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Regularity results for non-autonomous
functionals with L logL-growth and Orlicz
Sobolev coefficients

Raffaella Giova

Abstract. We study the regularity properties of local minimizers of non-
autonomous convex integral functionals of the type

F(u,Ω) =

∫
Ω

f(x,Du) dx,

when the integrand f has almost linear growth with respect to the gra-
dient variable and the dependence on the x-variable is controlled by a
function which belongs to a suitable Orlicz Sobolev space.
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1. Introduction

We consider integral functionals of the form

F(u,Ω) =
∫

Ω

f(x,Du) dx, (1.1)

for a mapping u : Ω ⊂ R
n → R

N , n > 2, N ≥ 1 and Ω a bounded open set
in R

n. Here the integrand f : (x, ξ) ∈ Ω × R
n×N → [0,+∞) is strictly convex

with respect to the variable ξ ∈ R
n×N .

The aim of this paper is to establish a higher differentiability result of
minimizers of (1.1) with an integrand ξ → f(x, ξ) ∈ C2(Rn×N ) with almost
linear growth with respect to the gradient variable and with Orlicz Sobolev
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Studi di Napoli “Parthenope”—Sostegno alla ricerca individuale 2015-2017”.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-016-0419-5&domain=pdf
http://orcid.org/0000-0002-7632-4664


64 Page 2 of 18 R. Giova NoDEA

dependence with respect to the x-variable. More precisely, we shall assume
that there exist positive constants c1, c2, c3, c4, l and ν such that

c1|ξ| log(e + |ξ|) ≤ f(x, ξ) ≤ c2|ξ| log(e + |ξ|) + c3, (F1)

for a.e. x ∈ Ω and every ξ ∈ R
n×N .

Concerning the dependence on the x-variable, we suppose that there exists a
function k ∈ Ln logn L such that

|Dxf(x, ξ)| ≤ |k(x)||ξ| log(e + |ξ|), (F2)

and

|DxDξf(x, ξ)| ≤ |k(x)| log(e + |ξ|); (F3)

for a.e. x ∈ Ω and every ξ ∈ R
n×N .

The model case we have in mind is

F(u,Ω) =
∫

Ω

a(x)|Du| log(e + |Du|) dx,

with a(x) ∈ WLn logn L(Ω) (for the definition of the Orlicz Sobolev spaces see
Sect. 2.1 below). Note that, by the embedding in the Orlicz Sobolev spaces
(see Theorem 2.3 in Sect. 2.1), the function a(x) has a logarithmic modulus of
continuity. Indeed, we have

|a(x) − a(y)| ≤ c

log
1
n (e + 1

|x−y| )
‖Da‖LnlognL(Ω).

Further, we assume that

〈Dξξf(x, ξ)η, η〉 ≤ l
log(e + |ξ|)

|ξ| |η|2, (F4)

for a.e. x ∈ Ω and for all ξ, η ∈ R
n×N . Finally, we remark that, thanks to the C2

regularity of f with respect to the variable ξ, the strict convexity assumption
on the integrand f is equivalent to the following ellipticity condition on the
matrix Dξξf

〈Dξξf(x, ξ)η, η〉 ≥ ν(1 + |ξ|)−1|η|2, (F5)

for a.e. x ∈ Ω and for all ξ, η ∈ R
n×N .

Regularity properties of minimizers of integral functionals of the type
(1.1) when the integrand f(x, ξ) depends on the x-variable through a Hölder
continuous function and satisfies p-growth conditions with respect to ξ vari-
able, have been widely investigated and are by now classical (we refer the
interest reader to [31] and references therein).

On the other hand, the study of the regularity has been carried on under
weaker assumptions with respect to x variable and we refer to [22] for the case
of continuous dependence on the x-variable through a modulus of continuity
not necessarily Hölder, to [6] for the case of V MO coefficients, for the case of
Sobolev coefficients to [11,13,14,27,30,39–41] (when the integrand satisfies the
so called standard growth conditions) and to [19] (when the integrand satisfies
the non standard growth conditions), to [3,12,33] for the case of fractional
Sobolev coefficients and to [29] for parabolic systems.
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However, all the above mentioned papers refer to functionals that grow
as a power of the gradient with exponent p > 1. Here, we are interested in
functionals with integrands which are not too far from being linear in |ξ|, that
is

lim
|ξ|→+∞

|f(x, ξ)|
|ξ| = ∞, lim

|ξ|→+∞
|f(x, ξ)|

|ξ|p = 0 ∀p > 1. (1.2)

Note that functionals with nearly linear growth have features in common with
ones satisfying non standard growth since, by virtue of (1.2), we have that

c|ξ| ≤ f(x, ξ) ≤ C(1 + |ξ|p), ∀p > 1.

We recall that the theory of regularity of minimizers in this framework of
non-standard growths was started by Marcellini [34,35], see also Acerbi and
Fusco [1], Boccardo et al. [5], Fusco and Sbordone [25,26], and later widely
investigated by many authors and in different settings of applicability (see
e.g. [4,7,18]). It is well known that the dependence of the integrand on the
x-variable can give substantial difficulties since the Lavrentiev phenomenon
may appear (see [20]). For more details and references on this subject we refer
to [36].

Actually, many regularity results have been established for integrals with
nearly linear growth in case they do not depend on the x variable. The first
result in this direction is due to Greco et al. [32], where they proved the higher
integrability of the minimizers of functionals in the scale of Orlicz spaces. After
that, Fuchs and Seregin [24] proved the C1,γ-partial regularity for minimizers
when the dimension n ≤ 4. Such result has been extended to any dimension
n by Esposito and Mingione [21] and later on the full C1,γ-regularity has
been established in [23,37]. We recall that all the mentioned papers concern
the autonomous case. Recently, regularity results have been established for
integrals of this type also in the case of variable exponent (see [28,38]).
It is well known that, dealing with functionals with non standard growth con-
ditions, the presence of the x-variable in the integrand can give substantial
difficulties since the Lavrentiev phenomenon may appear. However, we men-
tion that in [8,42] the higher differentiability of local minimizers of F(u, Ω)
has been established under a Hölder continuous dependence of the integrand
with respect to the x-variable.

The aim of this paper is to establish regularity results and more precisely
higher differentiability results for minimizers of non-autonomous functionals
of the type (1.1) when the integrand function f has a nonlinearity into the gra-
dient variable which is slowly increasing at infinity and, respect to x-variable,
is assumed weakly differentiable with a summability assumption on the weak
gradient that implies only the continuity, with a logarithmic modulus of con-
tinuity. More precisely, we shall proved the following

Theorem 1.1. Let f : Ω × R
n×N → R satisfy the assumptions (F1)–(F5). If

u ∈ W 1,1
loc (Ω,RN ) is a local minimizer of the functional (1.1), then

Du√
1 + |Du| ∈ W 1,2

loc (Ω).
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Furthermore, there exists a radius R0 = R0(n,N, l, ν, ‖k‖Ln logn L) such that,
whenever B2R ⊂ BR0 ⊂ Ω, we have the Caccioppoli type inequality∫

B R
4

|D2u|2
1 + |Du| ≤ c

R2

∫
BR

(1 + |Du| log(e + |Du|)) dx, (1.3)

where c = c(n, l, ν).

The proof of previous Theorem is achieved combining an a priori estimate
with a suitable approximation argument. In the proof of the a priori estimate,
we take advantage from previous results for minimizers of functionals with
almost linear growth that allow us to use, in the Euler Lagrange system asso-
ciated to F(u,Ω), test functions that are proportional to the second derivatives
of the minimizers.
The core of the proof consists in establishing estimates that, in the right hand
side, contain only the energy of the functionals and that, for this reason, are
preserved in passing to the limit. In order to reabsorb terms with critical
summability we use the Hölder inequality in Orlicz–Zygmund spaces and the
absolute continuity of the integral. Next, the approximation is achieved by
constructing a sequence of functionals that grow almost linearly with respect
to the gradient variable and which are C∞-smooth with respect to the x-
variable.

We’d like to point out that Theorem 1.1 holds true also for functionals
with integrand f(x, ξ) ≈ a(x)|ξ| logα(e + |ξ|) with α > 0. Obviously, in this
case, the Sobolev Orlicz assumption on the coefficient will be Ln lognα L. This
assumption becomes weaker when α is less than 1 and this, roughly speak-
ing, means that when the anisotropy of the functional is small we need less
regularity with respect to the x-variable.

In the following theorem we want to show that for a priori bounded
minimizers the higher differentiability result proved in Theorem 1.1 allows us
to obtain the following higher integrability result for the gradient Du:

Theorem 1.2. Let u ∈ W 1,1
loc (Ω,RN ) ∩ L∞

loc(Ω,RN ) be a local minimizer of the
functional (1.1) under the assumptions (F1)-(F5). Then

Du ∈ L3
loc(Ω,Rn×N ).

Furthermore, there exists a radius R0 = R0(n, l, ν) such that, whenever BR ⊂
B8R ⊂ BR0 ⊂ Ω we have the following inequality∫

BR

|Du|3 ≤
c‖u‖2

L∞(2R)

R2

∫
B8R

(1 + |Du| log(e + |Du|)) dx, (1.4)

for a constant c = c(n, l, ν)

It is well known that in the vectorial setting the local boundedness of
the minimizers can not be expected, as shown by the counterexamples by De
Giorgi and Šverák and Yan. On the other hand, also in the vectorial setting, the
local boundedness of the minimizers can be obtained under suitable structure
assumptions on the integrand (see e.g. [15]). It is also known that the local
boundedness of the minimizers in the context of functionals with non standard
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growth is the starting point to the investigation of higher regularity. Here,
inspired by [9], the main tool is an interpolation type inequality which is the
suitable modification to our context of Lemma 10 in [9].

2. Preliminaries

In this section we recall some standard definitions, a lemma that we shall
need to establish our main results and at last the definition and a embedding
theorem of Orlicz spaces.

We shall adopt the usual convention and denote by c a general constant
that may vary on different occasions, even within the same line of estimates.
Relevant dependencies on parameters and special constants will be suitably
emphasized using parentheses. All the norms we use on R

n, RN and R
R

n×N

will
be the standard Euclidean ones and denoted by | · | in all cases. In particular,
for matrices ξ, η ∈ R

n×N we write 〈ξ, η〉 := trace(ξT η) for the usual inner
product of ξ and η, and |ξ| := 〈ξ, ξ〉 1

2 for the corresponding Euclidean norm.
For a C2 function f : Ω × R

n×N → R, we write

Dξf(x, ξ)[η] :=
d
dt

∣∣∣
t=0

f(x, ξ + tη)

and Dξξf(x, ξ)[η, η] :=
d2

dt2

∣∣∣
t=0

f(x, ξ + tη)

for ξ, η ∈ R
n×N .

In what follows, B(x, r) = Br(x) = {y ∈ R
n : |y −x| < r} will denote the ball

centered at x of radius r. We shall omit the dependence on the center when
no confusion arises.
Let us recall the definition of local minimizer.

Definition 2.1. A mapping u ∈ W1,L log L
loc (Ω,RN ) is a local f–minimizer if∫

suppϕ

f(x,Du) dx ≤
∫

suppϕ

f(x,Du + Dϕ) dx

for any O ⊂ Ω and any ϕ ∈ C∞
0 (O,RN ).

The following lemma finds an important application in the so called hole-
filling method. Its proof can be found for example in [31, Lemma 6.1] .

Lemma 2.2. Let h : [r,R0] → R be a non-negative bounded function and 0 <
ϑ < 1, A,B ≥ 0 and β > 0. Assume that

h(s) ≤ ϑh(t) +
A

(t − s)β
+ B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.
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2.1. Orlicz Spaces

We need to recall some basic properties of Orlicz spaces (for more details we
refer to [2]).

Let Φ : [0,∞) → [0,∞) be a Young function, that is Φ(0) = 0, Φ is
increasing and convex. If Ω is a open subset of Rn, we define the Orlicz space
LΦ(Ω) generated by the Young function Φ as the set of the measurable func-
tions u : Ω → R such that ∫

Ω

Φ
( |u|

λ

)
dx < ∞,

for some λ > 0. This space is equipped with the Luxemburg norm

‖u‖LΦ(Ω) = inf
{

λ > 0 :
∫

Ω

Φ
( |u|

λ

)
dx � 1

}
.

We define the space WLΦ(Ω) as the set

WLΦ(Ω) =
{
u ∈ W 1,1(Ω) : |∇u| ∈ LΦ(Ω)

}
.

The Zygmund space Lp logα L(Ω), for 1 � p < ∞, α ∈ R (α � 0 for p = 1), is
defined as the Orlicz space LΦ(Ω) when the Young function Φ is given by

Φ(t) � tp logα(e + t) for every t ≥ t0 ≥ 0. (2.1)

Therefore, a measurable function u on Ω belongs to Lp logα L(Ω) if∫
Ω

|u|p logα(e + |u|) dx < ∞.

For α = 0 we have the ordinary Lebesgue spaces. We will need to use the
following Hölder type inequality for Zygmund spaces

‖u1 · · · uk‖L logα L � C ‖u1‖Lp1 logα1 L · · · ‖uk‖Lpk logαk L, (2.2)

where pi > 1, αi ∈ R, ui ∈ Lpi logαi L for i = 1, . . . , k, and

1 =
1
p1

+ · · · +
1
pk

, α =
α1

p1
+ · · · +

αk

pk
.

The following inclusions hold

Lp logβ L(Ω) ⊂ Lp(Ω) ⊂ Lp logα L(Ω)

with continuous embeddings if α < 0 < β.
We define the Orlicz Sobolev space WLp logα L(Ω) as the set

WLp logα L(Ω) =
{
u ∈ W 1,1(Ω) : |∇u| ∈ Lp logα L(Ω)

}
.

Next, we recall an embedding Theorem in the Orlicz–Sobolev setting (see for
example [10]).

Theorem 2.3. Let h ∈ W 1,1(Ω) be a function such that |Dh| ∈ LnlogσL(Ω),
some σ > n − 1. Then h ∈ C0(Ω) and

|h(x) − h(y)| ≤ cn

log(e + 1
|x−y| )

σ−n+1
n

‖Dh‖LnlogσL(Ω)
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3. Proof of the Theorems 1.1

The proof of Theorem 1.1 is achieved combining a suitable a priori estimate
for the second derivatives of the minimizers of the functional with an approx-
imation argument.

Proof of Theorem 1.1. Step 1. The a priori estimate

Recall that local minimizers u of the functional (1.1) are solutions of the
corresponding Euler Lagrange system

∫
Ω

〈Dξf(x,Du),Dϕ〉 dx = 0,

for every ϕ ∈ C∞
0 (Ω). Let us fix a ball BR ⊂ Ω and arbitrary radii R

2 < s <
t < R. Let us consider a cut off function ρ ∈ C∞

0 (Bt) such that ρ = 1 on Bs

and |∇ρ| ≤ c
t−s . Using ϕ = Di(ρ2Diu) as test function in the Euler Lagrange

system, we get

∫
Ω

〈Dξf(x,Du),D(Di(ρ2Diu))〉 dx =
∫

Ω

〈Dξf(x,Du),DiD(ρ2Diu)〉 dx = 0,

which, by a simple integration by parts, is equivalent to

∫
Ω

〈Di (Dξf(x,Du)) ,D(ρ2Diu)〉 dx = 0. (3.1)

This equality can be written as

I =
∫

Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

= −
∫

Ω

〈Dx(Dξf(x,Du)), ρ2DiDu〉 dx

−
∫

Ω

〈Dξξf(x,Du)DiDu, 2ρDρDiu〉 dx

−
∫

Ω

〈Dx(Dξf(x,Du)), 2ρDρDiu)〉 dx

= −II − III − IV

≤ |II| + |III| + |IV |. (3.2)

In view of the inequality (F5), the bilinear form (ξ, η) �→ 〈Dξξf(x,Du) ξ, η〉
defines for each x an inner product on R

n×N , and so by use of Cauchy–Schwarz’
inequality we have

〈Dξξf(x,Du) ρDiDu,DρDiu〉
≤ 〈Dξξf(x,Du) ρDiDu, ρDiDu〉 1

2 〈Dξξf(x,Du)DρDiu,DρDiu〉 1
2



64 Page 8 of 18 R. Giova NoDEA

on Ω. Hence invoking the Young’s inequality we arrive at

|III| ≤ ε

∫
Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

+ c(ε)
∫

Ω

|〈Dξξf(x,Du)DρDiu,DρDiu〉| dx

≤ ε

∫
Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

+ c(ε, l)
∫

Ω

|Dρ|2 |Du| log(e + |Du|) dx (3.3)

where 0 < ε < 1 and we also used the assumption (F4). Inserting estimates
(3.3) into (3.2) we obtain

I =
∫

Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

≤ ε

∫
Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

+ c(ε, l)
∫

Ω

|Dρ|2 |Du| log(e + |Du|) dx

+ |II| + |IV |.
Then, reabsorbing the first integral in the right side of the previous estimate
by left hand side we get

(1 − ε)I = (1 − ε)
∫

Ω

〈Dξξf(x,Du)DiDu, ρ2DiDu〉 dx

≤ |II| + c(ε, l)
∫

Ω

|Dρ|2 |Du| log(e + |Du|) + |IV |. (3.4)

The ellipticity condition (F5) yields that

ν

∫
Ω

ρ2 |D2u|2
1 + |Du| ≤ I. (3.5)

Using the assumption (F3), we obtain

|II| ≤
∫

Ω

ρ2k(x) log(e + |Du|)|D2u| dx

and

|IV | ≤
∫

Ω

k(x) log(e + |Du|) 2ρ |Dρ| |Du| dx.

Hence, applying the Young’s inequality, it follows that

|II| ≤ ν

4

∫
Ω

ρ2 |D2u|2
1 + |Du| dx + c(ν)

∫
Ω

ρ2k2(x)(1 + |Du|) log2(e + |Du|) dx,

(3.6)
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and

|IV | ≤ c

∫
Ω

ρ2k2(x)|Du| log2(e + |Du|) + c

∫
Ω

|Dρ|2 |Du| dx

≤ c

∫
Ω

ρ2k2(x)(1 + |Du|) log2(e + |Du|) dx

+ c

∫
Ω

|Dρ|2 |Du| log(e + |Du|) dx. (3.7)

Inserting estimates (3.5), (3.6) and (3.7) into (3.4), we obtain

(1 − ε)ν
∫

Ω

ρ2 |D2u|2
1 + |Du| ≤ ν

4

∫
Ω

ρ2 |D2u|2
1 + |Du| dx

+ c(ν)
∫

Ω

ρ2k2(x)(1 + |Du|) log2(e + |Du|) dx

+ c(ε, l)
∫

Ω

|Dρ|2 |Du| log(e + |Du|) dx.

Choosing ε = 1
4 and reabsorbing the first integral in the right side of the

previous estimate by left hand side, we obtain

ν

2

∫
Ω

ρ2 |D2u|2
1 + |Du| ≤ c(ν)

∫
Ω

ρ2k2(x)(1 + |Du|) log2(e + |Du|) dx

+ c(l)
∫

Ω

|Dρ|2 |Du| log(e + |Du|) dx. (3.8)

One can easily check that

[D(ρ
√

1 + |Du|)]2 ≤ cρ2 |D2u|2
1 + |Du| + c|Dρ|2(1 + |Du|). (3.9)

Integrating previous estimate over Ω and recalling (3.8) we get
∫

Ω

∣∣∣D(ρ
√

1 + |Du|)
∣∣∣2 dx ≤ c

∫
Ω

ρ2k2(x)(1 + |Du|) log2(e + |Du|) dx

+ c

∫
Ω

|Dρ|2 (1 + |Du|) log(e + |Du|) dx. (3.10)

Now, taking in account that
∫

Ω

|Dρ|2 (1 + |Du|) log(e + |Du|) dx

=
∫

|Du|≤1

|Dρ|2 (1 + |Du|) log(e + |Du|) dx

+
∫

|Du|>1

|Dρ|2 (1 + |Du|) log(e + |Du|) dx

≤ 2
∫

Ω

|Dρ|2 log(e + 1) dx + 2
∫

Ω

|Dρ|2 |Du| log(e + |Du|) dx (3.11)
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and using Sobolev embedding in the left hand side and properties of ρ, from
(3.10) we obtain

(∫
Bs

(√
1 + |Du|

) 2n
n−2

dx

)n−2
n

≤ c

∫
Bt

k2(x)(1 + |Du|) log2(e + |Du|) dx

+
c

(t − s)2
|Bt\Bs| +

c

(t − s)2

∫
Bt\Bs

|Du| log(e + |Du|) dx

= J1 + J2 + J3. (3.12)

We estimate J1 using the Hölder type inequality for Zygmund spaces (2.2)
with p1 = n

2 , p2 = n
n−2 and α = 0, α1 = n, α2 = − 2n

n−2 and we get

J1 ≤ c

(∫
Bt

kn(x) logn(e + |k|) dx

) 2
n

×
(∫

Bt

(1 + |Du|) n
n−2

log
2n

n−2 (e + |Du|)
log

2n
n−2 (e + (1 + |Du|) log2(e + |Du|))

dx

)n−2
n

≤ c

(∫
Bt

kn(x) logn(e + |k|) dx

) 2
n

( ∫
Bt

(1 + |Du|) n
n−2 dx

)n−2
n

. (3.13)

Inserting estimates (3.13) in (3.12), we obtain
(∫

Bs

(1 + |Du|) n
n−2 dx

)n−2
n

≤ c

(∫
Bt

kn(x) logn(e + |k|) dx

) 2
n

(∫
Bt

(1 + |Du|) n
n−2 dx

)n−2
n

+
c

(t − s)2
|BR| +

c

(t − s)2

∫
BR

|Du| log(e + |Du|) dx, (3.14)

where c = c(n, l, ν).
By the absolute continuity of the integral we can choose R0 such that

c

(∫
BR0

kn(x) logn(e + |k|) dx

) 2
n

≤ 1
2

(3.15)

so that if R < R0, estimate (3.14) becomes
(∫

Bs

(1 + |Du|) n
n−2 dx

)n−2
n

≤ 1
2

(∫
Bt

(1 + |Du|) n
n−2 dx

)n−2
n

+
c|BR|

(t − s)2
+

c

(t − s)2

∫
BR

|Du| log(e + |Du|) dx.
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Since the previous inequality is valid for every radii R
2 < s < t < R, we can use

the iteration Lemma 2.2 with h(s) =
(∫

Bs
(1 + |Du|) n

n−2 dx
)n−2

n

and θ = 1
2 ,

thus obtaining
⎛
⎝

∫
B R

2

(1 + |Du|) n
n−2 dx

⎞
⎠

n−2
n

≤Rn−2 +
c

R2

∫
BR

|Du| log(e + |Du|) dx.

(3.16)

In view of (3.16) and of the estimates (3.11) and (3.13), by the arbitrariness
of the ball BR ⊂ BR0 , estimate (3.10) can be written as follows∫

B R
4

|D2u|2
1 + |Du| ≤ c

R2

∫
BR

(1 + |Du| log(e + |Du|)) dx,

where we used also (3.15).

Step 2. The approximation

Fix a compact set Ω′ ⊂ Ω, and for a smooth kernel φ ∈ C∞
c (B1(0)) with φ ≥ 0

and
∫

B1(0)
φ = 1, let us consider the corresponding family of mollifiers (φε)ε>0

and put

kε = k ∗ φε

and

fε(x, ξ) := f(x, ξ) ∗ φε =
∫

B1

φ(ω)f(x + εω, ξ) dω (3.17)

on Ω′, for each positive ε < dist (Ω′,Ω). Note that

Dξfε(x, ξ) := Dξf(x, ξ) ∗ φε =
∫

B1

φ(ω)Dξf(x + εω, ξ) dω.

One can easily check that the assumption (F1) implies

c1|ξ| log(e + |ξ|) ≤ fε(x, ξ) ≤ c2|ξ| log(e + |ξ|) + c3. (A1)

By virtue of assumptions (F2) and (F3), we have that

|Dxfε(x, ξ)| ≤ |kε(x)||ξ| log(e + |ξ|), (A2)

and

|DxDξfε(x, ξ)| ≤ |kε(x)| log(e + |ξ|), (A3)

for almost every x ∈ Ω and for all ξ ∈ R
n×N .

Let u be a local minimizer of the functional (1.1) and let fix a ball BR �
Ω′. Let us denote by uε the unique minimizer of the functional

Fε(v,BR) :=
∫

BR

fε(x,Dv) dx

under the boundary condition

v = u on ∂BR.
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Since fε satisfies the assumptions of Theorem 1.1 in [8], uε admits second
derivatives and we are legitimate to apply the a priori estimate proved in the
previous step∫

B r
4

|D2uε|2
1 + |Duε| dx ≤ c

r2

∫
Br

(1 + |Duε| log(e + |Duε|)) dx, (3.18)

for every Br such that Br ⊂ BR. Therefore, by (A1) and by minimality of uε

we have ∫
B r

4

|D2uε|2
1 + |Duε| dx ≤ c

r2

∫
Br

(1 + fε(x,Duε)) dx

≤ c

r2

∫
Br

(1 + fε(x,Du)) dx

=
c

r2

∫
Br

(fε(x,Du) − f(x,Du)) dx

+
c

r2

∫
Br

f(x,Du) dx + crn−2. (3.19)

Since fε converges to f strongly in L1, it is bounded in L1 and then
we deduce that D(

√
1 + |Duε|) has L2(B r

4
) norm bounded independently of

ε where Br is any ball strictly contained in BR. Therefore, there exists a not
relabeled subsequence

√
1 + |Duε| such that

√
1 + |Duε| ⇀ w weakly in W1,2(Br),

and so
√

1 + |Duε| converges to w strongly in Lp(Br), ∀p < 2∗ and so
Lp

loc(BR), ∀p < 2∗. In particular, by a simple covering argument,
√

1 + |Duε| → w a.e. in BR. (3.20)

We also have, as a consequence, that there exists v such that Duε converges
to Dv strongly in Lp(B r

4
),∀p < 2∗ and a.e. in BR.

Our next aim is to show that v is a local minimizer of F(u,BR). The lower
semicontinuity of the functional together with the minimality of uε allow us
to conclude that, for every ρ < R∫

Bρ

f(x,Dv) dx ≤ lim
ε→0

∫
Bρ

f(x,Duε) dx ≤ lim
ε→0

∫
BR

f(x,Duε) dx

= lim
ε→0

∫
BR

[f(x,Duε) − fε(x,Duε) + fε(x,Duε)] dx

≤ lim
ε→0

[∫
BR

f(x,Duε) − fε(x,Duε) dx

]

+ lim
ε→0

∫
BR

fε(x,Du) dx

= lim
ε→0

[∫
BR

f(x,Duε)−
∫

BR

∫
B1

φ(ω)f(x + εω,Duε) dω dx

]
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+ lim
ε→0

[∫
BR

fε(x,Du) − f(x,Du) dx

]
+

∫
BR

f(x,Du) dx

= lim
ε→0

Aε + lim
ε→0

Bε +
∫

BR

f(x,Du) dx (3.21)

Now, using that
∫

B1
φ(ω) dω = 1 we obtain

Aε =
∫

BR

(∫
B1

[f(x,Duε) − f(x + εω,Duε)]φ(ω) dω

)
dx (3.22)

therefore, by the assumption (F2), we have

|Aε| ≤
∫

BR

(∫
B1

|f(x,Duε) − f(x + εω,Duε)| φ(ω) dω

)
dx

= ε

∫
BR

(∫
B1

|(k(x) + k(x + εω))|Duε| log(e + |Duε|| φ(ω) dω

)
dx

= ε

∫
BR

|k(x) + kε(x)||Duε| log(e + |Duε|) dx

≤ ε

(∫
BR

|k|n + |kε|n
) 1

n
(∫

BR

|Duε| n
n−1 log

n
n−1 (e + |Duε|)

)n−1
n

≤ cε,

where we used also that Duε is bounded in L
n

n−2 .
Therefore, as an immediate consequence, we obtain that

Aε → 0 as ε → 0. (3.23)

On the other hand, since fε is the convolution of f also

Bε → 0 as ε → 0. (3.24)

Combining (3.23) and (3.24) with (3.21), we have that
∫

Bρ

f(x,Dv) dx ≤
∫

BR

f(x,Du) dx, ∀ρ < R.

Taking the limit as ρ → R we get
∫

BR

f(x,Dv) dx ≤
∫

BR

f(x,Du) dx ≤
∫

BR

f(x,Dv) dx,

which implies that

u ≡ v a.e. in BR

since the minimizer is unique thanks to the strictly convexity of f .
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By passing to the limit as ε ↘ 0 in (3.18), thanks to Fatou’s Lemma, we finally
get

∫
B r

4

|D2u|2
1 + |Du| dx ≤ lim

ε↘0

∫
B r

4

|D2uε|2
1 + |Duε| dx

≤ c

r2
lim
ε↘0

∫
Br

(1 + |Duε| log(e + |Duε|)) dx

=
c

r2

∫
Br

(1 + |Du| log(e + |Du|)) dx

and this concludes the proof. �

4. Proof of Theorem 1.2

In this section we deal with a priori bounded minimizers of the integral func-
tional (1.1). The main tool used in the next proof is a suitable interpolation
type inequality.

Proof of Theorem 1.2. Let R0 be the radius we found in Theorem 1.1, fix
concentric balls BR ⊂ B8R ⊂ BR0 and a cut-off function ρ ∈ C1

c (B2R).
Integration by parts yields∫

Ω

ρ2|Du|3 dx =
∫

Ω

〈ρ2|Du|Du,Du〉 dx

= −
∫

Ω

D(ρ2|Du|Du) · u dx

≤ 2
∫

Ω

ρ2|u||Du||D2u| dx

+
∫

Ω

2ρ|∇ρ||u||Du|2 dx = I1 + I2. (4.1)

Since u is locally bounded in Ω, we have

I1 ≤ ‖u‖L∞(B2R)

∫
Ω

ρ2|Du| |D2u|√
1 + |Du|

√
1 + |Du| dx.

By using the Young’s inequality and thanks to Theorem 1.1, from the previous
inequality we obtain

I1 ≤ c‖u‖2
L∞(B2R)

∫
Ω

ρ2 |D2u|2
1 + |Du| dx +

1
4

∫
Ω

ρ2|Du|2(1 + |Du|) dx

≤ c‖u‖2
L∞(B2R)

∫
Ω

ρ2 |D2u|2
1 + |Du| dx +

1
4

∫
Ω

ρ2|Du|3 dx + cRn. (4.2)

Now, we use again the Young’s inequality to estimate the integral I2 and
we have
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I2 ≤ 1
4

∫
Ω

ρ2|Du|3 dx + c

∫
Ω

|u|2|∇ρ|2|Du| dx

≤ 1
4

∫
Ω

ρ2|Du|3 dx +
c‖u‖2

L∞(B2R)

R2

∫
B2R

|Du| dx. (4.3)

Hence, inserting (4.2) and (4.3) in (4.1), we get∫
Ω

ρ2|Du|3 dx ≤ 1
2

∫
Ω

ρ2|Du|3 dx

+ c‖u‖2
L∞(B2R)

∫
Ω

ρ2 |D2u|2
1 + |Du| dx

+
c‖u‖2

L∞(B2R)

R2

∫
B2R

|Du| dx. (4.4)

Reabsorbing the first integral in the right hand side by the left hand side and
using the estimate (1.3) in Theorem 1.1, we conclude

∫
BR

|Du|3 dx ≤
c‖u‖2

L∞(B2R)

R2

∫
B8R

(1 + |Du| log(e + |Du|) dx,

where c = c(n, l, ν). �
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