vacuum conditions. Problem (1.1)
and its related problems have been studied in [1–5,10]. Especially, in [5], the
authors studied the behavior of the solutions to problem (1.1), and they pro-
posed seven open questions, the purpose of this paper is to study two of them.
In order to introduce the main results of [5] and the two open questions, let’s
firstly introduce some notations, sets and functionals. Throughout this paper,
we denote by (x, y) the element of R2. The norm of Wm,p(Ω) is denoted by
‖ · ‖W m,p(Ω) except for the W 2,2

0 -norm, which is denoted by ‖ · ‖, and

‖u‖2 = ‖Δu‖2
2 =

∫

Ω

|Δu|2.

For p ∈ [1,+∞), we denote by ‖ · ‖p the Lp-norm and

‖u‖p
p =

∫

Ω

|u|p.

Next, we define the energy functional related to the stationary equation
of (1.1) by

J(u) :=
1
2
‖u‖2 − I(u), ∀u ∈ W 2,2

0 (Ω), (1.2)

where

I(u) :=
∫

Ω

uxuyuxy.

The corresponding mountain-pass level is given by (see [5])

d := inf
γ∈Γ

max
0≤s≤1

J(γ(s)) (1.3)

where

Γ :=
{

γ ∈ C([0, 1],W 2,2
0 (Ω)); γ(0) = 0, J(γ(1)) < 0

}
.

By [5, Theorem 2.6], we know that d can be lower bounded in terms of the
best constant for embedding W 2,2

0 (Ω) ↪→ W 1,4
0 (Ω), namely

d ≥ 8
27

min
u∈W 2,2

0 (Ω)\{0}

(∫

Ω

|Δu|2
)2

∫

Ω

|∇u|4
> 0. (1.4)

The Nehari manifold is defined by

N :=
{

u ∈ W 2,2
0 (Ω)\{0}, 〈J ′(u), u〉 = ‖u‖2 − 3I(u) = 0

}
, (1.5)
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where 〈·, ·〉 denotes the duality pairing between W−2,2(Ω) and W 2,2
0 (Ω). More-

over, we define

N+ :=
{

u ∈ W 2,2
0 (Ω); ‖u‖2 > 3I(u)

}
, (1.6)

N− :=
{

u ∈ W 2,2
0 (Ω); ‖u‖2 < 3I(u)

}
. (1.7)

In [5], for the subcritical initial energy case (J(u0) < d) and the critical
initial energy case (J(u0) = d), the authors obtained the initial conditions
for global existence and finite time blow-up of solutions to problem (1.1). In
detail, they proved that the solution of problem (1.1) blows up in finite time
with W 2,2

0 -norm and W 1,4
0 -norm if u0 ∈ N− and J(u0) ≤ d. Moreover, they

proved that if u0 ∈ N+, J(u0) ≤ d, then the solution u(t) of problem (1.1)
exists globally and u(t) → 0 in W 4,2(Ω) as t → +∞.

Furthermore, the authors proposed seven open questions and two of them
are as follows:

(Q1) Blow-up in Lp-norms: From [5, Theorems 4.8 and 4.10], we learn that
when W 2,2

0 -norm blow-up occurs, then also the W 1,4
0 -norm blows up.

What about the Lp-norm blow-up?
(Q2) High energy initial data: In order to prove global existence or finite time

blow-up for problem (1.1) we assumed that J(u0) ≤ d. What happens
for J(u0) > d?

We will give answers to the above questions in this paper. Let

Jα :=
{

u ∈ W 2,2
0 (Ω), J(u) ≤ α

}
, (1.8)

where α is a positive constant. For all α > d, it is easy to see that

Nα := N ∩ Jα =
{

u ∈ N
∣
∣
∣‖u‖ ≤

√
6α

}
�= ∅, (1.9)

and then we define

λα := inf
{

1
2
‖u‖2

2

∣
∣
∣
∣ u ∈ Nα

}

, Λα := sup
{

1
2
‖u‖2

2

∣
∣
∣
∣ u ∈ Nα

}

. (1.10)

Clearly we have the following monotonicity properties

α �→ λα is nonincreasing, α �→ Λα is nondecreasing. (1.11)

We denote by T = T (u0) the maximal existence time of the solutions to
problem (1.1). If T = +∞, we denote by

ω(u0) =
⋂

t≥0

{u(s) : s ≥ t},

the ω-limit set of u0 ∈ W 2,2
0 (Ω), where the closure is taken in W 2,2

0 (Ω).
Now, we are ready to state the main results of this paper. The first result

is about (Q1), which can be stated as the following theorem.
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Theorem 1.1. Let u0 ∈ W 2,2
0 (Ω) be such that J(u0) < 0, then the solution to

problem (1.1) blows up at a finite time T with L2-norm. Moreover, the blow-up
time can be estimated by

T ≤ − ‖u0‖2
2

3J(u0)
,

and the blow-up rate can be estimated by

‖u(·, t)‖2 ≤ − ‖u0‖3
2

3J(u0)
(T − t)−1.

Next, we give the result about (Q2).

Theorem 1.2. For any α ∈ (d,+∞), the following conclusions hold:
(i) If u0 ∈ Φα, then the solution u(t) to problem (1.1) exists globally and

u(t) → 0 with W 2,2
0 -norm as t → +∞;

(ii) If u0 ∈ Ψα, then the solution u(t) to problem (1.1) blows up in finite
time,

where

Φα := N+ ∩
{

φ ∈ W 2,2
0 (Ω)

∣
∣
∣
∣
1
2
‖φ‖2

2 < λα, d < J(φ) ≤ α

}

,

Ψα := N− ∩
{

φ ∈ W 2,2
0 (Ω)

∣
∣
∣
∣
1
2
‖φ‖2

2 > Λα, d < J(φ) ≤ α

}

,

(1.12)

and λα, Λα are two constants defined in (1.10), J is defined in (1.2).

Remark 1.3. We make two remarks about Theorem 1.2.
(i) Lemma 2.1 shows that

64
243ακ8

≤ λα ≤ Λα ≤ 3
λ1

α,

where λ1 and κ are two positive constants given in (2.2) and (2.4) re-
spectively. Then the definitions of Φα and Ψα make sense.

(ii) In [5, Theorem 4.7], the authors gave the following result:
Assume that u0 ∈ W 2,2

0 (Ω) and

λ1‖u0‖2
2 > 6J(u0), (1.13)

where λ1 is defined in (2.2), then the solution u = u(t) to problem (1.1)
blows up in finite time, that is, there exists T > 0 such that ‖u‖ → +∞
and ‖u‖W 1,4

0 (Ω) → +∞ as t → T .
We can prove that if u0 satisfies (1.13) and J(u0) > d, then

u0 ∈ ΨJ(u0). Therefore, by (ii) of Theorem 1.2, the solution blows up in
finite time, which means the blow-up condition of Theorem 1.2 is weaker
than the blow-up condition of [5, Theorem 4.7] under the assumption
J(u0) > d.

In fact, by the definition of λ1 in (2.2), (1.13) and the definition
of J(u0) we have

‖u0‖2 ≥ λ1‖u0‖2
2 > 6J(u0),
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and
6J(u0) = 3‖u0‖2 − 6I(u0).

Combining these two relations, we get 3I(u0) > ‖u0‖2, i.e.,

u0 ∈ N− (1.14)

On the other hand, by (1.13) we obtain
1
2
‖u0‖2

2 >
3
λ1

J(u0).

By Lemma 2.1, we get 3
λ1

J(u0) ≥ ΛJ(u0), then we have

1
2
‖u0‖2

2 > ΛJ(u0). (1.15)

By (1.14) and (1.15), we get u0 ∈ ΨJ(u0).

The rest of this paper is organized as follows. In Sect. 2, we give some
important lemmas, which will be used in the proof of the main results. In
Sect. 3, we give the proof of the above theorems.

2. Preliminaries

We begin this section with the following eigenvalue problem:
{

Δ2u = λu, x ∈ Ω,
u = uν = 0, x ∈ ∂Ω.

(2.1)

Let λ1 be the first eigenvalue of problem (2.1). By [8], we know that λ1 is
positive, simple and it can be characterized in the following variational form

λ1 = inf
u∈W 2,2

0 (Ω)\{0}
‖u‖2

‖u‖2
2

, (2.2)

which implies

‖u‖2
2 ≤ 1

λ1
‖u‖2, ∀u ∈ W 2,2

0 (Ω). (2.3)

Let κ > 0 be the optimal constant of the following Gagliardo–Nirenberg
inequality [6], i,e.,

‖∇u‖4 ≤ κ‖u‖ 3
4 ‖u‖ 1

4
2 , ∀u ∈ W 2,2

0 (Ω). (2.4)

Lemma 2.1. Let λα,Λα be defined in (1.10). For any constant α > d, we have
64

243ακ8
≤ λα ≤ Λα ≤ 3

λ1
α,

where d,λ1 and κ are given in (1.3), (2.2) and (2.4) respectively.

Remark 2.2. It holds that
64

243ακ8
≤ 3

λ1
α. (2.5)

In fact, by (2.3) and (2.4), we have

‖∇u‖4
4

√
λ1 ≤ κ4‖u‖4, ∀u ∈ W 2,2

0 (Ω),
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then it follows from α > d and (1.4) that

α > d ≥ 8
27

min
u∈W 2,2

0 (Ω)\{0}
‖u‖4

‖∇u‖4
4

≥ 8
√

λ1

27κ4
,

i.e., (2.5) holds.

Proof of Lemma 2.1. By the definitions of λα and Λα in (1.10), we obviously
have λα ≤ Λα, then it follows from Remark 2.2 that we only need to prove

λα ≥ 64
243ακ8

and Λα ≤ 3
λ1

α.

We firstly show that Λα ≤ 3
λ1

α. For any u ∈ Nα ⊂ W 2,2
0 (Ω), by (1.9) and

(2.3), we know that
1
2
‖u‖2

2 ≤ 1
2λ1

‖u‖2 ≤ 3
λ1

α.

So it follows from the definition of Λα in (1.10) that Λα ≤ 3
λ1

α.
Next we prove that λα ≥ 64

243ακ8 . By the inequality [5, (17)], we have

I(u) ≤ 1
4
‖∇u‖2

4‖u‖, ∀u ∈ W 2,2
0 (Ω),

which combines with (2.4) implies

I(u) ≤ κ2

4
‖u‖ 5

2 ‖u‖ 1
2
2 , ∀u ∈ W 2,2

0 (Ω). (2.6)

By the definition of N in (1.5) and (2.6), we obtain

‖u‖2 = 3I(u) ≤ 3κ2

4
‖u‖ 5

2 ‖u‖ 1
2
2 , ∀u ∈ N ⊂ W 2,2

0 (Ω),

i.e.,
(

4
3κ2

)4

‖u‖−2 ≤ ‖u‖2
2, ∀u ∈ N . (2.7)

Now, for all u ∈ Nα ⊂ N , by (1.9) we have ‖u‖ ≤ √
6α, then it follows

from (2.7) that

‖u‖2
2 ≥

(
4

3κ2

)4

(6α)−1 =
128

243ακ8
.

So by the definition of λα in (1.10), we have

λα = inf
u∈Nα

1
2
‖u‖2

2 ≥ 64
243ακ8

.

�

Lemma 2.3. For any α > 0, if u ∈ Jα ∩ N+, then

‖u‖ <
√

6α. (2.8)
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Proof. For any u ∈ N+, by the definition of N+ in (1.6) we have

‖u‖2 > 3I(u).

Then it follows from the definition of Jα in (1.8) that

α ≥ J(u) =
1
2
‖u‖2 − I(u) >

1
6
‖u‖2, ∀u ∈ Jα ∩ N+,

which implies (2.8). �

Lemma 2.4. ([5, Theorem 2.5]) For all u ∈ W 2,2
0 (Ω), the following implications

hold:
(i) If 0 < ‖u‖2 < 6d, then u ∈ N+;
(ii) If u ∈ N+ and J(u) < d, then 0 < ‖u‖2 < 6d;
(iii) If u ∈ N−, then ‖u‖2 > 6d.

By Lemma 2.4(iii) we have

dist(0,N−) = min
u∈N−

‖u‖ ≥
√

6d > 0. (2.9)

Lemma 2.5. ([5, Lemma 4.1]) If u = u(t) solves problem (1.1) then its energy
J(u(t)) satisfies

d

dt
J(u(t)) = −‖ut(t)‖2

2 ≤ 0. (2.10)

Lemma 2.6. ([5, Lemma 4.4]) Let u0 ∈ W 2,2
0 (Ω) and let u = u(t) be the

corresponding solution to problem (1.1). Then for all t ∈ [0, T ) we have

1
2

d

dt
‖u(t)‖2

2 + ‖u‖2 − 3I(u) = 0. (2.11)

Lemma 2.7. ([5, Theorem 4.6]) Let u0 ∈ N− be such that J(u0) ≤ d. Then the
solution u = u(t) to problem (1.1) blows up in finite time, that is, there exists
T > 0 such that ‖u(t)‖ → +∞ as t → T . Moreover, the blow up also occurs in
the W 1,4

0 -norm, that is, ‖u(t)‖W 1,4
0 (Ω) → +∞ as t → T .

3. Proofs of the main results

In this section we will prove our main results. We firstly prove Theorem 1.1
by utilizing the methods in [9,11,12].

Proof of Theorem 1.1. Let u(t) be the solution of problem (1.1) with initial
value u0 ∈ W 2,2

0 (Ω) satisfying J(u0) < 0. We define

f(t) =
1
2
‖u‖2

2, (3.1)

and
g(t) = −3J(u) = 3I(u) − 3

2
‖u‖2. (3.2)

Then by (2.11) we have

f ′(t) = 3I(u) − ‖u‖2, (3.3)
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and by (2.10) we have

g′(t) = −3
d

dt
J(u(t)) = 3‖ut‖2

2 ≥ 0. (3.4)

Since J(u0) < 0, by the definition of g(t) in (3.2) we have g(0) = −3J(u0) > 0.
Then it follows from (3.4) that g(t) > 0 for all t ∈ [0, T ). Combining (3.2) and
(3.3) we get

f ′(t) ≥ g(t) > 0, ∀t ∈ [0, T ), (3.5)

then f(t) > 0 for all t ∈ [0, T ).
For any t ∈ [0, T ), by (3.1), (3.4), Schwartz’s inequality and (3.5) we

obtain

f(t)g′(t) =
3
2
‖u‖2

2‖ut‖2
2 ≥ 3

2

(∫

Ω

uut

)2

=
3
2

[f ′(t)]2 ≥ 3
2
f ′(t)g(t),

which can be rewritten as
g′(t)
g(t)

≥ 3
2

f ′(t)
f(t)

.

Integrating above inequality from 0 to t we get

g(t)
[f(t)]

3
2

≥ g(0)
[f(0)]

3
2
,

then by (3.5) we have
f ′(t)

[f(t)]
3
2

≥ g(0)
[f(0)]

3
2
. (3.6)

Integrating inequality (3.6) from 0 to t, we see

1
[f(t)]

1
2

≤ 1
[f(0)]

1
2

− 1
2

g(0)
[f(0)]

3
2
t. (3.7)

Clearly, (3.7) cannot hold for all time, this means f(t) blows up at some finite
time T , i.e.,

lim
t→T

f(t) = +∞, (3.8)

then by the definition of f(t) in (3.1), we know that u(t) blows up at T with
L2-norm.

Next, we estimate T and the blow-up rate. Let t → T in (3.7), then by
(3.8) and the definition of f(t), g(t) we get

T ≤ 2f(0)
g(0)

= − ‖u0‖2
2

3J(u0)
.

Moreover, by integrating the inequality (3.6) from t to T and (3.8) we have

f(t) ≤ (T − t)−2

[
g(0)

2[f(0)]
3
2

]−2

,
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so it follows from the definition of f(t) and g(t) that

‖u(·, t)‖2 ≤ − ‖u0‖3
2

3J(u0)
(T − t)−1.

�

Next, we prove Theorem 1.2 and the idea of the proof comes from [7].

Proof of Theorem 1.2. Let u(t) be a solution of problem (1.1), it follows from
(2.11) that

1
2

d

dt
‖u‖2

2 = 3I(u) − ‖u‖2. (3.9)

By Lemma 2.5, we know that J(u(t)) is non-increasing with respect to t, so
we get

J(u(t)) ≤ J(u0) ∀t ∈ [0, T ). (3.10)

(i). If u0 ∈ Φα, then by the definition of Φα in (1.12) and the properties
of λα in (1.11), we have d < J(u0) ≤ α and

u0 ∈ N+,
1
2
‖u0‖2

2 < λα ≤ λJ(u0). (3.11)

We claim that u(t) ∈ N+ for all t ∈ [0, T ). Arguing by contradiction, if the
claim is not true, then there is a t0 ∈ (0, T ) such that u(t) ∈ N+ for 0 ≤ t < t0
and u(t0) ∈ N . Then by the definition of N+ in (1.6) and (3.9), we know that
‖u(t)‖2

2 is strictly decreasing on [0, t0]. So, it follows from (3.10) and (3.11)
that

1
2
‖u(t0)‖2

2 <
1
2
‖u0‖2

2 < λJ(u0), (3.12)

J(u(t0)) ≤ J(u0). (3.13)
Then by u(t0) ∈ N and (3.13), we get u(t0) ∈ NJ(u0). Hence, it follows from
the definition of λJ(u0) in (1.10) that

λJ(u0) ≤ 1
2
‖u(t0)‖2

2,

which contradicts (3.12), so the claim is true. Then by (3.10) we obtain u(t) ∈
JJ(u0) ∩ N+. Hence, by Lemma 2.3 we can obtain

‖u(t)‖ <
√

6J(u0), ∀t ∈ [0, T ). (3.14)

Since the right-hand of (3.14) is independent of T , then we get T = +∞, and
we further have (3.14) holds for 0 ≤ t < +∞,

u(t) ∈ JJ(u0) ∩ N+, ∀t ∈ [0,+∞), (3.15)

and ‖u(t)‖2
2 is strictly decreasing on [0,+∞)

Now for any ω ∈ ω(u0), by the above discussions, we get
1
2
‖ω‖2

2 < λJ(u0) and J(ω) ≤ J(u0),

so we get ω �∈ NJ(u0) and ω ∈ JJ(u0), then it follows from the definition of
NJ(u0) in (1.9) that ω(u0)∩N = ∅. Namely, for any ω ∈ ω(u0) we have ω �∈ N .
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Next, we prove that
ω(u0) = {0} (3.16)

In fact, it follows from u(t) ∈ N+ and the definitions of J and N+ that

J(u(t)) =
1
2
‖u(t)‖2 − I(u(t)) >

1
2
‖u(t)‖2 − 1

3
‖u(t)‖2 =

1
6
‖u(t)‖2, (3.17)

then we have J(u(t)) > 0, i.e., J(u(t)) is bounded below. Since the J(u(t)) is
non-increasing with respect to t we know that there is a constant c such that

lim
t→+∞ J(u(t)) = c.

So for any ω ∈ ω(u0), we have J(uω(t)) = c for all t ≥ 0, where uω(t) is the
solution of (1.1) with initial value ω. Then combining (2.10) we get uω(t) ≡ ω,
and then it follows from (3.9) that

‖ω‖2 − 3I(ω) = 0, ∀ω ∈ ω(u0). (3.18)

Combining (3.18), ω �∈ N and the definition of N in (1.5) we get (3.16). In
other words, the solution u(t) → 0 as t → +∞.

(ii). Similar to the proof of the first part, if u0 ∈ Ψα, then by the definition
of Ψα in (1.12) and the properties of Λα in (1.11), we have d < J(u0) ≤ α and

u0 ∈ N−,
1
2
‖u0‖2

2 > Λα ≥ ΛJ(u0). (3.19)

We claim that u(t) ∈ N− for all t ∈ [0, T ). Arguing by contradiction, if the
claim is not true, then there exists t1 > 0 such that u(t) ∈ N− for 0 ≤ t < t1
and u(t1) ∈ N . Then by the definition of N− in (1.7) and (3.9) we know that
‖u(t)‖2

2 is strictly increasing on [0, t1]. So it follows from (3.10) and (3.19) that
1
2
‖u(t1)‖2

2 >
1
2
‖u0‖2

2 > ΛJ(u0), (3.20)

J(u(t1)) ≤ J(u0). (3.21)

Then by u(t1) ∈ N and (3.21) we get u(t1) ∈ NJ(u0), hence it follows from the
definition of ΛJ(u0) in (1.10) that

ΛJ(u0) ≥ 1
2
‖u(t1)‖2

2,

which contradicts (3.20), then the claim is true.
Now we assume T = +∞, then

u(t) ∈ JJ(u0) ∩ N−, ∀t ∈ [0,+∞), (3.22)

and ‖u(t)‖2
2 is strictly increasing on [0,+∞). So for every ω ∈ ω(u0), have

1
2
‖ω‖2

2 >
1
2
‖u0‖2

2 > ΛJ(u0) and J(ω) ≤ J(u0),

so we get ω ∈ JJ(u0) and ω �∈ NJ(u0), then it follows from the definition of
NJ(u0) in (1.9) that ω(u0) ∩ N = ∅.

Since J(u(t)) is non-increasing with respect to t, then we have following
two cases:
(a) there is a constant c such that limt→+∞ J(u(t)) = c;
(b) limt→+∞ J(u(t)) = −∞.
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Next we will prove both the above cases contradict to T = +∞, then we get
the solution u(t) blows up in finite time.

We first consider case (a). If limt→+∞ J(u(t)) = c, then by the similar
discussions as in the proof of (i), we can get (3.18), and then combining ω(u0)∩
N = ∅ and the definition of N in (1.5) we get ω(u0) = {0}. However, by (2.9)
we know dist(0,N−) > 0, which implies 0 �∈ ω(u0), so we get a contradiction.

Finally we consider case (b). If limt→+∞ J(u(t)) = −∞, then must exist
a time t1 such that J(u(t1)) ≤ d. Since we have proved that u(t) ∈ N− for all
t ∈ [0,+∞), then u(t1) ∈ N−. Taking u(t1) as the initial value, by Lemma 2.7
we know that the corresponding solution U(t) = u(t + t1) blows up in finite
time, which contradicts T = +∞, thus Theorem 1.2 is proved. �
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