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Liouville-type theorems for a quasilinear
elliptic equation of the Hénon-type
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Abstract. We consider the Hénon-type quasilinear elliptic equation
—Apu = |z|%P where Apu = div(|Vu|™ 2Vu), m > 1, p > m — 1
and a > 0. We are concerned with the Liouville property, i.e. the nonex-
istence of positive solutions in the whole space RY. We prove the optimal
Liouville-type theorem for dimension N < m + 1 and give partial results
for higher dimensions.
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1. Introduction

This article is devoted to the study of positive solutions of the following elliptic
equation

—Apu = |z]%P, x€Q, (1.1)

where A, u = div(|Vu|™ 2Vu) denotes the m-Laplace operator, € is a domain
of RY. We assume throughout the paper that

l<m<p+1, and a>0.
The interest of Eq. (1.1) started from the case of classical Laplacian
—Au = |z|"uP, (1.2)

which is called the Hénon equation. Since the pioneering work of Hénon [12] in
1973 on the studying of rotating stellar structures, a variety of results on the
qualitative properties of the solutions to problem (1.2) have been established.
In particular, the results on the existence and nonexistence, the multiplic-
ity, the symmetry-breaking properties, and blow-up profile of solutions were
obtained—see [2-4,17,23,26,27].
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The problem (1.1) for m # 2 arises in the theory of quasi-regular and
quasi-conformal mappings, and in mathematical modelling of non-Newtonian
fluids. Media with m > 2 and m < 2 are called dilatant fluids and pseudo-
plastics respectively (see the references in [25] for a discussion of the physical
background).

In general case of m, the existence and nonexistence results were widely
studied. Among others, Clement et al. [7] applied the mountain pass theorem
and proved that the boundary value problem possesses at least a radial solution
for all m < p < ps(m, a), extending Ni’s result [17] for the more general class
of equations. Carriao et al. [5] proved some existence and multiplicity results of
non-radial solutions. The nonexistence of nontrivial solutions was established
via the generalized Pohozaev identity, see [10,11,18]. Further results on he as-
ymptotic behaviour of solutions near the singularity and qualitative properties
of bounded radial ground states can be found in [1,21,22].

The aim of this paper is to study the Liouville-type theorems for the
problem (1.1). Before stating our main results, let us introduce the following
exponents

(m—1)N+m
N —m+ma
ps(m) == ps(m,0).
Our notion of solution is that of continuously differentiable weak solution,
which is defined as follows

ps(m,a) := (=00 if N <m),

Definition 1.1. For an arbitrary domain 2 of RY, we say that a nonnegative
function w is a solution of (1.1) if it satisfies

u e CH(Q), / |Vu|"2Vu.Vodr = / |z|*uPodr  for all ¢ € C3° ().
. . (1.3)
Roughly speaking, a (continuously differentiable weak) solution of (1.1)

is a C'l-function which solves (1.1) in the distributional sense.

We recall that Liouville-type theorem is the nonexistence of solution in
the entire space. The classical Liouville-type theorem stated that a bounded
harmonic (or holomorphic) function defined in entire space must be constant.
This theorem, known as Liouville Theorem, was first announced in 1844 by
Liouville [15] for the special case of a doubly-periodic function. Later in the
same year, Cauchy [6] published the first proof of the above stated theorem.
In 1981, Gidas and Spruck established in pioneering article [9] the optimal
Liouville-type result for nonnegative solutions of the semilinear elliptic equa-
tion —Awu = uP. Since then, the Liouville property has been refined consider-
ably and emerged as one of the most powerful tools in the study of boundary
value problems for nonlinear PDEs (see e.g. [20]).

Concerning the Liouville-type results for the problem (1.1), the case a = 0
was completely established by Serrin and Zou [25]. Here, the optimal Liouville-
type theorem states that the Eq. (1.1) has no positive solution in Q = RY if
and only if p < pg(m).
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The case a > 0 is less understood, it seems that the presence of the term
|z|* modifies the range of values of p for the non-existence of entire positive
solutions. In the class of radial solutions, the Liouville property was completely
solved (see e.g. [14, Section 3]). More precisely,

Proposition A. (i) If p < ps(m,a), then Eq. (1.1) has no positive radial
solution in Q = RV,
(ii) If p > ps(m,a), then Eq. (1.1) possesses a bounded, positive radial solu-
tion in Q =RV,

The exponent pg(m,a) thus plays a critical role in the radial case and
this, in addition to the above mentioned result for a = 0, supports the following
natural conjecture:

Conjecture B. If p < ps(m,a), then Eq. (1.1) has no positive solutions in
Q=RN.

The condition p < ps(m,a) is optimal due to Proposition A(ii). However,
apart from the radial case, the best available condition on p for the nonexis-
tence of entire positive solutions up to now is as follows (e.g. [16, Theorem
12.4])

o< (m—=1)(N+a)
N-—m
In fact, Eq. (1.4) is the optimal condition for the nonexistence of supersolutions
(i.e. solution to —A,,u > |z|*uP) in RV or in an exterior domain. This result
in particular implies that the Conjecture B is true for the dimension N < m.
The aim of this paper is to prove Conjecture B for dimension N < m+ 1. Our
main result is the following.

(p< oo if N <m). (1.4)

Theorem 1.2. Let N <m + 1. If p < pg(m,a), then Eq. (1.1) has no positive
solution in Q = RV,

We also have the following partial result for higher dimensions.
Theorem 1.3. If p < ps(m) then Eq. (1.1) has no positive solution in = RV,

Remark 1.4. (a) We stress that there is no boundedness assumption on so-
lutions in Theorems 1.2 and 1.3.

(b) The proof of Theorem 1.2 uses the technique introduced by Serrin and
Zou [24] and further developed by Souplet [28], which is based on a combi-
nation of Pohozaev identity, Sobolev inequality on the unit sphere S™V—1
and measure and feedback arguments. However, we point out that some
additional difficulties arise in our problem. For instance, the very techni-
cal measure and feedback arguments become even more complicated since
the lack of regularity and interpolation inequalities for the m-Laplacian.
The presence of weight functions makes the problem much more del-
icate. Moreover, one can not apply the embedding W21+¢(SVN-1)
L>°(SN~1) as in the case of Laplace operator. We instead use the embed-
ding Whtm(SN=1) ¢ [>°(SN=1) and combine this with some additional
arguments.
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As applications of Liouville-type theorems, we provide some results on
singularity and decay estimates:

Proposition 1.5. Let m — 1 < p < pg(m). There exists a positive constant
C = C(N,p,m,a) such that the following assertions hold.

(i) Any nonnegative solution of Eq. (1.1) in Q = {z € RY; 0 < |z| < p}
(p > 0) satisfies

w(z) < Cla| 71  and  |Vu(z)| < Clz| #5m, 0< |z <p/2. (L.5)

(ii) Any nonnegative solution of Eq. (1.1) in Q = {z € RY; |z| > p} (p > 0)
satisfies

u(z) < C|x|7pr1tam and |Vu(z)| < C'|9L‘|71firllii7 |z] > 2p. (1.6)

Our proof of Proposition 1.5 is based on the observation that estimates
(1.5) and (1.6) for given p,a can be rather easily reduced to the Liouville
property for the same p but with a replaced by 0. This reduction relies on two
ingredients:

(i) a change of variable, that allows to replace the coefficient |z|* with a
smooth function which is bounded and bounded away from 0 in a suitable
spatial domain;

(ii) a generalization of a doubling-rescaling argument from [20].

We can then obtain an easy derivation of Theorem 1.3 from Proposi-
tion 1.5, by combining the Pohozaev identity with the decay estimate (1.6).
We note that the gradient part of estimate (1.6) is crucial for the proof in
order to estimate some of the terms appearing in the Pohozaev identity.

The rest of the paper is organized as follows. In Sect. 2, we recall some
basic estimates and identities. Section 3 is devoted to the delicate proof of
Theorem 1.2. Finally, in “Appendix”, we collect the proofs of some results
which we use and are more or less known, but whose proofs we prefer to
provide for completeness. This includes Proposition 1.5 and Theorem 1.3.

2. Preliminaries

For R > 0, we set Bgr = {x € R : |z| < R}. We shall use spherical coordinates
r = lz|, § = x/|z| € S¥~! and write u = u(r,0). The surface measures
on S¥~! and on the sphere {x € RV: |z| = R}, R > 0, will be denoted
respectively by dff and by dog. For given function w = w(f) on SN¥~! and
1 <k < oo, we set [|wl][r = [|w] prgn-1y. When no confusion is likely, we shall
denote |Ju|| = |Ju(r,-)||x and Vyu = Vu.

We first recall the following fundamental Sobolev inequality (see e.g. [24]).

Lemma 2.1. (Sobolev inequalities on SN=1) Let N > 2,5 > 1 is integer and
l<k<A<oo,k# (N—1)/j. Forw=w(0) € WIk(SN=1) we have

lwlix < C([1Dgwll + [lwllr)
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where

T %— ¥ k< (N-1)/j,
A= ifk>(N—-1)/j
and C = C(j,k,N) > 0.

Setting

m-+a

__mra 2.1
p+1—m (2.1)
we have the following basic integral estimates for solutions to (1.1) in R¥.

Lemma 2.2. Let u be a positive solution of (1.1) in Q = RN, Then there holds
/ uwPde < CRN™PY R >0, (2.2)
Br\BRr/2

with C = C(N,p,m,a) > 0.

The proof of Lemma 2.2 is totally similar to that of [16, Theorem 12.1]
where the authors proved for the case a = 0 by using rescaled test function
argument. From Lemma 2.2, by interpolation, one can deduce the following
corollary.

Corollary 2.3. Let u be a positive solution of (1.1) in Q@ = RY. For R > 0 and
0 < q < p, we have

/ ul dx < CRN—9°, (2.3)
Br\Br/2

with C = C(N,p,q,m,a) > 0.
Next, we need the following estimate for the proof of Theorem 1.2.

Lemma 2.4. Let € > 0 such that m > 1+¢. If u is positive solution of (1.1) in
Q =RY, then there exists C = C(N,p,m,a,c) > 0 such that

/ |VU| dI’ S CRmef(mflfe)a' (24)
Br\Br/2 utte

Proof. Fix ¢ € D(RV), 0 < ¢ < 1 such that ¢(z) = 1 for |z| < 1 and ¢(z) =
for |z| > 2, |V¢| < C¢. For each R > 0, put ¢r(z) = ¢(x/R). We have

|Vér(z)| < CR *¢r.

Since u is a distributional solution, we thus have

/N |x|*uP~ pp dx = /N |Vu"2Vu.V(u ¢r) dr
R R

- _5/ |Vfi|6 br dx—i—/ u”E | Vu|" 2 Vu. VR du.
RN U RN
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Hence,

Vu|™ 1 1
/N |u1u+|a ¢rdr = —;/N |z|*"uP  pR dx + E/Nu*5|vu|m*2vu.v¢R dx
R R R
C

<= uf|Vu|™ g dr. (2.5)
R R<|z|<2R

Applying Young’s inequality

I e
Eu E|vu| = (1+a)(m 1) ° R "
V™ 1o,
_ — ™ . 2.6
-~ m  ulte +mRmu (2:6)

Combining (2.5) with (2.6), we have

‘Vu‘m
RN u1+a

™ 1_E¢R dx

I /\

um 1_8d.%' < CRN—m—(m—l—E)a.

IN

C /

Rm™ R<|z|<2R
C /

R™

R<|z|<2R

Therefore

/ |vu|md <CRN m—(m—1— E)Oc
Br ulte

O

The following Pohozaev identity plays a key role in the proof of Theo-
rems 1.2 and 1.3. It is probably known, but we give a proof for completeness,
especially since there is a slight technical difficulty arising from the regularity
of m-Laplacian.

Lemma 2.5. (Pohozaev identity) Let u be a positive solution of (1.1) in RY.
For all R > 0, there holds

N
m ta —N+m / |z|“uP T da
p+1 Br

+
:/ MR R PV — RIVu[™ | dog
|z|=R p+1

+/ (N — m)ud |Vu|™ 2dog, (2.7)
|z|=R

where v = I%I -Vu and Vu = V u.

For the proof of the Pohozaev identity, we first recall the following stan-
dard property (e.g. [13, Lemma A.1]).

Lemma 2.6. [13] Let Q be a bounded domain in RN with a C*-boundary 05).
Assume that a: Q — RV satisfies a € [CO(Q)])N and diva = f € LY(Q) in the
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sense of distributions in Q. Then we have

/ a(@)(z)do(z) = / Fa)da.
1) Q
Proof of Lemma 2.5. Tt follows from [13, Theorem 4.2] that

(N — m)/ |Vul™dz +m |z|*uP (. Vu)dz
Br

Br
=R |Vu|"dor — mR [u' || Vu|™ " 2dog. (2.8)
6BR 8BR
Since
N P+l
(x.Vu)|z|*uP = —ﬁmaupﬂ + div | x| “ )
p+1 p+1
we have,
N p+1
/ |z|*u? (2. Vu) de = — ta / |z uP T da + RIJ”I/ Y dop.
Br p+1 /B, lzj=r P+ 1
(2.9)
Now, let a = u|Vu|™ 2Vu and note that diva = —|z|?uP*! + |Vu|™ in sense

of distribution. Lemma 2.6 implies

/ u |[Vu|"2dog = / (—|z|uP Tt + | Vu|™)da.
OBRr

Br
Consequently,
/ |Vu|"dx = / |z uP T da +/ ! [Vu|" " 2dog. (2.10)
Bpr Br 0BR
Lemma 2.5 follows from (2.8) to (2.10). O

3. Proof of Theorem 1.1

Proof of Theorem 1.2. Since Theorem 1.2 was proved for dimension N < m
(cf. [16]), we assume that N > m. Suppose there exists positive solution u to
(1.1) in RY. We fix a number & > 0 such that m — 1 — & > 0. In what follows,
C' denotes any positive constant independent of R (but possibly depending on
€).

Step 1: preparations. Let F(R) = fBR |z|*uP*1dz. By using Pohozaev identity
we can deduce

F(R) < C(G1(R) + Ga(R) + G3(R)),
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where
G1(R) = RNt /SN_1 uP (R, 0)db, (3.1)
G2(R) = RY /SN_I |V.u(R,0)|™d6, (3.2)
Gy(R) = RN /S (R, 6)d. (3.3)
Step 2: estimation of G1(R) and Go(R) in terms of suitable norms. Let
v = um777175

Recall that |[v||x denotes [[v(R,-)|[prg~-1). Since N — 1 < m, then the em-
bedding W1 m(SVN=1) c L°°(SN~1) is continuous. By Lemma 2.1, we have

[0llce < C([|1Dg0]lm + [vll) < C(R[Vavllm + [|v]l1)-

Therefore,
G1(R) < CRV*|lufjz?
< CRN*a|jy||p+Dm/ (m=1-e)
< CRNT (R|| Va0l + [Jo] ) FD™/ 7172 (3.4)
Similarly,
Gs(R) < CRN ™™ (R Vvl + o)™ /™79 (3.5)
Next,

Ga(R) = RN / IV, u(R, 0)™do

SN-1

m+me

:CRN/ IV, 0(R, 0)]™ 0% (R, 0)do
SN—1

m+me
m—1—g
o0

< CRY||Vouimllv

(3.6)

Step 3: control of the averages and measure argument. For any R > 1, denote
B = m=1=€, It follows from Corollary 2.3 and Lemma 2.4 that

m

R
/R/2 ()Nt dr < CRNP, (3.7
and
R
/ IVao() N1 dr < CRN-m-mB, (3.8)
R/2

For a given K > 0, let us define the sets
[y (R) = {r € (R,2R); |[v(r)|l: > KR™?},
FQ(R) = {’I" S (R7 2R), ||V$U(T)||'Zi > KR—”NL—mﬁ}.
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By estimate (3.7), for R > 1, we have
2R
C> R_N"’ﬁ/ o)1t dr
R

> RVIT(R)|RN'KR™" = KT\ (R)|R™".

Consequently, |T'y| < R/4 for K > 4C. Similarly, from estimates (3.8), we
obtain |I';| < R/4. Hence, for each R > 1, we can assert the existence of

R € (R,2R)\ | JTi(R) # 0. (3.9)

Step 4: conclusion. It follows from (3.4) to (3.6) in Step 2 and (3.9) in Step 3
that

Gl(ﬁf) < CRNJra(Rf,B)(erl)m/(mflfe) _ CRN+a7a(p+1), (310)
~ m2
Gg(R) < CRN—m— mﬁ—l—E — CRmefmog’ (311)
and
Go(R) < CRN-m=mB=35q5h — g pN—m—ma, (3.12)

We note that N +a—a(p+1) = N —m — ma =
computation, we see that p < pg(m,a) is equivalent to
(3.11), we have

a. By straightforward
a < 0. From (3.10) to

F(R)< F(R)<CR* R>1.

Therefore, let R — oo we obtain [py [2|*uP* d2z = 0, hence u = 0: a contra-
diction. The proof is complete. O
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Appendix

Singularity and decay estimates

We shall prove Proposition 1.5. First, we need the following lemma which is
analogous to [19, Lemma 2.1].

Lemma 4.1. Let 1 < p < ps(m) and v € (0,1]. Let c € C7(B1) satisfy
lelevam)y £C1oand c(z) > C2, z € By, (4.1)

for some constants C1,Co > 0. There exists a constant C, depending only on
~v,C1,Co,p,m, N, such that, for any nonnegative classical solution u of

—Apu =c(z)u?, x€ By, (4.2)
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u satisfies
Ju(z)|PHI=m/m |Gy ()P HD < O(1 4 dist ™ (2, 0By)), =« € By.

Proof. Arguing by contradiction, we suppose that there exist sequences ¢y, uy
verifying (4.1), (4.2) and points yg, such that the functions

My, = ‘uk|(p+1—m)/m + ‘Vuk|(p+1—m)/(p+1)
satisfy
My, (yy) > 2k(1 + dist ™" (yy,, 0By)) > 2k dist ™" (yx, 0B1).
By the doubling lemma in [20, Lemma 5.1], there exists z;, such that
My (zk) > Mi(yr), My(zi) > 2kdist™ (24, 0B1),
and
My(2) < 2My(zy), for all z such that |z — xx| < kM ' (z). (4.3)

We have
A= M () — 0, k— oo, (4.4)
due to My (zg) > My (yk) > 2k.
We use the rescaling

T )\Zl/(pﬂ_m)uk(xk + M), k(y) = cr(zr + A\ky).
Then ‘ka‘(p‘i’l*m)/m(o) -+ |vak‘(p+17m)/(p+1)(0) = ]_7
(o | P/ g [y | P/ D] () <2, Jy| <, (4.5)

due to (4.3), and vy, is solution in sense of Definition 1.1 to
— A = S(y)ol, |yl < k. (4.6)

On the other hand, thanks to (4.1), we have Cy < ¢, < C; and, for each
R > 0 and k > ko(R) large enough,

er(y) —r(2)] < CrlM(y —2)" < Cily —2[7, Jyl. |2 < R. (4.7)

Therefore, by Ascoli’s theorem, there exists ¢ in C(RY), with é > C5 such that,
after extracting a subsequence, ¢, — ¢ in Co.(RY). Moreover, (4.7) and (4.4)
imply that |éx(y) — ¢k(2)] — 0 as k — oo, so that the function ¢ is actually a
constant C' > 0.

By using the regularity results in [29] (see also [8]), we deduce that there
exists § € (0,1) such that vy is bounded in C’llotﬁ(RN). Then up to a sub-
sequence, vy converges in C_(RY) to a nonnegative solution v (in sense of
Definition 1.1), such that

—Apv=Cv, yeRN,

Moreover, |v|PT1=m)/m(0) 4 |Voy|PT1=m)/(P+1)(0) = 1, v is thus nontrivial.
This contradicts the Liouville-type theorem (see [25, Theorem II(c)]) and con-
cludes the proof. O
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Proof of Proposition 1.5. Assume either Q = {z € RY; 0 < |z| < p} and
0 < |zo| < p/2, or Q = {x € RY; |z| > p} and |zo| > 2p. We denote

R:%|$0|

and observe that, for all y € By, ‘12—0‘ < |zo+ Ry| < 3'3‘)'

in either case. Let us thus define

U(y) = R =7 u(zo + Ry).

, so that zg + Ry € Q

Then U is a solution of

—AnU =c¢(y)UP, ye By, withc(y ’y + =

a

Notice that |y + 22| € [1,3] for all y € B;. Moreover ||CHcl(B < C(a). Then
applying Lemma 4 1, we have U(0) + |VU(0)| < C. Consequently,

u(zo) < CR™ T L [ Vu(zo)] < CR_%,
which yields the desired conclusion.

Proof of Theorem 1.3

Suppose there exists a positive solution u to (1.1) in RYN. We set

F(R) = / || “uP T da. (4.8)
Br
By Pohozaev identity, we have
F(R) < C(G1(R) + G2(R) + G3(R)), (4.9)

where G, G2, G3 are defined in (3.1)—(3.3) Now, by (1.6) in Proposition 1.5,
we have

u(z) < Clz|™* and |Vu(z)| < Clz|™'7%, x#0.
Due to p < ps(m,a), it follows that
G1(R) + Go(R) < CRN=™~™% 0, as R — .
Therefore, uw = 0 by (4.9): contradiction. O
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