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Abstract. We consider a new class of variational-hemivariational inequali-
ties which arise in the study of quasistatic models of contact. The novelty
lies in the special structure of these inequalities, since each inequality
of the class involve unilateral constraints, a history-dependent operator
and two nondifferentiable functionals, of which at least one is convex.
We prove an existence and uniqueness result of the solution. The proof
is based on arguments on elliptic variational-hemivariational inequalities
obtained in our previous work [23], combined with a fixed point result
obtained in [30]. Then, we prove a convergence result which shows the
continuous dependence of the solution with respect to the data. Finally,
we present a quasistatic frictionless problem for viscoelastic materials in
which the contact is modeled with normal compliance and finite penetra-
tion and the elasticity operator is associated to a history-dependent Von
Mises convex. We prove that the variational formulation of the problem
cast in the abstract setting of history-dependent quasivariational inequal-
ities, with a convenient choice of spaces and operators. Then we apply
our general results in order to prove the unique weak solvability of the
contact problem and its continuous dependence on the data.
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University and Université de Perpignan Via Domitia. The second author is also partially
supported by the International Project co-financed by the Ministry of Science and Higher
Education of Republic of Poland under Grant No. W111/7.PR/2012.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-016-0391-0&domain=pdf


38 Page 2 of 23 M. Sofonea and S. Migórski NoDEA

1. Introduction

Variational and hemivariational inequalities play an important role in the
study of both the qualitative and numerical analysis of various boundary value
problems and mathematical models arising in Contact Mechanics. The theory
of variational inequalities started in early sixties, as illustrated in the works [1–
3,9,10,17,18,26,33] and the references therein. It intensively uses arguments
of monotonicity and convexity, including properties of the subdifferential of
a convex function. In contrast, the theory of hemivariational inequalities is
based on properties of the subdifferential in the sense of Clarke, defined for lo-
cally Lipschitz functions which may be nonconvex. Its development started in
early eighties. Main references in the field include [4,5,14,21,24,27]. Applica-
tions of the variational and hemivariational inequalities in Contact Mechanics
in can be found in [7,8,12,13,15,17,19,21,26–29], among others. Variational-
hemivariational inequalities represent a special class of inequalities, in which
both convex and nonconvex functions are involved. Interest in their study is
motivated by various problems in Mechanics, as shown in [11,22,24,25].

History-dependent operators represent an important class of operators
defined on vector-valued function spaces. They arise both in functional analy-
sis, theory of differential equations and partial differential equations, and in
Contact Mechanics, as well. Some simple examples in analysis are the inte-
gral operator and the Volterra-type operators. In Contact Mechanics, history-
dependent operators could arise both in the constitutive law of the material
and in the frictional contact conditions. The memory term in the viscoelastic
consitutive laws, the total slip, the total slip rate and the accumulated penetra-
tion represent simple examples of history-dependent operators, among others.
For all these reasons, the need to consider variational and hemivariational
inequalities involving history-dependent operators was widely accepted.

A first step in this direction was made in [32]. There, a class of quasivari-
ational inequalities involving history-dependent operators was considered, an
abstract existence and uniqueness result was proved and it was completed with
a regularity result. One of the novelties of the above mentioned paper arises
in the fact that the inequalities were formulated on the unbounded interval of
time [0,+∞). In addition, the results obtained there were used in the study of
a large number of quasistatic frictional of frictionless contact problems. The
numerical analysis of the quasivariational inequalities introduced in [32], in-
cluding the unique solvability of discrete schemes and error estimates, was
provided in [16]. An extension of the existence and uniquenss result in [32]
was recently obtained in [34].

On the other hand, the first existence and uniqueness result in the study
of subdifferential inclusions with history-dependent operators was obtained
in [20]. The proof was based on arguments on pseudomonotone operators and
fixed point. This result was used then to prove the unique solvability of a class
of history-dependent hemivariational inequalities.

The study of variational-hemivariational inequalities with history-
dependent operators is currently emerging. Thus, a first example was consid-
ered and studied in [22], related to the unique solvability of a contact model for
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viscoleastic materials. The novelty of this model arises from the new bound-
ary condition used, which describes both the instantaneous and the memory
effects of the foundation. The analysis of the quasivariational inequalities intro-
duced in [22] was continued in [31], where a continuous dependence result was
proved. There, numerical schemes to solve the inequalities were also presented
and error estimates were derived.

The history-dependent hemivariational inequalities studied in [20] as well
as the history-dependent variational-hemivariational inequalities considered
in [22,31] were formulated in the particular case of Sobolev spaces associ-
ated to a bounded domain and to specific operators like the trace opera-
tor, for instance. In contrast, the history-dependent variational inequalities
considered in [16,32,34] are formulated in the framework of abstract Hilbert
spaces. So is the case of the elliptic variational-hemivariational inequalitities
studied recently in [23]. This situation rises the need to extend the results
obtained in [20,22,31] to an abstract class of history-dependent variational-
hemivariational inequalities and to provide the history-dependent version of
the results obtained in [23]. The aim of this paper is to fill this gap by obtaining
such kind of abstract results.

The rest of the paper is organized as follows. In Sect. 2 we review some
preliminary material on nonlinear analysis. In Sect. 3 we introduce the class
of history-variational-hemivariational inequalities to be studied, then we state
and prove an abstract existence and uniqueness result, Theorem 5. The proof
is based on arguments on elliptic variational-hemivariational inequalities ob-
tained in our previous work [23], combined with a fixed point result obtained
in [30]. In Sect. 4 we study the continuous dependence of the solution with
respect to the data and establish a convergence result. Next, in Sect. 5, we in-
troduce a frictionless contact problem in which the material behavior is mod-
eled with a viscoelastic constitutive law with long memory and the contact
conditions are with normal compliance and unilateral constraints. We list the
assumptions on the problem data and derive the weak formulation of the prob-
lem, which is in a form of a variational-hemivariational inequality for the dis-
placement field. Finally, in Sect. 6 we apply our abstract results in the analysis
of this contact problem.

2. Preliminaries

In this section we present some notation, definitions and preliminary results
used later in this paper. More details on the material presented below can be
found in the books [4–6,21,24,33].

First, we precise that all linear spaces used in this paper are assumed to be
real. For a normed space X we denote by ‖ ·‖X its norm, by X∗ its topological
dual, and by 〈·, ·〉X∗×X the duality pairing of X and X∗. Sometimes, when no
confusion could arise, we simply write 〈·, ·〉 instead of 〈·, ·〉X∗×X . The symbol
2X∗

is used to represent the family of all subsets of X∗.
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Recall that an operator A : X → X∗ is called pseudomonotone, if it is
bounded and un → u weakly in X together with lim sup 〈Aun, un−u〉X∗×X ≤ 0
imply

〈Au, u − v〉X∗×X ≤ lim inf 〈Aun, un − v〉X∗×X

for all v ∈ X. A function ϕ : K ⊂ X → R is lower semicontinuous (l.s.c, for
short), if for any sequence {xn} ⊂ K and any x ∈ K, xn → x in X implies
ϕ(x) ≤ lim inf ϕ(xn). For a convex function ϕ, the mapping ∂ϕ : X → 2X∗

defined by

∂ϕ(x) = {x∗ ∈ X∗ | ϕ(v) − ϕ(x) ≥ 〈x∗, v − x〉X∗×X for all v ∈ X}
is called the subdifferential of ϕ. An element x∗ ∈ ∂ϕ(x) (if any) is called a
subgradient of ϕ in x.

Let h : X → R be a locally Lipschitz function. The generalized (Clarke)
directional derivative of h at x ∈ X in the direction v ∈ X, denoted by h0(x; v),
is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)
λ

.

The generalized gradient (subdifferential) of h at x, denoted by ∂h(x), is a
subset of the dual space X∗ given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X}.

We recall in what follows the following existence and uniqueness result
for elliptic variational-hemivariational inequalities.

Theorem 1. Let X be a reflexive Banach space and assume that the following
conditions are satisfied.

K is a nonempty, closed and convex subset of X. (2.1)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A : X → X∗ is an operator such that
(a) A is pseudomonotone and there exist

αA > 0, βA, γA ∈ R and u0 ∈ K such that
〈Av, v − u0〉 ≥ αA‖v‖2

X − βA‖v‖X − γA for all v ∈ X.
(b) A is strongly monotone, i.e., there exists mA > 0 such that

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2
X for all v1, v2 ∈ X.

(2.2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ : K × K → R is a function such that
(a) φ(u, ·) : K → R is convex and l.s.c. on K, for all u ∈ K.
(b) there exists αφ > 0 such that

φ(u1, v2) − φ(u1, v1) + φ(u2, v1) − φ(u2, v2)
≤ αφ‖u1 − u2‖X ‖v1 − v2‖X for all u1, u2, v1, v2 ∈ K.

(2.3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j : X → R is a function such that
(a) j is locally Lipschitz;
(b) ‖∂j(v)‖X∗ ≤ c0 + c1‖v‖X for all v ∈ X with c0, c1 ≥ 0.
(c) there exists αj > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj‖v1 − v2‖2
X

for all v1, v2 ∈ X.

(2.4)
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αφ + αj < mA. (2.5)
αj < αA. (2.6)
f ∈ X∗. (2.7)

Then, there exists a unique element u ∈ K such that

〈Au, v−u〉+φ(u, v)−φ(u, u)+j0(u; v−u) ≥ 〈f, v−u〉 for all v ∈ K. (2.8)

Theorem 1 represents the first ingredient we use to prove the unique
solvability of the history-dependent variational-hemivariational inequalities we
consider in this paper. Its proof was obtained in our recent paper [23] and
was carried out in several steps, based on a surjectivity result for multivalued
pseudomonotone operators and the Banach fixed point argument. We com-
plete the statement of Theorem 1 with the remark that for a locally Lipschitz
function j : X → R, the hypothesis (2.4)(c) is equivalent to the condition

〈∂j(v1)−∂j(v2), v1−v2〉X∗×X ≥ −αj ‖v1−v2‖2
X for all v1, v2 ∈ X. (2.9)

The latter is the so-called relaxed monotonicity condition and it was exten-
sively used in the literature, see for instance [21] and the references therein.
Examples of nonconvex functions which satisfy condition (2.4) can be found
in [22]. Note also that if j : X → R is a convex function, then (2.4)(c) or (2.9),
equivalently, are satisfied with αj = 0, due to the monotonicity of the (convex)
subdifferential. For αj = 0, the condition (2.6) is also automatically satisfied.

We now move to some preliminaries on spaces of continuous functions
and related operators which we need in the rest of the paper. First, we recall
that we use N for the set of positive integers and R+ for the set of nonnegative
real numbers, i.e., R+ = [0,+∞). For a normed space X we use the notation
C(R+;X) for the space of continuous functions defined on R+ with values in
X, and C1(R+;X) for the space of continuous differentiable functions defined
on R+ with values in X. For a subset K ⊂ X we still use the symbols C(R+;K)
and C1(R+;K) for the set of continuous and continuously differentiable func-
tions defined on R+ with values on K, respectively. It is well known that, if X
is a Banach space, then C(R+;X) can be organized in a canonical way as a
Fréchet space, i.e., a complete metric space in which the corresponding topol-
ogy is induced by a countable family of seminorms. Moreover, the convergence
of a sequence {xk}k to the element x, in the space C(R+;X) can be described
as follows

{
xk → x in C(R+;X) as k → ∞ if and only if
max

r∈[0,n]
‖xk(r) − x(r)‖X → 0 as k → ∞, for all n ∈ N. (2.10)

In other words, the sequence {xk}k converges to the element x in the space
C(R+;X) if and only if it converges to x in the space C([0, n];X) for all n ∈ N,
C([0, n];X) being the space of continuous functions defined on the compact
interval [0, n] with values in X, endowed with its canonical norm.

Consider now two normed spaces X and Y . An operator S : C(R+;X) →
C(R+;Y ) is called a history-dependent operator, if it satisfies the following
condition
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⎧
⎪⎪⎨

⎪⎪⎩

for any n ∈ N there exists sn > 0 such that

‖(Su1)(t) − (Su2)(t)‖Y ≤ sn

∫ t

0

‖u1(s) − u2(s)‖X ds

for all u1, u2 ∈ C(R+;X), for all t ∈ [0, n].

(2.11)

Examples of such kind of operators can be found in [20,32]. Here, we re-
strict ourselves to recall that the class of history-dependent operators includes
Volterra-type operators and, more generaly, various integral-type operators.

We now recall the following fixed point result.

Theorem 2. Let (X, ‖·‖X) be a Banach space and let Λ: C(R+;X) → C(R+;X)
be a nonlinear operator. Assume that there exists k ∈ N with the following
property: for all n ∈ N there exist two constants cn ≥ 0 and dn ∈ [0, 1) such
that

‖(Λu)(t) − (Λv)(t)‖k
X ≤ cn

∫ t

0

‖u(s) − v(s)‖k
X ds + dn ‖u(t) − v(t)‖k

X

for all u, v ∈ C(R+;X) and for all t ∈ [0, n]. Then the operator Λ has a unique
fixed point η∗ ∈ C(R+;X).

Theorem 2 represents the second ingredient we use to prove the unique
solvability of the history-dependent variational-hemivariational inequalities we
consider in this paper. Its proof could be found in [30].

We end this section with some results we shall use in the last part of the
paper, in the study of a frictionless contact problem. Let d ∈ N. We denote
by S

d the space of second order symmetric tensors on R
d or, equivalently,

the space of symmetric matrices of order d. Recall that the canonical inner
products and the corresponding norms on R

d and S
d are given by

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ S
d,

respectively. Here and below in this paper the indices i, j, k, l run between 1
and d and, unless stated otherwise, the summation convention over repeated
indices is used.

For a tensor τ = (τij) ∈ S
d we use the notation τD for its deviatoric

part, defined by τD = τ − 1
d (tr τ ) Id where Id ∈ S

d is the identity tensor and
tr τ = τii. The Von Mises convex is a nonempty, convex and closed set in the
space of symmetric tensors of the second order. It is defined by

M(κ) = { τ ∈ S
d | ‖τD‖ ≤ κ}, (2.12)

for a given κ ≥ 0. It is used in the literature as ingredient in the structure
of some nonlinear elastic, viscoelastic and viscoplastic constitutive laws, re-
spectively. It is also intensively used in the theory of plasticity, as explained
in [12,33], for instance. Note also that, on occasion, the Von Mises convex
(2.12) is defined with a bound κ which depends on the mechanical process
under consideration.

In the present paper we shall use the following result.
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Proposition 3. Let κ1, κ2 > 0 and let M(κi) be the Von Mises convex sets
defined by (2.12) for κ = κi, i = 1, 2. Denote by PM(κi) : S

d → M(κi) the
projections operators on the convex M(κi), for i = 1, 2. Then, the following
inequality holds

‖PM(κ1)τ − PM(κ2)τ‖ ≤ |κ1 − κ2| for all τ ∈ S
d. (2.13)

A proof of Proposition 3 as well as more details related to the Von Mises
convex can be found in [33].

3. An existence and uniqueness result

Let X be a reflexive Banach space and let Y be a normed space. Let K
be a subset of X and let A : X → X∗, S : C(R+;X) → C(R+;Y ) be given
operators. Consider also a function ϕ : Y × K × K → R, a locally Lipschitz
function j : X → R and a function f : R+ → X∗. We associate with these data
the following problem.

Problem 4. Find a function u ∈ C(R+;K) such that, for all t ∈ R+, the
following inequality holds

〈Au(t), v − u(t)〉 + ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), u(t))
+j0(u(t); v − u(t)) ≥ 〈f(t), v − u(t)〉 for all v ∈ K. (3.1)

In the study of Problem 4, besides the assumptions on K, A and j already
introduced in Sect. 2, we consider the following hypotheses.

{S : C(R+;X) → C(R+;Y ) is a history-dependent operator,
i.e., it satisfies condition (2.11). (3.2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ : Y × K × K → R is a function such that
(a) ϕ(y, u, ·) : K → R is convex and l.s.c. on K, for all y ∈ Y, u ∈ K.
(b) there exists αϕ > 0 and βϕ > 0 such that

ϕ(y1, u1, v2) − ϕ(y1, u1, v1) + ϕ(y2, u2, v1) − ϕ(y2, u2, v2)
≤ αϕ‖u1 − u2‖X ‖v1 − v2‖X + βϕ‖y1 − y2‖Y ‖v1 − v2‖X

for all y1, y2 ∈ Y, u1, u2, v1, v2 ∈ K.

(3.3)

αϕ + αj < mA. (3.4)
f ∈ C(R+;X∗). (3.5)

Concerning the above assumptions we have the following comments. First,
we stress that the function ϕ is assumed to be convex with respect to its third
argument while the function j is locally Lipschitz in the second argument and
could be nonconvex. For this reason, inequality (3.1) represents, in fact, a
variational-hemivariational inequality. In addition, the function ϕ in (3.1) de-
pends on the operator S, assumed to be history-dependent. To combine these
two ingredients, we refer to Problem 4 as a history-dependent variational-
hemivariational inequality. In the study of this problem we have the following
existence and uniqueness result.
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Theorem 5. Let X be a reflexive Banach space, Y a normed space, and as-
sume that (2.1), (2.2), (2.4), (2.6) and (3.2)–(3.5) hold. Then, Problem 4 has
a unique solution u ∈ C(R+;K).

The proof of Theorem 5 is based on a fixed point argument and will be
established in several steps. We assume in what follows that (2.1), (2.2), (2.4),
(2.6) and (3.2)–(3.5) hold. In the first step, let η ∈ C(R+;X) be fixed and
denote by yη ∈ C(R+;Y ) the function given by

yη(t) = (Sη)(t) for all t ∈ R+. (3.6)

We consider the intermediate problem of finding a function uη : R+ → K such
that for all t ∈ R+, the following inequality holds

〈A(uη(t)), v − uη(t)〉 + ϕ(yη(t), uη(t), v) − ϕ(yη(t), uη(t), uη(t))

+j0(u(t); v − u(t)) ≥ 〈f(t), v − u(t)〉 for all v ∈ K. (3.7)

The unique solvability of this problem is provided by the following result.

Lemma 6. There exists a unique function uη ∈ C(R+;K) which solves the
inequality (3.7), for all t ∈ R+.

Proof. Let t ∈ R+ be fixed and denote by φ : K × K → R the function given
by

φ(u, v) = ϕ(yη(t), u, v) for all u, v ∈ K. (3.8)
The function φ depends on η and t but, for simplicity, we do not indicate it
explicitly. Then, using assumption (3.3), it is obvious to see that the function
φ satisfies condition (2.3) with constant αφ = αϕ. Therefore, from (3.4), we
deduce that the smallness condition (2.5) is satisfied. Thus, assumptions (2.1),
(2.2), (2.4) and (2.6) allows to apply Theorem 1 in order to obtain that there
exists a unique element uη(t) ∈ K which verifies (3.7).

Let us show that the map t �→ uη(t) : R+ → K is continuous. To this
end, consider t1, t2 ∈ R+ and, for the sake of simplicity in writing, denote
uη(ti) = ui, yη(ti) = yi, f(ti) = fi for i = 1, 2. Using (3.7), we obtain

〈Au1, v − u1〉 + ϕ(y1, u1, v) − ϕ(y1, u1, u1) (3.9)
+j0(u1; v − u1) ≥ 〈f1, v − u1〉 for all v ∈ K,

〈Au2, v − u2〉 + ϕ(y2, u2, v) − ϕ(y2, u2, u1) (3.10)
+j0(u2; v − u2) ≥ 〈f2, v − u2〉 for all v ∈ K.

We take v = u2 in (3.9) and v = u1 in (3.10), then we add the resulting
inequalities to find that

〈Au1 − Au2, u1 − u2〉
≤ ϕ(y1, u1, u2) − ϕ(y1, u1, u1) + ϕ(y2, u2, u1) − ϕ(y2, u2, u2)

+j0(u1;u2 − u1) + j0(u2;u1 − u2) + 〈f1 − f2, u1 − u2〉.
We now use hypotheses (2.2)(b), (2.4)(c) and (3.3)(b) to obtain

mA ‖u1 − u2‖X

≤ αϕ ‖u1 − u2‖X + βϕ ‖y1 − y2‖Y + αj ‖u1 − u2‖X + ‖f1 − f2‖X∗ .
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Thus, the smallness asumption (3.4) implies that

‖u1 − u2‖X ≤ C (‖y1 − y2‖Y + ‖f1 − f2‖X∗) (3.11)

with

C =
1

mA − αϕ − αj
max {βϕ, 1} > 0. (3.12)

Inequallity (3.11) shows that t �→ uη(t) : R+ → K is a continuous function,
which concludes the existence part of the lemma. The uniqueness part is a
direct consequence of the uniqueness of the element uη(t) which solves the
variational-hemivariational inequality (3.7) for each t ∈ R+. �

In the next step we use Lemma 6 to define the operator Λη : C(R+;X) →
C(R+;K) ⊂ C(R+;X) by equality

Λη = uη for all η ∈ C(R+;X). (3.13)

We have the following fixed point result.

Lemma 7. The operator Λ has a unique fixed point η∗ ∈ C(R+;K).

Proof. Let η1, η2 ∈ C(R+;X) and let yi be the functions defined by (3.6) for
η = ηi, i.e., yi = yηi

for i = 1, 2. We also denote by ui the solution of the
variational-hemivariational inequality (3.7) for η = ηi, i.e., ui = uηi

, i = 1, 2.
Let n ∈ N and let t ∈ [0, n]. From definition (3.13), we have

‖(Λη1)(t) − (Λη2)(t)‖X = ‖u1(t) − u2(t)‖X . (3.14)

Moreover, an argument similar to that used in the proof of (3.11) shows that

‖u1(t) − u2(t)‖X ≤ C ‖y1(t) − y2(t)‖Y (3.15)

with C given by (3.12). Next, we use (3.6) and the property (2.11) of the
operator S, to see that

‖y1(t) − y2(t)‖Y ≤ sn

∫ t

0

‖η1(s) − η2(s)‖X ds.

Therefore, using this inequality in (3.15) yields

‖u1(t) − u2(t)‖X ≤ Csn

∫ t

0

‖η1(s) − η2(s)‖X ds. (3.16)

We now combine (3.14) and (3.16) to see that

‖(Λη1)(t) − (Λη2)(t)‖X ≤ Csn

∫ t

0

‖η1(s) − η2(s)‖X ds. (3.17)

Finally, we use (3.17) and Theorem 2 with k = 1, cn = Csn and dn = 0
to see that the operator Λ has a unique fixed point η∗ ∈ C(R+;X). Since Λ
has values in C(R+;K), we deduce that η∗ ∈ C(R+;K), which concludes the
proof. �

We now have all the ingredients needed to prove Theorem 5.
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Proof. Existence. Let η∗ ∈ C(R+;K) be the fixed point of the operator Λ. It
follows from (3.6) and (3.13) that, for all t ∈ R+, the following equalities hold

yη∗(t) = (Sη∗)(t) and uη∗(t) = η∗(t). (3.18)

We now write the inequality (3.7) for η = η∗ and then use the equalities (3.18)
to conclude that the function η∗ ∈ C(R+;K) is a solution to the variational-
hemivariational inequality (3.1).

Uniqueness. The uniqueness part is a consequence of the uniqueness of
the fixed point of the operator Λ. A direct proof can be obtained by using a
Gronwall-type argument and is as follows. Assume that u1, u2 are two solutions
of the variational inequality (3.1) with regularity C(R+;K) and let n ∈ N.
Also, let t ∈ [0, n]. We use (3.1) to see that

〈Au1(t) − Au2(t), u1(t) − u2(t)〉
≤ ϕ((Su1)(t), u1(t), u2(t)) − ϕ((Su1)(t), u1(t), u1(t))

+ ϕ((Su2)(t), u2(t), u1(t)) − ϕ((Su2(t)), u2(t), u2(t))
+ j0(u1(t);u2(t) − u1(t)) + j0(u2(t);u1(t) − u2(t))

and then, by arguments similar to those used in the proof of (3.11), we deduce
that

‖u1(t) − u2(t)‖X ≤ C ‖Su1(t) − Su2(t))‖Y .

We use this inequality and assumption (2.11) to find that

‖u1(t) − u2(t)‖X ≤ Csn

∫ t

0

‖u1(s) − u2(s)‖X ds.

Next, it follows from the Gronwall inequality that u1(t) = u2(t) for all t ∈ [0, n].
This implies that u1(t) = u2(t) for all t ∈ R+ and concludes the proof of the
uniqueness part. �

We end this section with a version of Theorem 5 in the study of first
order evolutionary variational-hemivariational inequalities which is useful in
various applications. For this, we assume that

⎧
⎨

⎩

B : X → Y is a Lipschitz continuous operator, i.e.,
there exists LB > 0 such that

‖Bu1 − Bu2‖Y ≤ LB‖u1 − u2‖X for all u1, u2 ∈ X.
(3.19)

u0 ∈ X. (3.20)
Then, the problem under consideration can be formulated as follows.

Problem 8. Find a function u ∈ C1(R+;X) such that u(0) = u0 and, for all
t ∈ R+, the following inequality holds

u′(t) ∈ K, 〈Au′(t), v − u′(t)〉 + ϕ(Bu(t), u′(t), v) − ϕ(Bu(t), u′(t), u′(t))
+j0(u′(t); v − u′(t)) ≥ 〈f, v − u′(t)〉 for all v ∈ K. (3.21)

Theorem 9. Let X be a reflexive Banach space, Y a normed space and assume
that (2.1), (2.2), (2.4), (2.6), (3.3)–(3.5), (3.19) and (3.20) hold. Then, Problem
8 has a unique solution which satisfies u ∈ C1(R+;X).
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Proof. Let w = u′ and denote by S : C(R+;X) → C(R+;Y ) the operator given
by

(Sv)(t) = B
(∫ t

0

w(s) ds + u0

)
for all v ∈ C(R+;X), t ∈ R+. (3.22)

Then, it is easy to see that the function u is a solution to Problem 8 with
regularity u ∈ C1(R+;X) if and only if w is a solution to the history dependent
variational-hemivariational inequality

〈Aw(t), v − w(t)〉 + ϕ((Sw)(t), w(t), v) − ϕ((Sw)(t), w(t), w(t))
+j0(w(t); v − w(t)) ≥ 〈f, v − w(t)〉 for all v ∈ K, t ∈ R+, (3.23)

with regularity w ∈ C(R+;K). Next, the existence of a unique solution to
(3.23) results from Theorem 5, since assumptions (3.19) and (3.20) imply that
the operator (3.22) is a history-dependent operator. This concludes the proof
of the theorem. �

4. A convergence result

In this section we study the continuous dependence of the solution to Prob-
lem 4 on the data. To this end, we assume in what follows that (2.1), (2.2),
(2.4)–(2.6), (3.2)–(3.5) hold and denote by u ∈ C(R+;K) the solution of (3.1)
obtained in Theorem 1. For each ρ > 0, let ϕρ, jρ and fρ be perturbed data
corresponding to ϕ, j and f , which satisfy conditions (3.3), (2.4) and (3.5),
respectively. We denote by αϕρ

, βϕρ
and αjρ

the constants involved in assump-
tions (3.3) and (2.4).

We consider the following perturbed version of Problem 4.

Problem 10. Find a function uρ ∈ C(R+;K) such that, for all t ∈ R+, the
following inequality holds

〈Auρ(t), v − uρ(t)〉 + ϕρ((Suρ)(t), uρ(t), v) − ϕ((Suρ)(t), uρ(t), uρ(t))

+j0
ρ(uρ(t); v − uρ(t)) ≥ 〈f, v − uρ〉 for all v ∈ K. (4.1)

It follows from Theorem 5 that Problem 10 has a unique solution with
regularity uρ ∈ C(R+;K). Our interest lies in the behavior of the solution uρ,
as ρ tends to zero. To this end, we consider the following additional hypotheses.

⎧
⎨

⎩

there exists m0 > 0 and β0 such that
(a) αϕρ

+ αjρ
≤ m0 < mA for all ρ > 0.

(b) βϕρ
≤ β0 for all ρ > 0.

(4.2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

there exists a function G : R+ → R+ and g ∈ R+ such that
(a) ϕ(y, ξ, η) − ϕ(y, ξ, ξ) − ϕρ(y, ξ, η) + ϕρ(y, ξ, ξ)

≤ G(ρ)(‖y‖Y + ‖ξ‖X + g)‖ξ − η‖X

for all y ∈ Y, ξ, η ∈ K, ρ > 0.
(b) lim

ρ→0
G(ρ) = 0.

(4.3)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

there exists a function H : R+ → R+ and h ∈ R+ such that
(a) j0(ξ; η) − j0

ρ(ξ; η) ≤ H(ρ)(‖ξ‖ + h)‖ξ − η‖
for all ξ, η ∈ X, ρ > 0.

(b) lim
ρ→0

H(ρ) = 0.

(4.4)

fρ → f in C((R+;X), as ρ → 0. (4.5)

The main result in this section is the following.

Theorem 11. Assume (4.2)–(4.5). Then the solution uρ of Problem 10 con-
verges to the solution u of Problem 4, i.e.,

uρ → u in C(R+;X), as ρ → 0. (4.6)

Proof. Let ρ > 0, n ∈ N and t ∈ [0, n]. We take v = uρ(t) in (3.1) and v = u(t)
in (4.1), and then we add the resulting inequalities to obtain

〈Auρ(t) − Au(t), uρ(t) − u(t)〉
≤ ϕ((Su)(t), u(t), uρ(t)) − ϕ((Su)(t), u(t), u(t))

+ ϕρ((Suρ)(t), uρ(t), u(t)) − ϕρ((Suρ)(t), uρ(t), uρ(t))

+ j0(u(t);uρ(t) − u(t)) + j0
ρ(uρ(t);u − uρ(t))

+ 〈fρ(t) − f(t), uρ(t) − u(t)〉. (4.7)

We estimate each term of the last inequality. First, it follows from as-
sumption (2.2)(b) that

〈Auρ(t) − Au(t), uρ(t) − u(t) ≥ mA‖uρ(t) − u(t)‖2
X . (4.8)

Next, we write

ϕ((Su(t), u(t), uρ(t)) − ϕ((Su(t), u(t), u(t))
+ ϕρ((Suρ)(t), uρ(t), u(t)) − ϕρ((Suρ)(t), uρ(t), uρ(t))

= ϕ((Su)(t), u(t), uρ(t)) − ϕ((Su)(t), u(t), u(t))
− ϕρ((Su)(t), u(t), uρ(t)) + ϕρ((Su(t)), u(t), u(t))
+ ϕρ((Su)(t), u(t), uρ(t)) − ϕρ((Su)(t), u(t), u(t))
+ ϕρ((Suρ)(t), uρ(t), u(t)) − ϕρ((Suρ)(t), uρ(t), uρ(t))

and, using hypotheses (4.3)(a) and (3.3)(b), we infer that

ϕ((Su(t), u(t), uρ(t)) − ϕ((Su(t), u(t), u(t)) (4.9)
+ ϕρ((Suρ)(t), uρ(t), u(t)) − ϕρ((Suρ)(t), uρ(t), uρ(t))

≤ G(ρ)(‖(Su)(t)‖Y + ‖u(t)‖X + g)‖uρ(t) − u(t)‖X

+ αϕρ
‖uρ(t) − u(t)‖2

X + βϕρ
‖(Su)(t) − (Suρ)(t)‖Y ‖uρ(t) − u(t)‖X .

In a similar way, we write

j0(u(t);uρ(t) − u(t)) + j0
ρ(uρ(t);u(t) − uρ(t))

= j0(u(t);uρ(t) − u(t)) − j0
ρ(u(t);uρ(t) − u(t))

+ j0
ρ(u(t);uρ(t) − u(t)) + j0

ρ(uρ(t);u(t) − uρ(t))
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and, using hypotheses (4.4)(a) and (2.4), we find that

j0(u(t);uρ(t) − u(t)) + j0
ρ(uρ(t);u(t) − uρ(t)) (4.10)

≤ H(ρ)(‖u‖X + h)‖uρ(t) − u(t)‖X + αjρ
‖uρ(t) − u(t)‖2

X .

Finally, we note that

〈fρ(t) − f(t), uρ(t) − u(t)〉 ≤ δn(ρ)‖uρ(t) − u(t)‖X , (4.11)

where
δn(ρ) = max

t∈[0,n]
‖fρ(t) − f(t)‖X∗ . (4.12)

Now, we combine inequalities (4.7)–(4.11) and use assumptions (4.2) and
(3.2) to see that

(
mA − m0)‖uρ(t) − u(t)‖X ≤ G(ρ)(‖(Su)(t)‖Y + ‖u(t)‖X + g)

+ H(ρ)(‖u(t)‖X + h) + δn(ρ) + β0sn

∫ t

0

‖uρ(t) − u(t)‖X ds. (4.13)

Let

Fn(u) = max
t∈[0,n]

(
‖(Su)(t)‖Y + ‖u(t)‖X + g + h

)
.

Then, inequality (4.13) implies

‖uρ(t) − u(t)‖X ≤ 1
(mA − m0)

((
G(ρ) + H(ρ)

)
Fn(u) + δn(ρ)

)

+
β0sn

(mA − m0)

∫ t

0

‖uρ(t) − u(t)‖X ds

and, therefore, the Gronwall argument yields

‖uρ(t) − u(t)‖X ≤ 1
mA − m0

((
G(ρ) + H(ρ)

)
Fn(u) + δn(ρ)

)
e

β0snt
mA−m0 .

Hence, we conclude that

max
t∈[0,n]

‖uρ(t) − u(t)‖X (4.14)

≤ 1
mA − m0

((
G(ρ) + H(ρ)

)
Fn(u) + δn(ρ)

)
e

β0snn
mA−m0 .

Note that assumption (4.5), definitions (2.10) and (4.12) imply

δn(ρ) → 0, as ρ → 0. (4.15)

Therefore, using (4.3)(b), (4.4)(b) and (4.15), it follows from (4.14) that

max
t∈[0,n]

‖uρ(t) − u(t)‖V → 0, as ρ → 0. (4.16)

The convergence (4.6) is now a consequence of (4.16) and (2.10). This com-
pletes the proof. �
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5. A model of viscoelastic frictionless contact

A large number of quasistatic contact problems with elastic, viscoelastic or
viscoplastic materials lead to history-dependent variational-hemivariational in-
equalities of the form (3.1) in which the unknown is either the displacement
or the velocity field. For a variety of such inequalities, the results in Sects. 3
and 4 can be applied. In this section we illustrate this point for a viscoelastic
contact problem.

The physical setting is the following. A viscoelastic body occupies, in its
reference configuration, a regular domain Ω ⊂ R

d (d = 2, 3) with boundary ∂Ω.
The boundary is partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3

such that the measure of Γ1, denoted m(Γ1), is positive. The body is clamped
on Γ1 and so the displacement field vanishes there. Time-dependent surface
tractions of density f2 act on Γ2 and time-dependent volume forces of density
f0 act in Ω. The body is in contact on Γ3 with an obstacle, the so-called
foundation. The contact is frictionless and is modeled with a nonmonotone
normal compliance condition associated with a unilateral contact condition.
The process is quasistatic and the time interval of interest is R+. Then, the
mathematical model of the contact problem (that we state here and explain
later in this section) is the following.

Problem 12. Find a displacement field u : Ω × R+ → R
d and a stress field

σ : Ω × R+ → S
d such that

σ(t) = Aε(u(t)) + μ
(
ε(u(t)) − PM(κ(ζ(t)))ε(u(t))

)
(5.1)

+
∫ t

0

B(t − s)ε(u(s)) ds in Ω,

Div σ(t) + f0(t) = 0 in Ω, (5.2)

u(t) = 0 on Γ1, (5.3)

σ(t)ν = f2(t) on Γ2, (5.4)

uν(t) ≤ g, σν(t) + ξν(t) ≤ 0,
(σν(t) + ξν(t))(uν(t) − g) = 0
ξν(t) ∈ ∂jν(uν(t))

⎫
⎬

⎭
on Γ3, (5.5)

στ (t) = 0 on Γ3, (5.6)

for all t ∈ R+.

Here we use the notation u = (ui), σ = (σij) and ε(u) = (εij(u)) for
the displacement vector, the stress tensor, and the linearized strain tensor,
respectively, and ν = (νi) for the outward unit normal at ∂Ω. Recall that
εij(u) = 1

2 (ui,j + uj,i) where the index following a comma indicates a partial
derivative with respect to the corresponding component of the spatial variable,
denoted x = (xi). Moreover, we use the notation vν and vτ for the normal
and tangential components of a vector field v on ∂Ω, i.e., vν = v · ν and
vτ = v − vνν. In addition, σν and στ represent the normal and tangential
components of the stress field σ and are defined by σν = (σν) · ν and στ =
σν − σνν, respectively.
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In the study of Problem 12 we use standard notation for Lebesgue and
Sobolev spaces. For all v ∈ H1(Ω;Rd) we still denote by v the trace of v on
∂Ω and, recall, we use the notation vν and vτ for its normal and tangential
traces. In addition, we introduce spaces V and H defined by

V = { v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1 },

H = { τ = (τij) ∈ L2(Ω;Sd) | τij = τji, 1 ≤ i, j ≤ d }.

The space H is a real Hilbert space with the canonical inner product given by

(σ, τ )H =
∫

Ω

σij(x) τij(x) dx,

and the associated norm ‖ · ‖H. Since m(Γ1) > 0, it is well known that V is a
real Hilbert space with the inner product

(u,v)V = (ε(u), ε(v))H, u,v ∈ V (5.7)

and the associated norm ‖ · ‖V . Moreover, by the Sobolev trace theorem, we
have

‖v‖L2(Γ3;Rd) ≤ ‖γ‖ ‖v‖V for all v ∈ V. (5.8)
Here and below ‖γ‖ represents the norm of the trace operator γ : V →
L2(Γ3;Rd).

Finally, we denote by Q∞ the space of fourth order tensor fields given by

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.

We note that Q∞ is a real Banach space with the norm

‖E‖Q∞ =
∑

0≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

In addtition, a simple calculation shows that

‖Eτ‖H ≤ ‖E‖Q∞‖τ‖H for all E ∈ Q∞, τ ∈ H. (5.9)

We now present a short description of the equations and conditions in
Problem 12 in which, for simplicity, we do not indicate explicitly the depen-
dence of the variables on x. We refer the reader to [12,21,29,33] for more
details and mechanical interpretation.

First, Eq. (5.1) is the constitutive law for viscoelastic materials in which
A represents the elasticity tensor, B is the relaxation tensor, μ is a given
positive constant and PM(κ(·)) is the projection operator on the von Mises
convex (2.12), defined with the bound κ = κ(ζ(t)). Here ζ(t) is given by

ζ(t) =
∫ t

0

‖ε(u(s))‖H ds (5.10)

and represents the total strain (or, alternatively, the accumulated strain) in the
body over the time period [0, t], for any t ∈ R+. Considering such a dependence
represents the first trait of novelty of our contact model and is reasonable
from the physical point of view. Indeed, it incorporates the changes in the
constitutive law resulting from cycles of deformation, and, therefore, it could
describe the hardening or the softening of the material. Moreover, considering
such a dependence makes Problem 12 more interesting from a mathematical
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point of view. Note that the nonhomogeneous case could be considered, under
appropriate assumptions on μ and κ. Neverthleless, for simplicity, we restrict
here to the homogeneous case, i.e., we assume that the coeficient μ and the
bound κ do not depend on the spatial variable x.

It follows from above that the elasticity operator in the constitutive law
(5.1) is nonlinear and is given by ε �→ Aε+μ (ε−PM(·)ε). where, for simplicity,
we write M(·) = M(κ(ζ(t)). Such kind of operators have been intensively used
in the literature, see for instance [29,33] and the references therein. Since
ε = PM(·)ε if and only if ε ∈ M(·), from (5.1) we see that that the material
has a linearly viscoelastic behavior if and only if the strain tensor ε belongs
to M(·). The nonlinear elastic response of the material appears only for strain
tensors ε which satisfy ε �∈ M(·).

Equation (5.2) is the equilibrium equation for the quasistatic contact
process. On Γ1, we have the clamped boundary condition (5.3) and, on Γ2, the
surface traction boundary condition (5.4). Relation (5.5) is the contact condi-
tion in which g > 0 and ∂jν denotes the Clarke subdifferential of a given func-
tion jν . It represents the second trait of novelty of our contact model. Indeed,
condition (5.5) models the contact with a foundation which is made of a rigid
body covered by a layer made of elastic material, say asperities. It shows that
the penetration is restricted, since uν ≤ g where g represents the thickness of
the elastic layer. Also, when there is penetration, as far as the normal displace-
ment does not reach the bound g, the contact is described by a nonmonotone
normal compliance condition since, in this case −σν = ξν ∈ ∂jν(uν). Due to
the nonmonotonicity of ∂jν , the condition allows to describe the hardening or
the softening phenomena of the foundation. Various examples and mechanical
interpretation associated with the nonmonotone normal compliance condition
can be found in [21].

We now list the assumptions on the problem data. First, we assume
that the elasticity tensor A and the relaxation tensor B satisfy the following
conditions.

⎧
⎪⎪⎨

⎪⎪⎩

(a) A = (aijkl) : Ω × S
d → S

d.
(b) aijkl = aklij = ajikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) there exists mA > 0 such that

Aτ · τ ≥ mA‖τ‖2 forall τ ∈ S
d, a.e. in Ω.

(5.11)

B ∈ C(R+;Q∞). (5.12)

The bound κ and the potential function jν satisfy

⎧
⎨

⎩

κ : R → R+ is a Lipschitz continuous function, i.e.,
there exists Lκ > 0 such that

|κ(r1) − κ(r2)| ≤ Lκ|r1 − r2| for all r1, r2 ∈ R.
(5.13)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : Γ3 × R → R is such that
(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3).
(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.
(c) |∂jν(x, r)| ≤ c̄0 + c̄1 |r| for a.e. x ∈ Γ3,

for all r ∈ R with c̄0, c̄1 ≥ 0.
(d) j0

ν(x, r1; r2 − r1) + j0
ν(x, r2; r1 − r2) ≤ ᾱν |r1 − r2|2

for a.e. x ∈ Γ3, all r1, r2 ∈ R with ᾱν ≥ 0.

(5.14)

Finally, we assume that the densities of body forces and surface tractions
have the regularity

f0 ∈ C(R+;L2(Ω;Rd)), f2 ∈ C(R+;L2(Γ2;Rd)). (5.15)

We now turn to the variational formulations of Problem 12. To this end,
we introduce the set of admissible displacements U and the function f : R+ →
V ∗ defined by

U = {v ∈ V | vν ≤ g a.e. on Γ3 }, (5.16)
〈f(t),v〉V ∗×V = (f0(t),v)L2(Ω;Rd) + (f2(t),v)L2(Γ2;Rd) (5.17)

for all v ∈ V, t ∈ R+.

Let v ∈ U and t ∈ R+. We perform integrations by parts, split the resulting
surface integral on three integrals on Γ1, Γ2 and Γ3, and then we use the
boundary conditions (5.3), (5.4) and the equilibrium equation (5.2) to obtain

∫

Ω

σ(t) · (ε(v) − ε(u(t))) dx (5.18)

=
∫

Ω

f0(t) · (v − u(t)) dx +
∫

Γ2

f2(t) · (v − u(t)) dΓ

+
∫

Γ3

σν(t)(vν − uν(t)) dΓ +
∫

Γ3

στ (t) · (vτ − uτ (t)) dΓ.

Next, we use (5.5) and the definition of the subdifferential to find

j0
ν(uν(t); vν − uν(t)) + σν(t)(vν − uν(t)) ≥ 0 a.e. on Γ3,

which implies that
∫

Γ3

j0
ν(uν(t); vν − uν(t)) dΓ +

∫

Γ3

σν(t)(vν − uν(t)) dΓ ≥ 0. (5.19)

In addition, (5.6) shows that
∫

Γ3

στ (t)(vτ − uτ (t)) dΓ = 0. (5.20)

Then, combinining (5.17)–(5.20), we find that

(σ(t), ε(v) − ε(u(t)))H (5.21)

+
∫

Γ3

j0
ν(uν(t); vν − uν(t)) dΓ ≥ 〈f(t),v − u(t)〉V ∗×V .
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In addition, it follows from (5.5) that u(t) ∈ U for all t ∈ R+. Then,
using the constitutive law (5.1) and inequality (5.21) we obtain the following
variational formulation of Problem 8, in terms of displacement.

Problem 13. Find a displacement field u : R+ → U such that the inequality

(Aε(u(t)), ε(v) − ε(u(t)))H + μ(ε(u(t)), ε(v) − ε(u(t)))H (5.22)
− μ(PM(κ(ζ(t)))ε(u(t)), ε(v) − ε(u(t)))H

+
(∫ t

0

B(t − s)ε(u(s)) ds, ε(v) − ε(u(t))
)

H

+
∫

Γ3

j0
ν(uν(t); vν − uν(t)) dΓ ≥ 〈f(t),v − u(t)〉V ∗×V for all v ∈ U

holds for all t ∈ R+, where ζ(t) is given by (5.10).

The analysis of Problem 13, including its unique solvability and some
comments on the dependence of the solution with respect to the data, will be
presented in the next section.

6. Analysis of the contact problem

We start with the following existence and uniqueness result for Problem 13.

Theorem 14. Assume hypotheses (5.11)–(5.15) and the smallness condition

ᾱν ‖γ‖2 ≤ mA. (6.1)

Then Problem 13 has a unique solution u ∈ C(R+;U).

Proof. We introduce the space Y = R × H endowed with the norm

‖y‖Y = |r| + ‖θ‖H for all y = (r,θ) ∈ Y, (6.2)

together with the operators A : V → V ∗, S : C(R+;V ) → C(R+;Y ) and the
functions ϕ : Y × V × V → R, j : V → R defined by

〈Au,v〉V ∗×V = (Aε(u), ε(v))H + μ(ε(u), ε(v))H (6.3)
for all u,v ∈ V,

(Su)(t) =
( ∫ t

0

‖ε(u(s))‖H ds,

∫ t

0

B(t − s)ε(u(s)) ds
)

(6.4)

for all u ∈ C(R+;V ),
ϕ(y,u,v) = −μ(PM(κ(r))ε(u), ε(v))H + (θ, ε(v))H (6.5)

for all y = (r,θ) ∈ Y, u, v ∈ V,

j(v) =
∫

Γ3

jν(vν) dΓ for all v ∈ V. (6.6)

Then, it is easy to see that (5.22) represents an inequality of the form (3.1)
in which X = V , K = U and f ≡ f , where U and f are defined by (5.16)
and (5.17), respectively. Our aim in what follows is to apply the abstract
existence and uniqueness result provided by Theorem 5. To this end, we verify
the assumptions of this theorem.
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First, we note that condition (2.1) on the set K is clearly satisfied. More-
over, using (5.11), it is easy to see that the operator defined by (6.3) satisfies
condition (2.2) with αA = mA = mA + μ and βA = γA = 0. Also, assump-
tion (5.14) on the function jν imply that the function j given by (6.6) satisfy
condition (2.4) with constants c0 = c̄0, c1 = c̄1 and αj = ᾱν ‖γ‖2. In addition,
assumption (6.1) implies that condition (2.6) is also satisfied.

Next, an elementary calculation based on assumption (5.12) and inequal-
ity (5.9) shows that for all n ∈ N, we have

‖(Su1)(t) − (Su2)(t)‖Y ≤ cn

∫ t

0

‖u1(s) − u2(s)‖V ds

for all u1, u2 ∈ C(R+;V ), for all t ∈ [0, n] with cn > 0

which shows that the operator S as a history-dependent operator, i.e., it sat-
isfies condition (3.2).

Note also that the function ϕ defined by (6.5) satisfies condition (3.3)(a).
In order to verify condition (3.3)(b), let yi = (ri,θi) ∈ Y , ui, vi ∈ V for i = 1,
2. Then, by definition (6.5) we deduce

ϕ(y1,u1,v2) − ϕ(y1,u1,v1) + ϕ(y2,u2,v1) − ϕ(y2,u2,v2)
= μ(PM(κ(r2))ε(u2) − PM(κ(r1))ε(u1), ε(v2) − ε(v1))H

+(θ1 − θ2, ε(v2) − ε(u1))H

≤
(
μ‖PM(κ(r1))ε(u1) − PM(κ(r2))ε(u2)‖H + ‖θ1 − θ2‖H

)
‖v1 − v2‖V

and, therefore

ϕ(y1,u1,v2) − ϕ(y1,u1,v1) + ϕ(y2,u2,v1) + ϕ(y2,u2,v1) (6.7)

≤
(
μ‖PM(κ(r1))ε(u1) − PM(κ(r1))ε(u2)‖H

+μ‖PM(κ(r1))ε(u2) − PM(κ(r2))ε(u2)‖H + ‖θ1 − θ2‖H
)
‖v1 − v2‖V

We now use the nonexpansivity of the projector operator to see that

‖PM(κ(r1))ε(u1) − PM(κ(r1))ε(u2)‖H ≤ ‖u1 − u2‖V . (6.8)

On the other hand, Proposition 3 combined with hypothesis (5.13) implies

‖PM(κ(r1))ε(u2) − PMκ(r2))ε(u2)‖H ≤ Lκ|r1 − r2|. (6.9)

We now use estimates (6.7)–(6.9) and (6.2) to see that

ϕ(y1,u1,v2) − ϕ(y1,u1,v1) + ϕ(y2,u2,v1) + ϕ(y2,u2,v1)
≤ μ‖u1 − u2‖V ‖v1 − v2‖V + max {Lκ, 1} ‖y1 − y2‖V ‖u1 − u2‖V

which shows that ϕ satisfies condition (3.3)(b) with αϕ = μ and βϕ =
max {Lκ, 1}. Moreover, recall that αj = ᾱν ‖γ‖2, αA = mA = mA + μ and,
therefore, condition (3.4) is also satisfied. Finally, regularity (3.5) follows from
(5.17) and (5.15). Theorem 14 is now a direct consequence of Theorem 5. �

We also note that Theorem 11 can be used to study the dependence of
the weak solution of Problem 13 with respect to perturbations of the data and
to prove its continuous dependence on the bound κ, the normal compliance
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function j, and densities of body forces and surface tractions, f0 and f2,
respectively. Here, we omit the details and we restict ourselves to present an
example of functions ϕ and ϕρ defined by (6.5) that satisfy condition (4.3).

In the following, let ρ be a positive parameter and κ, κρ be two functions
which satisfy hypothesis (5.13). Moreover, we assume that

⎧
⎪⎨

⎪⎩

there exists a function ω : R+ → R+ and δ ∈ R+ such that
(a) |κρ(r) − κ(r)| ≤ ω(ρ)(|r| + δ) for all r ∈ R, ρ > 0.
(b) lim

ρ→0
ω(ρ) = 0.

(6.10)

With functions κ and κρ, we construct the Von Mises convexes M(κ(·)) and
M(κρ(·)), respectively, defined by (2.12). Then, we consider the correspond-
ing functions ϕ and ϕρ given by (6.5). We claim that these functions satisfy
condition (4.3) with the spaces X = V and Y = R × H. Indeed, assume that
y = (r,θ) ∈ Y and u, v ∈ V are given. Then, by using (6.5) and Proposition 3,
we deduce

ϕ(y,u,v) − ϕ(y,u,u) + ϕρ(y,u,v) − ϕρ(y,u,u)
= μ(PM(κ(r))ε(u) − PM(κρ(r))ε(u), ε(u) − ε(v))H
≤ μ ‖PM(κ(r))ε(u) − PM(κρ(r))ε(u)‖H‖u − v‖V

≤ μ |κ(r) − κρ(r)| ‖u − v‖V .

We now use assumption (6.10) together with (6.2) to see that condition (4.3)
is satisfied.

We also recall that examples of functions jν and jνρ which satisfy con-
dition (5.14) such that the corresponding functions j and jρ defined by (6.6)
satisfy assumptions (3.4), (4.2) and (4.4) can be found in [31]. Hence, we con-
clude that the convergence result of Theorem 11 can be used in the study of
the corresponding frictionless contact problem.
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[6] Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear
Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003)



NoDEA A class of history-dependent variational Page 21 of 23 38

[7] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin
(1976)
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[20] Migórski, S., Ochal, A., Sofonea, M.: History-dependent subdifferential inclu-
sions and hemivariational inequalities in contact mechanics. Nonlinear Anal.
Real World Appl. 12, 3384–3396 (2011)
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[22] Migórski, S., Ochal, A., Sofonea, M.: History-dependent variational-
hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World
Appl. 22, 604–618 (2015)
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