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Abstract. Brezis–Lieb lemma is an improvement of Fatou Lemma that
evaluates the gap between the integral of a functional sequence and the
integral of its pointwise limit. The paper proves some analogs of Brezis–
Lieb lemma without assumption of convergence almost everywhere. While
weak convergence alone brings no conclusive estimates, a lower bound for
the gap is found in Lp, p ≥ 3, under condition of weak convergence
and weak convergence in terms of the duality mapping. We prove that
the restriction on p is necessary and prove few related inequalities in
connection to weak convergence.
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1. Introduction

Brezis–Lieb lemma ([1]) is a refinement of Fatou lemma that plays an impor-
tant role in analysis of partial differential equations. Let Ω, μ be a mea-
sure space. The lemma says that if (uk) is a bounded sequence in Lp(Ω, μ),
p ∈ (1,∞), and uk → u a.e., then∫

Ω

|uk|pdμ −
∫

Ω

|u|pdμ −
∫

Ω

|uk − u|pdμ → 0. (1.1)

In concrete applications convergence a.e. might be hard to verify, while the
weak convergence condition rarely presents a difficulty, since Lp(Ω, μ) with
p ∈ (1,∞) is reflexive and any bounded sequence there has a weakly convergent
subsequence. Thus it is natural to ask what possible analogs of (1.1) may
exist for sequences in Lp that do not necessarily converge everywhere. This
situation arises in applications to quasilinear elliptic PDE when uk are vector-
valued functions of the form ∇wk ∈ Lp and one cannot rely on compactness
of local Sobolev imbeddings that yield a.e. convergence of wk but not of their
gradients. An immediate analog is given by weak semicontinuity of the norm,
namely
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uk ⇀ u =⇒
∫

Ω

|uk|pdμ ≥
∫

Ω

|u|pdμ + o(1),

but this inequality is quite crude as it does not account for the norm of the
remainder uk − u.

On the other hand, there are some cases where Brezis–Lieb lemma holds
under assumption of weak convergence alone. One is when Ω is a countable
set equipped with the counting measure, because in this case pointwise con-
vergence follows from weak convergence. Another is the case p = 2, when the
conclusion of Brezis–Lieb lemma holds even if convergence a.e. is not assumed.
This follows from an elementary relation in the general Hilbert space:

uk ⇀ u =⇒ ‖uk‖2 = ‖uk − u‖2 + ‖u‖ − 2(uk − u, u) = ‖uk − u‖2 + ‖u‖ + o(1).
(1.2)

Since in both examples the norm satisfies the Opial condition [4], it would be
tempting to conjecture that the condition of a.e. convergence may be dropped
whenever the Opial condition holds, or, in case of a strictly convex Banach
space X with single-valued duality map, whenever the following sharp sufficient
condition, which implies Opial condition (see [4]), holds: uk ⇀ 0 in X =⇒
u∗

k ⇀ 0. This prompted the authors of a forthcoming paper [5] to prove the
following analog of Brezis–Lieb Lemma with a.e. convergence replaced by weak
convergence of a dual sequence. However, as we show in Corollary 3.5 below,
the condition p ≥ 3 (that has nothing to do with Opial’s condition or dual
mapping) cannot be relaxed. The condition |uk−u|p−2(uk−u) ⇀ 0 below is not
arbitrary, but is an assumption of weak convergence of the duality mapping,
which can be equivalently expressed as (uk − u)∗ ⇀ 0.

Theorem 1.1. ([5]) Let (Ω, μ) be a measure space and let p ∈ [3,∞). Assume
that uk ⇀ u in Lp(Ω, μ) and |uk − u|p−2(uk − u) ⇀ 0 in Lp′

(Ω, μ), p′ = p
p−1 .

Then ∫
Ω

|uk|pdμ ≥
∫

Ω

|u|pdμ +
∫

Ω

|uk − u|pdμ + o(1). (1.3)

The proof of the theorem follows immediately from the following elemen-
tary inequality, verified in [5],

|1 + t|p ≥ 1 + |t|p + p|t|p−2t + pt, |t| ≤ 1, (1.4)

which in turn implies |uk|p ≥ |uk − u|p + |u|p + p|u|p−2u(uk − u) + p|uk −
u|p−2(uk − u)u, with the integrals of the last two terms vanishing by assump-
tion. Remarkably, (1.4) is false for all p ∈ (1, 3), but this does not imply that
(1.3) is false for these p, moreover, as we mentioned above, it is true in the case
of �p, although as we show in this note, it is false for Lp([0, 1]). The inequality
in (1.3) can be strict. Indeed, one can easily calculate by binomial expansion
for p = 4 that if uk ⇀ u and (uk − u)3 ⇀ 0 in L4/3, then∫

Ω

|uk|4dμ =
∫

Ω

|u|4dμ +
∫

Ω

|uk − u|4dμ + 6
∫

u2(uk − u)2dμ + o(1).

There have been some modifications of Brezis–Lieb lemma, in literature,
namely [2,3], but we could not find any related results without the assump-
tion of the a.e. convergence. In this note we prove a generalization of (1.3) to
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the case of vector-valued functions and p ≥ 3, and show in Corollary 3.5 that
the inequality (1.3) is false for all p ∈ (1, 3). Other results in this note are: a
different weak convergence condition that yields (1.3) for all p ≥ 2 (Theorem
4.1), a version of Theorem 1.1 for vector-valued functions (Theorem 2.1), and
the analysis, in Sect. 3, of weak limits for sequences of the form ϕ ◦ vk with
different functions ϕ.

2. Theorem 1.1 for vector-valued functions

Theorem 2.1. Let (Ω, μ) be a measure space and let p ∈ [3,∞) and m ∈
N. Assume that uk ⇀ u in Lp(Ω, μ;Rm) and |uk − u|p−2(uk − u) ⇀ 0 in
Lp′

(Ω, μ;Rm), p′ = p
p−1 . Then∫

Ω

|uk|pdμ ≥
∫

Ω

|u|pdμ +
∫

Ω

|uk − u|pdμ + o(1). (2.1)

Proof. Once we prove the inequality

F (t, θ) := |1 + t2 + 2tθ|p/2 − 1 − |t|p − p|t|p−2tθ − ptθ ≥ 0, |t| ≤ 1, |θ| ≤ 1,
(2.2)

the assertion of the theorem will follow similarly to that of Theorem 1.1.
Note that for each t ∈ [−1, 1], the function θ �→ F (t, θ) is convex on

[−1, 1]. An elementary computation shows that, for any t ∈ [−1, 1], ∂F (t,θ)
∂θ �= 0,

and thus F (t, θ) ≥ min{F (t,−1), F (t, 1)}. Since F (t,−1) = F (−t, 1) it suffices
to show that F (t, 1) ≥ 0 for all t ∈ [−1, 1]. This inequality, however, is nothing
but (1.4). �

Writing the statement of Theorem 2.1 in terms of gradients of functions,
and noting that |∇uk −∇u|p−2(∇uk −∇u) ⇀ 0 in Lp′

(Ω;RN ) can be rewritten
in terms of the p-Laplacian, as −Δp(uk − u) ⇀ 0 in the sense of distributions
(the relevant norm bound is already given as the Lp bound for the gradient in
the first condition), we have

Corollary 2.2. Let Ω ∈ R
N , N ∈ N, be an open set and let p ∈ [3,∞). Assume

that ∇uk ⇀ ∇u in Lp(Ω;RN ) and −Δp(uk − u) ⇀ 0 in the sense of distribu-
tions. Then∫

Ω

|∇uk|pdx ≥
∫

Ω

|∇u|pdx +
∫

Ω

|∇uk − ∇u|pdx + o(1).

3. Weak convergence of compositions.

Let p ∈ (1,∞). It is possible to construct a sequence vk ⇀ 0 in Lp([0, 1]) such
that |vk|q−1vk has a nonzero weak limit in Lp/q([0, 1]) for any q ∈ (1, p]. We
consider here a more general case, comparing weak limits of sequences of the
form ϕ(vk) with different odd continuous functions ϕ.

We focus here only on the measure space [0, 1] equipped with the
Lebesgue measure, but the argument can be easily adapted to domains in
R

N . Let Tjv(x) = v(jx) for x ∈ [0, 1/j], j ∈ N, extended periodically to the
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rest of the interval [0, 1]. Note that operators Tj are isometries on Lp([0, 1]).
Oscillatory sequences Tjv always converge weakly to a constant function as
indicated in the following statement.

Lemma 3.1. If v ∈ Lp([0, 1]), p ∈ (1,∞), then Tjv ⇀
∫
[0,1]

v dx in Lp([0, 1]).

Proof. Since ‖Tjv‖p = ‖v‖p, it suffices to verify that
∫

Tjvψ dx →∫
[0,1]

v dx
∫
[0,1]

ψ dx for all step functions ψ, since they form a dense subspace

of Lp′
([0, 1]). This, however, easily follows from a particular case ψ = 1, which

in turn can be handled by applying periodicity and rescaling of the integration
variable. �

Lemma 3.2. Let 1 < q ≤ p < ∞. If ϕ is a continuous real-valued function
on R such that for some C > 0, |ϕ(t)| ≤ C(1 + |t|q), and v ∈ Lp([0, 1]), then
ϕ(Tjv) = Tjϕ(v) ⇀

∫
[0,1]

ϕ(v(s))ds in Lp/q([0, 1]).

Proof. Let v be first a step function with values tj on intervals of length
mj , j = 1, . . . ,M . By Lemma 3.1, ϕ(Tkv) ⇀

∑
j ϕ(tj)mj = 0 in Lr for any

r ∈ [1,∞). The assertion of the lemma follows then from the density of step
functions in Lp/q. �

Theorem 3.3. Let ϕi, i = 1, . . . , M , be continuous functions R → R, odd for
each i �= M , and assume that for some q ≥ 1, C > 0, |ϕi(t)| ≤ C(1 + |t|q),
i = 1, . . . ,M . If for every sequence vk ∈ L∞([0, 1]), such that ϕi(vk) ⇀ 0 in
L1([0, 1]), i = 1, . . . M − 1, one also has ϕM (vk) ⇀ 0 in L1([0, 1]), then the
functions {ϕi}i=1,...M are linearly dependent.

Proof. Let ψ ≥ 1 be a Lipschitz continuous function on [−a, a] ⊂ R, a > 0,
and let v be a solution of the equation

v′(t) =
γ

ψ(v(t))
, v(0) = −a,

with the value of γ = γ(ψ) > 0 set to satisfy v(1) = a. Such γ always exists,
since v′(t) ≤ γ and thus v(1) ≤ −a + γ, and on the other hand, v(1) ≥
−a + γ

ψ(−a)+L(v(1)+a) , where L is the Lipschitz constant of ψ, and thus v(1) is
a continuous function of γ ∈ (0,∞) with the range (−a,+∞).

By Lemma 3.2,

ϕi(Tkv) ⇀

∫
[0,1]

ϕi(v(s)) ds = γ−1

∫
[−a,a]

ϕi(t)ψ(t) dt, (3.1)

with the weak convergence in Lp([0, 1]) for any p ≥ 1.
Consider now a closure Y in L2([−a, a]) of the span of all positive

bounded continuous functions ψ on [−a, a], such that (ϕi, ψ)L2([−a,a]) = 0,
i = 1, . . . ,M − 1. Note that Y contains all positive even functions and thus is
nontrivial. Furthermore, Y is the orthogonal complement of {ϕi}i=1,...,M−1 in
L2: indeed, any function can be approximated by a bounded function in this
orthogonal complement, and adding a large constant to the latter makes it a
positive function orthogonal to {ϕi}i=1,...,M−1. By assumption, it follows from
(3.1) that ϕM ⊥ Y , and consequently it belongs to the span of ϕ1, . . . , ϕM−1
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as functions on [−a, a]. Since the value of a > 0 is arbitrary, on may conclude
(assuming without loss of generality that ϕ1, . . . , ϕM−1 are linearly indepen-
dent, so that the coefficients in expansion of ϕM as a linear combination of
ϕ1, . . . , ϕM−1 are unique), the functions ϕ1, . . . , ϕM are linearly dependent
also as functions on R. �

Corollary 3.4. Let ϕi, i = 1, . . . , M , be continuous linearly independent
nonzero functions R → R, odd for each i �= M , and assume that for some
q ≥ 1, C > 0, |ϕi(t)| ≤ C(1 + |t|q), i = 1, . . . ,M . There exists a sequence
vk ∈ L∞([0, 1]), such that ϕi(vk) ⇀ 0 in L1([0, 1]), i = 1, . . . M − 1, while
there is α �= 0 such that ϕM (vk) ⇀ α. If the functions ϕi, i = 1, . . . ,M , are
piecewise-C1 and linearly independent on any interval, and ϕM changes sign,
the sequence vk can be chosen so that α < 0.

Proof. The first assertion of the corollary is immediate from Theorem 3.3.
Assume now, in view of Lemma 3.2, that for every v ∈ L∞([0, 1]), such
that ϕi(Tkv) ⇀

∫
[0,1]

ϕi(v(s))ds = 0, i = 1, . . . , M − 1, we have α =∫
[0,1]

ϕM (v(s))ds ≥ 0. We have therefore that

inf∫
[0,1] ϕi(v(s))ds=0, i=1,...,M−1

∫
[0,1]

ϕM (v(s))ds = 0. (3.2)

It is easy to show that there exists a non-zero bounded function v0 such that∫
[0,1]

ϕM (v0(s))ds = 0. Indeed, let a, b ∈ R be such that ϕM (a) < 0 < ϕM (b).
By continuity of ϕM there exist an ε > 0 such that for any functions v and w
such that ‖v−a‖∞ < ε and ‖w−b‖∞ < ε, one has ϕM (v) < 0 and ϕM (w) > 0.
Fix any such v, w ∈ C1 whose derivatives are linearly independent. Then the
function θ �→ ∫

[0,1]
ϕM (θv + (1 − θ)w), 0 ≤ θ ≤ 1, will change sign and thus

it will vanish at some θ0 ∈ (0, 1) by the intermediate value theorem. The
function v0 = θ0v + (1 − θ0)w will not be a constant by the assumption of
linear independence.

Then v0 is a point of minimum in 3.2, and by the Lagrange multiplier
rule, there exist real numbers λ1, . . . , λM−1 such that for any t in the range of
v0 where the functions ϕi are differentiable,

ϕ′
M (t) = λ1ϕ

′
1(t) + · · · + λM−1ϕ

′
M−1(t).

Since functions {ϕi}i=1,...,M are linearly independent on any interval and are
piecewise differentiable, we have a contradiction. �

Corollary 3.5. Let Ω = [0, 1], equipped with the Lebesgue measure. Then for
any p ∈ [1, 3), p �= 2, there exists a sequence vk ∈ L∞([0, 1]) such that vk ⇀ 0
in Lp, |vk|p−2vk ⇀ 0 in Lp′

([0, 1]), but the relation (1.3) with uk = 1+vk does
not hold.

Proof. Let Fp(t) = |1 + t|p − 1 − |t|p. Given 1 ≤ p < 3 , the function Fp

changes sign. Apply Corollary 3.4 with M = 3, ϕ1(t) = t and ϕ2(t) = |t|p−2t
and ϕ3(t) = Fp(t). �
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Remark 3.6. Note that this counterexample cannot be extended to all measure
spaces, since, as we have noted, (1.1) holds in �p under the assumption of weak
convergence alone.

4. A version of Brezis–Lieb lemma

In the previous section we observed, roughly speaking, that weak limits of
ϕi(uk) for linearly independent functions ϕi have independent values, and
that the inequality

∫
[0,1]

ϕM (vk) ≥ o(1) holds for all sequences satisfying

ϕi(vk) ⇀ 0, i = 1, . . . ,M , only if ϕM (t) − ∑M−1
i=1 λiϕi(t) ≥ 0 for some real

λ1, . . . , λM . Therefore one may as well use the condition Φ(vk) ⇀ 0 with
Φ(t) =

∑M−1
i=1 λiϕi(t). In particular, the function Fp(t) = |1 + t|p − 1 − |t|p ,

p ≥ 2, dominates the following function: Φ(t) = pt for |t| ≤ 1, Φ(t) = p|t|p−2t
for |t| > 1.

Theorem 4.1. Let Let (Ω, μ) be a measure space and let p ≥ 2. Assume that
uk ∈ Lp(Ω, μ), u ∈ Lp(Ω, μ) and Ψ(u, uk − u) ⇀ 0 in L1(Ω, μ), where

Ψ(s, t) =

{
|s|p−1t, |t| ≤ |s|,
|s||t|p−2t, |t| ≥ |s| .

Then ∫
Ω

|uk|pdμ ≥
∫

Ω

|u|pdμ +
∫

Ω

|uk − u|pdμ + o(1). (4.1)

Proof. This follows from the inequality Fp(λ) ≥ Φ(λ), from which, with λ =
uk(x)−u(x)

u(x) , whenever u(x) �= 0, immediately follows

|uk|p − |u|p − |u − uk|p ≥ Ψ(u, uk − u).

�
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