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Abstract. We consider a controlled stochastic system in presence of state-
constraints. Under the assumption of exponential stabilizability of the
system near a target set, we aim to characterize the set of points which
can be asymptotically driven by an admissible control to the target with
positive probability. We show that this set can be characterized as a level
set of the optimal value function of a suitable unconstrained optimal
control problem which in turn is the unique viscosity solution of a second
order PDE which can thus be interpreted as a generalized Zubov equation.
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1. Introduction

In this paper we aim to study the asymptotic controllability property of con-
trolled stochastic systems in presence of state constraints.

The basic problem in this context is the existence of a control strategy
that asymptotically steers the system to a certain target set with positive prob-
ability. In the uncontrolled framework, the idea, due to Lyapunov, of linking
the stability properties of a system with the existence of a continuous function
(in the nowadays literature called a “Lyapunov function”) that decreases along
the trajectories of the system, represents a fundamental tool for the study of
this kind of problems. In his seminal thesis [29], Lyapunov proved that the ex-
istence of such a function is a sufficient condition for the asymptotic stability
around a point of equilibrium of a dynamical system
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1766 L. Grüne and A. Picarelli NoDEA

ẋ = b(x), x(t) ∈ R
d, t ≥ 0. (1.1)

This theory was further developed in later years, see [20,25,30], and also the
converse property was established. Since the 60 s, Lyapunov’s method was ex-
tended to stochastic diffusion processes. The main contributions in this frame-
work come from [21,26–28], where the concepts of stability and asymptotic
stability in probability, as well as the stronger concept of almost sure stability,
are introduced.

An important domain of research concerns the developments of construc-
tive procedure for the definition of Lyapunov functions. In the deterministic
case an important result was obtained by Zubov in [33]. In this work the do-
main attraction of an equilibrium point x

E
∈ R

d for the system (1.1), i.e. the
set of initial points that are asymptotically attracted by x

E
, is characterized

by using the solution ϑ of the following first order equation
{

Dϑ(x)b(x) = −f(x)(1 − ϑ(x))
√

1 + ‖b(x)‖2 x ∈ R
d\{x

E
}

ϑ(x
E
) = 0,

(1.2)

for a suitable choice of a scalar function f (see [20,33]). Equation (1.2) is
referred to in the literature as Zubov equation. In particular, what is proved
in [33] is that the domain of attraction coincides with the set of points x ∈ R

d

such that ϑ(x) < 1. Further developments and applications of this method can
be found in [1,3,11,18,20,24].

More recently, this kind of approach has been applied to more general
systems, included control systems, thanks also to the advances of the viscos-
ity solution theory that allows to consider merely continuous solutions of fully
nonlinear PDE’s. While for systems of ordinary differential equations the prop-
erty of interest is stability, for systems that involve controls, the interest lies
on “controllability”, i.e. on the existence of a control such that the associated
trajectory asymptotically reaches the target represented by the equilibrium
point (see [2,31]). The case of deterministic control systems was considered in
[13]. Here, through the formulation of a suitable optimal control problem, it
is proved that the domain of attraction can be characterized by the solution
of a nonlinear PDE (that we can consider as a generalized Zubov equation)
which turns out to be a particular kind of Hamilton–Jacobi–Bellman (HJB)
equation.

In this case the existence of smooth solutions is not guaranteed and there-
fore the equation is considered in the viscosity sense. The state constrained
case, where we aim to steer the system to the target satisfying at the same
time some constraints on the state, has been treated in [19].

The Zubov method has been extended to the stochastic setting in [10,14]
taking into account diffusion processes. The controlled case was later consid-
ered in [9,12]. In this last paper, under some property of local exponential
stabilizability in probability of the target set (that weakens the “almost sure”
stabilizability assumption made in [12,14]), the set of points x ∈ R

d that
can be asymptotically steered with positive probability towards the target, is
characterized by means of the unique viscosity solution with value zero on the
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target of the following equation

sup
u∈U

{
−f(x, u)(1 − ϑ(x)) − Dϑ(x)b(x, u) − 1

2
Tr[σσT (x, u)D2ϑ(x)]

}
= 0.

In this paper we aim to add state-constraints in this framework, trying to
exploit the ideas proposed in [19]. By the way the results in terms of PDE
characterization of the domain of attraction will be very different. In [19] the
state constrained controllability is characterized by the solution of an obstacle
problem, whereas in our case we will deal with a mixed Dirichlet–Neumann
boundary problem in an augmented state space (see Sect. 5). As in [19], for
satisfying the state constrained requirement at any time t ≥ 0 we use a cost
in a maximum form. In the stochastic case this requires the introduction of
an additional state variable (that we will denote by y), leading to a general-
ized Zubov equation which involves oblique derivative boundary conditions.
Because of the particular feature of Zubov-type problems comparison results
cannot be proved by standard techniques (this is mainly due to the degener-
acy of the function f) and the comparison principle stated by Theorem 6.4 is
proved providing sub- and super- optimality principles for PDEs of the follow-
ing form:

⎧⎨
⎩

H(x, y, ϑ,Dxϑ, ∂yϑ,D2
xϑ) = 0 in O

ϑ = 1 on ∂1O
−∂yϑ = 0 on ∂2O.

It should be mentioned that—similar to [14]—in this paper we charac-
terize the domain of controllability with arbitrary positive probability without
specifying the exact probability of controllability. We conjecture that it will
be possible to extend the approach introduced in this paper to obtain such a
specific characterization, similar to how [10] extends [14]. However, due to the
fact that the treatment of the Zubov problem with mixed boundary conditions
covered in this paper already requires a very involved analysis, we decided to
postpone this extension to a later publication, see also Remark 2.2.

The paper is organized as follows: in Sect. 2 we introduce the setting and
the main assumptions. Section 3 is devoted to the study of some properties of
the domain of attraction. In Section 4 is defined our level set function v as the
value function associated with an optimal control problem with a maximum
cost and the domain of attraction is characterized as a sub-level set of v. In
Sect. 5 the domain of attraction is characterized by the viscosity solution of
second order nonlinear PDE with mixed Dirichlet–Neumann boundary condi-
tions. A comparison principle for bounded viscosity sub- and super-solution of
this problem is provided in Sect. 6.
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2. Setting

Let be given a probability space (Ω,F , P), with a filtration {Ft}t≥0 satisfy-
ing the canonical assumptions (F0 contains all the negligible sets, it is right-
continuous, i.e Ft = Ft+ :=

⋂
s>t Fs and it is left-continuous, i.e Ft = Ft− :=

σ(
⋃

s<t Fs)) and a p-dimensional Brownian motion W (·) adapted to {Ft}t≥0.
We consider the following system of stochastic differential equations

(SDE’s) in R
d (d ≥ 1){

dX(t) = b(X(t), u(t))dt + σ(X(t), u(t))dW (t) t > 0, x ∈ R
d,

X(0) = x
(2.1)

where u ∈ U , and U denotes the set of F-progressively measurable processes
taking values in a compact set U ⊂ R

m. The following classical assumption
will be considered for the coefficients b and σ.

(H1) b : R
d × U → R

d and σ : R
d × U → R

d×p are bounded and Lipschitz
continuous in their first arguments in the following sense: there exist
L ≥ 0 such that for every x, y ∈ R

d and u ∈ U

|b(x, u) − b(y, u)| + |σ(x, u) − σ(y, u)| ≤ L|x − y|.

It is well-known (see for instance [32, Theorem 3.1]) that, under these assump-
tions, for any choice of the control u ∈ U and any initial position x ∈ R

d there
exists a unique strong solution of Eq. (2.1). We will denote this solution by
Xu

x (·).
By T ⊂ R

d we denote a target set for the system, i.e., a nonempty and
compact set towards which we want to asymptotically drive the trajectories.
The open set C ⊆ R

d represents the state constraints for system (2.1), i.e., the
set where we want to maintain the state Xx(t) with a positive probability for
all t ≥ 0, cf. the definition of the set DT ,C below. We assume that T ⊂ C since
the other cases are either trivial or can be studied in a similar way. Note that
this implies that for r small enough one has Tr := {x ∈ R

d : d(x, T ) ≤ r} ⊂ C,
where d(·, T ) denotes the positive Euclidean distance to T . We impose the
following assumptions on the target.

(H2) (i) T is viable for (2.1): for any x ∈ T there exists u ∈ U such that

Xu
x (t) ∈ T ∀t ≥ 0 a.s.;

(ii) T is locally exponentially stabilizable in probability for (2.1): there
exist positive constants r, λ such that for every ε > 0, there exists a
Cε > 0 such that for every x ∈ Tr there is a control u ∈ U for which
one has

P

[
sup
t≥0

d(Xu
x (t), T )eλt ≤ Cεd(x, T ), Xu

x (t) ∈ C ∀t ≥ 0
]

≥ 1 − ε. (2.2)

Remark 2.1. We point out that assumption (H2) implies that for any x ∈ Tr

sup
u∈U

P

[
lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

]
= 1.
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Indeed, for any ε > 0 and for suitable positive constants λ and Cε, the local
exponentially stabilizability implies the existence of a control u ∈ U such that

(1 − ε) ≤ P

[
sup
t≥0

d(Xu
x (t), T )eλt ≤ Cεd(x, T ), Xu

x (t) ∈ C ∀t ≥ 0
]

≤ P

[
lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

]
,

and the result follows by the arbitrariness of ε. We also note that without loss
of generality we may assume that r > 0 in (H2)-(ii) is so small that Tr ⊂ C.

Aim of this work is to characterize the set DT ,C of initial states x ∈ R
d

which can be driven by an admissible control to the target T with positive
probability:

DT ,C :=
{

x ∈ R
d : ∃u ∈ U s.t.

P

[
lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

]
> 0
}

=
{

x ∈ R
d : sup

u∈U
P

[
lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

]
> 0
}

.

The set DT ,C is called the domain of asymptotic controllability (with positive
probability) of T .

Remark 2.2. We conjecture that the approach in this paper can be extended
to a characterization of the sets{

x ∈ R
d : sup

u∈U
P

[
lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

]
= p

}

for given probabilities p ∈ [0, 1], similar to how [10] extends [14]. However, in
order no to overload this paper we decided to postpone this extension to a
future paper.

3. Some results on the set DT ,C

For any x ∈ R
d and u ∈ U we introduce the random hitting time τ(x, u) as

the first time instant when the trajectory starting at point x and driven by
the control u hits the set Tr, that is for any ω ∈ Ω

τ(x, u)(ω) := inf
{
t ≥ 0 : Xu

x (t)(ω) ∈ Tr

}
. (3.1)

Remark 3.1. We will assume that the set of admissible control laws U sat-
isfies the stability under concatenation and stability under measurable selec-
tion properties. The set U satisfies the condition of stability under concatena-
tion if for any stopping time τ and any two control processes u1, u2 ∈ U the
τ -concatenation of u1 and u2, defined by

u1⊕τu2(ω, t) :=
{

u1(ω, t) if t ≤ τ
u2(ω, t − τ) otherwise,
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is an admissible control. For the condition of stability under measurable se-
lection we require that for all stopping times τ and all maps Φ : Ω → U ,
measurable with respect to the corresponding σ-algebras, there exists a ν ∈ U
such that

Φ(ω)(t) = ν(t) for Leb × P-almost all (t, ω) such that t ≥ τ(ω).

These two properties guarantee the validity of the Dynamic Programming
Principle, Lemma 5.1, under standard regularity assumptions on the coeffi-
cients of the problem (see [22]). In our context, such properties also play an-
other important role in ensuring the controllability of the system. Indeed, for
every y ∈ Tr the exponential stabilizability property guarantees the existence
of a control uy ∈ U such that (2.2) holds. Intuitively, this means that once a
path associated with a control u hits the boundary of Tr at time τ := τ(x, u),
we can control it to T by switching to the process uX(τ) := uXu

x (τ(x,u)). How-
ever, this construction is only possible if the process

ū(t) = u(t)1{t≤τ} +
(
u(t)1{τ=+∞} + uX(τ)(t − τ)1{τ<∞}

)
1{t>τ} (3.2)

belongs to U and, in general, this cannot be guaranteed in our framework. As
a remedy the following construction can be used. Let us define the map

Φ̄ : ω �→
{

uXu
x (τ(x,u))(·) if ω ∈ {ω ∈ Ω : τ(x, u)(ω) < +∞}

u(·) otherwise.

We can observe that {ω ∈ Ω : τ(x, u)(ω) < +∞} is Fτ -measurable and then
the map Φ̄ is measurable from (Ω,Fτ ) to (U ,B(U)) so, if stability under mea-
surable selection holds, there exists ν ∈ U such that

Φ̄(ω)(t) = ν(t) for Leb × P-almost all (t, ω) such that t ≥ τ(x, u)(ω).

Under the assumption of stability under concatenation, we also have that the
control u ⊕τ(x,u) ν belongs to U , so that it can be finally used to steer the
system to T . With a slight abuse of notation we will still denote in the paper
such a control by means of expression (3.2), but the reader should always keep
in mind this construction. For a discussion of existence results for control laws
satisfying the stability properties just described we refer to [9, Section 2].

Our goal is now to establish a relation between the set DT ,C and the
hitting time τ(x, u). To this end, we start with the following preliminary result.
Therein and in the rest of the paper we use the notation Xu

τ := Xu
x (τ(x, u)).

Lemma 3.2. Let assumptions (H1)–(H2) be satisfied. Then there exist positive
constants λ,C such that if

sup
u∈U

P [τ(x, u) < +∞, Xu
x (t) ∈ C ∀t ∈ [0, τ(x, u)]] > 0

where τ(x, u) is the hitting time from (3.1), then

sup
u∈U

P

[
τ(x, u)<+∞, Xu

x (t)∈C ∀t ≥ 0 , sup
t≥0

d(Xu(τ(x,u)+·)
Xu

τ
(t), T )eλt ≤C

]
> 0.
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Proof. The statement is proved using the exponential stabilizability assump-
tion (H2)-(ii). By assumption there exists ν ∈ U such that P[τ(x, ν) < +∞ and
Xν

x (t) ∈ C,∀t ∈ [0, τ(x, ν)]] > 0. Moreover, thanks to (H2)-(ii), constants
λ,C > 0 can be found such that for any y ∈ Tr, there is uy ∈ U with

P

[
sup
t≥0

d(Xuy
y (t), T )eλt ≤ C, Xuy

y (t) ∈ C ∀t ≥ 0
]

≥ 1
2
.

Therefore, abbreviating τ = τ(x, ν) = τ(x, ν̄) and defining the control

ν̄(t) := ν(t)1{t≤τ} +
(
ν(t)1{τ=+∞} + u

Xν
τ
(t − τ)1{τ<∞}

)
1{t>τ},

see Remark 3.1, one obtains

P

[
τ(x, ν̄) < +∞, X ν̄

x (t) ∈ C ∀t ≥ 0, sup
t≥0

d(X ν̄(τ+·)
X ν̄

τ
(t), T )eλt ≤ C

]

= P

[
τ(x, ν̄) < +∞, X ν̄

x (t) ∈ C ∀t ∈ [0, τ(x, ν̄)], X
ν̄(τ+·)
X ν̄

τ
(t) ∈ C ∀t ≥ 0,

sup
t≥0

d(X ν̄(τ+·)
X ν̄

τ
(t), T )eλt ≤ C

]

=
∫ +∞

0

∫
d(y,T )=r

P [Xν
τ = y, τ(x, ν) = s, Xν

x (t) ∈ C ∀t ∈ [0, τ(x, ν)]]

× P

[
Xuy

y (t) ∈ C ∀t ≥ 0, sup
t≥0

d(Xuy
y (t), T )eλt ≤ C

∣∣∣∣Xν
s = y

]
dyds

≥ 1
2

∫ +∞

0

∫
d(y,T )=r

P [Xν
τ = y, τ(x, ν) = s, Xν

x (t) ∈ C ∀t ∈ [0, τ(x, ν)]] dyds

=
1
2

P [τ(x, ν) < +∞, Xν
x (t) ∈ C ∀t ∈ [0, τ(x, ν)]] > 0.

�

Thanks to the previous result, the following alternative characterization
of DT ,C is obtained.

Proposition 3.3. Let assumptions (H1)–(H2) be satisfied. Then

DT ,C =
{

x ∈ R
d : sup

u∈U
P [τ(x, u) < +∞, Xu

x (t) ∈ C ∀t ∈ [0, τ(x, u)]] > 0
}

.

Proof. The “⊆” inclusion is immediate since for every u ∈ U one has{
ω ∈ Ω : lim

t→+∞
d(Xu

x (t), T ) = 0, Xu
x (t) ∈ C ∀t ≥ 0

}

⊆ {ω ∈ Ω : τ(x, u) < +∞, Xu
x (t) ∈ C ∀t ∈ [0, τ(x, u)]} .

For the converse inclusion, consider x ∈ R
d with

sup
u∈U

P [τ(x, u) < +∞, Xu
x (t) ∈ C ∀t ∈ [0, τ(x, u)]] > 0.
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Then, Lemma 3.2 yields

sup
u∈U

P

[
τ(x, u) < +∞, sup

t≥0
d(Xu(τ(x,u)+·)

Xu
τ

(t), T )eλt ≤ C ,

Xu
x (t) ∈ C ∀t ≥ 0

]
> 0

which immediately implies

sup
u∈U

P

[
Xu

x (t) ∈ C ∀t ≥ 0, lim
t→∞

d(Xu(τ(x,u)+·)
Xu

τ
(t), T ) = 0

]
> 0

and thus x ∈ DT ,C . �

Proposition 3.4. Assume assumptions (H1)–(H2) be satisfied. Then DT ,C is an
open set.

Proof. Let us start observing that for any x ∈ DT ,C , there is a time T > 0 and
a control ν ∈ U such that

P

[
d(Xν

x (T ), T ) ≤ r

2
, Xν

x (t) ∈ C ∀t ≥ 0
]

=: η > 0.

Thanks to assumptions (H1), one has that for any ε > 0

lim
|x−y|→0

P

[
sup

t∈[0,T ]

∣∣Xν
x (t) − Xν

y (t)
∣∣ > ε

]
= 0,

therefore we can find δη > 0 such that for any x, y such that |x − y| ≤ δη

P

[
sup

t∈[0,T ]

∣∣Xν
x (t) − Xν

y (t)
∣∣ > ε

]
≤ η

2
.

It follows that for any fixed ε > 0 if y ∈ B(x, δη), the set Ω1 ⊂ F defined by

Ω1 :=

{
ω ∈ Ω : d(Xν

x (T )(ω), T ) ≤ r

2
, Xν

x (t)(ω) ∈ C ∀t ≥ 0 ,

sup
t∈[0,T ]

∣∣Xν
x (t) − Xν

y (t)
∣∣(ω) ≤ ε

}

satisfies

P[Ω1] = P

[
d(X ū

x (T ), T ) ≤ r

2
, X ū

x (t) ∈ C ∀t ≥ 0 , sup
t∈[0,T ]

∣∣X ū
x (t) − X ū

y (t)
∣∣ ≤ ε

]

= 1 − P

[(
d(Xν

x (T ), T ) ≤ r

2
, Xν

x (t) ∈ C ∀t ≥ 0
)C

∪
(

sup
t∈[0,T ]

∣∣Xν
x (t) − Xν

y (t)
∣∣ > ε
)]

≥ 1 − P

[(
d(Xν

x (T ), T ) ≤ r

2
, Xν

x (t) ∈ C ∀t ≥ 0
)C]
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− P

[
sup

t∈[0,T ]

∣∣Xν
x (t) − Xν

y (t)
∣∣ > ε

]

≥ 1 − 1 + η − η

2
=

η

2
> 0.

For any ω ∈ Ω1, since Xν
x (t) ∈ C,∀t ≥ 0 and C is an open set one has

δ(x, ν)(ω) := inf
t∈[0,T ]

d(Xν
x (t), CC)(ω) > 0.

and

sup
t∈[0,T ]

|Xν
x (t) − Xν

y (t)|(ω) < δ(x, ν)(ω) ⇒ Xν
y (t)(ω) ∈ C, ∀t ∈ [0, T ].

Furthermore it is also possible to prove that there exist M > 0 and Ω̃1 ⊆ Ω1

with P[Ω̃1] > 0 such that

∀ω ∈ Ω̃1 δ(x, ν)(ω) > M. (3.3)

Indeed defined

Bn :=
{

ω ∈ Ω1 : δ(x, ν)(ω) ∈
[

1
n + 1

,
1
n

)}

one has

0 < P[Ω1] = P

⎡
⎣⋃

n≥0

Bn

⎤
⎦ =
∑
n≥0

P[Bn].

It means that there exists n̄ ∈ N such that P[Bn̄] > 0 and defined

Ω̃1 :=
{

ω ∈ Ω1 : δ(x, ν)(ω) ≥ 1
n̄ + 1

}

we have P[Ω̃1] ≥ P[Bn̄] > 0. We have now all the elements necessary for
concluding the proof. Taking ε ≤ min{M/2, r/2} we have that for any ω ∈ Ω̃1

Xν
y (t)(ω) ∈ C,∀t ∈ [0, T ]

and

d(Xν
y (T ), T )(ω) ≤ d(Xν

x (T ), T )(ω) + |Xν
x (T ) − Xν

y (T )|(ω) ≤ r

2
+ ε ≤ r

that is τ(y, ν)(ω) ≤ T .
In conclusion we have proved that there exists a control ν ∈ U such that

for any y ∈ B(x, δη)

P
[
τ(y, ν) < +∞, Xν

y (t) ∈ C ∀t ∈ [0, τ(y, ν)]
]

> 0,

that means y ∈ DT ,C . �

4. The “level set” function v

We are now going to define a function v that we will use in order to characterize
the domain DT ,C as a sub-level set. Let us start introducing two functions
g : R

d × U → R and h : R
d → [0,+∞] such that
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(H3) there exist constants Lg, Mg and g0 > 0 such that for any x, x′ ∈ R
d,

u ∈ U and T , Tr from (H2)

|g(x, u) − g(x′, u)| ≤ Lg|x − x′|;
g(x, u) ≤ Mg;
g ≥ 0 and g(x, u) = 0 ⇔ x ∈ T ;

and

inf
u∈U

g(x, u) ≥ g0 > 0, ∀x ∈ R
d\Tr; (4.1)

(H4) h is a locally Lipschitz continuous function in C such that
(I) h(x) = +∞ ⇔ x /∈ C;

h(xn) → +∞, ∀xn → x /∈ C
h(x) = 0, ∀x ∈ T ;

(II) there exists a constant Lh ≥ 0 such that∣∣∣e−h(x) − e−h(x′)
∣∣∣ ≤ Lh|x − x′| (4.2)

for any x, x′ ∈ R
d.

Let the function v : R
d → [0, 1] be defined by:

v(x) := inf
u∈U

{
1 + E

[
sup
t≥0

(
−e−
∫ t
0 g(Xu

x (s),u(s))ds−h(Xu
x (t))
)]}

. (4.3)

We will now show that the function v can be used in order to characterize the
domain of controllability DT ,C . In particular, we are going to prove that DT ,C

consists of the set of points x where v is strictly lower than one.

Theorem 4.1. Let assumptions (H1)–(H4) be satisfied, then

x ∈ DT ,C ⇔ v(x) < 1.

Proof. “⇐” We show v(x) = 1 for every x /∈ DT ,C . If x /∈ DT ,C then Proposi-
tion 3.3 implies

sup
u∈U

P [τ(x, u) < +∞, Xu
x (t) ∈ C ∀t ∈ [0, τ(x, u)]] = 0.

This means that for any control u ∈ U and almost every realization ω ∈ Ω

τ(x, u)(ω) = +∞ or ∃t̄ ∈ [0, τ(x, u)(ω)] : Xu
x (t̄)(ω) /∈ C.

On the one hand, if τ(x, u)(ω) = +∞, �t such that Xu
x (t)(ω) ∈ Tr. By as-

sumption (H3) it follows that

g(Xu
x (t), u(t))(ω) > g0, ∀t ≥ 0

with g0 > 0, that is

e−
∫ t
0 g(Xu

x (s),u(s))ds−h(Xu
x (t))(ω) ≤ e−g0t−h(Xu

x (t))(ω) ∀t ≥ 0.

On the other hand, if Xu
x (t̄)(ω) /∈ C for a certain t̄ ∈ [0, τ(x, u)(ω)], one has

h(Xu
x (t̄))(ω) = +∞. In both cases, for every u ∈ U the argument of the

expectation in (4.3) almost surely has the value 0, implying
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1 + E

[
sup
t≥0

(
−e−
∫ t
0 g(Xu

x (s),u(s))ds−h(Xu
x (t))
)]

= 1

for every u ∈ U from which v(x) = 1 follows by the definition of v.
“⇒” We will prove that supu∈U E[inft≥0 e−

∫ t
0 g(Xu

x (s),u(s))ds−h(Xu
x (t))] > 0

for every x ∈ DT ,C . Let us start observing that, since there exists a control
ν ∈ U such that

P [τ(x, ν) < +∞, Xν
x (t) ∈ C ∀t ∈ [0, τ(x, ν)]] > 0,

then there exist T,M > 0 large enough such that for

Ωu
1 :=
{

ω ∈ Ω : τ(x, u) < T, max
t∈[0,τ(x,u)]

h(Xu
x (t)) ≤ M

}

one has δ := supu∈U P[Ωu
1 ] > 0. Indeed, defining

Ω∞ := {ω ∈ Ω : τ(x, ν) < +∞, Xν
x (t) ∈ C ∀t ∈ [0, τ(x, ν)]}

= {ω ∈ Ω : τ(x, ν) < +∞, h(Xu
x (t)) < ∞ ∀t ∈ [0, τ(x, ν)]}

and

Ωn :=
{

ω ∈ Ω : τ(x, u) < n, max
t∈[0,τ(x,u)]

h(Xu
x (t)) ≤ n

}

one has

0 < P[Ω∞] = P

⎡
⎣⋃

n≥0

Ωn

⎤
⎦ ≤
∑
n≥0

P[Ωn].

Hence, there exists n̄ ∈ N such that P[Ωn̄] > 0 and thus supu∈U P[Ωu
1 ] > 0 for

T = M = n̄.
Moreover, thanks to the assumption of local exponential stabilizability in

probability, there exist constants λ,C > 0 such that for any y ∈ Tr

sup
u∈U

P[Au
y ] ≥ 1 − δ

2

for Au
y := {ω ∈ Ω : supt≥0 d(Xu

y (t), T )eλt ≤ C, Xu
y (t) ∈ C ∀t ≥ 0}. In what

follows we will denote by τ = τ(x, u) the hitting time (3.1) if no ambiguity
arises. For any u ∈ U one has (recall that g ≥ 0):

E

[
inf
t≥0

exp
{

−
∫ t

0

g(Xu
x (ξ), u(ξ))dξ − h(Xu

x (t))
}]

≥ E

[
exp
{

−
∫ +∞

0

g(Xu
x (ξ), u(ξ))dξ − max

ξ∈[0,+∞)
h(Xu

x (ξ))
}]

≥
∫
Ωu

1

exp
{

−
∫ +∞

0

g(Xu
x (ξ), u(ξ))dξ − max

ξ∈[0,+∞)
h(Xu

x (ξ))
}

dP

≥
∫
Ωu

1

exp
{

−
∫ τ

0

g(Xu
x (ξ), u(ξ))dξ −

∫ +∞

τ

g(Xu
x (ξ), u(ξ))dξ

− max
ξ∈[0,τ ]

h(Xu
x (ξ)) ∨ max

ξ∈[τ,+∞)
h(Xu

x (ξ))
}

dP
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≥
∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]
e−MgT−M

× E

[
exp
{

−
∫ +∞

τ

g(Xu
x (ξ), u(ξ))dξ− max

ξ∈[τ,+∞)
h(Xu

x (ξ))
}∣∣∣∣Xu

τ =y, τ=s,
ω∈Ωu

1

]
dyds

≥ e−MgT−M

∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]

× E

[
e

−
∫+∞
0 g(Xu(s+·)

y (ξ),u(s+ξ))dξ− max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

∣∣∣∣Xu
s = y

]
dyds.

Here we are using the notation a ∨ b := max(a, b).
Therefore, applying the Lipschitz continuity of g and h, one has

e−MgT−M sup
u∈U

∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]

×E

[
e

−
∫+∞
0 g(Xu(s+·)

y (ξ),u(s+ξ))dξ− max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

∣∣∣∣Xu
s = y

]
dyds

≥ e−MgT−M sup
u∈U

∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]

×E

[
χAu

y
e

−
∫+∞
0 g(Xu(s+·)

y (ξ),u(s+ξ))dξ− max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

∣∣∣∣Xu
s = y

]
dyds

≥ e−MgT−M sup
u∈U

∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]

×E

[
χAu

y
e

−Lg

∫+∞
0 d(Xu(s+·)

y (ξ),T )dξ− max
ξ∈[0,+∞)

Ld(Xu(s+·)
y (ξ),T )

∣∣∣∣Xu
s = y

]
dyds

≥ e−MgT−M sup
u∈U

∫ T

0

∫
d(y,T )=r

P

[
Xu

τ = y, τ = s, τ < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]

×E

[
χAu

y
e

−Lg

∫+∞
0 Ce−λξdξ− max

ξ∈[0,+∞)
LCe−λξ

∣∣∣∣Xu
s = y

]
dyds

≥ e−MgT e−Me− CLg
λ e−LC sup

u∈U

∫ T

0

∫
y∈Tr

E

[
χAu

y

∣∣∣∣Xu
s = y

]

×P

[
Xu

τ = y, τ = s, τ(x, u) < T, max
ξ∈[0,τ ]

h(Xu
x (ξ)) ≤ M

]
dyds

= e−MgT e−Me− CLg
λ e−LC sup

u∈U
P
[
Ωu

1 ∩ Au
Xu

τ

]
> 0

where for the last inequality we used the fact that (thanks again to the argu-
ments in Remark 3.1) one has supu∈U P[Ωu

1 ∩ Au
Xu

τ
] > 0. �

Remark 4.2. The definition of the function v is based on a similar construction
used in [19] for a deterministic controlled setting. That paper shows that in the
deterministic setting the domain of controllability can alternatively be char-
acterized by a second function, whose definition, translated to the stochastic
framework, would be

V (x) = inf
u∈U

E

[
sup
t≥0

∫ t

0

g(Xu
x (s), u(s))ds + h(Xu

x (t))
]

. (4.4)
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A little computation using Jensen’s inequality shows the relation{
x ∈ R

d : V (x) < +∞
}

⊆
{
x ∈ R

d : v(x) < 1
}

.

Since, however, it is not clear whether the opposite inclusion holds in the
stochastic setting, we will exclusively work with v in the remainder of this
paper.

5. The PDE characterization of DT ,C

After having shown that DT ,C can be expressed as a sub-level set of v, we now
proceed to the second main result of this paper, the PDE characterization of v
and thus of DT ,C . In order to derive the PDE which is solves by v, we need to
establish a dynamic programming principle (DPP) for v. Unfortunately, how-
ever, the presence of the supremum inside the expectation in the definition of
v prohibits the direct use of the standard dynamic programming techniques.
In particular, it is possible to verify that v does not satisfy a fundamental con-
catenation property that is usually the main tool necessary for the derivation
of the associated partial differential equation. To avoid this difficulty, we follow
the classical approach to reformulate the problem by adding a new variable
y ∈ R that, roughly speaking, keeps track of the running maximum (we refer
to [6,7] for general results regarding this kind of problems). For this reason we
introduce the function ϑ : R

d × [−1, 0] → [0, 1] defined as follows:

ϑ(x, y) := inf
u∈U

{
1 + E

[
sup
t≥0

(
−e−
∫ t
0 g(Xu

x (s),u(s))ds−h(Xu
x (t))
)

∨ y

]}
. (5.1)

We point out that

ϑ(x,−1) = v(x) ∀x ∈ R
d,

therefore ϑ can still be used for characterizing the set DT ,C and one has

DT ,C =
{
x ∈ R

d : ϑ(x,−1) < 1
}

. (5.2)

Furthermore, it follows from Theorem 4.1 that

ϑ(x, y) =
{

1 + y on T × [−1, 0]
1 on (DT ,C)C × [−1, 0]. (5.3)

In what follows we will also denote

G(t, x, u) :=
∫ t

0

g(Xu
x (s), u(s))ds,

so that using this notation the function ϑ reads

ϑ(x, y) = inf
u∈U

{
1 + E

[
sup
t≥0

(
−e−G(t,x,u)−h(Xu

x (t))
)

∨ y

]}
.

For the new state variable y we can define the following “maximum dynamics”:

Y u
x,y(·) := eG(·,x,u)

(
y ∨ sup

t∈[0,· ]

(
−e−G(t,x,u)−h(Xu

x (t))
))

(5.4)
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We remark that Y u
x,y(t) ∈ [−1, 0] for any u ∈ U , t ≥ 0 and (x, y) ∈ R

d ×
[−1, 0].Moreover one has

1 + y ≤ ϑ(x, y) ≤ 1, ∀x ∈ R
d, y ∈ [−1, 0]. (5.5)

We are now able to prove a DPP for the function ϑ. Since no information
is available at the moment on the regularity of ϑ, we state the weak version of
the DPP presented in [8] involving the semi-continuous envelopes of ϑ. Let us
denote by ϑ∗ and ϑ∗ respectively the upper and lower semi-continuous envelope
of ϑ. One has:

Lemma 5.1. Let assumptions (H1), (H3) and (H4) be satisfied. Then for any
finite stopping time θ ≥ 0 measurable with respect to the filtration, one has the
dynamic programming principle (DPP)

inf
u∈U

E

[
e−G(θ,x,u)ϑ∗(Xu

x (θ), Y u
x,y(θ))) +

∫ θ

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]
≤ ϑ(x, y)

≤ inf
u∈U

E

[
e−G(θ,x,u)ϑ∗(Xu

x (θ), Y u
x,y(θ))) +

∫ θ

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]
.

For a rigorous proof of this result we refer to [8]. Here, we only show the
main steps that lead to our formulation of the DPP in the non-controlled and
continuous case.

Sketch of the proof of Lemma 5.1. For any finite stopping time θ ≥ 0 one has

ϑ(x, y) − 1

= E

[
sup
t≥0

(− e−G(t,x)−h(Xx(t))) ∨ y

]

= E

[
sup
t≥θ

(− e−G(t,x)−h(Xx(t))) ∨ sup
t∈[0,θ]

(− e−G(t,x)−h(Xx(t))) ∨ y

]

= E

[
e−G(θ,x)sup

t≥θ

(− e−
∫ t
θ

g(Xx(s))ds−h(Xx(t))) ∨ sup
t∈[0,θ]

(− e−G(t,x)−h(Xx(t))) ∨ y

]

= E

[
e−G(θ,x)

{
sup
t≥θ

(− e−
∫ t
θ

g(Xx(s))ds−h(Xx(t))) ∨ Yx,y(θ)

}]

where the property of the maximum (a · b) ∨ c = a · (b ∨ c
a ), ∀a, b, c ∈ R, a > 0,

is used. Applying now the tower property of the expectation one obtains

ϑ(x, y)

= 1 + E

[
E

[
e−G(θ,x)

{
sup
t≥0

(
− e−G(t,Xx(θ))−h(XXx(θ)(t))

)
∨ Yx,y(θ)

} ∣∣∣∣Fθ

]]

= 1 + E

[
e−G(θ,x)

E

[
sup
t≥0

(
− e−G(t,Xx(θ))−h(XXx(θ)(t))

)
∨ Yx,y(θ)

∣∣∣∣Fθ

]]

= 1 + E

[
e−G(θ,x) (ϑ(Xx(θ), Yx,y(θ)) − 1)

]

and the result just follows observing that 1−e−G(θ,x) =
∫ θ

0
g(Xx(s))e−G(s,x)ds.

�
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Using the DPP from Lemma 5.1, we can now show that ϑ is actually
continuous.

Proposition 5.2. Let assumptions (H1)–(H4) be satisfied. Then the function ϑ
from (5.1) is continuous in R

d+1.

Proof. The continuity with respect to y is trivial and one has

|ϑ(x, y) − ϑ(x, y′)| ≤ |y − y′|.
For what concerns the continuity with respect to x, in (DT ,C)C and T there
is nothing to prove thanks to (5.3).

We start by proving the continuity at the boundary of T . Let x0 ∈ ∂T .
We aim to prove that for any ε there exists δ > 0 such that for x ∈ B(x0, δ)
one has

ϑ(x, y) − ϑ(x0, y) = ϑ(x, y) − (1 + y) ≤ ε. (5.6)

For δ > 0 small enough we can assume that B(x0, δ) ⊂ Tr. Hence, for this
choice of δ there exists λ > 0 such that for any ε > 0 there exists a constant
Cε and a control ν such that one has

P[AC
x ] ≤ ε

2

for Ax :=
{

ω ∈ Ω : sup
t≥0

d(Xν
x (t), T )eλt ≤ Cεd(x, T ) and Xν

x (t) ∈ C,∀t ≥ 0
}

.

From the definition of ϑ and the monotonicity of the exponential one has

ϑ(x, y) − (1 + y)

= ϑ(x, y) − (1 + (−1) ∨ y
)

≤ E

[
sup
t≥0

(−e−G(t,x,ν)−h(Xν
x (t))) ∨ y − ((−1) ∨ y

)]

≤ E

[
1 + sup

t≥0
(−e−G(t,x,ν)−h(Xν

x (t)))

]

= E

[
1 − e− supt≥0(G(t,x,ν)+h(Xν

x (t)))
]

=

∫
Ax

1 − e− supt≥0(G(t,x,ν)+h(Xν
x (t)))dP +

∫
AC

x

1 − e− supt≥0(G(t,x,ν)+h(Xν
x (t)))dP

≤
∫

Ax

1 − e− supt≥0(G(t,x,ν)+h(Xν
x (t)))dP +

ε

2

for every T > 0. Therefore in order to conclude (5.6) it will be sufficient to
estimate the integral taking into account the events in Ax.

For sufficiently small δ > 0 we obtain Cεd(x, T ) < r and thus Xν
x (t, ω) ∈

Tr for all ω ∈ Ax, all t ≥ 0 and all x ∈ B(x0, δ). Thus, since Tr is a compact
subset of C, the function h is Lipschitz with constant L along all these trajec-
tories. Since g is Lipschitz, too, and since g(ξ, u) = h(ξ) = 0 ∀ξ ∈ T , u ∈ U ,
for any t ≥ 0 one has

g(Xν
x (t), ν(t)) ≤ Lgd(Xν

x (t), T ) and h(Xν
x (t)) ≤ Ld(Xν

x (t), T ).
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Using these inequalities and the definition of Ax, we obtain∫
Ax

1 − e− supt≥0(G(t,x,ν)+h(Xν
x (t)))dP

≤
∫

Ax

1 − e−
∫+∞
0 g(Xν

x (t),ν(t))dt−supt≥0 h(Xν
x (t)))dP

≤
∫

Ax

1 − e−
∫+∞
0 Lgd(Xν

x (t),T )dt−supt≥0 Ld(Xν
x (t),T )dP

≤
∫

Ax

1 − e−
∫+∞
0 LgCεd(x,T )e−λtdt−supt≥0 LCεd(x,T )e−λt

dP

≤
∫

Ax

1 − e−(Lg/λ+L)CεδdP ≤ 1 − e−(Lg/λ+L)Cεδ.

Now, choosing δ > 0 such that(
Lg

λ
+ L

)
Cεδ ≤ − ln(1 − ε/2)

we have

1 − e−(Lg/λ+L)Cεδ ≤ ε/2

and thus

ϑ(x, y) − (1 + y) ≤
∫

Ax

1 − e− supt≥0(G(t,x,ν)+h(Xν
x (t)))dP +

ε

2
≤ ε,

for any x with d(x, T ) < δ, which proves (5.6) and thus continuity at ∂T .
The proof of the theorem is concluded proving the continuity in R

d\T . We
point out that we already know that ϑ(x, y) = 1 + y in (DT ,C)C , however the
proof that follows is independent of whether x ∈ DT ,C or not. Let x ∈ DT ,C\T
and ξ ∈ B(x, δ). From the DPP (Lemma 5.1), for any y ∈ [−1, 0] and any
finite stopping time θ, there exists a control ν = νε ∈ U such that

ϑ(ξ, y) − ϑ(x, y) ≤ E

[
e−G(θ,ξ,ν)ϑ∗(Xν

ξ (θ), Y ν
ξ,y(θ)) − e−G(θ,ξ,ν)

−e−G(θ,x,ν)ϑ∗(Xν
x (θ), Y ν

x,y(θ)) + e−G(θ,x,ν)
]

+
ε

4
.

In order to prove the result we will use the continuity at T we proved above.
We can in fact state that for any ε > 0 there exists ηε > 0 such that

ϑ∗(z, y) ≤ 1 + y +
ε

4
if d(z, T ) ≤ ηε.

Let T ≥− ln(ε/4)
g∗ and 0 < R ≤ ε/4

Lh+LgT where g∗ := inf{x:d(x,T )≥ηε/2} g(x, ν) > 0

and Lh, Lg are, respectively, the Lipschitz constant of e−h(x) and g. Denoting

E :=

{
ω ∈ Ω : sup

t∈[0,T ]

|Xν
x (t) − Xν

ξ (t)| ≥ R

}
,
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under assumption (H1) we can choose δ sufficiently small such that P[E] ≤ ε
8 .

Then (recalling that ϑ∗, ϑ∗ ∈ [0, 1]), we have∫
E

(
e−G(θ,ξ,ν)ϑ∗(Xν

ξ (θ), Y ν
ξ,y(θ)) − e−G(θ,ξ,ν)

− e−G(θ,x,ν)ϑ∗(Xν
x (θ), Y ν

x,y(θ)) + e−G(θ,x,ν)
)
dP

≤
∫

E

(
e−G(θ,ξ,ν) + e−G(θ,x,ν)

)
dP ≤ 2P[E] ≤ ε

4
.

(5.7)

Let us now define the stopping time

τ := inf {t ≥ 0 : d(Xν
x (t), T ) ≤ ηε}

with the convention that τ(ω) = T if d(Xν
x (t)(ω), T ) > ηε,∀t ∈ [0, T ] (this

ensures the finiteness of the stopping time needed for the DPP). Thanks to
(5.7) (which holds for an arbitrary stopping time), we can write

E

[
e−G(τ,ξ,ν)ϑ∗(Xν

ξ (τ), Y ν
ξ,y(τ)) − e−G(τ,ξ,ν)

−e−G(τ,x,ν)ϑ∗(Xν
x (τ), Y ν

x,y(τ)) + e−G(τ,x,ν)
]

≤ ε

4
+
∫

EC

· · · =
ε

4
+
∫

EC∩{τ<T}
· · · +
∫

EC∩{τ=T}
· · ·

and we will provide estimates separately for the last two integrals.
In EC ∩ {τ = T}, using again ϑ∗, ϑ

∗ ∈ [0, 1], we get∫
EC∩{τ=T}

(
e−G(T,ξ,ν)ϑ∗(Xν

ξ (T ), Y ν
ξ,y(T )) − e−G(T,ξ,ν)

− e−G(T,x,ν)ϑ∗(Xν
x (T ), Y ν

x,y(T )) + e−G(T,x,ν)
)
dP

≤
∫

EC∩{τ=T}
e−G(T,x,ν)dP ≤ e−g∗T ≤ ε

4

thanks to the choice of T . In EC ∩ {τ < T} we have∫
EC∩{τ<T}

(
e−G(τ,ξ,ν)ϑ∗(Xν

ξ (τ), Y ν
ξ,y(τ)) − e−G(τ,ξ,ν)

− e−G(τ,x,ν)ϑ∗(Xν
x (τ), Y ν

x,y(τ)) + e−G(τ,x,ν)
)
dP

≤
∫

EC∩{τ<T}

{
e−G(τ,ξ,ν)

(
1 + Y ν

ξ,y(τ) +
ε

4

)
− e−G(τ,ξ,ν)

− e−G(τ,x,ν)
(
1 + Y ν

x,y(τ)
)

+ e−G(τ,x,ν)
}

dP

=
∫

EC∩{τ<T}

(
e−G(τ,ξ,ν)Y ν

ξ,y(τ) − e−G(τ,x,ν)Y ν
x,y(τ)
)
dP +

ε

4

where we used the fact that, in virtue of (5.5), ϑ∗(x, y) ≥ 1 + y. Recalling
the definition of the variable Y (·) given by (5.4) and because of assumptions
(H3)–(H4) we have
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∫
EC∩{τ<T}

(
e−G(τ,ξ,ν)Y ν

ξ,y(τ) − e−G(τ,x,ν)Y ν
x,y(τ)
)
dP

=
∫

EC∩{τ<T}

{
sup

t∈[0,τ ]

(−e−G(t,ξ,ν)−h(Xν
ξ (t))) ∨ y

− sup
t∈[0,τ ]

(−e−G(t,x,ν)−h(Xν
x (t))) ∨ y

}
dP

≤
∫

EC∩{τ<T}
sup

t∈[0,τ ]

∣∣∣e−G(t,ξ,ν)−h(Xν
ξ (t)) − e−G(t,x,ν)−h(Xν

x (t))
∣∣∣ dP

≤
∫

EC∩{τ<T}
sup

t∈[0,τ ]

e−G(t,ξ,ν)
∣∣∣e−h(Xν

ξ (t)) − e−h(Xν
x (t))
∣∣∣

+ sup
t∈[0,τ ]

e−h(Xν
ξ (t))
∣∣∣e−G(t,ξ,ν) − e−G(t,x,ν)

∣∣∣ dP

≤
∫

EC∩{τ<T}
(Lh + LgT ) sup

t∈[0,T ]

|Xν
ξ (t) − Xν

x (t)|dP ≤ ε

4

thanks to the choice of R. �

Thanks to Lemma 5.1 and the continuity of ϑ, we can finally characterize
ϑ as a solution, in the viscosity sense, of a second order Hamilton–Jacobi–
Bellman equation. To this end, we define the open domain O ⊂ R

d × [−1, 0]
by

O =
{

(x, y) ∈ R
d+1 : −e−h(x) < y < 0

}

and the following two components of its boundary

∂1O :=
{
(x, y) ∈ O : y = 0

}
∂2O :=

{
(x, y) ∈ O : y = −e−h(x), y < 0

}
.

Remark 5.3. We point out that thanks to the relation

ϑ(x, y) = ϑ(x,−e−h(x)) ∀y ≤ −e−h(x)

it is sufficient to determine the values of ϑ in O in order to characterize ϑ in
the whole domain of definition R

d × [−1, 0]. We also remark that ϑ(x, 0) = 1
for any x ∈ R

d.

Let us consider the following Hamiltonian H : R
d×R×R×R

d×R×Sd →
R, with Sd denoting the space of d × d symmetric matrices

H(x, y, r, p, q,Q)

:= sup
u∈U

{
g(x, u)(r − 1) − p · b(x, u) − 1

2
Tr[σσT (x, u)Q] − q g(x, u)y

}
.

(5.8)

The following theorem holds.
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Theorem 5.4. Let assumptions (H1)–(H4) be satisfied. Then ϑ is a continuous
viscosity solution of⎧⎨

⎩
H(x, y, ϑ,Dxϑ, ∂yϑ,D2

xϑ) = 0 in O
ϑ = 1 on ∂1O
−∂yϑ = 0 on ∂2O.

(5.9)

We refer to [16, Definition 7.4] for the definition of viscosity solution for
Eq. (5.9). It is in fact well-known that boundary conditions may have to be
considered in a weak sense in order to obtain existence of a solution. It means
that for the viscosity sub-solution (resp. super-solution) of Eq. (5.9), we will
ask that on the boundary ∂2O the inequality

min
(
H(x, y, ϑ,Dxϑ, ∂yϑ,D2

xϑ),−∂yϑ
)

≤ 0(
resp. max

(
H(x, y, ϑ,Dxϑ, ∂yϑ,D2

xϑ),−∂yϑ
)

≥ 0
)

holds in the viscosity sense. In contrast, the condition on ∂1O is assumed in
the strong sense.

Proof of Theorem 5.4. The boundary condition on ∂1O follows directly by the
definition of ϑ. Let us start proving the sub-solution property.

Let be ϕ ∈ C2,1(O) such that ϑ−ϕ attains a maximum at point (x̄, ȳ) ∈ O
and let us assume ȳ < 0. We need to show

H(x̄, ȳ, ϑ(x̄, ȳ),Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ),D2
xϕ(x̄, ȳ)) ≤ 0 (5.10)

if (x̄, ȳ) /∈ ∂2O and

min
(
H(x̄, ȳ, ϑ(x̄, ȳ),Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ),D2

xϕ(x̄, ȳ)),−∂yϕ(x̄, ȳ)
)

≤ 0
(5.11)

if (x̄, ȳ) ∈ ∂2O.
Without loss of generality we can always assume that (x̄, ȳ) is a strict local

maximum point (let us say in a ball of radius r) and that ϑ(x̄, ȳ) = ϕ(x̄, ȳ).
Using continuity arguments, for any u ∈ U and for almost every ω ∈ Ω we can
find θ := θu small enough such that

(Xu
x̄ (θ), Y u

x̄,ȳ(θ))(ω) ∈ B((x̄, ȳ), r).

Let us in particular consider a constant control u(t) ≡ u ∈ U . Thanks to
Lemma 5.1 one has

ϕ(x̄, ȳ) ≤ E

[
e−G(θ,x̄,u)ϕ(Xu

x̄ (θ), Y u
x̄,ȳ(θ)) +

∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

]
.

(5.12)

We now take into account two different cases, depending on whether or
not we are in ∂2O.

Case 1 ȳ > −e−h(x̄). In this case (since we are inside O) for almost every
ω ∈ Ω, taking the stopping time θ(ω) small enough, we can say

eG(θ,x̄,u)(ȳ ∨ sup
t∈[0,θ]

(−e−G(t,x̄,u)−h(Xu
x̄ (t))))(ω) = (eG(θ,x̄,u)ȳ)(ω).
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Therefore from (5.12), for this choice of the stopping time θ, for any u ∈ U we
obtain

E

[
ϕ(x̄, ȳ) − e−G(θ,x̄,u)ϕ(Xu

x̄ (θ), eG(θ,x̄,u)ȳ)+
∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

]
≤ 0

(5.13)

which yields

E

[∫ θ

0

−d
(
e−G(s,x̄,u)ϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)
)

+ g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

]
≤ 0.

Applying the Ito’s formula we have

d
(
e−G(s,x̄,u)ϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)
)

= e−G(s,x̄,u)
{

−g(Xu
x̄ (s), u)ϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)

+ Dxϕ(Xu
x̄ (s), eG(s,x̄,u)ȳ) · dXu

x̄ (s) + ∂yϕ(Xu
x̄ (s), eG(s,x̄,u)ȳ) g(Xu

x̄ (s), u)ȳ

+
1
2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)]
}

.

Then, replacing the stopping time θ by θh := θ ∧ h we get

E

[
1
h

∫ θh

0

e−G(s,x̄,u)
{

−g(Xu
x̄ (s), u)ϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)

+ Dxϕ(Xu
x̄ (s), eG(s,x̄,u)ȳ) · b(Xu

x̄ (s), u)+∂yϕ(Xu
x̄ (s), eG(s,x̄,u)ȳ) g(Xu

x̄ (s), u)ȳ

+
1
2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eG(s,x̄,u)ȳ)]
}

ds

]
≤ 0.

Letting h → 0 and observing that for ω fixed θh=h holds for h > 0 sufficiently
small, we can apply the mean value theorem inside the integral for any fixed
ω. In this way, applying also the dominated convergence theorem, we finally
obtain at (x̄, ȳ)

g(x̄, u)(ϕ − 1)−Dxϕ · b(x̄, u)− 1
2
Tr[σσT (x̄, u)D2

xϕ] − ∂yϕg(x̄, u)ȳ≤0 ∀u ∈ U

and then thanks to the arbitrariness of u

H(x̄, ȳ, ϕ(x̄, ȳ),Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ),D2
xϕ(x̄, ȳ)) ≤ 0,

i.e., (5.10).
Case 2 ȳ = −e−h(x̄). If −∂yϕ(x̄, ȳ) ≤ 0, then (5.11) holds. Hence, let us

assume that

−∂yϕ(x̄, ȳ) > 0.

This means that in a neighborhood of (x̄, ȳ)

ϕ(x, y1) ≥ ϕ(x, y2) if y1 ≤ y2.
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For almost every ω ∈ Ω and for θ(ω) small enough, the point(
Xu

x̄ (θ), eG(θ,x̄,u)(ȳ ∨ sup
t∈[0,θ]

(−e−G(t,x̄,u)−h(Xu
x̄ (t))))

)

is in this neighborhood. Because of

Y u
x̄,ȳ(θ) = eG(θ,x̄,u)

(
ȳ ∨ sup

t∈[0,θ]

(−e−G(t,x̄,u)−h(Xu
x̄ (t)))

)
≥ eG(θ,x̄,u)ȳ

we obtain for any u ∈ U

ϕ(x̄, ȳ)

≤ E

[
e−G(θ,x̄,u)

{
ϕ(Xu

x̄ (θ), Y u
x̄,ȳ(θ)) +

∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

}]

≤ E

[
e−G(θ,x̄,u)

{
ϕ(Xu

x̄ (θ), eG(θ,x̄,u)ȳ) +
∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

}]

from which we have again (5.13) and thus

H(x̄, ȳ, ϕ(x̄, ȳ),Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ),D2
xϕ(x̄, ȳ)) ≤ 0,

implying (5.11).
For proving the super-solution property let us assume that ϑ−ϕ attains a

strict maximum in (x̄, ȳ). Starting again from the DPP and taking the stopping
time θ small enough one has

ϕ(x̄, ȳ) ≥ inf
u∈U

E

[
e−G(θ,x̄,u)ϕ(Xu

x̄ (θ), Y u
x̄,ȳ(θ)) +

∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

]
.

If either ȳ > −e−h(x̄) or ȳ = −e−h(x̄) and −∂yϕ(x̄, ȳ) < 0 we get, for θ small
enough

ϕ(x̄, ȳ) ≥ inf
u∈U

E

[
e−G(θ,x̄,u)ϕ(Xu

x̄ (θ), eG(θ,x̄,u)ȳ) +
∫ θ

0

g(Xu
x̄ (s), u)e−G(s,x̄,u)ds

]

and the desired property can be obtained by standard passages, with the usual
modifications required for proving the super-solution inequality. �

6. Comparison principle

After having shown that ϑ solves Eq. (5.9), we now consider the uniqueness
question. As usual in viscosity solution theory, we establish uniqueness in form
of a comparison principle between USC sub-solutions and LSC super-solutions.
In proving such a comparison principle, some additional difficulties arise be-
cause of the degeneracy of g in T . In order to overcome this difficulty we will
show that for any super-solution (resp. sub-solution) a super-optimality (resp.
sub-optimality) principle holds and then we will use this result for proving
the comparison principle by a direct calculation. The proof of the optimality
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principles given here adapts the techniques in presented in [4, Theorem 2.32]
to the particular case of the second order boundary value problem (5.9).

Let us start with a preliminary result. We can in fact prove that, thanks
to assumption (H4)-(ii), together with (H1) and (H3), for any control u ∈ U
and T ≥ 0, aside from the standard estimation for the process Xu

x (·)

E

[
sup

t∈[0,T ]

∣∣Xu
x (t) − x

∣∣2
]

≤ CT (1 + |x|2)T (6.1)

the following inequality also holds for Yx,y(·): If (x, y) ∈ O, then

E

[
sup

t∈[0,T ]

∣∣Y u
x,y(t) − y

∣∣2
]

≤ CT

(
|1 − eMgT |2 + e2MgT (1 + |x|2)T

)
(6.2)

where CT = CeCT and C is a constant depending only on the Lipschitz con-
stants of b and σ, and Mg denotes the bound of the function g. We prove the
following result for a later use.

Lemma 6.1. For any ε > 0, T ≥ 0 and (x, y) ∈ O one has

sup
u∈U

P

[
sup

t∈[0,T ]

|(Xu
x (t), Y u

x,y(t)) − (x, y)| > ε

]
≤ CT,x

ε2
(
T + |1 − eMgT |2

)

for CT,x := CT (1 + e2MgT )(1 + |x|2).

Proof. The result is a consequence of Doob’s inequality (see [23, Theorem 6.2,
Chapter I] for instance) applied to the sub-martingale Mt := sups∈[0,t](|X(s)−
x| + |Y (s) − y|) and of inequalities (6.1) and (6.2). Indeed for any u ∈ U one
has:

P

[
sup

t∈[0,T ]

|(Xu
x (t), Y u

x,y(t)) − (x, y)| > ε

]

≤ P

[
sup

t∈[0,T ]

(|Xu
x (t) − x| + |Y u

x,y(t) − y|) > ε

]

≤ 1
ε2

E

⎡
⎣
(

sup
t∈[0,T ]

|Xu
x (t) − x| + |Y u

x,y(t)) − y|
)2⎤
⎦

≤ 2
ε2

E

[
sup

t∈[0,T ]

|Xu
x (t) − x|2 + sup

t∈[0,T ]

|Y u
x,y(t)) − y|2

]

≤ CT

ε2
(
(1 + e2MgT )T (1 + |x|2) + |1 − eMgT |2

)
where CT is the constant appearing in (6.1) and (6.2). This shows the claim.

�

Let us define the domain

Oδ :=
{
(x, y) ∈ O : d(x, T ) > δ, y < −δ

}
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and the associated exit time for the process (Xu
x (t), Y u

x,y(t))

τu
δ := inf

{
t ≥ 0 : (Xu

x (t), Y u
x,y(t)) /∈ Oδ

}
.

Theorem 6.2. Let V ∈ USC(O) be a bounded viscosity sub-solution to Eq.
(5.9) such that

V (x, y) = 1 on ∂1O.

Then V satisfies

V (x, y) ≤ inf
u∈U

E

[
e−G(τu

δ (t),x,u)V (Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t))) (6.3)

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]

for any (x, y) ∈ Oδ, t ≥ 0, where τu
δ (t) := min(t, τu

δ ) and τu
δ denotes the exit

time of the process (Xu
x (·), Y u

x,y(·)) from the domain Oδ.

Proof. This proof is based on an adaptation of classical arguments (see Theo-
rem 2.32 in [4] for instance) to our context. Let us start observing that since
V is upper semi-continuous we can write for any (x, y) ∈ O

V (x, y) = inf
k≥0

Vk(x, y) (6.4)

where {Vk}k≥0 is a decreasing sequence of bounded continuous functions. Let
us consider for k ≥ 0 the following evolutionary obstacle problem⎧⎪⎪⎨
⎪⎪⎩

max
(
∂tV + H(x, y, V,DxV, ∂yV,D2

xV ) , V − Vk

)
= 0 (0, t] × O

V (t, x, y) = 1 (0, t] × ∂1O
−∂yV (t, x, y) = 0 (0, t] × ∂2O
V (0, x, y) = Vk(x, y) O.

(6.5)

It is immediate to verify that V is a bounded viscosity sub-solution of this
problem for any k ≥ 0 and t ≥ 0. For t ≥ 0, we now define the following
function

Lk(t, x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
u∈U

E

[
e−G(τu

δ (t),x,u)Vk(Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t))) Oδ

+
∫ τu

δ (t)

0
g(Xu

x (s), u(s))e−G(s,x,u)ds

]

Vk(x, y) O\Oδ.

Let us start proving that Lk is continuous in t = 0. Of course, we only need to
prove the result in Oδ. Noting that Lk(0, x, y) = Vk(x, y) for any u ∈ U and
(x, y) ∈ Oδ, one has for any (ξ, η) ∈ Oδ∣∣∣∣E

[
e−G(τu

δ (t),ξ,u)Vk(Xu
ξ (τu

δ (t)), Y u
ξ,η(τu

δ (t)))

+
∫ τu

δ (t)

0

g(Xu
ξ (s), u(s))e−G(s,ξ,u)ds

]
− Lk(0, x, y)

∣∣∣∣



1788 L. Grüne and A. Picarelli NoDEA

≤ E

[
|e−G(τu

δ (t),ξ,u)Vk(Xu
ξ (τu

δ (t)), Y u
ξ,η(τu

δ (t))) − Vk(x, y)|
]

+ Mgt

≤ E

[
e−G(τu

δ (t),ξ,u)|Vk(Xu
ξ (τu

δ (t)), Y u
ξ,η(τu

δ (t))) − Vk(x, y)|
]

+ E

[
|Vk(x, y)|

(
1 − e−G(τu

δ (t),ξ,u)
)]

+ Mgt

≤ E
[
|Vk(Xu

ξ (τu
δ (t)), Y u

ξ,η(τu
δ (t))) − Vk(ξ, η)|

]
+ |Vk(ξ, η) − Vk(x, y)| + C(1 − e−Mgt) + Mgt.

Thanks to the continuity of Vk, there exists δε such that

|Vk(x, y) − Vk(ξ, η)| ≤ ε

4
for any (ξ, η) ∈ B((x, y), δε). Therefore if we define the set

E :=
{
ω ∈ Ω : |

(
Xu

ξ (τu
δ (t)), Y u

ξ,η(τu
δ (t))
)

− (ξ, η)| > δε

}
we obtain ∫

EC

|Vk(Xu
ξ (τu

δ (t)), Y u
ξ,η(τu

δ (t))) − Vk(ξ, η)|dP ≤ ε

4
.

Moreover, thanks to the boundedness of Vk we get∫
E

|Vk(Xu
ξ (τu

δ (t)), Y u
ξ,η(τu

δ (t))) − Vk(ξ, η)|dP ≤ 2MP[E].

Using the result in Lemma 6.1 we can state that there exists a constant C
such that

P[E] ≤ CeCt

δ2ε

(
1 + e2Mgt

)(
t + |1 − eMgt|2

)(
1 + |ξ|2

)
.

Therefore, there exists tε > 0 such that for t < tε

2MP[E] + C(1 − e−Mgt) + Mgt ≤ ε

2
.

In conclusion we have proved that for any ε > 0, if t < tε and |(x, y)− (ξ, η)| <
δε

|Lk(t, ξ, η) − Lk(0, x, y)| ≤ ε

which proves continuity of Lk in t = 0.
Denoting by Lk

∗ the lower semi-continuous envelope of Lk, it is possible
to prove that the following DPP holds (see [5, Theorem 4.3]):

inf
u∈U

E

[∫ τu
δ (θ)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds + 1{θ≥τu

δ }Vk(Xu
x (τu

δ ), Y u
x,y(τu

δ ))eG(τu
δ ,x,u)

+1{θ<τu
δ }Lk

∗(t − θ, Xu
x (θ), Y u

x,y(θ))eG(θ,x,u)

]
≤ Lk(t, x, y).

for any stopping time 0 ≤ θ ≤ t.
Thanks to this result, applying the standard dynamic programming ar-

guments, it is possible to prove (see the proof given in [5]) that Lk
∗ is a viscosity

super-solution of (6.5). We point out that the necessity of the obstacle term
V − Vk is a consequence of the possible discontinuity of Lk

∗ on the boundary
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of Oδ. The initial condition and the boundary condition on ∂1O are on the
contrary satisfied in the strong sense because of the continuity of Lk

∗ in t = 0
and y = 0.

For Eq. (6.5) a comparison principle for semi-continuous viscosity sub-
and super-solution holds, see Theorem A.1 in the appendix. It can be obtained
by the arguments in [17] adapted to the parabolic case. The necessity of using
such a result instead of a more classical comparison principle for fully nonlinear
second order elliptic equations with oblique derivative boundary conditions, as
that one presented for instance in [16] (see also the references therein), comes
from the lack of regularity of the domain O. Since the key arguments of the
proof in [17] easily extend to our context, we only give a sketch of the proof
in the appendix.

Applying Theorem A.1, we obtain for any (t, x, y) ∈ [0,+∞) × Oδ

V (x, y) ≤ Lk
∗(t, x, y),

which leads to

V (x, y) ≤ E

[
e−G(τu

δ (t),x,u)Vk(Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t)))

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]
∀u ∈ U .

It remains to pass to the limit for k → +∞. Recalling expression (6.4) for V
we have

V (x, y) = lim sup
k→+∞

Vk(x, y)

and then for any u ∈ U

V (x, y)

≤ lim sup
k→+∞

E

[
e−G(τu

δ (t),x,u)Vk(Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t)))

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]

≤ E

[
lim sup
k→+∞

e−G(τu
δ (t),x,u)Vk(Xu

x (τu
δ (t)), Y u

x,y(τu
δ (t)))

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]

= E

[
e−G(τu

δ (t),x,u)V (Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t)))

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]
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where for the second inequality we used Fatou’s lemma, thanks to the bound-
edness of the functions Vk. Hence, the desired result is obtained thanks to the
arbitrariness of u ∈ U . �

The same techniques can be applied in order to prove the super-optimality
principle for LSC super-solutions. In this case, however, compactness assump-
tion on the dynamics (considering weak solutions of the SDE) are necessary
in order to guarantee the last passage to the limit (see [15]). The version of
the super-optimality principle we state below avoids this kind of assumption
by taking into account only continuous super-solutions.

Theorem 6.3. Let V ∈ C(O) be a bounded viscosity super-solution to Eq. (5.9).
Then for any (x, y) ∈ Oδ and t ≥ 0

V (x, y) ≥ inf
u∈U

E

[
e−G(τu

δ (t),x,u)V (Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t))) (6.6)

+
∫ τu

δ (t)

0

g(Xu
x (s), u(s))e−G(s,x,u)ds

]
.

Proof. Let us consider the following evolutionary obstacle problem:
⎧⎪⎪⎨
⎪⎪⎩

min
(
∂tV + H(x, y, V,DxV, ∂yV,D2

xV ) , V − V
)

= 0 (0, t] × O
V (t, x, y) = 1 (0, t] × ∂1O
−∂yV (t, x, y) = 0 (0, t] × ∂2O
V (0, x, y) = V (x, y) O.

(6.7)

We can easily observe that V is a viscosity super-solution to (6.7). In what
follows, we build a viscosity sub-solution for problem (6.7). Let W : O → R

be defined by

W (t, x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
u∈U

E

[
e−G(τu

δ (t),x,u)V (Xx(τδ(t)), Yx,y(τδ(t))) in Oδ

+
∫ τu

δ (t)

0
g(Xu

x (s), u(s))e−G(s,x,u)ds

]

V (x, y) in O\Oδ

Let us consider its upper semi-continuous envelope W ∗. By similar arguments
as in Theorem 6.2 we can prove that W ∗ is a viscosity sub-solution to (6.7).
Indeed, the continuity with respect to time in t = 0 can be prove as in Theorem
6.2. Moreover, the boundary condition on ∂1O is satisfied in the strong sense
thanks to the continuity of V . Therefore, applying the comparison principle
Theorem A.1 between sub and super solutions to (6.7) we get

V (x, y) ≥ W ∗(t, x, y).

This yields
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V (x, y) ≥ inf
u∈U

E

[
e−G(τu

δ (t),x,u)V (Xu
x (τu

δ (t)), Y u
x,y(τu

δ (t)))

+
∫ τu

δ (t)

0

g(Xu
x (s))e−G(s,x,u)ds

]

for any t ≥ 0, (x, y) ∈ Oδ. �
The super-optimality principle from Theorem 6.3 and the sub-optimality

principle from Theorem 6.2 are finally used in the next theorem in order to
establish the desired comparison result.

Theorem 6.4. Let V ∈ USC(O) and V ∈ C(O) be a bounded viscosity sub-
and super-solution to Eq. (5.9), respectively. Let us also assume that

V (x, y) ≤ 1 + y ≤ V (x, y) on {(x, y) ∈ O : x ∈ T } (6.8)

and

V (x, 0) = V (x, 0) = 1 ∀x ∈ O. (6.9)

Then V (x, y) ≤ V (x, y) for any (x, y) ∈ O.

Proof. Clearly, if x ∈ T there is nothing to prove. Thanks to inequalities (6.6)
and (6.3), for any (x, y) ∈ Oδ and T ≥ 0 we have

V (x, y) − V (x, y)

≤ sup
u∈U

E

[
e−G(τu

δ (T ),x,u)
(
V (Xu

x (τu
δ (T )), Y u

x,y(τu
δ (T )))

−V (Xu
x (τu

δ (T )), Y u
x,y(τu

δ (T )))
)]

= sup
u∈U

{∫
τu

δ ≤T

e−G(τu
δ ,x,u)
(
V (Xu

x (τu
δ ), Y u

x,y(τu
δ )) − V (Xu

x (τu
δ ), Y u

x,y(τu
δ ))
)
dP

+
∫

τu
δ >T

e−G(T,x,u)
(
V (Xu

x (T ), Y u
x,y(T )) − V (Xu

x (T ), Y u
x,y(T ))

)
dP

}

We will study these two integrals separately. Thanks to the (semi-)continuity
of V and V and conditions (6.8) and (6.9), for any ε > 0 it is possible to find
δε small enough such that

V (x, y) ≤ 1 + y +
ε

2
, V (x, y) ≥ 1 + y − ε

2
if d(x, T ) ≤ δ

and

V (x, y) ≤ 1 +
ε

2
, V (x, y) ≥ 1 − ε

2
if y ≥ −δ.

Recalling that τu
δ is the exit time from the domain Oδ, we have that for any

u ∈ U either Y u
x,y(τu

δ ) = −δ or d(Xu
x (τu

δ ), T ) = δ. For both these cases,
choosing δ small enough, for the first integral we find∫

τu
δ ≤T

e−G(τu
δ ,x,u)
(
V (Xu

x (τu
δ ), Y u

x,y(τu
δ )) − V (Xu

x (τu
δ ), Y u

x,y(τu
δ ))
)
dP

≤ ε P[τu
δ ≤ T ] ≤ ε.
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For the second integral we can use the boundedness of V and V . Denoting by
M a bound for these functions, we obtain for any u ∈ U∫

τu
δ >T

e−G(T,x,u)
(
V (Xu

x (T ), Y u
x,y(T )) − V (Xu

x (T ), Y u
x,y(T ))

)
dP

≤ 2M

∫
τu

δ >T

e−G(T,x,u)dP.

If we define

g∗ := inf {g(x, u) | x ∈ R : d(x, T ) > δ, u ∈ U} > 0

we finally obtain for T large enough

V (x, y) − V (x, y) ≤ ε + e−g∗T = 2ε

for any (x, y) ∈ Oδ and the result is obtained thanks to the arbitrariness of ε.
Finally. we obtain the desired comparison principle in the whole domain

O by sending δ → 0, thanks to the upper semi-continuity of the function
V − V . �

An immediate consequence of this theorem and Theorem 5.4 is the fol-
lowing existence and uniqueness result.

Corollary 6.5. Let assumptions (H1)–(H4) be satisfied. Then ϑ from (5.1) is
the unique bounded and continuous viscosity solution to Eq. (5.9) such that
ϑ(x, y) = 1 + y if x ∈ T and ϑ(x, 0) = 1 for any x ∈ R

d.
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Appendix A. Comparison principle for obstacle problems with
Dirichlet–Neumann boundary conditions

In this section we will give a proof of a comparison principle for the obstacle
problem (6.7). The result and its proof modify the arguments in [17, Theorem
2.1] in order to take into account the unbounded domain of (6.7). Of course,
the same arguments apply to (6.5).

Before starting the proof of the result, we introduce a more compact
notation. Let us start defining

b̃(x, y, u) :=
(

b(x, u)
yg(x, u)

)
∈ R

d+1 and σ̃(x, y, u) :=
(

σ(x, u)
0 . . . 0

)
∈ R

(d+1)×p.

In what follow we will directly denote with x the variable in the augmented
state space R

M for M := d + 1, that is x ≡ (x, y) ∈ R
M . Using this notation

we can write the Hamiltonian H in (5.8) in the following compact form

H(x, r, q,Q) := sup
u∈U

{
−q · b̃(x, u) − 1

2
Tr[σ̃σ̃T (x, u)Q] + g(x, u)(r − 1)

}
.
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The boundary value problem we deal with is the following⎧⎪⎪⎨
⎪⎪⎩

min
(
∂tv + H(x, v,Dv,D2v) , v − ψ

)
= 0 (0, T ) × O

v(t, x) = 1 (0, T ) × ∂1O
−∂x

M
v(t, x) = 0 (0, T ) × ∂2O

v(0, x) = ψ(x) O

(A.1)

(where ∂x
M

denotes the partial derivative with respect to the M -th space
variable and ψ(x) = 1 on ∂1O). We recall that the boundary conditions in
t = 0 and ∂1O are considered in the strong sense, that is for any viscosity
sub-solution v (resp. super-solution v) one has

v(0, x) ≤ ψ(x) (resp. v(0, x) ≥ ψ(x)) on O
and

v(t, x) ≤ 1 (resp. v(t, x) ≥ 1) on (0, T ) × ∂1O.

We also recall that on the boundary ∂2O the following weak conditions

min
(
min
(
∂tv + H(x, v,Dv,D2v), v − ψ

)
, −∂xM

v
)

≤ 0

max
(
min
(
∂tv + H(x, v,Dv,D2v), v − ψ

)
, −∂xM

v
)

≥ 0

are considered, in the viscosity sense, respectively for sub- and super-solutions.
In the sequel we will denote by | · |

M−1 the norm restricted to the first
M − 1 components of the vector, that is:

|x|
M−1 := |(x1, . . . , xM−1)|, ∀x ∈ R

M .

Theorem A.1. Let assumptions (H1), (H3) and (H4) be satisfied and ψ ∈ C(O).
Let v ∈ USC([0, T ] × O) and v ∈ LSC([0, T ] × O) be respectively a bounded
viscosity sub- and super- solution of (A.1). Then for any x ∈ O and t ∈ [0, T )

v(t, x) ≤ v(t, x).

Since the main arguments of the proof can be found in [17] we only
report below the main lines and the modification necessary for dealing with
the possible unboundedness of the domain.

Sketch of the proof. Recalling that the boundary ∂2O is defined by the func-
tion −e−h(x1,...,xM−1), thanks to the Lipschitz assumption (H4)-(ii), we can
easily observe that just taking μ := 1√

1+L2
h

, where Lh is the Lipschitz con-

stant appearing in (H4)-(ii), for any z ∈ ∂2O one has⋃
0≤ξ≤μ

B(z − ξ, ξμ) ⊂ OC . (A.2)

This corresponds to condition (2.9) in [17] and by the same arguments as in
[17, Corollary 2.3] the existence of a function ζ ∈ C2(O) follows such that
ζ ≥ 0 on O, −∂xM

ζ ≥ 1 on ∂2O and |Dζ|, ‖D2ζ‖ ≤ Kζ for some constant
Kζ ≥ 0. We point out that the in our case the proof of Corollary 2.3 can
be strongly simplified because of the constancy of the derivative direction. In
particular the local construction presented in [17] will be independent of the
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choice of the the boundary point allowing us to obtain a uniform bound on
|Dζ| and ‖D2ζ‖ on the whole domain. Let us define for δ, ρ, β > 0

v
δ,ρ,β

(t, x) := v(t, x) − δe−ρT ζ(x) − β

T − t

and

v
δ,ρ,β

(t, x) := v(t, x) + δe−ρT ζ(x) +
β

T − t
.

One has

v
δ,ρ,β

t→T−→ −∞ and v
δ,ρ,β

t→T−→ +∞.

It is possible to verify that v
δ,ρ,β

(resp. v
δ,ρ,β

) is a sub-solution (resp. super-
solution) of an obstacle problem with the following modified boundary condi-
tion on ∂2O:

− ∂xM
v + δe−ρT ≤ 0

(
resp. − ∂xM

v − δe−ρT ≥ 0
)
. (A.3)

Moreover, thanks to the positivity of ζ, one has

v
δ,ρ,β

≤ v and v
δ,ρ,β

≥ v,

so the boundary conditions for t = 0 and y = 0 in (6.7) are trivially satisfied.
By using the non negativity of g and the linear growth of b̃ and σ̃, in O one has

H(x, v
δ,ρ,β

,Dv
δ,ρ,β

,D2v
δ,ρ,β

) − H(x, v,Dv,D2v)

≤ H(x, v,Dv
δ,ρ,β

,D2v
δ,ρ,β

) − H(x, v,Dv,D2v)

≤ sup
u∈U

∣∣b̃(x, u) · δe−ρT Dζ +
1
2
Tr[σ̃σ̃T (x, u)(δe−ρT D2ζ)]

∣∣
≤ C1δe

−ρT (1 + |x|2
M−1

),

where C1 only depends on Kζ and the Lipschitz constants of b and σ. Then if

min
(
∂tv + H(x, v,Dv,D2v), v − ψ(x)

)
≤ 0

for some x ∈ O ∪ ∂2O one obtains

min
(

∂tvδ,ρ,β
+ H(x, v

δ,ρ,β
,Dv

δ,ρ,β
,D2v

δ,ρ,β
) +

β

T 2
− C1δe

−ρT (1 + |x|2
M−1

) ,

v
δ,ρ,β

+
β

T
− ψ(x)

)

≤ min
(
∂tv + H(x, v,Dv,D2v), v − ψ(x)

)
≤ 0.

The analogous result can be proved for the super-solution v
δ,ρ,β

.
Our goal is now to prove the inequality

v
δ,ρ,β

(t, x) ≤ v
δ,ρ,β

(t, x) + 2C1δe
−ρ(T−t)(1 + |x|2

M−1
) (A.4)

for all δ, ρ, β > 0. By virtue of the definition of v
δ,ρ,β

and v
δ,ρ,β

, this implies
the claim of the theorem by letting δ, β → 0.

In order to prove (A.4), we consider the modified obstacle problems given
by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(

∂tv + H(x, v,Dv,D2v) + β
T 2 − C1δe

−ρT (1 + |x|2
M−1

) ,

v + β
T − ψ

)
≤ 0 (0, T ) × O

v(t, x) ≤ 1 (0, T ) × ∂1O
−∂x

M
v(t, x) + δe−ρT ≤ 0 (0, T ) × ∂2O

v(0, x) ≤ ψ(x) O
and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(

∂tv + H(x, v,Dv,D2v) − β
T 2 + C1δe

−ρT (1 + |x|2
M−1

) ,

v − β
T − ψ

)
≥ 0 (0, T ) × O

v(t, x) ≥ 1 (0, T ) × ∂1O
−∂x

M
v(t, x) − δe−ρT ≥ 0 (0, T ) × ∂2O

v(0, x) ≥ ψ(x) O
and consider the function

Φ(t, x) := v
δ,ρ,β

(t, x) − v
δ,ρ,β

(t, x)−2C1δe
−ρ(T−t)(1 + |x|2

M−1
).

Thanks to the boundedness and the semi-continuity of v
δ,ρ,β

and v
δ,ρ,β

, Φ ad-
mits a maximum point (t̂

δ,ρ,β
, x̂

δ,ρ,β
) = (t̂, x̂). If either t̂ = 0 or x̂ ∈ ∂1O,

then (A.4) follows from the boundary conditions. Similarly, (A.4) follows im-
mediately in case Φ(t̂, x̂) ≤ 0. If x̂ ∈ O, inequality (A.4) can be proved using
classical comparison results for obstacle problems, see [32, Theorem 7.8] (see
also the discussion of Case 1 and 2 below).

It remains to consider the case x̂ ∈ ∂2O, for which we will show that it
cannot occur if t̂ > 0, x̂ �∈ ∂1O and Φ(t̂, x̂) > 0 and if ρ > 0 is sufficiently
large (observe that it is enough to establish (A.4) for all sufficiently large ρ
because this will imply (A.4) for all ρ > 0). Thanks to the property (A.2) of
our domain, the existence of a family of C2 test functions {wε}ε>0 as in [17,
Theorem 4.1] can be proved. Among the other properties, {wε}ε>0 satisfies:

wε(x, x) ≤ ε (A.5)

wε(x, y) ≥ C
|x − y|2

ε
(A.6)

−∂x
M

wε(x, y) ≥ −C
|x − y|2

ε
if x ∈ ∂2O ∩ B(x̂, η), y ∈ B(x̂, η) (A.7)

−∂y
M

wε(x, y) ≥ 0 if y ∈ ∂2O ∩ B(x̂, η), x ∈ B(x̂, η) (A.8)

for ε > 0 and some η > 0 small enough.
Applying the doubling variables procedure we define

Φε(t, x, y)

:= v
δ,ρ,β

(t, x) − v
δ,ρ,β

(t, y) − C1δe
−ρ(T−t)(1 + |x|2

M−1
)

− C1δe
−ρ(T−t)(1 + |y|2

M−1
) − wε(x, y) − |x − x̂|4 − |t − t̂|2
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and we denote by (tε, xε, yε) its maximum point. By the usual techniques,
thanks to the properties (A.5) and (A.6), it is possible to prove that for ε
going to 0

xε, yε → x̂, tε → t̂ and
|xε − yε|2

ε
→ 0.

It follows that for ε small enough we can assume that xε, yε /∈ ∂1O and tε > 0.
Taking ε small enough we can also say that xε, yε ∈ B(x̂, η) and then we can
make use of properties (A.7) and (A.8). In particular if xε ∈ ∂2O, taking ε
small enough, we have

−∂x
M

(
wε(xε, yε) + δe−ρ(T−tε)(1 + |xε|2M−1

) + |xε − x̂|4
)

≥ −C
|xε − yε|2

ε
− 4|xε − x̂|2|xεM

− x̂
M

| > −δe−ρT .

On the other hand if yε ∈ ∂2O

−∂y
M

(
− wε(xε, yε) − C1δe

−ρ(T−tε)(1 + |yε|2M−1
)
)

≤ 0 < δe−ρT .

This means that for sufficiently small values of ε, we can neglect the derivative
boundary conditions in xε, yε and only consider

min
(

∂tvδ,ρ,β
+ H(xε, vδ,ρ,β

,Dv
δ,ρ,β

,D2v
δ,ρ,β

) +
β

T 2
− C1δe

−ρT (1 + |xε|2M−1
) ,

v
δ,ρ,β

+
β

T
− ψ

)
≤ 0

min
(

∂tvδ,ρ,β
+ H(yε, vδ,ρ,β

,Dv
δ,ρ,β

,D2v
δ,ρ,β

) − β

T 2
+ C1δe

−ρT (1 + |yε|2M−1
) ,

v
δ,ρ,β

− β

T
− ψ

)
≥ 0

in the viscosity sense.
Case 1 let us assume that

v
δ,ρ,β

(tε, xε) +
β

T
− ψ(xε) ≤ 0.

In this case we would get (since v
δ,ρ,β

(tε, yε) − β
T − ψ(yε) ≥ 0 always holds)

v
δ,ρ,β

(tε, xε) − v
δ,ρ,β

(tε, yε) +
2β

T
+ ψ(yε) − ψ(xε) ≤ 0.

For sufficiently small ε > 0, from Φ(t̂, x̂) > 0 we know that Φε(tε, xε, yε) > 0
and this implies v

δ,ρ,β
(tε, xε) − v

δ,ρ,β
(tε, yε) > 0, leading to a contradiction for

ε going to 0.
Case 2 let us assume that

∂tvδ,ρ,β
+ H(x, v

δ,ρ,β
,Dv

δ,ρ,β
,D2v

δ,ρ,β
) +

β

T 2
− C1δe

−ρT (1 + |xε|2M−1
) ≤ 0.
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It follows that

∂tvδ,ρ,β
(tε, xε) − ∂tvδ,ρ,β

(tε, yε) − C1δe
−ρT (1 + |xε|2M−1

+ |yε|2M−1
)

+ H(xε, vδ,ρ,β
,Dv

δ,ρ,β
,D2v

δ,ρ,β
) − H(yε, vδ,ρ,β

,Dv
δ,ρ,β

,D2v
δ,ρ,β

) ≤ −2β

T 2
.

Using the properties of the Hamiltonian H and of the test function wε, we can
find a constant C2 such that at the limit for ε → 0 one has

δe−ρ(T−t̂)(1 + |x̂|2
M−1

)(ρ − C2 − C1)

≤ 2ρδe−ρ(T−t̂)(1 + |x̂|2
M−1

) − C2δe
−ρ(T−t̂)(1 + 2|x̂|2

M−1
)

− C1δe
−ρT (1 + 2|x̂|2

M−1
)

≤ −2β

T 2

and a contradiction is obtained as soon as ρ ≥ (C1 + C2 + 1). �
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[11] Camilli, F., Grüne, L., Wirth, F.: A generalization of the Zubov’s equation to
perturbed systems. SIAM J. Control Optim. 40, 496–515 (2002)
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