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Gelfand type problem for singular quadratic
quasilinear equations

Alexis Molino

Abstract. In this paper, we study the existence of positive solutions for
the quasilinear elliptic singular problem{

−Δu + c |∇u|2
uγ = λ f(u), in Ω,

u = 0, on ∂Ω,

where c, λ > 0, γ ∈ (0, 1), f is strictly increasing and derivable in [0, ∞)
with f(0) > 0. We show that there exists λ∗ > 0 such that (0, λ∗] is the
maximal set of values such there exists solution. In addition, we prove
that for λ < λ∗ there exists minimal and bounded solutions. Moreover,
we give sufficient conditions for existence and regularity of solutions for
λ = λ∗.
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1. Introduction

Gelfand-type problems constitute one of the most studied fields of semilinear
elliptic equations and it has been considered since the very earliest stages of
development of the theory of Partial Differential Equations. There are several
reasons for this interest, foremost among them are the wide applications to
physical models (we refer to [17,19,20,22] and references therein) and the
open problems relating to the existence and boundedness of solutions which
still remain unsolved. We recall that a Gelfand-type problem aims to study
the following semilinear elliptic equation
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⎧⎨
⎩

−Δu = λ f(u), in Ω,
u ≥ 0, in Ω,
u = 0, on ∂Ω,

(Gλ)

where Ω is a smooth bounded, open subset of R
N (N ≥ 1), λ ≥ 0 and the

nonlinearity term satisfies

f is C1[0,∞), positive, increasing and convex such that f(0) > 0. (F)

Typical examples for f are the power-like (1 + u)p with p > 1 and the expo-
nential eu. If a solution u of (Gλ) belongs to L∞(Ω) it is said that it is regular
and minimal if u ≤ v being v any other solution of (Gλ).

Crandall and Rabinowitz in [18] (see also Mignot and Puel [23]) proved,
under the hypothesis f is superlinear at infinity (i.e. f(s)

s → ∞), the following
result

Proposition 1.1. (Crandall and Rabinowitz 1973) [18] There exists a positive
number λ∗ called the extremal parameter such that

• If λ < λ∗ the problem (Gλ) admits a minimal bounded solution wλ.
• If λ > λ∗ the problem (Gλ) admits no solution.

Even more, they showed that the sequence of minimal solutions {wλ} of
(Gλ) is increasing. Furthermore, the minimal solutions are stable, namely they
satisfy the following condition∫

Ω

(|∇ξ|2 − λf ′(wλ)ξ2
) ≥ 0, ∀ξ ∈ C∞

c (Ω).

An important role is played by the stability condition in order to prove the
existence and regularity of u∗ := limλ→λ∗ wλ, called extremal solution. In
particular, it has been used to achieve optimal results of regularity of extremal
solution depending on the dimension N . Special mention should be made of
the exponential case f(s) = es, obtaining regularity for N < 10 as well as the
power-like f(s) = (1 + s)p for N < 4 + 2(1 − 1/p) + 4

√
1 − 1/p (see [18]).

In [14] Brezis and Vázquez proved that u∗ is a weak solution of (Gλ∗).
But, as far as regularity of u∗ is concerned , for general nonlinearities f satis-
fying (F), a few results are obtained. More specifically, assuming the superlin-
earity of f , Nedev proved the boundedness of extremal solutions for dimension
N ≤ 3 [24] and Villegas in [26] for N = 4. See also Cabré et al. in [15,16] for
convex domains Ω.

On the other hand, quasilinear Dirichlet problems having lower order
terms with quadratic growth with respect to the gradient whose simplest model
is the following boundary value problem⎧⎨

⎩
−Δu + H(x, u) |∇u|2 = f0(x), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(Q)
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have also been extensively studied. A simple motivation relies in the fact that
they arise naturally in Calculus of Variations. For example, the Euler–Lagrange
equation of the functional

I(u) =
1
2

∫
Ω

a(x, u)|∇u|2 −
∫

Ω

f0(x)u,

is formally

−div (a(x, u)∇u) +
1
2
a′

u(x, u)|∇u|2 = f0(x),

which contains a quadratic gradient term.
In the 1980s, Boccardo, Murat and Puel discussed, among other impor-

tant aspects, the case H(x, s) = g(s) continuous in [0,∞), giving a huge liter-
ature since then (see [11,12] and references therein). It can be observed in the
previous example of Calculus of Variations that if we consider functions with
unbounded derivative in zero, for instance a(x, u) = 1 + |u|δ with δ ∈ (0, 1), it
shows that the Euler-Lagrange equation associated should have a singularity
in the quadratic term. In recent years, the case H(x, s) with a singularity at
s = 0 has been studied by Arcoya et al. [1–3,6] and some applications are
described by this kind of equations, see for instance [7,8,21].

The goal of this work is to bring together the two areas above, that
is, a Gelfand-type problem with a singularity in the gradient term. To be
more specifically, we propose to study the existence and regularity of positive
solutions for the following problem⎧⎨

⎩
−Δu + g(u) |∇u|2 = λ f(u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(Pλ)

were Ω is a smooth bounded and open subset of RN (N ≥ 3), λ > 0, f strictly
increasing, derivable in [0,∞) with f(0) > 0 and respect to g a nontrivial
and positive function that either is continuous in [0,∞) or it is continuous in
(0,∞), decreasing and integrable in a neighborhood of zero. Typical example
is g(s) = 1

sγ with γ ∈ (0, 1).
Most recently in [5] Arcoya et al. solved problem (Pλ) in the case g

continuous in [0,∞). Consequently, in the just mentioned paper the authors
proved analogous results to that of semilinear elliptic problem (Gλ). They
established that the maximal set of λ for which the problem (Pλ) has at least
one solution is a closed interval [0, λ∗], with λ∗ > 0, and there exists a minimal
regular solution for every λ ∈ [0, λ∗) (compare Proposition 1.1). They also
proved, under suitable conditions, that for λ = λ∗ there exists a minimal
regular solution. Even more, they characterized minimal solutions as those
solutions satisfying a stability condition. Motivated by this paper, our intention
in the current work is to address this matter and provide statements that apply
to the quasilinear problem having a singularity in the quadratic gradient term.
To make our discussion more precise, under suitable hypotheses (see below
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hypotheses (H1)–(H4)) we prove in Theorem 2.9 a similar version of Crandall–
Rabinowitz result (Proposition 1.1) for problem (Pλ). Moreover, assuming that

lim
s→∞

s(f ′(s) − g(s)f(s))
f(s)

= α ∈ (1,∞]

then u∗ is a stable solution of (Pλ∗) (Theorem 3.6, Corollary 3.7). We suggest
that the reader refers to [14] and compare this condition with lims→∞

sf ′(s)
f(s) =

α ∈ (1,∞]. We recall, following the definition introduced by Arcoya et al.
[5], that a stable solution in the literature of elliptic equations with quadratic
growth in the gradient is a positive solution satisfying∫

Ω

|∇φ|2 ≥ λ

∫
Ω

(f ′(u) − g(u)f(u))φ2

for every φ ∈ W 1,2
0 (Ω). Stability condition plays an important role in the

process to determine when the extremal solutions are regular, we give sufficient
conditions in Theorem 4.1. Finally, under the extra condition f ′(s) − g(s)f(s)
is strictly increasing, we prove that stable solutions are minimal (Theorem
3.8). We would like to point out that, unlike the work of Arcoya et al., we use
this extra condition exclusively for this last result.

The rest of this paper proceeds as follows: in Section 2, it is shown the
existence of bounded minimal solutions for (Pλ) up to a given value λ∗. In
addition, we prove that sequence of minimal solutions is increasing respect to
λ. In Section 3, we deal with the stability and the issue of the circumstances
under which u∗ is a stable solution. Also, we establish the relation between
minimal and stable solution. Finally, in Section 4 we proceed with the study
of regularity of extremal solution and some examples are stated.
Notation We denote by |Ω| the Lebesgue measure of Ω ⊂ R

N and by 2∗ the
critical Sobolev exponent 2N/(N − 2), N > 2. For every s ∈ R we consider
s+ = max{s, 0}, s− = min{s, 0} and the functions G(s) =

∫ s

0
g(t)dt, ψ(s) =∫ s

0
e−G(t)dt.

2. Existence of bounded minimal solutions

This section is devoted to the study of solutions of problem (Pλ). As in the
semilinear case, it is expected that there exists an interval of values of λ such
that there is at least one solution. Even more, we prove that there exists a
parameter λ∗ > 0 such that the problem has a minimal solution uλ which is
bounded if 0 < λ < λ∗ and no solution for λ > λ∗.

We recall that a function 0 < u ∈ W 1,2
0 (Ω) is a (weak) solution of (Pλ)

if g(u)|∇u|2, f(u) ∈ L1(Ω) and it satisfies∫
Ω

∇u∇φ +
∫

Ω

g(u) |∇u|2 φ =
∫

Ω

λ f(u)φ, (2.1)

for all test function φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω). As usual, supersolution (respec-

tively subsolution) is defined analogously by replacing the equality ”=” by the
inequality ”≥” (resp. ≤), for positive test function.
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We are interested in the case of functions g which are singular at zero, as

a model case g(s) =
1
sγ

, γ ∈ (0, 1). In this way, the function g will be required
to satisfy the following hypotheses

lim
s→∞ sup g(s) < ∞ (H1)

f ′(s) − g(s)f(s) > 0 and non-singular (s ≥ 0) (H2)

e−G(s) ∈ L1(1,∞) (H3)

∀C > 0, ∃C̃ > 0 : g(Cs) ≤ C̃g(s), ∀s < 1 (H4)

Remark 2.1. We want to point out that the hypothesis (H2), which involves
function f , in particular it implies that the function f(s)e−G(s) is increasing
for s ≥ 0. Moreover, model case satisfies hypotheses (H1), (H3), (H4) and (H2)

taking for instance functions of kind f(s) = h(s)e
s1−γ

1−γ , with h(s) increasing
and h(0) > 0, which also implies that f(s) is concave in a neighborhood of
zero. Another interesting case is g(s) = 1

log(1+sγ) with γ ∈ (0, 1). Additionally,
we would like to highlight that functions g(s) = c (c > 0) are also considered.

One of the main keys to study problems with singularities in the quadratic
gradient term is to treat with test functions with compact support. For this
reason it is appropriate to enunciate the following result, which ensures that
solutions have a convenient estimate from below in compact sets.

Proposition 2.2. For every compactly contained open subset ω ⊂ Ω (i.e., ω ⊂⊂
Ω) there exists a constant cω > 0 such that u(x) ≥ cω a. e. x ∈ ω for every
u ∈ W 1,2

0 (Ω) supersolution of problem (Pλ).

Proof. To prove it we follow closely [4, Proposition 2.4]. By the fact that
λf(s) ≥ λf(0) �= 0 for every s ≥ 0 then every supersolution u ∈ W 1,2

0 (Ω) of
(Pλ) is a supersolution of problem⎧⎨

⎩
−Δw + g(w) |∇w|2 = λ f(0), in Ω,
w > 0, in Ω,
w = 0, on ∂Ω.

(P0)

The problem (P0) has a solution w0 in W 1,2
0 (Ω)∩C(Ω) (see [9, Theorem 3.1]), in

particular, since w0 is continuous, it follows that for every compactly contained
subset ω ⊂ Ω there exists minω w0 = cω > 0. Now by comparison principle
due to [6, Theorem 2.7] we obtain that u(x) ≥ w0(x) ≥ cω a.e. x ∈ ω. �

Lemma 2.3. If g satisfies (H1), (H2) and (H3), then there exists λ̄ such that
(Pλ) admits no solution for λ > λ̄.

Proof. Let u ∈ W 1,2
0 (Ω) be a solution of (Pλ) and let φ1 be the positive

eigenfunction associated to λ1, the first positive eigenvalue of the Laplacian
operator −Δ with zero Dirichlet boundary conditions. We take ϕn = e−G(u)φ̃n,
n ∈ N, where 0 ≤ φ̃n ∈ C∞

c (Ω) such that φ̃n → φ1 in W 1,2
0 (Ω). Since ϕn ∈

L∞(Ω) and |∇ϕn| ≤ e−G(u)g(u)φ̃n|∇u|+e−G(u)|∇φ̃n| ∈ L2(Ω) (by Proposition
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2.2 and hypothesis (H1)), the function ϕn belongs to W 1,2
0 (Ω) ∩ L∞(Ω) and

we can take it as test function in (2.1) to have∫
Ω

e−G(u)∇u∇φ̃n ≥ λ

∫
Ω

f(u)e−G(u)φ̃n,

taking limits as n tends to ∞, we get∫
Ω

e−G(u)∇u∇φ1 = λ

∫
Ω

f(u)e−G(u)φ1.

On the one hand, let ψ be given by ψ(s) =
∫ s

0
e−G(t)dt, then e−G(u)∇u =

∇ψ(u) and ψ(u) ∈ W 1,2
0 (Ω) since ψ(s) is a Lipschitz function, and on the

other hand by hypothesis (H2) f(s)e−G(s) ≥ f(0), we obtain∫
Ω

∇φ1∇ψ(u) ≥ λf(0)
∫

Ω

φ1.

Taking into account ψ(s) ≤ c1 by hypothesis (H3) and integrability of g near
to zero, ∫

Ω

∇φ1∇ψ(u) ≥ λf(0)
c1

∫
Ω

φ1ψ(u).

Lastly, using that φ1 is the eigenfunction associated to λ1, we conclude the

proof taking λ̄ ≥ λ1c1

f(0)
. �

Remark 2.4. Even more, there exists λ̄ such that (Pλ) admits no supersolution
for λ > λ̄. Indeed, the proof is similar starting with u a supersolution in place
of a solution of (Pλ).

We will consider I the set of values of λ > 0 such that there exists a
solution of (Pλ). By the previous lemma I ⊂ (0, λ̄]. In order to prove the main
result of this section let Φ(s) be a positive function given by

Φ(s) = ψ−1

(
λ

μ
ψ(s)

)
, 0 < λ < μ. (2.2)

We give some properties of function Φ(s).

Lemma 2.5. Let Φ(s) be a positive function defined by (2.2). Then, following
properties are satisfied:
(1) 0 ≤ Φ(s) ≤ s.
(2) If (H3) is satisfied then Φ is bounded.

(3) 0 < Φ′(s) ≤ λ

μ
.

(4) Φ′′(s) = Φ′(s) [g (Φ(s)) Φ′(s) − g(s)].

Proof. (1) Clearly Φ(s) ≥ 0. On the other hand, since
λ

μ
ψ(s) ≤ ψ(s) and

ψ−1 is increasing then

Φ(s) = ψ−1

(
λ

μ
ψ(s)

)
≤ ψ−1 (ψ(s)) = s.
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(2) Since ψ(∞) < ∞ and
λ

μ
< 1 we get the result.

(3) An easy computation shows that

Φ′(s) =
λ

μ

e−G(s)

e−G(Φ(s))
=

λ

μ
eG(Φ(s))−G(s) ≤ λ

μ
.

using in the last inequality that G is increasing and Φ(s) ≤ s. Conse-
quently, Φ is strictly increasing.

(4) We may now compute the second derivative to conclude that

Φ′′(s) =
(

λ

μ
eG(Φ(s))−G(s)

)′
=

λ

μ
eG(Φ(s))−G(s) (g(Φ(s))Φ′(s) − g(s)) .

�

Proposition 2.6. If g satisfies hypothesis (H1)–(H4) and u is a solution of (Pμ)
(μ > 0) then, for every fixed λ < μ, Φ(u) is a bounded supersolution of (Pλ).

Proof. ψ(s) is well-defined since g is continuous in (0,∞) and integrable near to
zero. Furthermore, by hypothesis (H3) it is bounded, therefore Φ(u) is bounded
using property (1) from Lemma 2.5. By the other hand, taking into account

|∇Φ(u)| = Φ′(u)|∇u| ≤ λ

μ
|∇u| ∈ L2(Ω),

and Φ(u) = 0 on ∂Ω, it therefore follows that Φ(u) ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Moreover, we claim that functions f(Φ(u)) and g(Φ(u))|∇Φ(u)|2 are in L1(Ω).
Indeed, since f is continuous and Φ is bounded we deduce that f(Φ(u)) ∈
L1(Ω). Now we prove that g(Φ(u))|∇Φ(u)|2 ∈ L1(Ω), to this end, we define
the subset of Ωε as {x ∈ Ω : u(x) < ε} where 0 < ε < 1 is such that g(s)
is decreasing in (0, ε). On one side, if u ≥ ε then Φ(u) ≥ Φ(ε) since Φ is
increasing, in addition of Φ(u) is bounded and g is continuous gives g(Φ(u)) ≤
C a.e. x ∈ Ω\Ωε and from the fact that Φ(u) ∈ W 1,2

0 (Ω) we obtain that
g(Φ(u))|∇Φ(u)|2 ∈ L1(Ω\Ωε).

On the other side, again by property (1) from Lemma 2.5 we obtain
0 < Φ(s) ≤ ε, s ∈ (0, ε) and since

lim
s→0+

Φ(s)
s

= lim
s→0+

Φ′(s) =
λ

μ
,

let Cε > 0 be the infimum of Φ(s)
s for s ∈ (0, ε), namely, Φ(s) ≥ Cεs ∀s ∈ (0, ε).

Now, by the fact that g(s) is decreasing in (0, ε) and Φ(s), Cεs ∈ (0, ε) then
g(Φ(s)) ≤ g(sCε) in (0, ε). Taking also into account the hypothesis (H4) there
exists C̃ε > 0 such that g(sCε) ≤ C̃εg(s) and

g(Φ(u))|∇Φ(u)|2 ≤ C̃ε

(
λ

μ

)2

g(u)|∇u|2 ∈ L1(Ωε),

proving the claim. As a result, up to now Φ(u) ∈ W 1,2
0 (Ω) ∩ L∞(Ω) and

f(Φ(u)), g(Φ(u))|∇Φ(u)|2 ∈ L1(Ω). To conclude the proof we verify that Φ(u)
is a supersolution of (Pλ), i.e.,
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∫
Ω

∇Φ(u)∇ϕ +
∫

Ω

g(Φ(u)) |∇Φ(u)|2 ϕ ≥
∫

Ω

λ f(Φ(u))ϕ,

for all 0 ≤ ϕ ∈ W 1,2
0 (Ω)∩L∞(Ω). For every fixed 0 ≤ ϕ ∈ W 1,2

0 (Ω)∩L∞(Ω) let
{ϕn}n∈N be positive functions in C∞

c (Ω) such that ϕn → ϕ in W 1,2
0 (Ω). Then

φn = Φ′(u)ϕn ∈ W 1,2
0 (Ω) ∩ L∞(Ω), indeed, since Φ′(u) ≤ λ

μ then φn ∈ L∞(Ω)
and by property (4) from Lemma 2.5

|∇φn|2 ≤
(

λ

μ

)2

(|∇ϕn|2 + (g(Φ(u))|∇Φ(u)| + g(u)|∇u|)2ϕ2
n),

and the fact that u(x) ≥ cωn
for a. e. x ∈ ωn, where ωn = supp ϕn, in addition

to hypothesis (H1) we obtain that g(u), g(Φ(u)) ∈ L∞(ωn) and |∇φn|2 ∈
L1(Ω).

Therefore, taking φn as a test function in problem (Pμ)∫
Ω

∇u (Φ′′(u)∇uϕn + Φ′(u)∇ϕn) +
∫

Ω

g(u)|∇u|2Φ′(u)ϕn

= μ

∫
Ω

f(u)Φ′(u)ϕn ≥ λ

∫
Ω

f(Φ(u))ϕn,

using in the last inequality that μf(u)Φ′(u) = λf(Φ(u))
e−G(u)f(u)

e−G(Φ(u))f(Φ(u))
and

hypothesis (H2).
Lastly, adding and subtracting |∇Φ(u)|2g(Φ(u))ϕn together with the fact

that the term Φ′′(u)
Φ′(u) +g(u)−Φ′(u)g(Φ(u)) is equal to zero, we have for all n ∈ N∫

Ω

∇Φ(u)∇ϕn +
∫

Ω

g(Φ(u)) |∇Φ(u)|2 ϕn ≥
∫

Ω

λ f(Φ(u))ϕn,

since |∇Φ(u)|2, g(Φ(u)) |∇Φ(u)|2, f(Φ(u)) ∈ L1(Ω) and ϕn → ϕ in W 1,2
0 (Ω),

we take the limit when n tends to ∞ and we conclude the proof. �

Remark 2.7. Contrary to others works on this topic, this supersolution depends
on the quadratic gradient term g(s), and not on the nonlinearity term f(s)
(compare [5,13]). This allows us to deal with functions f less restrictive, for
instance, in [5] the authors impose f ′(s) − g(s)f(s) is an increasing function,
conversely this condition is not required in this section, in fact no-convex
functions such as f(s) = eG(s)e(s+δ)δ

with δ small enough are allowed, being
f ′(s) − g(s)f(s) decreasing near to zero.

This result will prove to be extremely useful in the following theorem
which ensures that set I is an interval.

Theorem 2.8. Assume that g satisfies hypotheses (H1)–(H4) and fix μ ∈ I,
then for every λ ∈ (0, μ) there exists a bounded minimal solution of (Pλ).

Proof. First we prove that there exists a bounded solution. To prove it we
use a standard monotone iteration argument: let w0 the bounded solution of
problem (P0) in the proof of Proposition 2.2, we point out that w0 is unique
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due to [6, Theorem 2.9]. For every n ≥ 1 we define the recurrent sequence
{wn} by⎧⎨

⎩
−Δwn + g(wn) |∇wn|2 = λ f(wn−1), in Ω,
wn > 0, in Ω,
wn = 0, on ∂Ω.

(Pn)

The sequence {wn} is well defined by [6,9], even more, the sequence is increas-
ing, to check that it suffices to prove that w0 ≤ w1. Indeed, taking in account
that 0 < w0 and f is increasing we obtain λf(0) ≤ λf(w0) and by comparison
principle, which is due to [6], it follows that w0 ≤ w1 and by induction argu-
ment 0 < w0 ≤ w1 ≤ · · · ≤ wn, for all n ≥ 1. By the fact that Φ(u), defined
by (2.2), is a supersolution of problem (P0), with a similar argument we prove
that wn ≤ Φ(u) for every n ∈ N.

Since Φ(u) ∈ L∞(Ω), the sequence {wn(x)} is increasing and bounded by
Φ(u)(x) for a. e. x ∈ Ω. Let wλ(x) be the limit almost every where in Ω (i. e.,
wλ(x) := limn→∞ wn(x) a. e. x ∈ Ω). We claim that wλ ∈ W 1,2

0 (Ω) ∩ L∞(Ω).
Indeed, clearly wλ ∈ L∞(Ω) since wλ ≤ Φ(u) ∈ L∞(Ω). Moreover, as wn ∈
W 1,2

0 (Ω) ∩ L∞(Ω) we can take it as a test function in problem (Pn)∫
Ω

|∇wn|2 +
∫

Ω

g(wn)|∇wn|2wn = λ

∫
Ω

f(wn−1)wn,

dropping the positive term g(wn)|∇wn|2wn, since wn−1 ≤ wn ≤ Φ(u) and f
is increasing it follows that∫

Ω

|∇wn|2 ≤ λ

∫
Ω

f(Φ(u))Φ(u) ≤ λf(‖Φ(u)‖∞)‖Φ(u)‖∞|Ω|.

That is, {wn} is uniformly bounded in W 1,2
0 (Ω) and, up to a subsequence, there

exists w̃ such that wn converges weakly to w̃ in W 1,2
0 (Ω) and wn(x) → w̃(x)

a. e. x ∈ Ω, by the unicity of the limit wλ = w̃ ∈ W 1,2
0 (Ω) and we conclude

the claim.
We now verify that wλ is solution of (Pλ). In order to prove it we define the

operator K : W 1,2
0 (Ω) → W 1,2

0 (Ω) by K[v] as the unique solution of problem⎧⎨
⎩

−Δu + g(u) |∇u|2 = v+ + λ f(0), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

K is well defined (see [6,9]), even more, due to [4, Proposition 2.5] K is a
compact operator. We remark that with this notation wn is solution of (Pn)
if and only if wn = K[λ(f(wn−1) − f(0))]. Now taking limits and considering
that wn converges weakly to wλ in W 1,2

0 (Ω) we obtain that wλ = K[λ(f(wλ)−
f(0))], that is, wλ is a solution of (Pλ).

Our next claim is that the interval I is not empty. Indeed, we proceed to
show that there exists λ̃ ∈ I. In order to get this, we fix k > 0 and we consider
ũ ∈ W 1,2

0 (Ω) ∩ L∞(Ω), ‖ũ‖∞ ≤ c̃, the unique solution of problem
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⎧⎨
⎩

−Δu + g(u) |∇u|2 = k, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

we take λ̃ ∈ (0, δ), where 0 < δ ≤ k

f(c̃)
, to obtain for all ϕ ∈ W 1,2

0 (Ω)∩L∞(Ω)∫
Ω

∇ũ∇ϕ +
∫

Ω

g(ũ)|∇ũ|2ϕ =
∫

Ω

kϕ ≥
∫

Ω

δf(c̃)ϕ ≥ λ̃

∫
Ω

f(ũ)ϕ,

that ũ is a bounded supersolution of (Pλ̃). We now apply the standard mono-
tone iteration argument again, with the bounded supersolution Φ(u) replaced
by ũ, to obtain uλ̃ a bounded solution of problem (Pλ̃) and finally that I �= ∅.

Note that we have actually proved that if μ ∈ I then (0, μ] ⊂ I, even
more, for every λ ∈ (0, μ) there exists a bounded solution of (Pλ). The proof
is completed by showing that solutions wλ are minimal, indeed, let vλ be a
solution of problem (Pλ), by a similar argument of comparison principle and
by induction in n we have wn ≤ vλ for all n ∈ N as wλ(x) := limn→∞ wn(x)
a. e. x ∈ Ω thus wλ ≤ vλ. �

Theorem 2.8 and Lemma 2.3 may be summarized by formulating our
main result of this section

Theorem 2.9. Assume that g satisfies hypotheses (H1)-(H4). Then there exists
λ∗ ∈ (0, λ̄] such that there is a bounded minimal solution of (Pλ) for every
λ < λ∗ and no solution for λ > λ∗.

Remark 2.10. We note that if λ1 ≤ λ2 < λ∗, taking wλ2 as a supersolution of
problem (Pλ1) and arguing as the proof of Theorem 2.8 we obtain wλ1 ≤ wλ2 .
That is, the family of functions {wλ}λ∈I are increasing.

Remark 2.11. It is worth pointing out that for every fixed arbitrary μ ∈ I
sufficiently small and u a solution of (Pμ), it follows that Φ(u) = ψ−1

(
λ
μψ(u)

)
tends to zero as λ → 0. Hence, for every ε > 0 there exists η(ε) > 0 such that
wν(x) < ε for every 0 < ν < η.

3. Stability and extremal solutions

As we have stated at the Remark 2.10, the mapping λ → uλ is increasing in
(0, λ∗), a.e. x ∈ Ω. This allows one define u∗ := limλ→λ∗ uλ and we call u∗

the extremal solution of problem (Pλ). In [5,13] the authors proved that u∗

is a weak solution for the semilinear and quasilinear problem, respectively. In
order to prove the same effect for the singular quadratic quasilinear case we
give a property of the minimal solutions, its stability.

Definition 3.1. Let u be a solution of (Pλ), we say that u is stable if f ′(u) −
g(u)f(u) ∈ L1

loc(Ω) and∫
Ω

|∇φ|2 ≥ λ

∫
Ω

(f ′(u) − g(u)f(u))φ2 (3.1)

holds for every φ ∈ C∞
c (Ω).
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Since f ′(u) − g(u)f(u) > 0 it follows that, by a standard approximation
argument and Fatou Lemma, one can take φ ∈ W 1,2

0 (Ω) in the above definition.
The following result may be proved in much the same way as [5, Lemma

3.7].

Lemma 3.2. Minimal bounded solutions of (Pλ) are stable.

Our next goal is to prove that stability condition (3.1) (and under extra
condition) allows us to ensure that minimal bounded solutions are uniformly
bounded in W 1,2

0 (Ω). For that purpose we give the following technical lemma.

Lemma 3.3. Let f and g be two positive continuous functions in (0,∞) with f
increasing and satisfying the condition

lim
s→∞

s(f ′(s) − g(s)f(s))
f(s)

> 0.

Then, for every positive δ < α, there exits a positive constant C(δ) (depending
only on δ) such that f(s)s ≤ 1

δ s2(f ′(s) − g(s)f(s)) + C(δ) for all s ≥ 0.

Proof. By definition of limit: for all ε > 0 there exists s0(ε) depends to ε such
that ∣∣∣∣s(f ′(s) − g(s)f(s))

f(s)
− α

∣∣∣∣ < ε, ∀s ≥ s0(ε),

choosing ε = α− δ and multiplying by s we obtain that there exists s0(δ) such
that

s2(f ′(s) − g(s)f(s)) ≥ δsf(s), ∀s ≥ s0(δ),

By the other hand, since f is increasing, f(s)s < f(s0(δ))s0(δ) for all s < s0(δ).
Hence taking C(δ) = f(s0(δ))s0(δ)

δ we conclude the proof. �

Proposition 3.4. Let {wλ} be a sequence of minimal bounded solutions of prob-
lem (Pλ) such that f and g satisfy the condition

lim
s→∞

s(f ′(s) − g(s)f(s))
f(s)

= α ∈ (1,∞]. (3.2)

Then, the sequence is uniformly bounded in W 1,2
0 (Ω).

Proof. Let wλ be the minimal bounded solution of (Pλ) taken as a test function
in (2.1) and dropped the positive term g(wλ)|∇wλ|2wλ we obtain∫

Ω

|∇wλ|2 ≤ λ

∫
Ω

f(wλ)wλ.

In addition, by Lemma 3.3∫
Ω

|∇wλ|2 ≤ λ

δ

∫
Ω

(f ′(wλ) − g(wλ)f(wλ)) w2
λ + C1,

with C1 = λ∗C(δ)|Ω|.
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While on the other hand, by Lemma 3.2 wλ satisfies the stability condi-
tion, hence choosing φ = wλ in (3.1)∫

Ω

|∇wλ|2 ≥ λ

∫
Ω

(f ′(wλ) − g(wλ)f(wλ)) w2
λ.

Finally, by combining the last two inequalities and taking δ > 1 the proposition
follows. �

Remark 3.5. We note that above proof also involves the boundedness of∫
Ω

f(wλ)wλ for λ ∈ (0, λ∗).

The remainder of this section will be devoted to the proof of our main
result, namely the extremal solution u∗ is a solution of problem (Pλ∗).

Theorem 3.6. Under the hypotheses (H1)–(H4) and condition (3.2), wλ(x)
converges to u∗(x) a. e. x ∈ Ω, a solution of (Pλ∗).

Proof. Thanks to Proposition 3.4 there exists C1 > 0 independent of λ such
that ‖wλ‖W 1,2

0 (Ω) ≤ C1 for all λ ∈ (0, λ∗). Therefore, up to a subsequence, wλ

converges to u∗ weakly in H1
0 (Ω) (wλ ⇀ u∗), strongly in Ls(Ω) (1 ≤ s < 2∗)

and almost everywhere in Ω,

wλ(x) −→ u∗(x), a.e. x ∈ Ω. (3.3)

It should be noted that, as wλ(x) is increasing, the whole sequence converges
almost everywhere to u∗(x) > 0.

Now we prove that u∗ is a solution of (Pλ∗), i. e. g(u∗)|∇u∗|2, f(u∗) ∈
L1(Ω) and satisfies (2.1). First we claim that f(wλ) is uniformly bounded in
L1(Ω), indeed fixed ρ > 0 then f(s) ≤ f(ρ) + 1

ρf(s)s for every s ≥ 0, thus∫
Ω

f(wλ) ≤ f(ρ)|Ω| +
1
ρ

∫
Ω

f(wλ)wλ

and by Remark 3.5, the last expression is bounded, proving the claim. There-
fore the boundedness of f(wλ) in L1(Ω) combined with the fact that f(wλ) is
increasing, the monotone convergence theorem implies that f(u∗) ∈ L1(Ω).

Concerning the term g(u∗) |∇u∗|2, taking ϕ = Tε(wλ)
ε as test function in

(2.1), where Tε(s) := min{s, ε}, thereby Tε(wλ)
ε ≤ 1 and ∇Tε(wλ) = ∇wλ ·

χ{wλ≤ε}, we get∫
Ω

|∇wλ|2 · χ{wλ≤ε} +
∫

Ω

g(wλ)|∇wλ|2 Tε(wλ)
ε

≤ λ∗
∫

Ω

f(wλ).

Dropping the positive term |∇wλ|2 · χ{wλ≤ε} and taking into account the
boundedness of f(wλ) in L1(Ω) we obtain that there exists a positive con-
stant C2 such that ∫

Ω

g(wλ)|∇wλ|2 Tε(wλ)
ε

≤ C2.
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Taking the limit as ε → 0 and having in mind that lim
ε→0

Tε(wλ)
ε = 1, we get

from the Lebesgue dominated convergence theorem∫
Ω

g(wλ)|∇wλ|2 ≤ C2,

for every λ ∈ (0, λ∗). Now, the result of [10, Theorem 2.1] yields that (up to
a subsequence) ∇wλ → ∇u∗ converges strongly in (Lq(Ω))N (1 < q < 2),
particularly it converges almost everywhere in Ω. Then we have, by Fatou
lemma, g(u∗)|∇u∗|2 ∈ L1(Ω).

To close, following closely [9], we proceed to show that u∗ satisfies the
Eq. (2.1). Since φ = φ+ + φ−, it is enough to prove it for every nonnegative
function φ ∈ H1

0 (Ω)∩L∞(Ω). Furthermore, by density, it is sufficient to prove
it when 0 ≤ φ ∈ H1

0 (Ω) ∩ Cc(Ω). First we claim that u∗ is a subsolution.
Indeed, from ∫

Ω

g(wλ) |∇wλ|2 φ = λ

∫
Ω

f(wλ)φ −
∫

Ω

∇wλ∇φ,

we apply the Fatou lemma on the left side. In regards to the right-hand side,
since wλ converges weakly to u∗ in W 1,2

0 (Ω) and the boundedness of f(wλ) in
L1(Ω) we take limits and the claim is proved.

On the other hand, our next claim is that u∗ is a supersolution. Choosing
ϕ = eG(Tk(u∗))−G(wλ) φ as a test function we obtain∫

Ω

eG(Tk(u∗))−G(wλ)∇wλ∇φ +
∫

Ω

eG(Tk(u∗))−G(wλ)g(Tk(u∗))∇Tk(u∗)∇wλφ

= λ

∫
Ω

f(wλ)eG(Tk(u∗))−G(wλ) φ.

Since wλ converges weakly to u∗ and by the strong convergence of
eG(Tk(u∗))−G(wλ) to eG(Tk(u∗))−G(u∗), hence taking limits as λ tends to λ∗ and
again by Fatou lemma on the right side it follows that∫

Ω

eG(Tk(u∗))−G(u∗)∇u∗∇φ +
∫

Ω

eG(Tk(u∗))−G(u∗)g(Tk(u∗))∇Tk(u∗)∇u∗φ

≥ λ∗
∫

Ω

f(u∗)eG(Tk(u∗))−G(u∗) φ.

Finally, since φ has compact support, there exists a positive constant such that
u∗ ≥ wλ ≥ Cφ, that is, g(u∗) is bounded in supp φ. We pass to the limit as
k → ∞ and by dominated convergence theorem we obtain the desired converse
inequality for compact support functions. Using density argument we finish the
proof. �

Corollary 3.7. Under the hypotheses of Theorem 3.6 the extremal solution u∗

is stable.

Proof. Since wλ is stable, it follows that∫
Ω

|∇φ|2 ≥ λ

∫
Ω

(f ′(wλ) − g(wλ)f(wλ))φ2,
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letting λ → λ∗ and by Fatou lemma imply that u∗ satisfies condition (3.1).
Theorem 3.6 now shows that u∗ is stable. �

We have been working under the assumption that f ′(s) − g(s)f(s) is
not necessarily increasing. In the remainder of this section we assume f ′(s) −
g(s)f(s) to be increasing.

Theorem 3.8. Assume the hypotheses (H1)–(H4) hold and f ′(s) − g(s)f(s) is
strictly increasing. Then every stable solution of problem (Pλ) is minimal.

Proof. Let u be a stable solution of (Pλ) and suppose, contrary to our claim,
that there exists v ∈ W 1,2

0 (Ω) a solution of (Pλ) and O ⊂ Ω (|O| �= 0) such
that v < u in O.

On the one hand, choosing e−G(u)φ (φ ∈ C∞
c ) as a test function in the

Eq. (2.1) satisfied by u∫
Ω

e−G(u)∇u∇φ = λ

∫
Ω

f(u)e−G(u)φ, (3.4)

and by a standard approximation argument the above equation is satisfied for
every φ ∈ W 1,2

0 (Ω) ∩ L∞(Ω).
Analogously, choosing e−G(v)φ on the equation which is satisfied by v,∫

Ω

e−G(v)∇v∇φ = λ

∫
Ω

f(v)e−G(v)φ, (3.5)

for every φ ∈ W 1,2
0 (Ω)∩L∞(Ω). Now, subtracting (3.5) from (3.4) and writing

ψ(s) instead of
∫ s

0
e−G(t)dt, this gives∫

Ω

∇(ψ(u) − ψ(v))∇φ = λ

∫
Ω

(f(u)e−G(u) − f(v)e−G(v))φ.

Taking φ = (ψ(u)−ψ(v))+ in the above equation, which is zero in Ω\O, since
ψ is increasing and v < u in O. We have∫

O
|∇(ψ(u) − ψ(v))|2 = λ

∫
O

(f(u)e−G(u) − f(v)e−G(v))(ψ(u) − ψ(v)). (3.6)

On the other hand, taking φ = (ψ(u)−ψ(v))+ on the stability condition (3.1)
satisfied by u, it gives∫

O
|∇(ψ(u) − ψ(v))+|2 ≥ λ

∫
O

(f ′(u) − g(u)f(u))[(ψ(u) − ψ(v))+]2. (3.7)

Now combining (3.6) with (3.7) yields∫
O

[(f ′(u) − g(u)f(u))z − (f(u)e−G(u) − f(v)e−G(v))]z ≤ 0, (3.8)

here and subsequently, z denotes ψ(u) − ψ(v). Note that z > 0 in O. Our
claim is that (f ′(u) − g(u)f(u))z − (f(u)e−G(u) − f(v)e−G(v)) > 0, which
leads to a contradiction with (3.8), therefore z ≤ 0 and concluding that u ≤
v in O. To prove the claim it is sufficient to show that f ′(u) − g(u)f(u) −
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f(u)e−G(u)−f(v)e−G(v)

z is positive. Thus, since by the Mean Value Theorem there
exists ũ ∈ [v, u], a. e. x ∈ O, such that

f(u)e−G(u) − f(v)e−G(v)

z
=

f ′(ũ)e−G(ũ) − g(ũ)f(ũ)e−G(ũ)

e−G(ũ)

= f ′(ũ) − g(ũ)f(ũ),

hence, with the fact that f ′(s) − g(s)f(s) is strictly increasing and ũ ≤ u a. e.
in O, the claim is proved and the theorem follows. �
Corollary 3.9. Under the hypotheses of Theorem 3.6. If in addition, f ′(s) −
g(s)f(s) is strictly increasing. Then the extremal solution u∗ is stable and
minimal.

Proof. Clearly, by Corollary 3.7 the extremal solution u∗ given by Theorem 3.6
is stable and consequently, applying Theorem 3.8 we complete the proof. �
Corollary 3.10. Under the assumptions of Theorem 3.8. If u is an stable and
singular solution of (Pλ) then λ = λ∗.

Proof. By Theorem 3.8 u is the minimal solution of (Pλ) and Theorem 2.8
assures that u is bounded for λ ∈ (0, λ∗) which implies, since u is singular,
that λ = λ∗. �

4. Regularity of extremal solutions

The extremal solution u∗ may be bounded or singular. In [14] Brezis and
Vázquez raised the question of determining the regularity of u∗ depending on
the dimension N , this problem led to the study of the regularity theory of
stable solutions which many authors are interested [15,24,26]. In this section,
we will obtain, under suitable conditions depending on the dimension N , the
regularity of extremal solutions for the quasilinear case with singularity in the
quadratic gradient term.

In what follows, we write the nonlinearity term of (Pλ) as eG(s)h(s) in-
stead of f(s), where h(0) > 0 and h is a derivable function in [0,∞). We
note that with this notation hypothesis (H2) is equivalent to impose h(s) is
increasing. In this way, we replace problem (Pλ) by the following⎧⎨

⎩
−Δu + g(u) |∇u|2 = λ eG(u)h(u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω.

(Qλ)

We can now formulate our main result of this section.

Theorem 4.1. Under hypotheses (H1)–(H4) and

lim
s→∞

sh′(s)
h(s)

> 1 (4.1)

The extremal solution of (Qλ) given in Theorem 3.6 is bounded whenever

N <
4 + 2(μ̃ + α̃) + 4

√
μ̃ + α̃

1 + α̃
, (4.2)
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α̃ and μ̃ being the following parameters

α̃ := lim
s→∞

g(s)h(s)
h′(s)

, μ̃ := lim
s→∞

h′′(s)h(s)
(h′(s))2

. (4.3)

Remark 4.2. Comparing the above theorem with [5, Theorem 4.7] we obtain
similar results replacing α̃ and μ̃ by

α =
α̃

1 + α̃
, μ =

α̃ + μ̃

α̃ + 1
.

However, in addition to the singularity of function g, some hypotheses of [5,
Theorem 4.7] such as α < 1, 1

f ∈ L1,
∣∣∣ f ′(s)
f2(s)

∣∣∣ ≤ c2(1+
√

g(s)) or f ′(s)−g(s)f(s)
is increasing, are not necessary. We wish to emphasize that last hypothesis
allow us to deal with functions f(s) no-convex.

Proof. Due to Stampacchia Lemma ([25, Lemma 5.1]), we have to show that
eG(u∗)h(u∗) ∈ Lβ(Ω) with β > N/2.

By (4.2) we fix

β ∈
(

N

2
,
2 + (μ̃ + α̃) + 2

√
μ̃ + α̃

1 + α̃

)
, (4.4)

and let us consider the following positive differentiable function

φ(s) =

√
h(s)β

(
eG(s)

)β−1

h′(s)
, s ≥ R,

such that φ(0) = 0 and φ ∈ C1[0, R]. For λ < λ∗ let uλ be the bounded
minimal solution of (Qλ) given by Theorem 2.8 which, under the assumptions
of Theorem 3.6 with condition (3.2) replaced by condition (4.1), converges
to u∗(x) a. e. x ∈ Ω. In addition to Lemma 3.2, uλ satisfies the stability
condition, in this way, taking φ(uλ) in (3.1) (clearly φ(uλ) ∈ W 1,2

0 (Ω) since uλ

is bounded) we obtain∫
Ω

(φ′(uλ))2|∇uλ|2 ≥ λ

∫
ΩR

eG(uλ)h′(uλ)φ2(uλ) + λ

∫
Ω

eβG(uλ)hβ(uλ)

−λ

∫
ΩR

eβG(uλ)hβ(uλ) (4.5)

where ΩR = {x ∈ Ω : uλ(x) < R}. Computing, we have

φ′(s) =
φ(s)

2

(
β

h′(s)
h(s)

+ (β − 1)g(s) − h′′(s)
h′(s)

)
. (4.6)

While on the other hand, we define

ζ(s) := e−G(s)

∫ s

0

(φ′(t))2eG(t)dt,

since uλ is bounded if follows that ζ(uλ) ∈ L∞(Ω), and applying L’Hôpital
rule we obtain

lim
s→0

∫ s

0
(φ′(t))2eG(t)dt

s
= (φ′(0))2 < ∞



NoDEA Quasilinear elliptic singular problem Page 17 of 20 56

since φ ∈ C1[0, R]. Thus

ζ ′(0) = lim
s→0

ζ(s)
s

and therefore ζ ′(uλ) ∈ L∞(Ω) and ζ(uλ) ∈ W 1,2
0 (Ω). Furthermore, using (4.3)

and L’Hôpital rule we get

lim
s→∞

ζ(s)(
eG(s)h(s)

)β−1
= lim

s→∞

∫ s

0
(φ′(t))2eG(t)dt

eβG(s)h(s)β−1

= lim
s→∞

(φ′(s))2e(1−β)G(s)

h(s)β−2(βg(s)h(s) + (β − 1)h′(s))

= lim
s→∞

h2(s)
(

β
h′(s)
h(s)

+ (β − 1)g(s) − h′′(s)
h′(s)

)2

4h′(s) (βg(s)h(s) + (β − 1)h′(s))

=
(β + (β − 1)α̃ − μ̃)2

4(α̃β + β − 1)
,

which is less than 1 due to (4.4). Thereby, there exist γ < 1 and K > 0 such
that

ζ(s) ≤ γ(eG(s)h(s))β−1 + K, s ≥ R.

In this way, choosing ζ(uλ) as a test function in (2.1) we obtain∫
Ω

(φ′(uλ))2|∇uλ|2 = λ

∫
Ω

eG(uλ)h(uλ)ζ(uλ)

≤ γλ

∫
Ω

eβG(uλ)hβ(uλ) + Kλ

∫
Ω

eG(uλ)h(uλ).

Combining this last inequality with (4.5) (and dropping the positive term
eG(uλ)h′(uλ)φ2(uλ)) we can assert that

(1 − γ)λ
∫

Ω

eβG(uλ)hβ(uλ) ≤ λ

∫
ΩR

eβG(uλ)hβ(uλ) + Kλ

∫
Ω

eG(uλ)h(uλ),

and taking into account that h is increasing (hypothesis (H2)) together with
the Lebesgue dominated convergence theorem we deduce that∫

Ω

eβG(uλ)hβ(uλ) ≤ f(R)β |Ω|
λ∗(1 − γ)

+
K

1 − γ

∫
Ω

eG(u∗)h(u∗)

and eG(u∗)h(u∗) ∈ L1(Ω) since u∗ is a solution of (Pλ∗) (Theorem 3.6). Fi-
nally we conclude, from the Fatou Lemma applied on the left-hand side of the
above inequality, that eG(u∗)h(u∗) ∈ Lβ(Ω) with β > N/2 which is the desired
conclusion. �

We now give few examples, according to the different types of function
g.
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Example 1. Let us consider the problem⎧⎨
⎩

−Δu + c |∇u|2 = λ eu, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(Pλ)

with c < 1. By Theorem 2.9, since g(s) = c satisfies hypotheses (H1)–(H4),
there exists λ∗ > 0 such that there is a bounded minimal solution for every
λ < λ∗ and no solution for λ > λ∗. Moreover, there exists u∗ solution for λ =
λ∗ (Theorem 3.6) and it is stable and minimal (Corollary 3.9). Furthermore,
since α̃ = c

1−c and μ̃ = 1, it follows from Theorem 4.1 that u∗ is bounded
provided that

N < 4(1 − c) + 2 + 4
√

1 − c.

We remark that letting c → 0 we obtain the regularity of extremal solution for
the well known semilinear elliptic equation (Gλ) in the exponential case, i.e.,
N < 10.

Example 2. In the singularity case g(s) = c
sγ with 0 < γ < 1, a relevant

example would be the case f(s) no-convex. Thus, if we take as h(s) = e(s+δ)1−γ

with δ small enough then f ′(s) − g(s)f(s) is not increasing (see Remark 2.7).
Therefore, Theorem 2.9 ensures that there exist λ∗ > 0 and bounded minimal
solutions for λ < λ∗, and no solutions for λ > λ∗. Even more, since condition
3.2 is satisfied, u∗ is a stable solution for λ = λ∗ (Theorem 3.6, Corollary 3.7)
and not necessarily minimal. In addition, since α̃ = c

1−γ and μ̃ = 1, due to
Theorem 4.1 we obtain for

N <
6(1 − γ) + 2c + 4

√
(c + 1 − γ)(1 − γ)

c + 1 − γ
,

the regularity of the extremal solution. We would like to stress that letting
c → 0 we have N < 10.
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Universidad de Granada
Campus Fuentenueva S/N
18071 Granada, Spain
e-mail: amolino@ugr.es

Received: 12 November 2015.

Accepted: 10 September 2016.


	Gelfand type problem for singular quadratic quasilinear equations
	Abstract
	1. Introduction
	2. Existence of bounded minimal solutions
	3. Stability and extremal solutions
	4. Regularity of extremal solutions
	Acknowledgments
	References




