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1. Introduction

The problem of the existence of quasistatic evolutions for Griffith’s fracture [14]
has been extensively studied in recent years in the mathematical community.
(See [2] for an account on the literature and [22] for the relations with the
abstract theory of rate-independent systems). Nonetheless, the formulation of
a realistic solution concept still deserves investigation.
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The notion of globally stable evolution in the context of Griffith’s fracture
was proposed in [13] and then studied in several works, see e.g. [3,8–10,12],
which provided a wide range of results under general assumptions on the ener-
gies and on the cracks. In this case, one selects configurations that are global
minimizers of the stored elastic energy plus the energy dissipated in crack
growth. However, this restriction produces unphysical effects such as early
jumps in time [24].

On the other hand, propagation criteria based on local minimization
[15,17,19,26] are more satisfactory but require that the admissible cracks are
regular in order to give mathematical sense to the energy release rate (which is
the derivative of the elastic energy with respect to the elongation of the crack).
In this context, the present paper is a contribution towards a more realistic
description of quasistatic fracture that includes branching and kinking.

Local minimality can be enforced by employing the well established
method of vanishing viscosity, first proposed in [11], then refined in [20,21,23],
and applied e.g. in [6,7,16] for the analysis of plasticity and damage. Follow-
ing this approach, a quasistatic evolution is obtained as a limit of solutions
to rate-dependent systems that contain a viscous dissipation tending to zero.
The viscous approximation of quasistatic crack growth was studied only when
the deformations are functions of two variables and the cracks are represented
as regular, one-dimensional sets. More precisely, in [15,17] the crack evolves
on a given, smooth curve, while in [18,19] the crack is not prescribed a priori,
but chosen in a class of admissible curves of class C1,1.

In this work, in the setting of antiplane linearized elasticity we extend
the previous results of [19] to a larger class S of cracks, already introduced in
[27] to study viscous evolutions. The admissible cracks in S may have many
connected components, each of them being the union of a certain number of
branches that are regular curves of the type considered in [19]. Moreover, some
topological and geometrical restrictions are imposed in order to guarantee that
S is closed with respect to the Hausdorff convergence, that the number of
connected components and of branches is uniformly bounded in S, and that
the uncracked part of the body is always a connected set. These conditions
allow for cracks displaying branching and kinking.

In order to show the existence of evolutions, we follow the strategy of
[15,19], based on time discretization. Specifically, for k ∈ N we introduce a
subdivision of the time interval in equispaced k+1 nodes. At each time of the
subdivision, we solve an incremental minimum problem where the competitors
are all cracks in S that are larger than the crack found in the previous iteration.
The functional to be minimized is the sum of three terms: the linearized elastic
energy, the length of the crack (where the toughness is normalized to one), and
a quadratic dissipation multiplied by εk, where ε > 0 is a viscous parameter.
The quadratic dissipation depends on the elongation of the crack and results
in a penalization of brutal crack propagation when k is large.

We thus obtain a sequence of approximate discrete-time evolutions (piece-
wise constant in time), depending on the viscous parameter ε. We pass to the
limit first as k → ∞, obtaining evolutions continuous in time, and then as
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ε → 0, obtaining a rate-independent evolution. The first passage to the limit
was already studied in [27] in order to prove the existence of viscously regu-
larized evolutions satisfying an energy inequality. In this paper, we complete
the work initiated there by showing the energy-dissipation balance at viscous
level and by passing to the limit as the viscous parameter tends to zero.

The evolution found in the limit as ε → 0 satisfies the quasistatic energy-
dissipation balance, as well as the Griffith principle. More precisely, the evolu-
tion has an at most countable number of time discontinuities. In the continuity
set, the Griffith principle requires that

• the crack growth is irreversible, i.e., the crack is nondecreasing in time;
• the energy release rate (relative to each branch) never exceeds the tough-

ness (here normalized to one);
• a branch can grow only if the corresponding energy release rate equals

the toughness.
The quasistatic evolution found in this work satisfies the Griffith principle with
the following limitation: the second law holds only when the branch tip does
not meet a certain set of exceptional points. Such exceptional points are of
two types: either they are points of branching or kinking, or they are points
where the evolution stops because of the geometric restrictions on the cracks;
moreover, also the limits of exceptional points of the approximating viscous
evolutions have to be included among the exceptional points of the quasistatic
evolution. Because of the restrictions on the class of admissible cracks, it turns
out that the exceptional points are in a finite number. A full understanding of
the Griffith principle at singular points would require to characterize the limit
of the energy release rates of a sequence of irregular cracks converging in the
sense of Hausdorff. However, the characterizations of the energy release rate
of a crack at an irregular point given in [1,4,5,25] do not provide the desired
continuity properties.

For the passage to the limit as ε → 0, we follow the strategy of [7,11,15,
19,20]. We reparametrize the viscous evolutions in order to obtain a uniform
bound on the time derivative of the crack length, thus as ε → 0 we obtain
an evolution continuous in time. In the reparametrized time scale, there is an
at most countable number of intervals where the behavior is quasistatic and
the Griffith principle holds (with the limitation described above). Each of the
remaining (at most countable) intervals corresponds to a time discontinuity in
the original time scale. The rescaled evolution is a countinuous interpolation
of the quasistatic evolution. Whenever a branch shows a brutal propagation,
the energy release rate (relative to that branch) is larger than or equal to the
toughness in the time interval corresponding to the jump.

The structure of the paper is the following. In Sect. 2 we give the definition
of the class of admissible cracks based on the one introduced in [27]; we prove
some properties that come useful in the rest of the paper, in particular an
estimate on the energy release rate. Section 3 contains the definition of the
time-incremental problems and the statements of some results borrowed from
[27]. In Sect. 4 we pass to the time-continuous limit as k → ∞, obtaining a
family of viscous evolutions; in particular we prove the viscous energy balance
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and further properties of the viscous solutions that are needed to pass to the
limit as the viscous parameter ε tends to zero. The latter passage to the limit
is the subject of Sect. 5, where we study rescaled evolutions.

2. The admissible cracks

In the setting of antiplane elasticity, we consider a brittle body whose reference
configuration is a cylinder Ω × R ⊂ R

3, with Ω ⊂ R
2 an open, bounded,

connected, Lipschitz set. The deformations of the body are of the type

(x1, x2, x3) �→ (x1, x2, x3 + u(x1, x2)),

where u : Ω → R is the corresponding displacement. We assume that the body
can be fractured, that it has a perfectly elastic behaviour outside the cracked
region, and that no force is transmitted across the crack. We now define the
class of admissible cracks, denoted by S, basing on the one introduced in [27]:
this allows us to consider cracks with branching and kinking.

Starting from an initial fracture Γ0 ∈ S, we study the evolution of
cracks under the requirement that the displacement u(t) is equal to a pre-
scribed function w(t) on the Dirichlet part of the boundary ∂DΩ, where w ∈
AC([0, T ];H1(Ω)). Given t ∈ [0, T ] and Γ ∈ S, u(t) : Ω\Γ → R is the unique
minimum point u(w(t); Γ) of the elastic energy 1

2‖∇u‖2
2 under the condition

u = w(t) on ∂DΩ. The corresponding elastic energy associated to the crack Γ
and to the boundary displacement w(t) is

E(w(t); Γ) := min
{

1
2
‖∇u‖2

2 : u ∈ H1(Ω\Γ), u = w(t) on ∂DΩ
}

=
1
2
‖∇u(w(t); Γ)‖2

2.

In the framework of Griffith’s theory [14], the energy dissipated to open
a crack is proportional to the crack length. Normalizing the proportionality
constant to 1, we define the total energy corresponding to Γ and w(t),

F(w(t); Γ) := E(w(t); Γ) + H1(Γ). (2.1)

We now describe the class of admissible cracks S and its main properties,
basing on [27]. Every admissible crack is the union of curves in the class Rη,
introduced in [18,19], and here slightly modified. Henceforth, we will say that
Γ ⊂ R

2 is a simple curve of class C1,1 if there is a parametrization γ ∈
C1,1([0, L]; R2), for some L > 0, such that γ is injective and γ([0, L]) = Γ.

Definition 2.1. Let η > 0. Let Γ ⊂ R
2 be a simple curve of class C1,1 such

that Ω\Γ is open and connected. Given an arc-length parametrization of Γ,
γ : [0, L] → R

2, we call p1 := γ(7) and p2 := γ(L) the endpoints of Γ. We say
that Γ ∈ Rη if and only if

(a) H1(Γ) > 0 and Γ ⊂⊂ Ω;
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Figure 1. The pencil-like neighborhoods

(b) for every x ∈ Γ there exist two open balls B1, B2 of radius η, such that

(B1 ∪ B2) ∩ (Γ ∪ ∂Ω) = ∅ and B1 ∩ B2 = {x};

(c) we have that Γ ∩ (Bη(q1) ∪ Bη(q2)) = ∅, where

qi = pi + η
γ̇(pi)
|γ̇(pi)| for i = 1, 2.

In order to account for branching and kinking, it is convenient to intro-
duce two types of neighborhoods of a curve Γ ∈ Rη. They depend on two
parameters

β ∈ (0, η/3) and θ ∈ (0, π/4)

fixed throughout the paper.
Let Γ ∈ Rη, γ : [0, L] → R

2 be its arc-length parametrization, and γ̇(s)⊥

be normal to γ̇(s) with |γ̇(s)⊥| = 1. We define

P1(Γ, p) :=
{
γ(s) + zγ̇(s)⊥ : 0 < s ≤ L, |z| < min{s tan θ, β}}

∪{γ(L) + (s − L)γ̇(L) + zγ̇(L)⊥ : L ≤ s < L + β, |z|
< min{s tan θ,

√
β2 − (s − L)2}},

where p = γ(0), and

P2(Γ) :=
{
γ(s) + zγ̇(s)⊥ : 0 < s < L, |z| < min{s tan θ, β, (L − s) tan θ}}.

Notice that P1(Γ, p) and P2(Γ) are neighborhoods of γ((0, L]) and γ((0, L)),
respectively. We refer to them as the 1-sided and the 2-sided pencil-like neigh-
borhoods of Γ, respectively. Moreover, two curves Γ1, Γ2 ∈ Rη may intersec-
t at most in the endpoints of Γ1 if P2(Γ1) ∩ Γ2 = ∅, and at most in p if
P1(Γ1, p) ∩ Γ2 = ∅. See Fig. 1.

We introduce a class Ŝ of connected sets, that are union of elements of
Rη.

Definition 2.2. The class Ŝ is given by the connected sets K ⊂ R
2 such that

Ω\K is open and connected,

H1(K) ≥ β

tan θ
, (2.2)
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with m ∈ N, and K has the form

K =
m⋃

j=1

K̃j

where the following hold:
(1) K̃j ∈ Rη for every j;
(2) if K̃i ∩ K̃j �= ∅ for i �= j, then they intersect in one of their endpoints;
(3) if K̃i∪K̃j ∈ Rη, then there exists K̃l, l �= i, j, such that K̃i∩K̃j ∩K̃l �= ∅;
(4) let p0, p1 be the endpoints of K̃j ; if p0 ∈ K̃j ∩ K̃l0 for some l0 �= j and

p1 /∈ K̃l for any l �= j, then

P1(K̃j , p0) ∩ K̃l = ∅ for every l �= j;

(5) let p0, p1 be the endpoints of K̃j ; if p0 ∈ K̃j ∩ K̃l0 and p1 ∈ K̃j ∩ K̃l1 for
some l0, l1 �= j, then

P2(K̃j) ∩ K̃l = ∅ for every l �= j.

We call any K̃j a branch of K, and we define I1(K) and I2(K) as the sets of
branches of K satisfying the assumptions in (4) and (5), respectively.

Remark 2.3. It is possible to see that there exists a modulus of continu-
ity ω (i.e., a continuous nondecreasing function ω : [0,+∞) → [0,+∞) with
ω(0) = 0) such that the following holds: given Γ ∈ Rη and its arc-length
parametrization γ : [0, L] → R

2

Bω(s)(γ(s)) ⊂ P1(Γ, γ(0)) and Bω(s)∧ω(L−s)(γ(s)) ⊂ P2(Γ) for every s ∈ (0, L).

For future convenience, without loss of generality we assume that ω(s) < s for
s > 0.

Every admissible crack is the union of sets K as in Definition 2.2, with
some geometric restrictions. See Fig. 2.

Definition 2.4. Let Γ be a set of the form

Γ =
N⋃

j=1

Kj (2.3)

with Kj ∈ Ŝ and N ∈ N, and let us define
• the set of the special points of Γ

SΓ := {x ∈ Γ: ∃ v1, v2 ∈ R
2 unit vectors tangent to Γ at x s.t. v1 · v2 �= ±1};

• the set of the crack tip points of Γ

TΓ := {x∈Γ: ∃ r > 0 s.t. Γ ∩ Br(x) ∈ Rη and x is an endpoint of Γ ∩ Br(x)};

• the set of the regular points of Γ

RΓ := Γ\(TΓ ∪ SΓ)

= {x ∈ Γ: ∃ r>0 s.t. Γ ∩ Br(x) ∈ Rη with x in the relative interior of Γ}.

We say that Γ ∈ S if
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K2
1

K3
1

K4
1

K1

K2

K1
2

K2
2

Figure 2. A crack Γ ∈ S with two connected components K1

and K2, with Ki =
⋃

j K̃j
i . The pencil-like neighborhoods are

delimited by dashed lines. Due to the kinked shape of the 2-
sided (resp., 1-sided) pencil-like neighborhoods around both
(resp., one of) the endpoints, the branching phenomenon is
allowed, but there is a restriction on the number of branches.
Moreover, the conditions (2) and (3) in Definition 2.2 describe
a sort of “maximality” of each branch in the class Rη with
respect to inclusion. Indeed, K̃2

1 ∪ K̃3
1 ∈ Rη but we have two

different branches K̃2
1 and K̃3

1 due to the presence of K̃1
1

(1) for every j ∈ {1, . . . , N},

if Kj ∈ Rη, then d(Kj ,Km) ≥ β for m �= j;
if K̃ ∈ I1(Kj) and p0 is its endpoint s.t. p0 ∈ SΓ,

then P1(K̃, p0) ∩ Km = ∅ for m �= j;
if K̃ ∈ I2(Kj), then P2(K̃) ∩ Km = ∅ for m �= j;

(2.4)

(2) for every x1 �= x2 in SΓ,

|x1 − x2| ≥ β

(
2

tan θ
+ 1
)

. (2.5)

It turns out that the sets Kj as in (2.3) are the connected components of
Γ. We further underline that, if K̃ ∈ I1(Kj), then one of its endpoints belongs
to SΓ and the other one to TΓ. Indeed, TΓ consists of the endpoints of the
type just described and of all the endpoints of the connected components of Γ
that belong to Rη.

Notice that, for every Γ ∈ S, Ω\Γ is connected. Indeed, Ω\Kj is connected
for every connected component Kj of Γ, by Definition 2.2, and the sets Kj are
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pairwise disjoint, by conditions (2.4) and (2.5). On the other hand, if Ω\Γ is
connected, then Ω\K is connected for every connected component K of Γ.

Our definition of S is slightly different with respect to the one in [27]: in-
deed, we have prescribed that Ω\Γ is connected, for every Γ ∈ S. We then have
to check that this further condition is preserved under Hausdorff convergence
of curves in S. See [27, Lemma 4.1] for similar properties.

Definition 2.5. Given two compact subsets Γ,Γ′ ⊂ Ω, their Hausdorff distance
is given by

dH(Γ′; Γ) := max
{

sup
x∈Γ′

dist(x,Γ), sup
x∈Γ

dist(x,Γ′)
}

,

with the conventions dist(x, ∅) = diam Ω and sup ∅ = 0. A sequence Γk of
compact subsets of Ω converges to Γ in the Hausdorff metric if dH(Γk; Γ) → 0.
In this case we write Γk

H−→ Γ.

Proposition 2.6. Let Γk ∈ S be such that Γk
H−→ Γ. Then Ω\Γ is connected.

Proof. We first observe that, by Definition 2.1 and [18, Proposition 2.9], the
class Rη is closed. Therefore if Γk ∈ Rη for every k, then Ω\Γ is connected.
Moreover, by [27, Lemma 3.9], the total number of branches of Γk is equi-
bounded in k (see Definition 2.2 for the definition of branches).

By contradiction, assume that there exists an open connected set Ω′ ⊂⊂
Ω such that ∂Ω′ ⊂ Γ. Then there exist x ∈ ∂Ω′, K̃1

k , K̃2
k different branches of

Γk, and x1
k ∈ K̃1

k , x2
k ∈ K̃2

k , such that

x1
k, x2

k → x (2.6)

and H1(K̃1
k) > C0, H1(K̃2

k) > C0, for a positive constant C0 independent of
k. Since Ω′ is open and connected, we may assume that there exists C1 > 0,
independent of k, such that

d(x, K̃1
k ∩ K̃2

k) ≥ C1. (2.7)

Notice that either K̃1
k ∩ K̃2

k is empty, or it contains only one point, which
belongs to SΓk

. In particular x1
k �= x2

k.
We claim that, up to subsequences, there exists a positive constant C2

such that

d(x1
k,SΓk

∩ K̃1
k) ≥ C2 or d(x2

k,SΓk
∩ K̃2

k) ≥ C2. (2.8)

Indeed, by contradiction, let d(xi
k,SΓk

∩K̃i
k) → 0 for i = 1, 2, and let yi

k ∈ SΓk
∩

K̃i
k with |xi

k − yi
k| = d(xi

k,SΓk
∩ K̃i

k). Notice that y1
k, y2

k → x. If y1
k = y2

k =: yk,
then yk ∈ K̃1

k ∩ K̃2
k and yk → x, in contradiction with (2.7). On the other

hand, if y1
k �= y2

k, we have that (2.5) is contradicted, since |y1
k − y2

k| → 0. Then
(2.8) is proved.

Assume that x1
k and K̃1

k satisfy (2.8), and let γ1
k be an arc-length para-

metrization of K̃1
k . By Remark 2.3, we have that d(x1

k, K̃ ′
k) ≥ ω(C2) for any

branch K̃ ′
k of Γk different from K̃1

k . In particular,

|x1
k − x2

k| ≥ ω(C2)
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for every k, in contradiction with (2.6). Therefore the result is proved. �
In the following proposition we collect the most important properties

of the class of admissible cracks. These can be proved following the same
arguments as in [27]. The property of compactness of S with respect to the
Hausdorff convergence employs Proposition 2.6.

Proposition 2.7. The class S introduced in Definition 2.4 is compact with re-
spect to the Hausdorff convergence, and the length of the admissible cracks
is uniformly bounded, as well as the number of the branches, of the singular
points and of the tip points. In particular, for every Γ ∈ S, Ω\Γ is the union
of a uniformly bounded number of Lipschitz open sets that intersect ∂DΩ.

Moreover, if Γk ∈ S are such that Γk
H−→ Γ, then

(i) H1(Γk) → H1(Γ);
(ii) for every p ∈ TΓ there exists a sequence (pk)k with pk ∈ TΓk

such that
pk → p;

(iii) if p1
k, p2

k ∈ TΓk
, p1

k �= p2
k and (p1

k)k, (p2
k)k are converging to p ∈ TΓ, then

there exists a sequence (yk)k, with yk ∈ SΓk
, converging to p.

We can follow the arguments of [18] in order to define the notion of energy
release rate relative to a crack tip. First, let us introduce the extensions of a
crack near a tip. In the following discussion, we fix Γ ∈ S, p ∈ TΓ, and r > 0
as in the definition of crack tip.

Definition 2.8. We call extension of Γ at p any Γ̃ ∈ S such that Γ � Γ̃,

Γ̃\Γ ⊂⊂ Br(p) and Γ̃ ∩ Br(p) ∈ Rη for some r.

Remark 2.9. In the general case, there could exist points p such that there are
not extensions of Γ at p. We denote

GΓ := {p ∈ TΓ : there are extensions of Γ at p}. (2.9)

If Γ̃ is an extension of Γ at p, let L := H1(Γ̃\Γ) and let γ̃p : [0, L] → Ω be
the arc-length parametrization of (Γ̃\Γ) ∪ {p} such that γ̃p(0) = p. Then

(0, L] � s �→ Γ̃p
s := Γ ∪ γ̃p((0, s])

is a family of extensions of Γ in p such that H1(Γ̃p
s\Γ) = s.

We also use the following notation:

Γp,r := Γ ∩ Br(p) ∈ Rη with Γp,r ∩ ∂Br(p) =: {q}. (2.10)

Let p ∈ GΓ and let Γ̃ be an extension of Γ in p. It holds that

Γ̃p,r := Γ̃ ∩ Br(p) ∈ Rη with Γ̃p,r ∩ ∂Br(p) = {q}.

Let γ̃p,r : [0, l(Γ̃p,r)] → Ω be the arc-length parametrization of Γ̃p,r such that
γ′

p,r(0) = q. As showed in [18], the function

l �→ E(w(t); Γ ∪ γ̃p,r([0, l]))

is differentiable at l = H1(Γp,r) and the value of the derivative is independent
of the choice of the extension Γ̃. In order to see these properties, one employs
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the Poincaré inequality in Ω\(Γ ∪ Γ̃p,r), which holds since for every Γ ⊂ S,
Ω\Γ is the union of a fixed number of Lipschitz open sets that intersect ∂DΩ.
Then the following definition is well posed.

Definition 2.10. Let p ∈ GΓ. The energy release rate relative to w(t), p, and Γ
is

G(w(t); Γ, p) := −∂lE(w(t); Γ ∪ γ̃p,r([0, l]))|l=H1(Γp,r).

Notation. In the Sects. 3, 4, 5 we will use for every t ∈ [0, T ] the nota-
tion E(t; Γ), F(t; Γ), and G(t; Γ, p) respectively for E(w(t); Γ), F(w(t); Γ), and
G(w(t); Γ, p).

The following integral representation was proven in [18, Propositions 2.2
and 2.4].

Proposition 2.11. Let Γ ∈ S, p ∈ GΓ and r > 0 such that

Γ ∩ Br(p) ∈ Rη.

Let γ be the arc-length parametrization of Γ ∩ Br(p) ∈ Rη with p = γ(L),
L = H1(Γ ∩ Br(p)). Then

G(g; Γ, p)=

∫
Ω\Γ

[
(D1u)2 − (D2u)2

2
(D1V

1 − D2V
2) + D1u D2u (D2V

1 + D1V
2)

]
dx,

(2.11)

where V is any vector field of class C0,1 with compact support in Ω such that
V (γ(s)) = γ̇(s) for s in a neighborhood of L, and u = u(g; Γ) is the unique
minimum point of the elastic energy with boundary condition g on ∂DΩ.

The integral representation allows us to deduce the fundamental continu-
ity properties of the energy release rate with respect to the convergence of the
curves, of the tips, and of the boundary displacements, provided that condition
(2.10) holds uniformly.

Proposition 2.12. Let Γ0, Γk,Γ ∈ S with Γ0 ⊂ Γk, Γ0 ⊂ Γ. Moreover, let
gk → g in H1(Ω\Γ0) and pk ∈ GΓk

, p ∈ GΓ.
Assume that Γk

H−→ Γ, pk → p, and that there exists r > 0 such that

Γk ∩ Br(p) ∈ Rη. (2.12)

Then

G(gk; Γk, pk) → G(g; Γ, p)

and there exists a positive constant C(η, r), where η and r are as in (2.12),
such that

G(gk; Γk, pk) ≤ C(η, r) sup
k

‖∇uk‖2
2. (2.13)

Proof. Since Γk
H−→ Γ and the class Rη is closed with respect to Hausdorff

convergence, we get that Γk ∩ Br(p) H−→ Γ ∩ Br(p) and Γ ∩ Br(p) ∈ Rη.
Following the lines of [18, Theorem 2.12] and [27, Lemma 8.2], we extend

Γk ∩ Br(p), for every k, and Γ ∩ Br(p) with a segment following the tangent
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direction to the curve at the tips pk and p. By the Implicit Function Theo-
rem, there exist a neighborhood U ⊂ Br(p) of p and two suitable coordinate
axes such that the extended curves are parametrized in U by (x1, ϕk(x1)) and
(x1, ϕ(x1)), with ϕk, ϕ of class C1,1. Notice that, by definition of Rη, we can
take U = Bη∧r(p). Indeed, if K ∈ Rη and B is a ball of radius η, there are at
most two points of K such that the tangent vectors to K at these points are
orthogonal.

We now set

Vk(x) := ζ(x)(1, ϕ̇k(x1)), V (x) := ζ(x)(1, ϕ̇(x1)),

with ζ a cutoff function supported in U . Thus, by (2.11)

G(gk; Γk, pk)

=

∫
Ω\Γk

[
(D1uk)2 − (D2uk)2

2
(D1V

1
k − D2V

2
k ) + D1uk D2uk (D2V

1
k + D1V

2
k )

]
dx,

with uk := u(gk; Γk), and an analogous identity holds for G(g; Γ, p).
Since Γk ∩Br(p) H−→ Γ∩Br(p) and these are elements of Rη, we get that

∇Vk
∗
⇀ ∇V in L∞(Ω; R2×2).

Notice that there exists a positive constant C, depending only on η and r, such
that

|∇Vk| ≤ C, (2.14)

because γ̈(s) is bounded by 1
η and ∇ζ is controlled in terms of r and η, since

U = Bη∧r(p).
By [10, Theorem 5.1] and the Poincaré inequality, ∇uk →∇u in L2(Ω; R2).

Therefore we can pass to the limit in the identity above as k → ∞. The in-
equality (2.13) follows from (2.14). �

3. The time-incremental problems

In this section we recall the construction of discrete-time approximated evo-
lutions of viscous type, already presented in [27]. We fix a subdivision of the
time interval in k + 1 equispaced nodes and a viscosity parameter ε > 0, and
we solve incremental minimum problems on the class S, thus allowing for new
branches and kinks. The results in [27, Section 4] provide some a priori esti-
mates, useful in order to pass to the limit as k → ∞ to continuous-time viscous
evolutions, and a discrete Griffith principle. In Sect. 4 we show new results on
the viscous solutions, which permit to pass to the limit as ε → 0 in Sect. 5.

We fix a sequence of subdivisions of the interval [0, T ] consisting of equi-
spaced nodes (tik)0≤i≤k,

tik := i
kT. (3.1)

We put τ := 1
k and we define

Γ0
ε,k := Γ0 ∈ S, u0

ε,k := u(w(0); Γ0) ≡ u0,
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and (Γi
ε,k, ui

ε,k) as a solution to the minimum problem

min
{1

2
‖∇u‖2

2 + H1(Γ) +
ε

2τ

∑
c∈C(Γi−1

ε,k ,Γ)

H1(c)2 : Γ ∈ S, Γ ⊃ Γi−1
ε,k , u ∈ H1(Ω\Γ),

u = w(t) on ∂DΩ
}

, (3.2)

where C(Γ1,Γ2) is the set of the connected components of Γ2\Γ1 for Γ1 ⊂ Γ2 ∈
S. Equivalently one can define Γi

ε,k as a solution to

min
Γ⊃Γi−1

ε,k

Γ∈S

{
E(tik; Γ) + H1(Γ) +

ε

2τ

∑
c∈C(Γi−1

ε,k ,Γ)

H1(c)2
}

, (3.3)

and

ui
ε,k := u(w(tik); Γi

ε,k).

By [27, Lemma 4.1 and Proposition 4.2] (recall also Proposition 2.7), problem
(3.3) has a solution. Let us define the piecewise constant interpolations

uε,k(t) := ui
ε,k , Γε,k(t) := Γi

ε,k, lε,k(t) := H1(Γi
ε,k) for t ∈ [tik, ti+1

k ),

and the piecewise affine interpolation

lε,k(t) := H1(Γi
ε,k) +

t − tik
τ

H1(Γi+1
ε,k \Γi

ε,k) for t ∈ [tik, ti+1
k ),

with uε,k(T ) := uk
ε,k, Γε,k(T ) := Γk

ε,k, and lε,k(T ) = lε,k(T ) := H1(Γε,k(T )).
Let us set also

Tε,k(t) := TΓε,k(t), Sε,k(t) := SΓε,k(t), Rε,k(t) := RΓε,k(t) , Gε,k(t) := GΓε,k(t).

As usual, a priori bounds are derived by comparing the minimum val-
ue of the functional in (3.2) with the one assumed for the admissible pair
(Γi−1

ε,k , ui−1
ε,k + w(tik) − w(ti−1

k )). By standard computations, and recalling that
the number of connected components of curves in S is uniformly bounded, one
gets the following estimates.

Proposition 3.1. For every ε, k, and t ∈ [tik, ti+1
k ),

E(tik; Γε,k(t)) + H1(Γε,k(t)) + ε
2τ

i∑
j=1

[∑
c∈C(Γj−1

ε,k ,Γj
ε,k) H1(c)2

]

≤ E(0; Γ0) + l0 +
∫ ti

k

0
〈∇uε,k(s),∇ẇ(s)〉ds + δ(k) ,

where

δ(k) = sup
1≤i≤k

(∫ ti
k

ti
k−1

‖∇ẇ(s)‖2 ds
)∫ T

0

‖∇ẇ(s)‖2 ds → 0 as k → ∞ .

Moreover, there exists a constant C > 0, independent of ε, k, and t, such that

E(t; Γε,k(t)) + H1(Γε,k(t)) ≤ C,
ε

τ

i∑
j=1

[ ∑
c∈C(j−1,j)

H1(c)2
]

≤ C,

ε ‖lε,k‖H1(0,T ) ≤ C, (3.4)
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where C(j − 1, j) = C(Γj−1
ε,k ,Γj

ε,k).

We now introduce the notion of discrete velocity, for those tips in Tε,k(tik)
such that the corresponding connected component of Γi

ε,k\Γi−1
ε,k does not con-

tain elements of Sε,k(tik).

Definition 3.2. Let t ∈ [tik, ti+1
k ), p ∈ Tε,k(t) = Tε,k(tik). If p ∈ Tε,k(tik) ∩

Tε,k(ti−1
k ), we set

vε,k(t, p) := 0.

Otherwise let cpε,k ∈ C(Γi−1
ε,k ,Γi

ε,k) be such that p ∈ cpε,k. If
[
cpε,k\Γi−1

ε,k

]
∩

Sε,k(tik) = ∅, we set

vε,k(t, p) :=
H1(cpε,k)

τ
.

The following result is the discrete version of the Griffith principle.

Proposition 3.3. Let t and p ∈ Gε,k(t) be such that vε,k(t, p) is defined as in
Definition 3.2. Then

vε,k(t, p) ≥ 0, (3.5a)

G(tik; Γi
ε,k, p) ≤ 1 + ε vε,k(t, p), (3.5b)[−G(tik; Γi

ε,k, p) + 1 + ε vε,k(t, p)
]
vε,k(t, p) = 0. (3.5c)

Proof. Property (3.5a) is trivial. By (3.3)

E(tik; Γi
ε,k) + H1(Γi

ε,k) + ε
2τ

∑
c∈C(Γi−1

ε,k ,Γi
ε,k) H1(c)2

≤ E(tik; Γ̃p
s) + H1(Γ̃p

s) + ε
2τ

∑
c∈C(Γi−1

ε,k ,Γ̃p
s) H1(c)2,

(3.6)

where Γ̃p
s is an extension of Γi

ε,k in p (recall Definition 2.8) such that

H1(Γ̃p
s\Γi

ε,k) = s. (3.7)

Dividing (3.6) by s and letting s → 0, by definition of energy release rate at p
and by (3.7) we obtain (3.5b).

As for (3.5c), we can assume that vε,k(t, p) > 0, and then that H1(cpε,k) >

0, for cpε,k as in Definition 3.2. Let us consider 0 < s < H1(cpε,k) and let Γ̂p
s be

such that

Γi
ε,k\cpε,k ⊂ Γ̂p

s ⊂ Γi
ε,k and H1(Γi

ε,k\Γ̂p
s) = s

This is a competitor for the minimum problem (3.3), and then

E(tik; Γi
ε,k) + H1(Γi

ε,k) + ε
2τ

∑
c∈C(Γi−1

ε,k ,Γi
ε,k)

H1(c)2

≤ E(tik; Γ̂p
s) + H1(Γ̂p

s) + ε
2τ

∑
c∈C(Γi−1

ε,k ,Γ̂p
s)

H1(c)2.

Dividing by s and letting s → 0 we get (3.5c). Notice that G(tik; Γi
ε,k, p) is well

defined since
[
cpε,k\Γi−1

ε,k

]
∩ Sε,k(tik) = ∅. �
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4. Viscous evolutions

In this section we pass to the limit in the discrete-time problems as the time
step converges to zero, for fixed ε > 0. We prove that there exists a map
Γε : [0, T ] → S, continuous with respect to the Hausdorff convergence, such
that the corresponding total energy is absolutely continuous and satisfies a
suitable energy balance (which was not observed in [27]). Moreover, we prove
a Griffith criterion for almost every time when the tips of the crack are not
contained in a certain set constituted by a finite number of points, which are
either limits of the singular points of the interpolations, or limit of points of
the interpolations where the energy release rate is not defined.

Definition 4.1. Fixed ε > 0, a set function [0, T ] � t �→ Γε(t) ∈ S is a viscous
solution in S if there exist time discretizations {tik}k

i=0 as in (3.1) and a se-
quence of set functions [0, T ] � t �→ Γε,k(t) ∈ S such that Γε,k(0) = Γ0, Γε,k is
constant in every time interval [tik, ti+1

k ), Γε,k(tik) = Γi
ε,k solves (3.3) for i ≥ 1,

and

Γε,k(t) H−→ Γε(t) as k → ∞
for every t ∈ [0, T ].

Remark 4.2. Let [0, T ] � t �→ Γε(t) ∈ S be a viscous solution in S. Then, by
[10, Theorem 5.1], for every t ∈ [0, T ]

∇uεk
(t) → ∇uε(t) in L2(Ω; R2),

where uε(t) := u(t; Γε(t)). Moreover, since, for every Γ ∈ S, Ω\Γ is the union
of a uniformly bounded number of Lipschitz open sets that intersect ∂DΩ, we
have that for every t ∈ [0, T ]

uεk
(t) → uε(t) in H1(Ω).

We recall from [27, Proposition 5.1 and Corollary 5.2] the existence of
viscous solutions and their continuity in time. We give a sketch of the proof,
for the reader’s convenience.

Theorem 4.3. Fixed ε > 0, there exists a viscous solution [0, T ] � t �→ Γε(t).
Moreover, such a solution is continuous with respect to the Hausdorff conver-
gence, its length lε(t) := H1(Γε(t)) belongs to H1(0, T ), and there exists a
positive constant C, independent of t, such that

‖uε(t)‖H1(Ω\Γε(t)) ≤ C. (4.1)

Proof. The existence follows from the Helly Theorem, applied to the sequence
of nondecreasing set functions Γε,k. Since, for ε fixed, ‖lε,k‖H1 are uniformly
bounded by (3.4), we have that

lε,k ⇀ lε in H1(0, T ).

On the other hand, by (i) in Proposition 2.7 we get lε,k → lε pointwise, and
for t ∈ [tik, ti+1

k )

0 ≤ lε,k(t) − lε,k(t) =
∫ t

ti
k

l̇ε,k(s) ds ≤ τ
1
2 ‖lε,k‖ 1

2
H1 ≤ C

ε
τ

1
2 ,
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where C is the constant in (3.4). Then lε = lε.
The continuity of t �→ Γε(t) follows from the continuity of lε (see [27,

Corollary 5.2]). The functions uεk
(t) are bounded in H1(Ω\Γεk

(t)), uniformly
in k and t, by (3.4) and the regularity of the boundary datum w. Thus, in the
limit we get (4.1). �

In the following we prove some properties of the viscous solutions. Let us
set

Tε(t) := TΓε(t), Sε(t) := SΓε(t), Rε(t) := RΓε(t), Gε(t) := GΓε(t).

Up to considering a subsequence (depending on ε), we may assume that
the number of singular points of Γε,k(T ) is constant, so that

Sε,k(T ) =
{
x1

ε,k, . . . , xM
ε,k

}
,

and xj
ε,k → xj

ε, as k → ∞. Let us define the set of limit of singular points

Fε :=
{

xj
ε : xj

ε = lim
k

xj
ε,k

}
. (4.2)

Notice that Sε(T ) ⊂ Fε, since the curvature of every branch of any curve in S
is less than 1

η , and

card (Fε) ≤ M = card (Sε,k(T )).

(In fact, it might happen that xl
ε = xj

ε for some j, so the inequality may
be strict.) Fix now j, l ∈ {1, . . . , M}, j �= l: since by (2.5) |xj

ε,k − xl
ε,k| ≥

β
(

2
tan θ + 1

)
for every k, we have that |xj

ε −xl
ε| ≥ β

(
2

tan θ + 1
)

for every ε > 0.
Arguing as in [27, Lemma 6.1], we can find a partition of [0, T ]

0 = t0ε < t1ε < · · · < tNε+1
ε = T

such that for every t ≤ t′ ∈ [0, T ]{
Sε(t) = Sε(t′) and card (Tε(t)) = card (Tε(t′)) if t, t′ ∈ (tnε , tn+1

ε ] ,
Sε(t) �= Sε(t′) or card (Tε(t)) < card (Tε(t′)) if t ≤ tnε < t′.

We define the time intervals

In
ε := (tnε , tn+1

ε ].

In In
ε we can find exactly kn = kn(ε) := card (Tε(tn+1

ε )) branches para-
metrized by γn,j

ε : In
ε → Ω with γn,j

ε (t) ∈ Tε(t), for j = 1, . . . , kn. Notice that,
if a connected component Γε(t) belongs to Rη, it has two tips. To simplify the
notation, we see such a curve as the union of two branches, so the number of
branches in Γε(t) equals the total number of tips. Recall that the length of any
connected component is bounded from below by (2.2).

Extending by continuity γn,j
ε to In

ε we get

γn,j
ε (In

ε ) ∈ Rη.

Let us define

In
ε � t �→ ln,j

ε (t) := H1(γn,j
ε ([tnε , t])). (4.3)
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Remark 4.4. From now on we will not specify the dependence on n of γn,j
ε and

ln,j
ε . More precisely, we set

γj
ε(t) := γn,j

ε (t) where t ∈ In
ε .

Notice that for every t ∈ [0, T ] there exists only one index n such that t ∈ In
ε .

Since in In
ε there are exactly kn branches, for every (s1, s2) ⊂ In

ε

lε(s2) − lε(s1) = H1(Γε(s2)\Γε(s1)) =
kn∑

j=1

[
ljε(s2) − ljε(s1)

]
,

which gives ljε ∈ H1(Ii
ε) for every j ∈ {1, . . . , kn} and

l̇ε =
kn∑

j=1

l̇jε a.e. in In
ε . (4.4)

Let us define for every t ∈ [0, T ] the set

Bε(t) := [Tε(t)\Gε(t)] ∪ {p ∈ Tε(t) : there exist k ∈ N,

pk → p, pk ∈ Tε,k(t)\Gε,k(t) for k ≥ k
}

.

(4.5)

Remark 4.5. If the approximating sequence (pk)k in the definition above is not
unique, the limit point belongs to Fε. Specifically, if there are pk, qk ∈ Tε,k(t)
with pk �= qk and pk → p, qk → p, then by Proposition 2.7 p is limit of elements
in Sε,k(t), so p ∈ Fε.

Remark 4.6. If x ∈ Bε(t)\Fε, then x ∈ Tε(s) for every s ∈ [t, T ], in particular
x ∈ Bε(T ). Indeed, assume x ∈ Bε(t) and x /∈ Tε(s) for some s > t. If
x ∈ Tε(t)\Gε(t) then x ∈ Sε(T ) ⊂ Fε, since the tip in x cannot be extended
smoothly (see the definition of GΓ (2.8)). If x ∈ Gε(t), by Remark 4.5 we
can assume that there exists only one approximating sequence (pk)k as in
(4.5); then for the same arguments as in the case x ∈ Tε(t)\Gε(t) we have
pk ∈ Sε,k(T ), thus x ∈ Fε.

Let us define the set of exceptional points

Eε := Fε ∪ Bε(T ). (4.6)

Notice that Eε is a finite set. Moreover, by Remark 4.6, we have

Eε = Fε ∪
⋃

t∈[0,T ]

Bε(t).

We now present the main theorem of this section, providing an energy-
dissipation balance for viscous solutions. The proof will be given in the final
part of the section, after some preliminary results.

Theorem 4.7. Let t �→ Γε(t) ∈ S be a viscous solution as in Definition 4.1.
Then the total energy

[0, T ] � t �→ F(t; Γε(t)) := E(t; Γε(t)) + H1(Γε(t))
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is absolutely continuous and for every t ∈ [0, T ]

E(t; Γε(t)) + H1(Γε(t)) + ε
∑n

h=0

[∫
Ih

ε

∑kh

j=1

(
l̇jε(s)

)2

ds

]

+ε
∫ t

tn
ε

∑kn

j=1

(
l̇jε(s)

)2

ds

= E(0; Γ0) + l0 +
∫ t

0
〈∇uε(s),∇ẇ(s)〉ds,

(4.7)

where n is such that t ∈ In
ε . Moreover, the following hold:

(i) for every x ∈ Eε (see (4.6) for the definition of Eε), there exists J ⊂ [0, T ]
closed interval (which can also reduce to a singleton and contains T if
x ∈ Bε(T )) such that

x ∈ Tε(t) if and only if t ∈ J ;

(ii) for a.e. t ∈ In
ε such that γj

ε(t) /∈ Eε

l̇jε(t) ≥ 0 , (4.8a)

G(t; Γ(t), γj
ε(t)) ≤ 1 + ε l̇jε(t) , (4.8b)[−G(t; Γ(t), γj

ε(t)) + 1 + ε l̇jε(t)
]
l̇jε(t) = 0. (4.8c)

Remark 4.8. The theorem above implies that, if γj
ε does not satisfy (4.8) in

an interval J ⊂ In
ε , then γj

ε is constant in J and it lies on a point of the finite
set Eε.

The first step in order to establish a viscous energy balance is the follow-
ing chain rule (which was not proved in [27]).

Proposition 4.9. For every n ∈ {0, . . . , Nε} the elastic energy t �→ E(t; Γε(t))
belongs to ACloc(In

ε ) and for a.e. t ∈ In
ε

d
dt

E(t; Γε(t)) = −
kn∑

j=1

G(t; Γε(t), γj
ε(t)) l̇jε(t) + 〈∇uε(t),∇ẇ(t)〉, (4.9)

with the convention G(t; Γε(t), γj
ε(t)) l̇jε(t) = 0 if γj

ε(t) /∈ Gε(t). Moreover, if
w ∈ H1([0, T ];H1(Ω\Γ0)), E(·; Γε(·)) is H1

loc(I
n
ε ).

Proof. Let us fix the interval In
ε and let γ1

ε (Ii
ε), . . . , γ

kn
ε (In

ε ) be the branches
that end with a tip. In In

ε we can rewrite the elastic energy as

E(t; Γε(t)) = Ê(t; l1ε(t), . . . , l
kn
ε (t)), (4.10)

being Ê(t;λ1, . . . , λkn
) the elastic energy corresponding to a boundary datum

w(t) and to a curve Γ(λ1, . . . , λkn
) = Γε(tnε )∪⋃kn

j=1 Cj , where Cj is the unique
curve contained in γj

ε(In
ε ) with γj

ε(tnε ) � Cj and length λj . In fact, notice that
Γ(l1ε(t), . . . , l

kn
ε (t)) = Γε(t).

By the properties of S (see Remark 2.3), for every s ∈ In
ε there exists an

open neighborhood U of γj(s), depending on s and j, such that

Γε(s) ∩ U ∈ Rη.
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Therefore, for every tip in Gε(t), where the energy release rate is well defined,
Ê has partial derivatives
∂

∂λj
Ê(t; l1ε(t), . . . , lkn

ε (t)) = −G(t; Γ(l1ε(t), . . . , lkn
ε (t)), γj

ε(t)) = −G(t; Γε(t), γ
j
ε(t)).

On the other hand, if γj
ε(t) /∈ Gε(t), then the tip does not elongate, namely

γj
ε(s) = γj

ε(t) for s ∈ [t, tn+1
ε ], and l̇jε(s) = 0 for a.e. s ∈ (t, tn+1

ε ). Indeed, by
definition of Gε(t), there is not an extension (see Definition 2.8) of Γε(t) at
γj

ε(t); since we are in the interval In
ε a kinking is not created at γj

ε(t).
By (4.10) and Proposition 2.12, the functions t �→ G(t; Γε(t), γj

ε(t)) are
bounded in In

ε . Recalling that
∂

∂t
E(t; Γε(t)) = 〈∇uε(t),∇ẇ(t)〉,

the result follows by the chain rule. �

The following proposition refines the results of [27, Lemmas 5.3, 5.5, and
5.6]. We give an independent and simplified proof for the reader’s convenience.
In order to simplify the notation, we omit the dependence on ε for the objects
that depend also on k.

Proposition 4.10. Let t ∈ In
ε and let j ∈ {1, . . . , kn} be such that γj

ε(t) /∈ Fε.
Define

rj(t) := ω(d(γj
ε(t),Fε)) ∧ η and sj(t) :=

[
t −
(

rj(t)ε
4C

)2
]

∨ tnε ,

where ω is the modulus of continuity introduced in Remark 2.3, and C is the
constant in (3.4). Then there exists k ∈ N such that for every k > k and
s ∈ (sj(t), t] the following holds:

Tk(s) ∩ Brj(t)(γ
j
ε(t)) contains one and only one element, called pj

k(s),

(4.11a)

Sk(s) ∩ Brj(t)(γ
j
ε(t)) = ∅, (4.11b)

Γk(s) ∩ Brj(t)(γ
j
ε(t)) ∈ Rη. (4.11c)

Proof. For simplicity, in the proof r and s stand for rj(t) and sj(t), respectively.
First, let us prove (4.11) for s = t. By contradiction, assume that there exist
kh → ∞ such that at least one condition in (4.11) does not hold, for s = t and
k = kh.

Consider first the case where (4.11b) does not hold, namely for every h

there exists qh ∈ Skh
(t) ∩ Br(γ

j
ε(t)). Then there esists q such that, up to a

subsequence, qh → q, so that q ∈ Fε ∩ Br(γ
j
ε(t)), in contradiction with the

definition of r.
If (4.11a) does not hold (for s = t and k = kh), we may assume that

there exist two sequences (ph)h and (qh)h such that

ph, qh ∈ Tkh
(t) ∩ Br(γ

j
ε(t)), ph → γj

ε(t), qh → q �= γj
ε(t). (4.12)
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Indeed, by (ii) of Proposition 2.7, γj
ε(t) ∈ Tε(t) is approximated by elements

ph ∈ Tkh
(t). Since (4.11a) does not hold, for every h there exists qh ∈ Tkh

(t)∩
Br(γ

j
ε(t)), qh �= ph. Up to a subsequence, qh → q. If q = γj

ε(t), then γj
ε(t) ∈ Fε,

by (iii) of Proposition 2.7. This proves (4.12) in the case (4.11a) is not satisfied.
Notice that ph and qh belong to different branches K1

h and K2
h of Γkh

(t),
respectively. We have that H1(K1

h) ≥ C, for a positive C, since otherwise
γj

ε(t) is approximated by singular points and then γj
ε(t) ∈ Fε. Thus, let us

distinguish the two cases:

H1(K2
h) → 0 or H1(K2

h) ≥ C. (4.13)

In the first case, q ∈ Fε ∩ Br(γ
j
ε(t)), in contradiction with the definition of

r. In the second case, passing to the limit, it is easy to see that two different
branches of Γε(t) have nonempty intersection with Br(γ

j
ε(t)), in contradiction

with the fact that

r < ω(d(γj
ε(t),Fε)) ≤ ω(d(γj

ε(t),SΓε(t)).

(Recall Remark 2.3.) Then (4.11a) holds. Finally assume that (4.11c) does not
hold, namely Γkh

(t)∩Br(γ
j
ε(t)) /∈ Rη for every h. Then Br(γ

j
ε(t)) intersects at

least two different branches of Γkh
(t). (Notice that we have used the hypotesis

r < η, which implies that for every branch K of Γkh
(t), K ∩ Br(γ

j
ε(t)) is a

connected component of Γkh
(t) ∩ Br(γ

j
ε(t)).) Therefore we can argue as in the

previous case: on the one hand, there exists a branch converging to the branch
of γj

ε(t); on the other hand there exists a different branch, either converging
to a point q ∈ Fε ∩ Br(γ

j
ε(t)), or with length bounded from below, cf. (4.13).

This concludes the proof of (4.11) for s = t. Notice that we have proved also
that pj

k(t) → γj
ε(t).

We are now ready to prove (4.11) for s ∈ (s, t). For k large

d(pj
k(t), γj

ε(t)) <
r

2
,

and then

H1(Γk(t) ∩ Br(γ
j
ε(t))) ≥ r

2
.

Let us introduce

sk := min{s ∈ [tnε , t) : Γk(s) ∩ Br(γ
j
ε(t)) �= ∅}. (4.14)

Notice that the set in the last definition is not empty for k sufficiently large.
Indeed, let h ∈ N such that t ∈ [thk , th+1

k ). If t ∈ (thk , th+1
k ), then thk is a

competitor for sk, since Γk is piecewise constant. On the other hand, if t = thk ,
then

H1(Γk(thk)\Γk(th−1
k )) ≤

∫ th
k

th−1
k

l̇k(s) ds ≤ 1√
k

(∫ th
k

th−1
k

∣∣∣l̇k(s)
∣∣∣2 ds

) 1
2

≤ C

ε
√

k
,

(4.15)
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with C the constant in (3.4); for k sufficiently large this implies that th−1
k is a

competitor for sk. Moreover, the minimum in (4.14) is attained at a node thk ,
since Γk is piecewise constant and continuous from the right, and

r

4
≤ H1(Γk(t)\Γk(sk)),

for k large, by (4.15).
By the monotonicity of Γk and (4.11) for s = t, we obtain that for every

s ∈ (sk, t]

Tk(s) ∩ Br(γ
j
ε(t)) = {pj

k(s)},

Sk(s) ∩ Br(γ
j
ε(t)) = ∅,

Γk(s) ∩ Br(γ
j
ε(t)) ∈ Rη.

Therefore, the proof is completed if we show that sk ≤ s.
Let t ∈ (th2

k , th2+1
k ) and sk = th1

k . Necessarily h1 < h2, because otherwise
Γk(t) = Γk(sk). By (3.4), we have that

r

4
≤ H1(Γk(t)\Γk(sk)) =

∫ h2τ

h1τ

l̇k(s) ds ≤
√

(h2 − h1)
k

(∫ h2τ

h1τ

∣∣∣l̇k(s)
∣∣∣2 ds

) 1
2

≤ C

ε

√
t − sk.

Then

sk ≤ t −
(

rε

4C

)2

,

and this concludes the proof, since sk ≥ tnε . �

Remark 4.11. In Proposition 4.10 we chose the notation rj(t) and sj(t) since
these quantities depend on t and on the branch that we consider, which cor-
responds to a certain j ∈ {1, . . . , kn}. Moreover

pj
k(t) → γj

ε(t) (4.16)

for every t ∈ In
ε such that γj

ε(t) /∈ Fε.

Let us fix n ∈ {0, . . . , Nε}, j ∈ {1, . . . , kn}, and t ∈ In
ε such that γj

ε(t) /∈
Fε. With the notation of Proposition 4.10, for k sufficiently large and s ∈
(sj(t), t], we have that

Γk(s) ∩ Brj(t)(γ
j
ε(t)) ∈ Rη.

Let us consider the functions

s ∈ (sj(t), t] �→ �j
k(s) := H1(Γk(s) ∩ Brj(t)(γ

j
ε(t))),

s ∈ (sj(t), t] �→ �j
k(s) := H1(Γk(s) ∩ Brj(t)(γ

j
ε(t)))

+
s − τk(s)

τ
H1
(
[Γk(s + τ)\Γk(s)] ∩ Brj(t)(γ

j
ε(t))

)
,
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s ∈ (sj(t), t] �→ �j
ε(s) := H1(Γ(s) ∩ Brj(t)(γ

j
ε(t)))

= ljε(s) − H1(γj
ε([tiε, t]) \ Brj(t)(γ

j
ε(t))),

where τk(s) := thk if s ∈ [thk , th+1
k ). Since Γk(s) H−→ Γ(s) for every s ∈ [0, T ],

we get that

�j
k(s) → �j

ε(s) for every s ∈ (sj(t), t].

Arguing as in the proof of Theorem 4.3 we have that

‖�j
k‖H1(sj(t),t) ≤ C,

with C depending only on the data of the problem and on ε, and that

�j
k(s) → �j

ε(s) in (sj(t), t] , �j
k ⇀ �j

ε in H1(sj(t), t). (4.17)

Notice that

�̇j
k(s) = vk(s, pj

k(s)), �̇j
ε(s) = l̇jε(s).

We employ the following result, proved in [27, Lemma 7.3], which holds
since sj(t) < t.

Lemma 4.12. Let us consider (s1, s2) ⊂ In
ε such that γj

ε(t̃) /∈ Fε for every t̃ ∈
(s1, s2). Then, for every t̃ ∈ (s1, s2) there exists a set Aj(t̃) ⊂ (s1, s2), at most
countable, such that (sj(t1), t1] and (sj(t2), t2] are disjoint for t1 �= t2 ∈ Aj(t̃)
and

(s1, t̃] =
⋃

t∈Aj(t̃)

(sj(t), t].

Employing the above lemma, we deduce the following convergence result.

Lemma 4.13. For every (t1, t2) ⊂⊂ (s1, s2)

vk(·, pj
k(·)) ⇀ l̇jε in L2(t1, t2). (4.18)

Proof. Let f ∈ L2(t1, t2). We have that
∫ t2

t1

vk(s, pj
k(s)) f(s) ds =

∑
t∈Aj(t1)

∫
(sj(t),t]∩(t1,t2)

vk(s, pj
k(s)) f(s) ds,

and, by (4.17),

vk(·, pj
k(·)) ⇀ l̇jε in L2(sj(t), t)

for every t ∈ Aj(t1). Lemma 4.12 ensures that Aj(t1) is at most countable, so
the countable additivity of the integral allows us to obtain (4.18). �

We are now in the position to prove a Griffith criterion for viscous solu-
tions.
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Proposition 4.14. Let n ∈ {0, . . . , Nε}, j ∈ {1, . . . , kn}, and (s1, s2) ⊂ In
ε such

that γj
ε(t̃) /∈ Eε for every t̃ ∈ (s1, s2). Then

(s1, s2) � t �→ G(t; Γ(t), γj
ε(t)) is continuous (4.19)

and for a.e. t ∈ (s1, s2) the following conditions hold:

l̇jε(t) ≥ 0, (4.20a)

G(t; Γ(t), γj
ε(t)) ≤ 1 + ε l̇jε(t), (4.20b)[−G(t; Γ(t), γj

ε(t)) + 1 + ε l̇jε(t)
]
l̇jε(t) = 0. (4.20c)

Proof. For every Γ ∈ S and p ∈ GΓ, we denote

Gk(t; Γ, p) := G(wk(t); Γ, p) .

Recalling the definition of Eε (4.6), we employ Proposition 2.12 and (4.16) to
deduce (4.19) and the convergence

Gk(t; Γk(t), pj
k(t)) → G(t; Γ(t), γj

ε(t)) for every t ∈ (s1, s2). (4.21)

By (3.5), we have that for every t ∈ (s1, s2)

vk(t, pj
k(t)) ≥ 0, (4.22a)

Gk(t; Γk(t), pj
k(t)) ≤ 1 + ε vk(t, pj

k(t)), (4.22b)[−Gk(t; Γk(t), pj
k(t)) + 1 + ε vk(t, pj

k(t))
]
vk(t, pj

k(t)) = 0. (4.22c)

Since Gk(t; Γk(t), pj
k(t)) ≥ 0, by (4.18) and (4.22b) the functions

(t1, t2) � s �→ Gk(s; Γk(s), pj
k(s))

are equibounded in L2(t1, t2), for every (t1, t2) ⊂⊂ (s1, s2). By the pointwise
convergence (4.21) we get that

Gk(·; Γk(·), pj
k(·)) ⇀ G(·; Γ(·), γj

ε(·)) in L2(t1, t2). (4.23)

Integrating (4.22b) in every (t1, t2), and passing to the limit using (4.18) and
(4.26), we obtain that∫ t2

t1

G(s; Γ(s), γj
ε(s)) ds ≤

∫ t2

t1

1 + ε l̇jε(s) ds .

Therefore we deduce inequality (4.20b) in the Lebesgue points of l̇jε in (s1, s2).
Again by (4.23),∫ t2

t1

Gk(s; Γk(s), pj
k(s)) ds →

∫ t2

t1

G(s; Γ(s), γj
ε(s)) ds,

and, since Gk(t; Γk(t), pj
k(t)) ≥ 0, we get

Gk(·; Γk(·), pj
k(·)) → G(·; Γ(·), γj

ε(·)) in L1(t1, t2). (4.24)

Moreover, the continous function s �→ d(γj
ε(s),Fε) has positive minimum in

[t1, t2]. Then there exists a positive constant C0 such that, using the notation
of Proposition 4.10,

rj(s) ≥ C0 for every s ∈ [t1, t2]. (4.25)
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Let us now fix a subinterval (sj(t), t] ⊂ (s1, s2). By Proposition 4.10, there
exists k such that (4.11) holds for k ≥ k and s ∈ (sj(t), t]. Thanks to (4.11)
and to the fact that (2.12) holds with a radius r = C0 independent of s by
(4.25), we are allowed to use Proposition 2.12. Therefore, by (2.13) and (4.1),
we get that there exists a positive constant C independent of k ≥ k and
s ∈ (sj(t), t] such that

Gk(s; Γk(s), pj
k(s)) ≤ C for every k ≥ k and s ∈ (sj(t), t].

Using also (4.24), it follows that

Gk(·; Γk(·), pj
k(·)) → G(·; Γ(·), γj

ε(·)) in Lq(sj(t), t), for every q ∈ [1,+∞).
(4.26)

Let us now prove (4.20c). It follows immediately from (4.20a) and (4.20b)
that [

−G(t; Γ(t), γj
ε(t)) + 1 + ε l̇jε(t)

]
l̇jε(t) ≥ 0.

By (4.18), (4.22c), and (4.24) we deduce that

0 ≤ ∫ t

sj(t)

[
−G(s; Γ(s), γj

ε(s)) + 1 + ε l̇jε(s)
]
l̇jε(s) ds

≤ limk→∞
∫ t

sj(t)

[
−Gk(s; Γk(s), pj

k(s)) + 1
]
vk(s, pj

k(s)) ds

+ε lim infk→∞
∫ t

sj(t)
vk(s, pj

k(s))2 ds

≤ lim infk→∞
∫ t

sj(t)

[
−Gk(s; Γk(s), pj

k(s)) + 1 + ε vk(s, pj
k(s))

]
vk(s, pj

k(s)) ds

= 0.

Then (4.20c) holds in the Lebesgue points of l̇jε in (s1, s2), and the proof is
completed. �

We are now ready to prove Theorem 4.7.
Proof of Theorem 4.7 Let us fix n ∈ {0, . . . , Nε} and j ∈ {1, . . . , kn}, and let
us consider the intersections of γj

ε with the set Fε defined in (4.2): since Γε is
nondecreasing and the curves of S have no self-intersections, if x ∈ Fε∩γj

ε(In
ε ),

then there are tnε ≤ t1 ≤ t2 ≤ tn+1
ε such that

γj
ε(s) = x if and only if s ∈ [t1, t2]. (4.27)

By Remark 4.6, if x ∈ Bε(T ), we have that the tip stops in x until the final
time T , and we deduce in particular (4.27) for t2 = tn+1

ε .
Therefore (i) holds and (tnε , tn+1

ε ) is the union of a finite number of open
intervals where γj

ε(t) /∈ Eε, and of a finite number of closed intervals in each
of which γj

ε(t) is constant and belongs to Eε. Combining this observation with
Proposition 4.14 gives the Griffith conditions (4.8).

When t1 < t2 in (4.27), we can say that

l̇jε(s) = 0 for s ∈ (t1, t2).

By (4.20c), we have that for every n, j, and for a.e. t ∈ In
ε[

−G(t; Γ(t), γj
ε(t)) + 1 + ε l̇jε(t)

]
l̇jε(t) = 0.
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Therefore, recalling (4.4) and (4.9), F(·; Γε(·)) defined in (2.1) is absolutely
continuous in every (s1, s2) ⊂ In

ε and

d
dtF(t; Γε(t)) =

kn∑
j=1

[−G(t; Γε(t), γj
ε(t)) + 1

]
l̇jε(t) + 〈∇uε(t),∇ẇ(t)〉

= −ε
kn∑

j=1

(
l̇jε(t)

)2

+ 〈∇uε(t),∇ẇ(t)〉 .

with the convention G(t; Γε(t), γj
ε(t)) l̇jε(t) = 0 if γj

ε(t) /∈ Gε(t). Integrating,

F(s2; Γε(s2)) − F(s1; Γε(s1)) =
∫ s2

s1

[
− ε

kn∑
j=1

(
l̇jε(s)

)2

+ 〈∇uε(s),∇ẇ(s)〉
]
ds.

We can now pass to the limit as s1 → tnε and s2 → tn+1
ε , in view of the conti-

nuity of F(·; Γε(·)) and of the fact that

[
−ε

kn∑
j=1

(
l̇jε(t)

)2

+ 〈∇uε(t),∇ẇ(t)〉
]

∈
L1(In

ε ), obtaining the energy balance in every In
ε . Since the number of such

intervals is finite and F(·; Γε(·)) is continuous in [0, T ], summing up we obtain
(4.7). This concludes the proof. �

5. The vanishing viscosity limit

In this section we pass to the limit in the viscous solutions as the viscosity pa-
rameter ε tends to zero. The limit evolution may display jumps in time. In order
to provide a better description of the system during jumps we reparametrize by
arc-length the viscous solutions, in such a way that we get a family of Lipschitz
evolutions. In the limit, we obtain an evolution parametrized by arc-length,
where jumps are described by means of a slow time scale. This technique was
already employed in [7,11,15,19,20].

Given a family of viscous solutions (Γε)ε>0 as in Definition 4.1, for t ∈
[0, T ] we set

s◦
ε(t) := t + H1(Γε(t)\Γ0) = t + (lε(t) − l0) . (5.1)

Being lε increasing, we get that s◦
ε is strictly increasing and absolutely contin-

uous and that

s◦
ε(t2) − s◦

ε(t1) ≥ t2 − t1 for every 0 ≤ t1 ≤ t2 ≤ Sε := s◦
ε(T ) .

Let t◦ε : [0, Sε] �→ [0, T ] be the inverse of s◦
ε; then t◦ε is strictly increasing.

By the uniform bound on the length of the elements of S, it follows that
S := supε Sε < +∞ and then, for a sequence εk, Sεk

→ S, with S ≥ T . By
setting t◦ε(t) = t◦ε(Sε) on (Sε, S], we may assume that t◦ε is defined on the fixed
time interval [0, S]. For s ∈ [0, S] we set

l◦ε(s) := lε(t◦ε(s)), Γ◦
ε(s) := Γε(t◦ε(s)), u◦

ε(s) := uε(t◦ε(s)). (5.2)

Definition 5.1. A rescaled approximable quasistatic evolution is a function s �→
(Γ◦(s), t◦(s)), defined in [0, S], with values in S × [0, T ], such that there is a
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sequence Γεk
of viscous solutions in S, with εk → 0, for which the following

hold:

Γ◦
εk

(s) H−→ Γ◦(s) for every s ∈ [0, S], (5.3a)

t◦εk

∗
⇀ t◦ in W 1,∞([0, S]), (5.3b)

where Γ◦
ε and t◦ε are as above, see (5.1)–(5.2).

Employing the Helly Theorem for families of nondecreasing set functions,
in the following proposition we prove the existence of rescaled approximable
quasistatic evolutions.

Proposition 5.2. There exists a rescaled approximable quasistatic evolution.
Moreover, for every rescaled approximable quasistatic evolution s �→ (Γ◦(s),
t◦(s)) the following hold (with the notation as above): the set function s �→
Γ◦(s) is nondecreasing,

l◦εk

∗
⇀ l◦ in W 1,∞([0, S]),

and

(t◦)′(s) + (l◦)′(s) = 1 for a.e. s ∈ (0, S), (5.4)

where l◦(s) := H1(Γ◦(s)) for every s ∈ [0, S] and the symbol ′ denotes the
derivative with respect to s. Furthermore, setting u◦(s) := u(t◦(s),Γ◦(s)), we
have that for every s

∇u◦
εk

(s) → ∇u◦(s) in L2(Ω; R2). (5.5)

Proof. By (5.1) we get s = t◦ε(s) + (l◦ε(s) − l0), and taking the derivative we
obtain the identity

(t◦ε)
′(s) + (l◦ε)′(s) = 1 for every ε and s. (5.6)

Therefore t◦ε and l◦ε are families of contractions on [0, S]. There are a subse-
quence εk and functions t◦, l ∈ W 1,∞([0, S]) such that

t◦εk

∗
⇀ t◦ , l◦εk

∗
⇀ l in W 1,∞([0, S]). (5.7)

Moreover, the Helly Theorem applies to the family of nondecreasing set func-
tions s �→ Γ◦

ε(s), so there exists s �→ Γ◦(s) ∈ S nondecreasing and a further
subsequence of εk (not relabeled) such that

Γ◦
εk

(s) H−→ Γ◦(s) for every s ∈ [0, S],

namely (5.3a) holds. By the properties of S, this implies that H1(Γ◦
εk

(s)) →
H1(Γ◦(s)) for every s. Recalling (5.7), we get l = l◦ and (5.4). Finally, (5.5)
follows by (5.3a) and [10, Theorem 5.1]. This concludes the proof. �

In the following part of this section, we derive important properties of
rescaled approximable quasistatic evolutions. We define

s◦
−(t) := sup{s ∈ [0, S] : t◦(s) < t} for t ∈ (0, T ],

s◦
+(t) := inf{s ∈ [0, S] : t◦(s) > t} for t ∈ [0, T ),
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and s◦
−(0) := 0, s◦

+(T ) := S. By standard arguments, we have that

s◦
−(t) ≤ lim inf

ε→0
s◦

ε(t) ≤ lim sup
ε→0

s◦
ε(t) ≤ s◦

+(t)

t◦(s◦
−(t)) = t = t◦(s◦

+(t)), for t ∈ [0, T ],

s◦
−(t◦(s)) ≤ s ≤ s◦

+(t◦(s)) for s ∈ [0, S],

S◦ := {t ∈ [0, T ] : s◦
−(t) < s◦

+(t)} is at most countable,

U◦ := {s ∈ [0, S] : t◦ is constant in a neighborhood of s} =
⋃

t∈S◦
(s◦

−(t), s◦
+(t)).

(5.8)

As in the previous section, we now divide [0, T ] in subintervals where
the number of branches of Γ◦ is constant. Such branches are in turn limits of
branches of viscous solutions. Once these approximation properties are ready,
we will adapt the arguments of [15] and [19]. Let us set

T◦(s) := TΓ◦(s), S◦(s) := SΓ◦(s), R◦(s) := RΓ◦(s), G◦(s) := BΓ◦(s).

Up to extracting a further subsequence, we may assume that the sets Fε

introduced in (4.2) are such that

Fε = {x1
ε, . . . , x

M
ε },

with M independent of ε, and xj
ε → xj as ε → 0. Recall that Sε(T ) ⊂ Fε. We

define the set of limit points

F :=
{

xj : xj = lim
ε

xj
ε

}
. (5.9)

We have that card (F) ≤ M and |xj −xl| ≥ β
(

2
tan θ + 1

)
for every xj �= xl ∈ F.

Moreover, we can find a partition of [0, S]

0 = s0 < s1 < · · · < sN+1 = S

such that for every s ≤ s′ ∈ [0, S]{
S◦(s) = S◦(s′) and card (T◦(s)) = card (T◦(s′)) if s, s′ ∈ (sn, sn+1] ,
S◦(s) �= S◦(s′) or card (T◦(s)) < card (T◦(s′)) if s ≤ sn < s′.

As in the previous section, in the time intervals

I◦
n := (sn, sn+1]

we can find exactly hn branches parametrized by γ◦
n,j : I◦

n → Ω, with γ◦
n,j(s) ∈

T◦(s), and

γ◦
n,j(I◦

n) ∈ Rη.

If we introduce the functions I◦
n � s �→ l◦n,j(s) := H1(γ◦

n,j([s
n, s])), we have

that for every (s1, s2) ⊂ I◦
n

(l◦)′(s) =
hn∑
j=1

(
l◦n,j

)′ (s) in I◦
n.
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Thus l◦n,j ∈ W 1,∞(I◦
n) for every j ∈ {1, . . . , hn}, with

(
l◦n,j

)′ (s) ≤ 1. In order
to simplify the notation, in the following we omit the dependence on n of γ◦

n,j

and l◦n,j (see Remark 4.4).
As in Sect. 4 we define for every s ∈ [0, S] the set

B◦(s) := [T◦(s)\G◦(s)] ∪ {p ∈ T◦(s) : there exist ε0 > 0, pε → p,

pε ∈ T◦
ε(s)\G◦

ε(s) for ε < ε0}
and the set of exceptional points

E◦ := F ∪ B◦(T ). (5.10)

Remark 5.3. As in Remark 4.6, we can see that if x ∈ B◦(s)\F, then x ∈ T◦(τ)
for every τ ∈ [s, S], namely x ∈ B◦(S). In particular,

E◦ = F ∪
⋃

s∈[0,S]

B◦(s).

The main result of this section states the properties of rescaled approx-
imable quasistatic evolutions and will be proved at the end of this section,
after a few technical steps.

Theorem 5.4. Let (Γ◦, t◦) be a rescaled approximable quasistatic evolution as
in Definition 5.1. Then, with the notation as above, the following hold:
(i) for every x ∈ E◦ (see (5.10) for the definition of E◦), there exists J ⊂

[0, S] closed interval (which can also reduce to a singleton and contains
S if x ∈ B◦(S)) such that

x ∈ T◦(s) if and only if s ∈ J ;

(ii) if n ∈ {0, . . . , N}, j ∈ {1, . . . , hn}, and (s1, s2) ⊂ I◦
n are such that γ◦

j (s) /∈
E◦ for every s ∈ (s1, s2), then

(s1, s2) � s �→ G(t◦(s); Γ◦(s), γ◦
j (s)) is continuous (5.11)

and for a.e. s ∈ (s1, s2)(
l◦j
)′ (s) ≥ 0; (5.12a)

If (t◦)′(s) > 0, then G(t◦(s); Γ◦(s), γ◦
j (s)) ≤ 1; (5.12b)

If G(t◦(s); Γ◦(s), γ◦
j (s)) < 1, then l◦j is constant in a neighborhood of s.

(5.12c)

(iii) for every s ∈ [0, T ] it holds the energy-dissipation balance

E(t◦(s); Γ◦(s)) + l◦(s)

= E(0; Γ0) + l0 +
∫ s

0

〈∇u◦(τ),∇ẇ◦(τ)〉dτ

+
n∑

n=0

∫
I◦

n∩U◦

hn∑
j=1

(
l◦j
)′ (τ)

[G(w◦(τ); Γ◦(τ), γ◦
j (τ)) − 1

]
dτ

+
∫

(sn,s)∩U◦

hn∑
j=1

(
l◦j
)′ (τ)

[G(w◦(τ); Γ◦(τ), γ◦
j (τ)) − 1

]
dτ, (5.13)
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where n is such that s ∈ I◦
n, and we adopt the convention

(
l◦j
)′(τ)G(w◦(τ);

Γ◦(τ), γ◦
j (τ)) = 0 if γ◦

j (τ) /∈ GΓ◦(τ); see (2.9) for the definition of GΓ◦(τ).

Remark 5.5. Assume that τ belongs to the interior part of I◦
n, so that γ◦

j (τ) /∈
F. If γ◦

j (τ) /∈ GΓ◦(τ), then, by Remark 5.3, we have γ◦
j (τ) ∈ B◦(S). So the

energy release rate is not defined at γ◦
j (τ), since there are no extensions of

Γ◦(τ) at γ◦
j (τ) (see Definition 2.8), but the tip stops at γ◦

j (τ), and then the
velocity is null. This justifies the convention

(
l◦j
)′(τ)G(w◦(τ); Γ◦(τ), γ◦

j (τ)) = 0
for γ◦

j (τ) /∈ GΓ◦(τ).

Remark 5.6. Let us fix (s1, s2) ⊂ I◦
n such that γ◦

j (s) /∈ E◦ for every s ∈ (s1, s2).
Assuming (5.12a) and (5.12b), the condition (5.12c) implies that for a.e. s ∈
(s1, s2) the following hold:

If (t◦)′(s) > 0 and
(
l◦j
)′

> 0, then G(t◦(s); Γ◦(s), γ◦
j (s)) = 1;

If (t◦)′(s) = 0 and
(
l◦j
)′

> 0, then G(t◦(s); Γ◦(s), γ◦
j (s)) ≥ 1.

In particular, in view of (5.11),

if G(t◦(s),Γ◦(s), γ◦
j (s)) > 1, then s ∈ U◦. (5.14)

(See (5.8) for the definition of U◦.)

In order to prove Theorem 5.4, we employ the result below, which follows
the lines of Proposition 4.10. There a crucial point was to use the fact that
the discrete lengths lε,k were equi-H1 for ε fixed. In the current setting, the
lengths l◦ε are equi-Lipschitz with respect to ε.

Proposition 5.7. Let s̃ ∈ I◦
n such that γ◦

j (s̃) /∈ F, and let

r◦
j (s̃) := ω(d(γ◦

j (s̃),F)) ∧ η and s◦
j (s̃) :=

[
s̃ − r◦

j (s̃)
2

]
∨ sn,

where ω is the modulus of continuity introduced in Remark 2.3. Then there
exists ε0 > 0 such that for every ε ∈ (0, ε0) and s ∈ (s◦

j (s̃), s̃] the following
hold:

T◦
ε(s) ∩ Br◦

j (s̃)(γ◦
j (s̃)) contains one and only one element, called pj

ε(s),

(5.15a)

S◦
ε(s) ∩ Br◦

j (s̃)(γ◦
j (s̃)) = ∅, (5.15b)

Γ◦
ε(s) ∩ Br◦

j (s̃)(γ◦
j (s̃)) ∈ Rη. (5.15c)

Proof. Arguing as in the proof of Proposition 4.10 it is possible to prove that
(5.15) holds for s = s̃ and that there exists ε0 > 0 such that for ε ∈ (0, ε0)

H1(Γ◦
ε(s̃) ∩ Br◦

j (s̃)(γ◦
j (s̃))) ≥ r◦

j (s̃)
2

.

In order to see the corresponding properties for general s, it is enough to show
that, for

sε := min{s ∈ [sn, s̃) : Γ◦
ε(s) ∩ Br◦

j (s̃)(γ◦
j (s̃)) �= ∅},
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it holds sε ≤ s◦
j (s̃) for ε ∈ (0, ε0). This is implied by (5.6), which gives

r

2
≤ H1(Γ◦

ε(s̃)\Γ◦
ε(sε)) =

∫ s̃

sε

(l◦ε)′(s) ds ≤ s̃ − sε.

and concludes the proof. �

Proof of Theorem 5.4 Arguing as done in Theorem 4.7, we can prove the
statement (i) and the fact that (sn, sn+1) is the union of a finite number of
open intervals where γ◦

j (s) /∈ E◦, and of a finite number of closed intervals in
each of which γ◦

j (s) is constant and belongs to E◦.
In order to show (ii), let us fix n ∈ {0, . . . , N}, j ∈ {1, . . . , hn}, and

(s1, s2) ⊂ I◦
n such that γ◦

j (s) /∈ E◦ for s ∈ (s1, s2). As in Proposition 4.14, by
Propositions 2.12 and 5.7 we deduce (5.11) and the convergence

G(t◦ε(s); Γ
◦
ε(s), p

j
ε(s)) → G(t◦(s); Γ◦(s), γ◦

j (s)) for every s ∈ (s1, s2). (5.16)

By (5.6), the functions

s ∈ (s◦
j (s̃), s̃] �→ (g◦

ε )j (s) := H1(Γ◦
ε(s) ∩ Br◦

j (s̃)(γ◦
j (s)))

are 1-Lipschitz and, by (5.3a),

(g◦
ε )j

∗
⇀ (g◦)j in W 1,∞((s◦

j (s̃), s̃]),

where

s ∈ (s◦
j (s̃), s̃] �→ (g◦)j (s) := H1(Γ◦(s) ∩ Br◦

j (s̃)(γ◦
j (s)))

= l◦j (s) − H1(γ◦
j ([sn, s])\Br◦

j (s̃)(γ◦
j (s))).

Notice that the time derivative of (g◦
ε )j depends only on Γ◦

ε, s, and on pj
ε(s).

Thus we define

v◦
ε (s, pj

ε(s)) := (g◦
ε )′

j (s).

We also observe that the time interval I◦
n may be approximated e.g. by two dif-

ferent intervals In1
ε , In2

ε : this is due to the fact that a branch of Γε(T ) may dis-
appear in the limit as ε → 0. For this reason we will have pj

ε(s) = γi
ε(l

i
ε(t

◦
ε(s)))

for some i possibly depending on ε and s. (See (4.3) for the definition of liε).
In particular,

v◦
ε (s, pj

ε(s)) = l̇iε(t
◦
ε(s)) (t◦ε)

′(s). (5.17)

As in the previous section (see (4.18)), for (s1, s2) ⊂⊂ I◦
n such that γ◦

j (s) /∈ F
for every s ∈ (s1, s2), we have that

v◦
ε (·, pj

ε(·)) ∗
⇀
(
l◦j
)′ in L∞(s1, s2). (5.18)

By (5.17) and the fact that 0 < (t◦ε)
′(s), we can rewrite (4.20) in the new

variables as

v◦
ε (s, pj

ε(s)) ≥ 0 , (5.19a)

(t◦ε)
′(s) − G(t◦ε(s); Γ

◦
ε(s), p

j
ε(s)) (t◦ε)

′(s) + ε v◦
ε (s, pj

ε(s)) ≥ 0 , (5.19b)[
(t◦ε)

′(s) − G(t◦ε(s); Γ
◦
ε(s), p

j
ε(s)) (t◦ε)

′(s) + ε v◦
ε (s, pj

ε(s))
]
v◦

ε (s, pj
ε(s)) = 0 ,

(5.19c)
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for a.e. s ∈ (s1, s2).
As in Lemma 4.12, for every s ∈ (s1, s2) there exists a set A◦

j (s) ⊂ (s1, s2),
at most countable, such that (s◦

j (t1), t1] and (s◦
j (t2), t2] are disjoint for t1 �=

t2 ∈ A◦
j (s) and

(s1, s] =
⋃

s̃∈A◦
j (s)

(s◦
j (s̃), s̃].

Let us fix a subinterval (s◦
j (s̃), s̃] ⊂ (s1, s2). By Proposition 5.7, there

exists ε0 such that (5.15) holds for ε ≥ ε0 and s ∈ (s◦
j (s̃), s̃]. Arguing as in

the proof of Proposition 4.14, we get that there exists a positive constant C
independent of ε ≥ ε0 and s ∈ (s◦

j (s̃), s̃] such that

G(t◦ε(s); Γ
◦
ε(s), p

j
ε(s)) ≤ C for every ε ≥ ε0 and s ∈ (s◦

j (s̃), s̃].

Employing the fact that G(t◦ε(s); Γ
◦
ε(s), p

j
ε(s)) ≥ 0, and (5.16), we have that

G(t◦ε(·); Γ◦
ε(·), pj

ε(·)) → G(t◦(·); Γ◦(·), γ◦
j (·)) in Lq(s◦

j (s̃), s̃),

for every q ∈ [1,+∞). (5.20)

Let ϕ ∈ L2(s◦
j (s̃), s̃) such that ϕ ≥ 0. By (5.19b)

∫ s̃

s◦
j (s̃)

ϕ(s)
[
(t◦ε)

′(s) − G(t◦ε(s); Γ
◦
ε(s), p

j
ε(s)) (t◦ε)

′(s) + ε v◦
ε (s, pj

ε(s))
]

ds ≥ 0.

By (5.3b), (5.18), and (5.20) we can pass to the limit obtaining that∫ s̃

s◦
j (s̃)

ϕ(s)
[
1 − G(t◦(s); Γ◦(s), γ◦

j (s))
]
(t◦)′(s) ds ≥ 0,

and then (5.12b) follows by the arbitrariness of ϕ and s̃.
Let us prove (5.12c). First we show that, if G(t◦(s); Γ◦(s), γ◦

j (s)) < 1,
then there exists δ > 0, depending only on s, such that

G(t◦εk
(·); Γ◦

εk
(·), pj

εk
(·)) < 1 in (s − δ, s + δ) (5.21)

for k sufficiently large. Otherwise, assume that there exist a sequence tk → s
such that

G(t◦εk
(tk); Γ◦

εk
(tk), pj

εk
(tk)) ≥ 1 . (5.22)

Since |t◦ε(tk)− t◦ε(s)| ≤ |tk −s| and |l◦ε(tk)− l◦ε(s)| ≤ |tk −s| for every ε > 0, we
are allowed to apply Proposition 2.12. It follows that G(t◦(s); Γ◦(s), γ◦

j (s)) ≥ 1,
which contradicts (5.22). Now, by (5.19c) and (5.21), we get that pj

εk
is constant

in (s − δ, s + δ) and so is l◦j . Then (ii) is proved.
Let us now show (iii). Arguing as in Proposition 4.9 we have that the

total energy F(t◦(·); Γ◦(·)) is ACloc(I◦
n) for every n ∈ {0, . . . , N} and that for

a.e. s ∈ I◦
n = (sn, sn+1]

d
ds

F(t◦(s); Γ◦(s)) =
hn∑
j=1

[
1 − G(t◦(s); Γ◦(s), γ◦

j (s))
] (

l◦j
)′ (s)

+〈∇u◦(s),∇ẇ◦(s)〉,
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with the convention G(t◦(s); Γ◦(s), γ◦
j (s))

(
l◦j
)′ (s) = 0 if γ◦

j (s) /∈ GΓ◦(τ).
Integrating in (s1, s2) ⊂⊂ I◦

n,
F(t◦(s2); Γ◦(s2)) − F(t◦(s1); Γ◦(s1))

=
∫ s2

s1

hn∑
j=1

[
1 − G(t◦(τ); Γ◦(τ), γ◦

j (τ))
] (

l◦j
)′ (τ) dτ

+
∫ s2

s1

〈∇u◦(τ),∇ẇ◦(τ)〉dτ.

Notice that we can pass to the limit as s1 → sn and s2 → sn+1 since
the positive part of

∑hn

j=1

[
1 − G(t◦(τ); Γ◦(τ), γ◦

j (τ))
] (

l◦j
)′ (τ) is less than one

and we can use Monotone Convergence Theorem for the negative part. Since
F(t◦(·); Γ◦(·)) is continuous, we can then sum up over the intervals I◦

n, whose
number is finite.

We are left to prove that in the last two lines of (5.13) there is no con-
tribution for τ /∈ U◦. As observed before, (sn, sn+1) is the union of a finite
number of open intervals such that γ◦

j (s) /∈ E◦ for every s in these subinter-
vals, and of a finite number of closed intervals in each of which γ◦

j is constant
and belongs to E◦. If we are in an interval of the first type, by (5.12c) and
(5.14),

hn∑
j=1

[
1 − G(t◦(s); Γ◦(s), γ◦

j (s))
] (

l◦j
)′ (s) = 0 for s /∈ U◦.

On the other hand, if we are in an interval [s1, s2] such that γ◦
j (s) = x ∈ E◦,

then
(
l◦j
)′(s) = 0. (Recall also the convention adopted for the points x /∈

GΓ◦(s).) Threfore we conclude (5.13) and the proof is completed. �
Remark 5.8. Arguing as in [19, Theorem 8.7] we have that for every n ∈
{0, . . . , N}, j ∈ {1, . . . , hn}, and (s1, s2) ⊂ I◦

n such that γ◦
j (s) /∈ E◦ for every

s ∈ (s1, s2), there exists a continuous function λ : (s1, s2) → [0,+∞), indepen-
dent of j, such that for a.e. s and every j

λ(s)
(
l◦j
)′ (s) =

(G(t◦(s); Γ◦(s), γ◦
j (s)) − 1

)+ and λ(s)(t◦)′(s) = 0.

Therefore, the rescaled evolution is governed by a viscous law in U◦. This gives
insight on the unstable propagations, which correspond to jumps regime in the
original time scale.
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