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Nonlinear Differential Equations
and Applications NoDEA

Choquard equations under confining external
potentials

Jean Van Schaftingen and Jiankang Xia

Abstract. We consider the nonlinear Choquard equation

−Δu + V u =
(
Iα ∗ |u|p)|u|p−2u in R

N

where N ≥ 1, Iα is the Riesz potential integral operator of order α ∈
(0, N) and p > 1. If the potential V ∈ C(RN ; [0, +∞)) satisfies the con-
fining condition

lim inf
|x|→+∞

V (x)

1 + |x| N+α
p

−N
= +∞,

and 1
p

> N−2
N+α

, we show the existence of a groundstate, of an infinite

sequence of solutions of unbounded energy and, when p ≥ 2 the existence
of least energy nodal solution. The constructions are based on suitable
weighted compact embedding theorems. The growth assumption is sharp
in view of a Pohožaev identity that we establish.

Mathematics Subject Classification. 35J91 (35A23, 335J20, 35R09, 46E35).

Keywords. Nonlocal semilinear elliptic problem, Weighted Sobolev
embedding theorem, Groundstate, Fountain Theorem, Least Action Nodal
Solution.

1. Introduction and main results

We are interested in the following class of Choquard equations

− Δu + V u =
(
Iα ∗ |u|p)|u|p−2u in R

N (C)

in the Euclidean space R
N of dimension N ≥ 1, where Iα : RN → R is the

Riesz potential of order α ∈ (0, N), which is defined for every x ∈ R
N\{0} by

Iα(x) =
Aα

|x|N−α
, with Aα =

Γ(N−α
2 )

2αΓ(α
2 )π

N
2

where Γ denotes the classical Gamma function, and p > 1 is a given exponent.
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When N = 3, α = 2 and p = 2, the Eq. (C) appears in several physical
contexts, such as standing waves for the Hartree equation, the description
by Pekar of the quantum physics of a polaron at rest [19], the description
by Choquard of an electron trapped in its own hole [11] or the coupling of
the Schrödinger equation under a classical Newtonian gravitational potential
[6,9,10,15,20].

When the potential V is a positive constant function, groundstate solu-
tions are known to exist [11,13,17] under the assumption that the exponent p
satisfies the intercriticality condition

N − 2
N + α

<
1
p

<
N

N + α
. (1.1)

Moreover, infinitely many geometrically distinct solutions can be constructed
[13]. We refer the reader to the survey [18] for further discussion and references
on the Choquard equation.

The goal of the present work is to examine how the presence of a confining
potential V changes and possibly improves the situation. Our first result is that
groundstates can exist in a wider range of nonlinearities when the external
potential V is coercive enough.

Theorem 1.1. Let N ≥ 1, α ∈ (0, N), p ∈ (1,+∞) and V ∈ C(RN ; [0,+∞)).
If

1
p

>
N − 2
N + α

and if

lim inf
|x|→+∞

V (x)

1 + |x|N+α
p −N

= +∞,

then the Choquard equation (C) has a groundstate solution.

The solutions in Theorem 1.1 are groundstates in the sense that they
minimize among nontrivial solutions the functional

Jp(u) =
1
2

∫

RN

|∇u|2 + V |u|2 − 1
2p

∫

RN

(
Iα ∗ |u|p)|u|p;

solutions of the Choquard equation (C) are formally critical points of the func-
tional Jp.

If u is a groundstate, it can be observed that the function |u| is also a
groundstate, which by classical regularity theory is smooth and by the strong
maximum principle does not vanish on R

N . Therefore, the function u has
constant sign over R

N .
A striking feature of Theorem 1.1 is that the condition p > N+α

N in
(1.1) can be loosened when V grows fast enough at infinity. In particular,
if V (x) = |x|β with β > 0, one can take p > max{N+α

N+β , 1}. This growth
assumption is sharp. Indeed, if V (x) = |x|β and u ∈ W 2,2

loc (RN ) ∩ H1
V (RN )
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solves the Choquard equation (C) and then we have the Pohožaev identity
(Theorem 5.1)

N − 2
2

∫

RN

|∇u|2 +
N + β

2

∫

RN

V |u|2 =
N + α

2p

∫

RN

(
Iα ∗ |u|p)|u|p,

provided that the integral on the right-hand side is finite, this implies that
if p ≤ N+α

N+β the problem cannot have finite energy classical solutions. This
condition cannot be satisfied when p does not satisfy the assumption of The-
orem 1.1.

Theorem 1.1 can be thought as counterpart for the nonlocal Choquard
equation of results for the nonlinear Schrödinger equation with a coercive
potential [21]. Radial positive solutions for the Choquard equation (C) had
already been obtained in the quadratic case p = 2 when the potential V is
radial and radially increasing [3].

The core of the proof of Theorem 1.1 is to obtain the well-definiteness,
the continuity and the compactness properties of the Riesz potential energy
term in the definition of the functional Jp. This is done by combining a suit-
able Sobolev-type compact weighted embedding theorem together with the
weighted estimates for fractional integrals of Stein and Weiss [22], which are
a weighted counterpart of the more classical Hardy–Littlewood–Sobolev in-
equality.

We now turn on to the question whether the Choquard equation has,
under the conditions of Theorem 1.1 more solutions. This is indeed the case
and there are infinitely many solutions.

Theorem 1.2. Let N ≥ 1, α ∈ (0, N), p ∈ (1,+∞) and V ∈ C(RN ; [0,+∞)).
If

1
p

>
N − 2
N + α

and if

lim inf
|x|→+∞

V (x)

1 + |x|N+α
p −N

= +∞,

then the Choquard equation (C) has an infinite sequence of solutions whose
energies do not remain bounded.

The solutions are constructed with the fountain theorem [2] (see also
[25],Theorem 3.6); thanks to the same weighted embedding and fractional in-
tegral estimates as in the proof of Theorem 1.1, the Palais–Smale condition
for the functional Jp can be established by classical arguments.

Finally we investigate the question whether the Choquard equation (C)
has a least energy sign-changing solution, that is, a solution that changes sign
and which minimizes the functional Jp among such solutions.

A natural way to construct such solutions is to minimize, as for the local
semilinear elliptic problems [4,5,14,23], the functional on the Nehari nodal
set :

{
u ∈ H1(RN ) | u+ 
= 0, u− 
= 0, 〈J ′

p(u), u+〉 = 0 and 〈J ′
p(u), u−〉 = 0

}
,
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where u+ = max(u, 0) and u− = min(u, 0). Such solutions of (C) have been
constructed when V = 1 and

N − 2
N + α

<
1
p

≤ 1
2
;

they were obtained by a new minimax principle and concentration-compactness
method, and the minimization problem on the Nehari nodal set was observed
to be degenerate when p < 2 [7,8].

Sign-changing solutions have been constructed for the Schrödinger–Pois-
son system in R

3 in which a nonlocal nonlinearity appears with opposite sign
[1,24].

Now, we are in a position to state our main results on the nodal solutions
of equation (C):

Theorem 1.3. Let N ≥ 1, α ∈ ((N − 4)+, N), p ∈ [2,+∞) and V ∈ C(RN ;
[0,+∞)). If

1
p

>
N − 2
N + α

and if
lim inf
|x|→+∞

V (x) = +∞,

then the Choquard equation (C) has at least one least-energy sign-changing
solution.

As before, the assumptions provide us with a functional with nice com-
pactness properties. The situation is still more challenging than for a lo-
cal semilinear elliptic equation on a bounded domain because some of the
usual properties of the local nonlinear Schrödinger functional on negative and
positive parts fail: in general Jp(u) 
= Jp(u+) + Jp(u−), and 〈J ′

p(u), u±〉 
=
〈J ′

p(u
±), u±〉.
Theorem 1.3 was stated by Ye [27, Theorem 1.3]; it seems that his ar-

gument unfortunately overlooks the crucial question whether the proposed
solution u does change sign, which is quite delicate when p = 2 (see the proof
of Theorem 1.3 and [7]). We propose here a proof relying on the same compact
embedding theorems as Theorems 1.1 and 1.2.

When p < 2, we prove that the energy functional does not achieve its
minimum on the Nehari nodal set (see Proposition 4.4).

The remainder of this paper is organized as follows. In Sect. 2, we first
prove a weighted embedding theorem, then show that the function Jp is of C1

on the natural Sobolev space H1
V (RN ) and satisfies the Palais–Smale condition.

The proof of our main results will be postponed to the next two Sects. 3 and
4. In the last Sect. 5, we will establish Pohožaev identity responding to Eq.
(C), with which we can deduce some nonexistence results.

2. Function spaces and weighted embedding theorems

The linear part of the Choquard equation (C) naturally induces the Euclidean
norm
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‖u‖V :=
(∫

RN

|∇u|2 + V |u|2
) 1

2

.

We define H1
V (RN ) as the Hilbert space obtained by completion of the set

of smooth test functions C∞
c (RN ) with respect to the norm ‖ · ‖V . We first

establish some embedding theorem from H1
V (RN ) into the weighted space

L2(|x|γ dx;RN ) which is defined for γ ≥ 0 by

L2(|x|γ dx;RN)
:=

{

u : RN → R | u is measurable and

∫

RN

|x|γ |u(x)|2 dx < +∞
}

.

We begin by establishing the following embedding theorem.

Proposition 2.1. Let N ≥ 1 and γ ∈ [0,+∞). If V ∈ C(RN ; [0,+∞)) satisfies

lim inf
|x|→+∞

V (x)
|x|γ > 0,

then there exists a constant C > 0 such that for every u ∈ H1
V (RN ),

∫

RN

|x|γ |u(x)|2 dx ≤ C

∫

RN

|∇u|2 + V |u|2.

If moreover,

lim
|x|→+∞

V (x)
|x|γ = +∞,

then the corresponding embedding is compact. In particular, the embedding
H1

V (RN ) ↪→ Lq(RN ) is compact for any q with 1
q ∈ ( 1

2 − 1
N , 1

2 ) if γ = 0.

Proof. Given λ ∈ (0,+∞) such that

λ < lim inf
|x|→+∞

V (x)
|x|γ ,

there exists κ > 0 sufficiently large so that if x ∈ R
N\B(0, κ

2 ), we have V (x) ≥
λ|x|γ . (Here and in the sequel, we use the notation B(a, r) for the ball centered
at a of radius r and in R

N .) By integration, we have in particular,

λ

∫

RN \B(0, κ
2 )

|x|γ |u(x)|2 dx ≤
∫

RN \B(0, κ
2 )

V |u|2. (2.1)

We take a function ϕ ∈ C∞(RN ) such that 0 ≤ ϕ ≤ 1 in R
N , ϕ(x) = 1 for

every x ∈ B(0, κ
2 ) and ϕ(x) = 0 for every x ∈ R

N\B(0, κ). Then, it follows
that
∫

RN

|x|γ |u(x)|2 dx ≤ κγ

∫

B(0,κ)

ϕ2|u|2 +
∫

RN \B(0, κ
2 )

|x|γ |u(x)|2 dx

≤ C1κ
γ

∫

B(0,κ)

|∇(ϕu)|2 +
∫

RN \B(0, κ
2 )

|x|γ |u(x)|2 dx

≤ 2C1κ
γ

∫

B(0,κ)

|∇u|2 + 2C1κ
γ

∫

B(0,κ)\B(0, κ
2 )

|∇ϕ|2|u|2
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+
∫

RN \B(0, κ
2 )

|x|γ |u(x)|2 dx

≤ 2C1κ
γ

∫

RN

|∇u|2 +
(

2C1κ
γ
‖∇ϕ‖2

L∞(RN )

(κ/2)γ
+ 1

)∫

RN \B(0, κ
2 )

|x|γ |u(x)|2 dx.

where the constant C1 comes from the Poincaré inequality with Dirichlet
boundary conditions on the ball B(0, κ), which is independent of the func-
tion u. We now apply the estimate (2.1) to the second term to obtain
∫

RN

|x|γ |u(x)|2 dx ≤ 2C1κ
γ

∫

RN

|∇u|2 +
2γ+1C1‖∇ϕ‖2L∞(RN ) + 1

λ

∫

RN

V |u|2

≤ max

{
2C1κ

γ ,
2γ+1C1‖∇ϕ‖2L∞(RN )+1

λ

} ∫

RN

|∇u|2+V |u|2,

(2.2)

and the first part of the conclusion follows.
For the compactness, without loss of generality, let (vn)n∈N be a sequence

such that vn ⇀ 0 weakly as n → ∞ in H1
V (RN ). In particular, the sequence

(vn)n∈N is bounded in H1
V (RN ). We are going to prove that vn → 0 strongly

as n → ∞ in L2(|x|γ dx;RN ). By assumption, for every ε > 0, there exists
R1 > 0, such that

(
sup

|x|≥R1

|x|γ
V (x)

)
‖vn‖2

V ≤ ε.

Since γ ≥ 0, for any fixed R > 0, the weighted space L2(|x|γ dx;B(0, R)) is
embedded into the classical Lebesgue space L2(B(0, R)) defined on bounded
domain B(0, R). By the classical Sobolev embedding theorem, vn → 0 strongly
in L2(B(0, R)) as n → ∞. Therefore, for fixed R ≥ R1, there exists N1 > 0
such that

∫

B(0,R)

|x|γ |vn(x)|2 dx ≤ ε for each n ≥ N1.

Then for n ≥ N1, we have
∫

RN

|x|γ |vn(x)|2 dx =
∫

B(0,R)

|x|γ |vn(x)|2 dx +
∫

RN \B(0,R)

|x|γ |vn(x)|2 dx

≤
∫

B(0,R)

|x|γ |vn(x)|2 dx

+
(

sup
|x|≥R

|x|γ
V (x)

) ∫

RN \B(0,R)

V (x)|vn(x)|2 dx

≤ ε +
(

sup
|x|≥R

|x|γ
V (x)

)
‖vn‖2

V ≤ 2ε.

Finally, we interpolate to conclude our proof of the compact embedding
H1

V ⊂ Lq(RN ) with 1
2 − 1

N < 1
q < 1

2 for the case γ = 0. Take q̄ = 2N
N−2 if
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N ≥ 3, or any q̄ ∈ (q,+∞) if N = 1, 2, there exists b ∈ (0, 1) such that

1
q

=
b

2
+

1 − b

q̄
,

it follows that as n → ∞,

‖vn‖Lq ≤ ‖vn‖b
L2‖vn‖1−b

Lq̄ ≤ C(1−b)‖vn‖b
L2‖vn‖1−b

V → 0.

�

With the aid of the Stein–Weiss inequality [22], we show that the nonlocal
Riesz potential energy term Gp of the functional Jp is well-defined and prove
that the functional Jp is of class C1 on the weighted Sobolev space H1

V (RN ).
Finally, thanks to the compact embedding result, we close this section by
verifying that the functional Jp satisfies the Palais–Smale condition.

Proposition 2.2. Let N ≥ 1 and α ∈ (0, N). If V ∈ C(RN ; [0,+∞)) satisfies

lim inf
|x|→+∞

V (x)

1 + |x|N+α
p −N

> 0,

then the mappings u ∈ H1
V (RN ) �−→ Iα/2 ∗ |u|p ∈ L2(RN ) and

u ∈ H1
V (RN ) �−→ (

Iα ∗ |u|p)|u|p−2u ∈ (H1
V (RN ))′

are continuous for p > 1 and 1
p > N−2

N+α .
If moreover

lim inf
|x|→+∞

V (x)

1 + |x|N+α
p −N

= +∞,

the above mappings are weak to strong type, that is, they map weakly converging
sequence to strongly converging sequence.

Here and in the sequel, X ′ denotes the topological dual space of the
normed space X.

Proof of Proposition 2.2. In the case p > N+α
N , the well-definiteness and the

continuity follow from the continuous embedding H1
V (RN ) ⊂ H1(RN ), the

classical Sobolev embedding and the Hardy–Littlewood–Sobolev inequality as
in the case where V is constant [16]. If moreover lim inf |x|→+∞ V (x)/(1 +

|x|N+α
p −N ) = +∞, the embedding H1

V (RN ) ⊂ Lq(RN ) is compact for every
q ∈ [2,+∞) with 1

q > 1
2 − 1

N by Proposition 2.1, and then the weak to strong
continuity property follows.

We assume now that p ≤ N+α
N < 2. We first show that the nonlocal

term Gp of the functional Jp is well defined on the space H1
V (RN ). By the

Stein–Weiss inequality [22], together with the semi-group identity for the Riesz
potential Iα = Iα/2 ∗ Iα/2 [12], we have, since 2

p > 1,

Gp(u) :=
∫

RN

(
Iα∗|u|p)|u|p =

∫

RN

|Iα
2
∗|u|p|2 ≤ C

(∫

RN

|x|N+α
p −N |u(x)|2 dx

)p

.
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In view of the above continuous embedding Proposition 2.1, the functional
Gp is well defined on H1

V (RN ). By Proposition 2.1 again, the superposition
operator

u ∈ L2
(|x|N+α

p −N dx;RN
) �−→ |u|p ∈ L

2
p
(|x|N+α

p −N dx;RN
)

(2.3)

is continuous. Taking into account the Stein–Weiss inequality [22] again, the
Riesz potential integral operator

f ∈ L
2
p
(|x|N+α

p −N dx;RN
) �−→ Iα/2 ∗ f ∈ L2(RN ) (2.4)

is a continuous linear operator. Thus the conclusion follows and the stronger
conclusion follows directly from the compact embedding Proposition 2.1. In
fact, suppose that un ⇀ u weakly in H1

V (RN ), by compactness, we know that,
as n → ∞

un → u strongly in L2
(|x|N+α

p −N dx;RN
)
,

thus, up to a subsequence, un → u almost everywhere in R
N . From the conti-

nuity of the map defined by (2.3), we have that, as n → ∞
|un|p → |u|p strongly in L

2
p
(|x|N+α

p −N dx;RN
)
,

and |un|p−2un → |u|p−2u strongly in L
2

p−1 (|x|N+α
p −N dx;RN ).

By the Stein–Weiss inequality [22], we deduce that, as n → ∞
Iα ∗ |un|p → Iα ∗ |u|p strongly in L

2
2−p (|x|− N+α−pN

2−p dx;RN ),

thus
(
Iα ∗ |un|p)|un|p−2un → (

Iα ∗ |u|p)|u|p−2u

strongly in L2
(|x|N− N+α

p dx;RN
)

=
(
L2

(|x|N+α
p −N dx;RN

))′
.

By the continuous embedding results again, we have
(
Iα ∗ |un|p)|un|p−2un → (

Iα ∗ |u|p)|u|p−2u strongly in
(
H1

V (RN )
)′

.

�

The compact embedding theorems imply straightforwardly that the func-
tional Jp is well-defined and satisfies the Palais–Smale condition.

Lemma 2.3. Let N ≥ 1, α ∈ (0, N) and p > 1. If 1
p > N−2

N+α and if

lim inf
|x|→+∞

V (x)

1 + |x|N+α
p −N

= +∞,

then the functional Jp is of class C1 on H1
V (RN ) and satisfies the Palais–Smale

condition, that is, any sequence (un)n∈N in H1
V (RN ) such that (Jp(un))n∈N is

bounded, and J ′
p(un) → 0 strongly in (H1

V (RN ))′ as n → ∞ has a subsequence
that converges strongly in H1

V (RN ).
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Proof. To prove that the functional Jp is of continuously differentiable, we
only need to consider the nonlocal term Gp of Jp, that is,

Gp(u) =
∫

RN

(
Iα ∗ |u|p)|u|p =

∫

RN

∣
∣Iα/2 ∗ |u|p∣∣2.

By Proposition 2.2, the functional Gp is continuous on H1
V (RN ) and then

the functional Jp is also continuous. For the continuous differentiability, we
observe that by Proposition 2.2 again the map Gp is Gâteaux-differentiable on
H1

V (RN ) and hence it is continuously Fréchet differentiable on that space [25,
Proposition 1.3] and the first part of the conclusion follows.

Suppose now that (un)n∈N is a Palais–Smale sequence for the functional
Jp, that is, as n → ∞
(Jp(un))n∈N is bounded and J ′

p(un) → 0 strongly in
(
H1

V (RN )
)′

.

First, we observe that the sequence (un)n∈N is bounded in the space H1
V (RN ),

because
(

1
2

− 1
2p

)

‖un‖2
V = Jp(un) − 1

2p
〈J ′

p(un), un〉 = Jp(un) + o(‖un‖V ).

Up to a subsequence, we can assume that the sequence (un)n∈N converges
weakly to some function u ∈ H1

V (RN ). By Proposition 2.2, we have G′
p(un) →

G′
p(u) as n → ∞ strongly in (H1

V (RN ))′ — that is, the map G′
p is weak to

strong type. It follows then that, as n → ∞,

‖un − u‖2
V = 〈J ′

p(un) − J ′
p(u), un − u〉 +

1
2p

〈G′
p(un) − G′

p(u), (un − u)〉 → 0,

which concludes the proof. �

3. Ground states and multiplicity solutions

We first give a proof of Theorem 1.1 by minimization of the Sobolev quotient
and then prove the multiplicity result Theorem 1.2 by the fountain theorem
at the end of this section.

Proof of Theorem 1.1. We are going to find a minimizer u ∈ H1
V (RN ) for the

infimum θp, defined by

θp := inf

{∫

RN

|∇u|2 + V |u|2 | u ∈ H1
V(RN ) and

∫

RN

(
Iα ∗ |u|p)|u|p = 1

}

;

once this will be done a nontrivial solution v of equation (C) will be obtained
after a rescaling, more precisely, by taking v = θ

1/(2p−2)
p u.

Let (un)n∈N in H1
V (RN ) be a minimizing sequence for θp, that is,

‖un‖2
V → θp and

∫

RN

(
Iα ∗ |un|p)|un|p dx = 1.
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Since the sequence (un)n∈N is bounded in H1
V (RN ), we can assume without

loss of generality that un ⇀ u weak in H1
V (RN ) as n → ∞. By the weakly

lower semi-continuity of the norm, we know that

‖u‖V ≤ lim inf
n→∞ ‖un‖V . (3.1)

On the other hand, by Proposition 2.2, we deduce that

Iα/2 ∗ |un|p → Iα/2 ∗ |u|p strongly in L2(RN ),

and thus, as n → ∞,

Gp(un) =
∫

RN

∣
∣Iα/2 ∗ |un|p∣∣2 →

∫

RN

∣
∣Iα/2 ∗ |u|p∣∣2 = Gp(u).

Therefore,
∫

RN

(Iα ∗ |u|p)|u|p dx = 1,

which leads to u 
= 0 and ‖u‖2
V ≥ θp by the definition of θp. This, together

with the inequality (3.1), implies that ‖u‖2
V = θp. Therefore, u is a minimizer

for θp. �

Remark 3.1. In fact, the nontrivial solution obtained above is a positive solu-
tion with least energy, that is, a groundstate, see [25].

In the remainder of this section, we prove Theorem 1.2 on the multiplicity
results by the Bartsch’s fountain theorem [2]. For the convenience of the reader
we recall its statement following [25, Theorem 3.6].

Theorem 3.2. (Fountain Theorem, Bartsch, 1993) Let X be a Banach space,
let G be a group acting isometrically on X = ⊕j∈NXj. Let Yk = ⊕k

j=0Xj and
Zk = ⊕∞

j=kXj. Assume that for every k ∈ N, Yk is invariant under the action
of G and that if U ⊂ Yk is a bounded neighbourhood of 0 and if f : ∂U → Yk−1

is continuous, then there exists x ∈ ∂U such that f(x) = 0. If J ∈ C1(X) is
invariant under the action of G and satisfies the Palais–Smale condition, and
if there exists ρk > rk > 0, such that for every k ∈ N,

sup
u∈Yk

‖u‖=ρk

Jp(u) ≤ 0 (A1)

and
lim

k→∞
inf

u∈Zk
‖u‖=rk

Jp(u) = +∞, (A2)

then the functional J has an unbounded sequence of critical values.

Proof of Theorem 1.2. We consider the action of the group Z/2Z = {−1, 1}
on the space H1

V (RN ) defined for g ∈ {−1, 1} and u ∈ H1
V (RN ) by multi-

plication. This action is continuous and isometric: for every g ∈ {−1, 1} and
u ∈ H1

V (RN ), ‖gu‖V = ‖u‖V . The functional Jp is invariant under this action
of the group {−1, 1} since it is an even functional. Moreover, by the Borsuk–
Ulam theorem [25, Theorem D.17], every continuous odd map f : ∂U → R

k−1
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has a zero, where k ≥ 2 and U is an open bounded symmetric neighborhood
of 0 in R

k.
We choose an orthonormal basis (ej)j≥0 of H1

V (RN ) and define Xj :=
Rej . To apply the fountain theorem, we still need to find suitable rk and ρk.
Since the unit sphere in the finite dimensional linear subspace Yk is a compact
set, the continuous functional Gp achieves a positive minimum σk on that set.
On the finite-dimensional space Yk, for any u ∈ Yk with ‖u‖V = ρk,

Jp(u) =
1
2
‖u‖2

V − 1
2p

‖u‖2p
V Gp

( u

‖u‖V

)
≤ 1

2
ρ2

k − σk

2p
ρ2p

k .

Thus the condition (A1) follows for sufficiently large ρk since p > 1.
We now turn to (A2). We define

βk := sup
{

‖Iα/2 ∗ |u|p‖L2 | u ∈ Zk and ‖u‖V = 1
}

.

We show that βk → 0 as k → ∞ with minor modification following [25, Proof
of Lemma 3.8]. We observe that 0 < βk+1 ≤ βk, so that βk → β ≥ 0, as
k → ∞. By the definition of βk, we know that for every k ≥ 0, there exists
uk ∈ Zk such that

‖uk‖V = 1 and
∥
∥Iα/2 ∗ |uk|p∥∥

L2 >
βk

2
.

By definition of Zk, we have uk ⇀ 0 weakly in H1
V (RN ). Thus by the weak to

strong convergence property of Proposition 2.2, we deduce that Iα/2 ∗ |uk|p →
Iα/2 ∗ |u|p as k → ∞ strongly in L2(RN ). Therefore β = 0. For every u ∈ Zk,

Jp(u) ≥ 1
2
‖u‖2

V − β2
k

2p
‖u‖2p

V .

We set rk := 1/(βk)1/(p−1), then we have

Jp(u) ≥
(

1
2

− 1
2p

)
1

β
2

p−1
k

→ +∞ as k → ∞.

Since the conditions (A1) and (A2) hold, it follows from the fountain
theorem that Jp has an unbounded sequence of critical values. �

4. Existence of nodal solution with least energy

In this section, we shall prove the existence of nodal solutions by minimization
method on the Nehari nodal set defined by

Mp =
{
u ∈ H1

V (RN ) | u+ 
= 0 
= u− and 〈J ′
p(u), u+〉 = 〈J ′

p(u), u−〉 = 0
}
.

It is obvious that all the sign-changing solutions are contained in Mp. We are
going to study whether it is possible to obtain a least energy nodal solution
by finding a minimizer for

cp := inf
u∈Mp

Jp(u).
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The following lemma plays an essential role in showing the existence of
the minimizer for cp. The proof follows the strategy of [8, Proof of proposition
3.2], [27, Lemma 3.2].

Lemma 4.1. Let p > 2. For any u ∈ H1
V (RN ) with u± 
= 0, there exists a

unique pair (t̄, s̄) ∈ (0,+∞)2 such that t̄u+ + s̄u− ∈ Mp and if u ∈ Mp, then
Jp(u) ≥ Jp(tu+ + su−) for any t ≥ 0, s ≥ 0.

Proof. We define the function Φp : [0,+∞)2 → R for each s, t ∈ [0,+∞) by

Φp(t, s) := Jp(t
1
p u+ + s

1
p u−) =

t
2
p

2
‖u+‖2

V +
s

2
p

2
‖u−‖2

V

− 1
2p

∫

RN

|Iα/2 ∗ (t|u+|p + s|u−|p)|2, (4.1)

where u = u+ + u− with u± 
= 0. The condition t
1
p u+ + s

1
p u− ∈ Mp is

equivalent to ∇Φp(t, s) = 0 with t > 0, s > 0. It is sufficient to prove that there
exists a unique critical point for the function Φp on the domain (0,+∞)2.

By the definition of Φp,

Φp(t, s) ≤ t
2
p

2
‖u+‖2

V +
s

2
p

2
‖u−‖2

V − t2

2p

∫

RN

∣
∣Iα/2∗|u+|p∣∣2− s2

2p

∫

RN

∣
∣Iα/2∗|u−|p∣∣2,

from which we can get that

lim
t2+s2→+∞

Φp(t, s) ≤ lim
t2+s2→+∞

(
t
2
p

2
‖u+‖2

V − t2

2p

∫

RN

∣
∣Iα/2 ∗ |u+|p∣∣2

+
s

2
p

2
‖u−‖2

V − s2

2p

∫

RN

∣
∣Iα/2 ∗ |u−|p∣∣2

)

= −∞.

Therefore, Φp must have at least one global maximum point on [0,∞)× [0,∞).
Since the quadratic form

(t, s) �→
∫

RN

∣
∣Iα/2 ∗ (t|u+|p + s|u−|p)∣∣2

is positive definite, the function Φp is strictly concave. In particular, any critical
point is a maximum point and there is at most one maximum point.

The conclusion follows provided that we can rule out that this maximum
point is on the boundary of [0,+∞)2. Suppose that (t0, 0) with t0 ≥ 0 is the
global maximum point of Φp, then ∂Φp(t0,0)

∂t ≤ 0. However, a direct computa-
tion shows that

∂Φp(t0, s)
∂s

∣
∣
∣
s=0

= +∞,

Similarly, Φp can not achieve its global maximum on (0, s) for any s ≥ 0. �

Proof of Theorem 1.3. when p > 2. For the case of p > 2, our proof, in fact,
relies on the compact embedding: H1

V (RN ) ↪→ Lq(RN ) with 1
q ∈ ( 1

2 − 1
N , 1

2 ]
and can be carried out into two steps. First, we show that cp > 0 is attained
by some minimizer w ∈ Mp. Then, we prove the minimizer w for cp is indeed
a critical point of Jp, thus being a nodal solution of (C).
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Step 1 The energy level cp > 0 is achieved by some minimizer w ∈ Mp.
Let (un)n∈N be a minimizing sequence for cp in Mp, namely, lim

n→∞ Jp(un)
= cp. We first observe that

(1
2

− 1
2p

)
‖un‖2 = Jp(un) − 1

2p
〈J ′

p(un), un〉 = Jp(un) → cp, (4.2)

from which we know that the sequence (un)n∈N is bounded in H1
V (RN ) and so

are the sequences (u±
n )n∈N. Passing to a subsequence, there exist u± ∈ H1

V (RN )
such that

u±
n ⇀ u± weakly in H1

V (RN ).

By the constraint 〈J ′
p(un), u±

n 〉 = 0, and by the Hardy–Littlewood–Sobo-
lev inequality [[12],Theorem 4.3], which can be seen as a special case of the
Stein–Weiss inequality [22], we deduce that

C1‖u±
n ‖2

L
2Np
N+α

≤ ‖u±
n ‖2

V =
∫

RN

(
Iα ∗ |un|p)|u±

n |p dx

≤ C2‖un‖p

L
2Np
N+α

‖u±
n ‖p

L
2Np
N+α

≤ C3‖u±
n ‖p

L
2Np
N+α

, (4.3)

which yields, since by our constraint again u±
n 
= 0, that

lim inf
n→∞ ‖u±

n ‖
L

2Np
N+α

> 0. (4.4)

Since the embedding H1
V (RN ) ↪→ L

2Np
N+α (RN ) is compact, we have

u±
n → u± strongly in L

2Np
N+α (RN ),

and then we deduce from (4.4) that u± 
= 0. Next, by the Hardy–Littlewood–
Sobolev inequality, we see that

∫

RN

(
Iα ∗ |u±

n |p)|u±
n |p →

∫

RN

(
Iα ∗ |u±|p)|u±|p, (4.5)

and ∫

RN

(
Iα ∗ |u+

n |p)|u−
n |p →

∫

RN

(
Iα ∗ |u+|p)|u−|p. (4.6)

Hence, by Lemma 4.1, there exists a unique pair (t0, s0) with t0, s0 > 0 such
that t0u

+ + s0u
− ∈ Mp. Moreover, we have

cp ≤ Jp(t0u+ + s0u
−) ≤ lim inf

n→∞ Jp(t0u+
n + s0u

−
n )

≤ lim sup
n→∞

Jp(t0u+
n + s0u

−
n ) ≤ lim

n→∞ Jp(un) = cp.

The second inequality above follows from the weakly lower semi-continuity of
the norm and from (4.5) and (4.6). We conclude by setting w = t0u

+ + s0u
−.

Step 2 J ′
p(w) = 0.

To complete this, we follow the idea of perturbing the functional in one
direction [14]. This argument seems simpler than previous deformation argu-
ments [1,24].
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Suppose that w is not a critical point, then there exists a function v ∈
C∞

c (RN ) such that 〈J ′
p(w), v〉 = −2. Since Jp is continuously differentiable,

there exists δ > 0 small enough such that

〈J ′
p(tu

++su−+εv), v〉 ≤ −1, if |t−t0|+|s−s0|≤δ and 0 ≤ ε ≤ δ. (4.7)

We choose a continuous function η : D → [0, 1], where D being a bounded
domain and is defined by

D :=
{
(t, s) ∈ R

2 : |t − t0| ≤ δ, |s − s0| ≤ δ
}
,

such that

η(t, s) =

{
1 if |t − t0| ≤ δ

4 and |s − s0| ≤ δ
4 ,

0 if |t − t0| ≥ δ
2 or |s − s0| ≥ δ

2 .

We define Q ∈ C(D,H1
V (RN )) for (t, s) ∈ D by

Q(t, s) = tu+ + su− + δη(t, s)v.

and h : D → R
2 for (t, s) ∈ D as

h(t, s) :=
(〈J ′

p(Q(t, s)), Q(t, s)+〉, 〈J ′
p(Q(t, s)), Q(t, s)−〉).

The map h is continuous because the map u �→ u+ is continuous in H1
V (RN ).

If |t − t0| = δ, or |s − s0| = δ, then η = 0 by its definition, therefore
Q(t, s) = tu+ + su−, which implies that h(t, s) 
= (0, 0) by Lemma 4.1. As
a consequence, the Brouwer topological degree deg(h, int(D), 0) is well defined
and deg(h, int(D), 0) = 1, thus there exists a pair (t1, s1) ∈ int(D) such that
h(t1, s1) = (0, 0). Thus Q(t1, s1) ∈ Mp, and then, it follows from the definition
of cp that

Jp(Q(t1, s1)) ≥ cp. (4.8)
On the other hand, from Eq. (4.7) we arrive at

Jp(Q(t1, s1)) = Jp(t1u+ + s1u
−)

+
∫ 1

0

〈J ′
p(t1u

+ + s1u
− + ρδη(t1, s1)v), δη(t1, s1)v〉dρ

≤ Jp(t1u+ + s1u
−) − δη(t1, s1). (4.9)

If (t1, s1) 
= (t0, s0), we know from Lemma 4.1 that Jp(t1u+ + s1u
−) <

Jp(t0u+ + s0u
−) = cp, thus from inequality (4.9)

Jp(Q(t1, s1)) ≤ Jp(t1u+ + s1u
−) < cp.

If (t1, s1) = (t0, s0), then η(t1, s1) = 1, follows from (4.9) we also have

Jp(Q(t1, s1)) ≤ cp − δ < cp,

which contradicts inequality (4.8) in any case. �

We bring to the attention of the reader that the assumptions on the poten-
tial V are only used to ensure the compactness of the embedding H1

V (RN ) ↪→
L

2Np
N+α (RN ).

The case p = 2 is more complicated since we have neither a property
similar to Lemma 4.1 nor an estimate like (4.3) to guarantee u± 
= 0, where
u = u++u− is the weak limit of a minimizing sequence. To find a nodal solution
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with least energy for the quadratic case, we follow the idea of [7] of employing
equation (C) with p > 2 as a regularisation for the quadratic equation (C) and
then pass to the limit as p ↘ 2. We start our proof by showing that Nehari
nodal set M2 is not empty.

Lemma 4.2. One has M2 
= ∅. In particular, c2 < +∞.

Proof. We are going to construct a function w ∈ H1
V (RN ) with w± 
= 0 such

that the following linear system admits a solution (t, s) with t, s > 0,
⎛

⎜
⎜
⎝

∫

RN

(Iα ∗ |w+|2)|w+|2
∫

RN

(Iα ∗ |w+|2)|w−|2
∫

RN

(Iα ∗ |w+|2)|w−|2
∫

RN

(Iα ∗ |w−|2)|w−|2

⎞

⎟
⎟
⎠

(
t2

s2

)
=

(‖w+‖2
V

‖w−‖2
V

)
. (4.10)

The conclusion will then follow since tw+ + sw− ∈ M2. By Cramer’s Rule, it
is sufficient to find a function w ∈ H1

V (RN ) with w± 
= 0 such that
∫
RN (Iα ∗ |w+|2)|w−|2

∫
RN (Iα ∗ |w−|2)|w−|2 <

‖w+‖2
V

‖w−‖2
V

<

∫
RN (Iα ∗ |w+|2)|w+|2

∫
RN (Iα ∗ |w+|2)|w−|2 . (4.11)

Let U ∈ C1(RN )\{0} such that U ≥ 0 and suppU ⊂ B(0, 1). We choose
a+, a− 
∈ supp U and we define

wσ(x) := U(x−a+
σ ) − U(x−a−

σ ).

Since the function U has compact support, we know that w+
σ (x) = U(x−a+

σ )
and w−

σ (x) = −U(x−a−
σ ) for sufficiently small σ. To end the proof, we show

that the estimate (4.11) holds as σ becomes small enough. In fact,

‖w±
σ ‖2

V =
∫

RN

σN−2|∇U(x)|2 + σNV (a± + σx)U2(x) dx

= σN−2
(∫

RN

|∇U |2 + O(σ2)
)
,

∫

RN

(Iα ∗ |w±
σ |2)|w±

σ |2 =
∫

RN

∫

RN

Aα|U(y−a±
σ )|2|U(x−a±

σ )|2
|x − y|N−α

dy dx

= σN+α

∫

RN

(Iα ∗ |U |2)|U |2,

and when σ ≤ |a+ − a−|/4,
∫

RN

(Iα ∗ |w+
σ |2)|w−

σ |2 = σ2N

∫

RN

∫

RN

Aα|U(y)|2|U(x)|2
|(a− + σx) − (a+ + σy)|N−α

dy dx

≤ σ2N

∫

RN

∫

RN

2N−αAα|U(y)|2|U(x)|2
|a− − a+|N−α

dy dx.

We observe that in (4.11), since α < N , the left-hand side goes to 0 as σ →
0, the middle term converges to a positive constant and the right-hand side
diverges to +∞. The inequality (4.11) holds for sufficiently small σ and thus
the system (4.10) has a solution (t, s) ∈ (0,+∞)2, that is, M2 
= ∅. �
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Proof of Theorem 1.3 when p = 2. Let (upn
)n∈N ⊂ H1

V (RN ) be a sequence of
least energy nodal solution for the Eq. (C) with 1

pn
> N−2

N+α and pn ↘ 2 as
n → ∞. In particular, we have Jpn

(upn
) = cpn

, and the function upn
satisfies

the equation

−Δupn
+ V upn

=
(
Iα ∗ |upn

|pn
)|upn

|pn−2upn
.

We first show that ‖upn
‖V is bounded both from below and above. In fact, by

a direct computation, we see that for every n ∈ N, by the Hardy–Littlewood–
Sobolev and by the Sobolev inequality,

‖upn
‖2

V =
∫

RN

(
Iα∗|upn

|pn

)
|upn

|pn ≤ C

( ∫

RN

|upn
| 2Npn

N+α

)N+α
N

≤ C1‖upn
‖2pn

V ,

where the constant C1 can be taken independently of pn since (pn)n∈N remains
bounded. It follows that

lim inf
n→∞ ‖upn

‖V > 0. (4.12)

On the other hand, thanks to Lemma 4.2 above, we can take w ∈ M2, and
define wpn

= t1/pnw+ + s1/pnw−, where (t1/pn , s1/pn) is given by Lemma 4.1.
Then, wpn

∈ Mpn
, and Jpn

(wpn
) ≥ cpn

. Since Φp(t, s) → −∞ as (t, s) → +∞
uniformly in p in bounded sets and Φp → Φ2 as p → 2 uniformly over compact
subsets of [0,+∞)2, we have t1/pn , s1/pn → 1, and therefore Jpn

(wpn
) → J2(w).

Since w is an arbitrary function in M2, we deduce that

lim sup
n→∞

cpn
≤ c2 < +∞, (4.13)

and thus

‖upn
‖2

V =
1

1
2 − 1

2pn

(

Jpn
(upn

) − 1
2pn

〈J ′
pn

(upn
), upn

〉
)

=
2pncpn

pn − 1
≤ 4c2 + o(1).

In particular, (‖upn
‖V )n∈N is bounded from above. It follows that there ex-

ists some function u ∈ H1
V (RN ) such that upn

⇀ u weakly in H1
V (RN ) as

n → ∞. By the compactness of the embedding H1
V (RN ) ↪→ L

4N
N+α (RN ) (Propo-

sition 2.1), we have

upn
→ u strongly in L

4N
N+α (RN ) and upn

→ u almost everywhere in R
N ,

so that (upn
)n∈N is bounded in L

4N
N+α (RN ). Moreover, by interpolation through

Hölder’s inequality, we have

‖upn
‖

L
4N

N+α
≤ ‖upn

‖λn

L
2Npn
N+α

‖upn
‖1−λn

L2 ≤ ‖upn
‖λn

L
2Npn
N+α

(
C‖upn

‖V

)1−λn
,

(4.14)

where λn ∈ (0, 1) satisfies that

1
4N

N+α

=
λn

2Npn

N+α

+
1 − λn

2
,
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that is, λn = N−α
Npn−N−α

pn

2 → 1 as n → ∞ and the constant C can be chosen
independently of upn

. Similarly, taking q = 2N
N−2 for N ≥ 3, and 4N

N+α < q <
+∞ for N = 1, 2, we have

‖upn
‖

L
2Npn
N+α

≤ ‖upn
‖1−μn

Lq ‖upn
‖μn

L
4N

N+α

≤ (
C‖upn

‖V

)1−μn‖upn
‖μn

L
4N

N+α
(4.15)

with

μn =
N+α
2Npn

− 1
q

N+α
4N − 1

q

→ 1, as n → ∞.

Taking limit on the both sides of (4.14) and (4.15) and combining the bound-
edness of ‖upn

‖V from below and above, we obtain that

lim
n→∞

∫

RN

|upn
| 2Npn

N+α = lim
n→∞

∫

RN

|upn
| 4N

N+α =
∫

RN

|u| 4N
N+α .

Thus, we get that (see for example [26, Proposition 4.2.6])

|upn
|pn → |u|2 strongly in L

2N
N+α (RN ), (4.16)

which, together with the Stein–Weiss inequality [22], yields that

Iα ∗ |upn
|pn → Iα ∗ |u|2 strongly in L

2N
N−α (RN ). (4.17)

Similarly to (4.3), we have

C1‖upn
‖2

L
4N

N+α
≤ ‖upn

‖2
V =

∫

RN

(
Iα ∗ |upn

|pn
)|upn

|pn ≤ C
∥
∥|upn

|pn
∥
∥2

L
2N

N+α
,

which implies, by taking limit on both sides, that ‖u‖
L

4N
N+α

≥ C > 0, that is
u 
= 0.

For large n, we choose q as in (4.15), we employ the interpolation in-
equalities again, and we get

‖upn
‖

L
(pn−1) 4N

N+α
≤ ‖upn

‖1−λn

Lq ‖upn
‖λn

L
4N

N+α
≤ (

C‖upn
‖V

)1−λn‖upn
‖λn

L
4N

N+α
,

where

λn =
N+α

4N(pn−1) − 1
q

N+α
4N − 1

q

→ 1,

that is |upn
|pn−2upn

is bounded in L
4N

N+α (RN ), it converges to u weakly in the
space L

4N
N+α (RN ) [26, Proposition 5.4.7]. Therefore,

〈J ′
2(u), ψ〉 =

∫

RN

∇u · ∇ψ + V uψ − (Iα ∗ |u|2)uψ

= lim
n→∞

∫

RN

∇upn
· ∇ψ + V upn

ψ − (Iα ∗ |upn
|pn)|upn

|pn−2upn
ψ

= lim
n→∞〈J ′

pn
(upn

), ψ〉 = 0.
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which means that u is a weak solution of the quadratic Choquard equation (C)
since the function ψ ∈ H1

V (RN ) is arbitrary. Moreover, we deduce from the
convergences (4.16) and (4.17) that

‖upn
‖2

V =
∫

RN

(Iα ∗ |upn
|pn)|upn

|pn →
∫

RN

(Iα ∗ |u|2)|u|2 = ‖u‖2
V , (4.18)

and thus upn
→ u strongly in H1

V (RN ) as n → ∞.
We are now in a position to finish our proof by showing that u± 
= 0 and

J2(u) is the least among all the nodal solutions of the quadratic Choquard
equation. By (4.12) and (4.18), we have u 
= 0. Without loss of generality, let
us assume by contradiction that u+ 
= 0 and that u− = 0. Set for each n ∈ N

vpn
:=

u−
pn

‖u−
pn‖2/pn

V

,

then from the equality 〈J ′
pn

(upn
), u−

pn
〉 = 0, we get that for each n ∈ N

∫

RN

(
Iα ∗ |upn

|pn
)|vpn

|pn = 1.

Since we have assumed that u− = 0, we have u−
pn

→ 0 strongly in H1
V (RN ).

By Young’s inequality, we know that

‖vpn
‖V = ‖u−

pn
‖1− 2

pn

V ≤
(
1 − 2

pn

)
‖u−

pn
‖V +

2
pn

,

which yields that the sequence (vpn
)n∈N is bounded in H1

V (RN ). The com-
pactness of the embedding H1

V (RN ) ↪→ L
4N

N+α (RN ) (Proposition 2.1) implies
in turn that (vpn

)n∈N converges to some v strongly in L
4N

N+α (RN ), which, to-
gether with (4.15) by replacing upn

with vpn
and the boundness of ‖vpn

‖V ,
implies that

lim sup
n→∞

∫

RN

∣
∣|vpn

|pn
∣
∣

2N
N+α < +∞,

thus, it follows from [26, Proposition 5.4.7] again that

|vpn
|pn ⇀ |v|2 in L

2N
N+α (RN ).

Combining the strong convergence of (4.17), we deduce that
∫

RN

(
Iα ∗ |u|2)|v|2 = lim

n→∞

∫

RN

(
Iα ∗ |upn

|pn
)|vpn

|pn = 1. (4.19)

On the other hand, by the definition of vpn
and by the strong convergence of

(u+
pn

)n∈N to u in H1(RN ), we have uv = 0 almost everywhere on R
N . Since

u is a nontrivial nonnegative weak solution to the Choquard equation, it is a
classical solution (following [16, Theorem 3]) and thus, by the classical strong
maximum principle for second order elliptic operators, u > 0 everywhere on
R

N and thus v = 0, which is a contradiction with (4.19).
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In particular, we have u ∈ M2, and thus J2(u) ≥ c2. On the other hand,
by (4.13) and the strong convergence of (upn

)n∈N we have

J2(u) =
1
4

∫

RN

|∇u|2 + V |u|2

= lim
n→∞

(
1
2

− 1
2pn

)∫

RN

|∇upn
|2 + V |upn

|2

= lim sup
n→∞

Jpn
(upn

) = lim sup
n→∞

cpn
≤ c2;

this concludes the proof. �
Remark 4.3. In fact, in the case of p ≥ 2, we have cp > c0,p where c0,p is the
energy level of the groundstates, since any groundstate solution should have
constant sign. However, the question of whether or not or when the estimate
cp > 2c0,p holds is open; in the case of constant potential this estimate was
crucial for the compactness.

Finally, we prove that the energy level cp is degenerate when p < 2.

Proposition 4.4. For p < 2, we have cp = c0,p. Then the energy functional Jp

does not achieve its minimum on the Nehari nodal set.

Proof. We observe that if u ∈ Np, then |u| ∈ Np, where Np denote the Nehari
manifold, that is,

Np :=
{
u ∈ H1

V (RN ) : u 
= 0 and 〈J ′
p(u), u〉 = 0

}
.

With this notation, we know that c0,p = infu∈Np
Jp(u) (see Remark 4.3 and

[25]). Since Mp ⊂ Np, thus we get that cp ≥ c0,p. In fact, we shall show the
reverse inequality holds. By a density argument, it follows that

c0,p = inf{Jp(u) : u ∈ Np ∩ C1
c (RN ) and u ≥ 0 on R

N}.

Let u ∈ Np ∩ C1
c (RN ) and u ≥ 0 on R

N . We choose a point a 
∈ supp u and
a function ψ ∈ C1

c (RN )\{0} such that ψ ≥ 0 and we define as in [8] for each
σ > 0 the function uσ : RN → R by

uσ(x) = u(x) − σ
2

2−p ψ(x−a
σ ).

Then, u+
σ = u for sufficiently small σ. By a direct computation, tu+

σ + su−
σ ∈

Mp if and only if
⎧
⎪⎨

⎪⎩

(t2−p − tp)
∫
RN

(
Iα ∗ |u|p)|u|p = spσN+ 2p

2−p Kσ,
s2−p

∫
RN |∇ψ(y)|2 + σ2V (a + σy)ψ2(y) dy

= tpKσ + spσα+ 2p
2−p

∫
RN

(
Iα ∗ |ψ|p)|ψ|p

(4.20)

where Kσ =
∫
RN

(
Iα ∗ |u|p)(a + σy)|ψ(y)|pdy.

Observe that thet system (4.20) has a unique solution when σ = 0. By
the implicit function theorem, for σ > 0 small enough there exists a pair
(tσ, sσ) ∈ (0,+∞)2 that solves the system (4.20) and

lim
σ→0

tσ = 1, lim
σ→0

sσ =

((
Iα ∗ |u|p)(a)

∫
RN |ψ|p

∫
RN |∇ψ|2

) 1
2−p

.
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Since 4
2−p + N − 2 > 0, we have u−

σ → 0 in H1
V (RN ) as σ → 0, and thus

tσu+
σ + sσu−

σ → u in H1
V (RN ). Hence, we have that

cp ≤ Jp(tσu+
σ + sσu−

σ ) → Jp(u), as σ → 0,

which implies that cp ≤ c0,p since u ∈ Np is arbitrary.
We assume that u ∈ Mp minimizes the functional Jp on the Nehari nodal

set Mp. Since c0,p = cp, thus u also minimizes Jp on the Nehari manifold Np.
By regularity theory for the Choquard equation and by the strong maximum
principle, either u > 0 or u < 0, which contradicts with u ∈ Mp. �

5. Pohožaev identity

This section is devoted to the proof of a Pohožaev identity for the Choquard
equation (C).

Theorem 5.1. (Pohožaev identity) Let N ≥ 3, V ∈ C1(RN , [0,+∞)). If the
function u ∈ W 2,2

loc (RN ) ∩ H1
V (RN ) is a solution to the Choquard equation (C)

such that
∫

RN

|x · ∇V (x)| |u(x)|2 dx +
∫

RN

(
Iα ∗ |u|p)|u|p < +∞,

then
N−2

2

∫

RN

|∇u|2+1
2

∫

RN

(
NV (x)+x·∇V (x)

)|u(x)|2 dx=
N+α

2p

∫ (
Iα∗|u|p)|u|p.

(5.1)

Here, η · ζ denotes the canonical scalar product of vectors η, ζ ∈ R
N .

Proof of Theorem 5.1. We take ϕ ∈ C1
c (RN ) such that ϕ = 1 on B(0, 1). Since

the function ϕ has compact support, we can define a function vλ ∈ H1
V (RN )

for λ ∈ (0,+∞) by

vλ(x) := ϕ(λx)x · ∇u(x).

By testing the Choquard equation (C) against the function vλ, we have
∫

RN

∇u · ∇vλ + V uvλ =
∫

RN

(
Iα ∗ |u|p)|u|p−2uvλ.

We compute the square term for λ > 0. By the definition of vλ, the chain rule
and by the Gauss integral formula, we get that

∫

RN

V uvλ =
∫

RN

V (x)u(x)ϕ(λx)x · ∇u(x) dx

=
∫

RN

V (x)ϕ(λx)x · ∇(
1
2 |u|2)(x) dx

= −
∫

RN

(
NV (x)ϕ(λx) + V (x) (λx) · ∇ϕ(λx)

+x · ∇V (x)ϕ(λx)
) |u(x)|2

2
dx. (5.2)
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In view of the various boundedness assumptions, Lebesgue’s dominated con-
vergence theorem applies and gives us

lim
λ→0

∫

RN

V (x)uvλ = −1
2

∫

RN

(
NV (x) + x · ∇V (x)

)|u(x)|2 dx

In view of the assumption u ∈ W 2,2
loc (RN ), we can perform an integration by

parts

∫

RN

∇u · ∇vλ =
∫

RN

ϕ(λx)
(
|∇u(x)|2 + x · ∇( |∇u|2

2

)
(x)

)
dx

+
∫

RN

(
λ∇u(x) · ∇ϕ(λx)

)(
x · ∇u(x)

)
dx

= −
∫

RN

(
(N − 2)ϕ(λx) + λx · ∇ϕ(λx)

) |∇u(x)|2
2

dx

+
∫

RN

(∇u(x) · ∇ϕ(λx)
)(

λx · ∇u(x)
)
dx

Since |(η · ζ)(η · ξ)| ≤ |η|2|ζ||ξ| for any ζ, ξ, η ∈ R
N , we have for each x ∈ R

N

|(∇u(x) · ∇ϕ(λx)
)(

λx · ∇u(x)
)| ≤ |∇u(x)|2|λx||∇ϕ(λx)|

≤ |∇u(x)|2 sup
z∈RN

|z| |∇ϕ(z)|.

By Lebesgue’s dominated convergence theorem again, we have, since u ∈
H1

V (RN ),

lim
λ→0

∫

RN

∇u · ∇vλ = −N − 2
2

∫

RN

|∇u|2.

Finally, by symmetry and integration by parts

∫

RN

(
Iα ∗ |u|p)|u|p−2uvλ

=
∫

RN

∫

RN

Iα(x − y)|u(y)|pϕ(λx)x · ∇
(

|u|p
p

)
(x) dx dy

=
1
2

∫

RN

∫

RN

Iα(x − y)
(
|u(y)|pϕ(λx)x · ∇

(
|u|p

p

)
(x)

+|u(x)|pϕ(λy)y · ∇
(

|u|p
p

)
(y)

)
dx dy

= −
∫

RN

∫

RN

Iα(x − y)|u(y)|p
(
Nϕ(λx) + λx · ∇ϕ(λx)

) |u(x)|p
p

dx dy

+
N − α

2p

∫

RN

∫

RN

Iα(x − y)|u(y)|p (x − y) · (xϕ(λx)−yϕ(λy))
|x−y|2 |u(x)|p dx dy.
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For any λ > 0 and x, y ∈ R
N ,

∣
∣
∣
∣
∣
(x − y) · (xϕ(λx) − yϕ(λy))

|x − y|2
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
(λx − λy) · (λxϕ(λx) − λyϕ(λy))

|λx − λy|2
∣
∣
∣
∣
∣

≤ sup
z,w∈RN

∣
∣
∣
∣
∣
(w − z) · (wϕ(w) − zϕ(z))

|w − z|2
∣
∣
∣
∣
∣
< +∞.

(5.3)

We can thus apply Lebesgue’s dominated convergence theorem to conclude
that

lim
λ→0

∫

RN

(
Iα ∗ |u|p)|u|p−2uvλ = −N + α

2p

∫

RN

(
Iα ∗ |u|p)|u|p.

Hence, the identity (5.1) holds. �

Remark 5.2. The Pohožaev identity implies some nonexistence results for the
Choquard equation (C). In general, if

either
(
2V (x) + x · ∇V (x)

)(
N − 2 − N+α

p

) ≥ 0, (5.4)

or
(
(N − N+α

p )V (x) + x · ∇V (x)
)(

N − 2 − N+α
p

) ≥ 0, (5.5)

then the Choquard equation (C) has no nontrivial solutions satisfying the
regularity and boundedness assumptions of Theorem 5.1. In particular, if
V (x) = |x|β is homogeneous, then the Choquard equation (C) has no such
solution if p ∈ (1,max{1, N+α

N+β }] ∪ [N+α
N−2 ,+∞).
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