

Existence of heteroclinic solution for a class of non-autonomous second-order equation

Claudianor O. Alves

Abstract. In this paper, we use variational methods to prove the existence of heteroclinic solutions for a class of non-autonomous second-order equation.

Mathematics Subject Classification. 34C37, 37J45, 46E35.

Keywords. Heteroclinic solutions, Minimization, Second-order equation.

1. Introduction

Consider the non-autonomous second-order differential equation

$$
\ddot{x}(t) = a(\epsilon t)V'(x(t)), \quad t \in \mathbb{R}, \tag{1.1}
$$

$$
x(t) \to -1
$$
 as $t \to -\infty$, $x(t) \to 1$ as $t \to +\infty$, (1.2)

where $\epsilon > 0$ is a positive parameter and $V : \mathbb{R} \to \mathbb{R}$ is a function verifying:

 (V_1) $V \in C^2(\mathbb{R}^N, \mathbb{R}).$

 (V_2) $V(t) > 0 \ \forall t \in \mathbb{R}$ and $V(-1) = V(1) = 0$.

(V₃) $V(t) > 0$ for all $t \in (-1, 1)$,

and

$$
(V_4) \quad V''(-1), V''(1) > 0.
$$

Related to function $a : \mathbb{R} \to \mathbb{R}$, we assume that it is a bounded continuous function satisfying some conditions which will be mentioned later on.

The main goal of the present paper is to prove the existence of solution for problem [\(1.1\)](#page-0-0)–[\(1.2\)](#page-0-1), which is called a *heteroclinic solution*, connecting the equilibria −1 and 1.

The existence of heteroclinic solution has received a special attention, because this type of solution appears in a lot of mathematical models, such

Research of C. O. Alves partially supported by CNPq 304036/2013-7 and INCT-MAT.

In [\[3\]](#page-16-0), the existence of heteroclinic solution for (1.1) – (1.2) has been studied for some classes of function a. More precisely, in that paper the following classes were considered:

Class 1: a is a positive constant.

Class 2: a is a periodic continuous function with

$$
\inf_{t \in \mathbb{R}} a(t) = a_0 > 0. \tag{a_0}
$$

Class 3: a is a bounded continuous function and there are $a_1, a_2 > 0$ verifying

$$
a_1 \le a(t) \le a_2 \ \forall t \in \mathbb{R} \tag{a_1}
$$

and

$$
a(t) \rightarrow a_2
$$
, as $|t| \rightarrow +\infty$, (a_2)

with $a(t) < a_2$ in some set of nonzero measure.

In $[10]$ $[10]$, Gavioli and Sanchez have assumed that a belongs to ensuing class: **Class 4:** There is t_0 such that a is increasing in $(-\infty, t_0]$, a is decreasing in $[t_0, +\infty),$

 $\lim_{|t| \to +\infty} a(t) = l > 0$, and

$$
\lim_{|t| \to +\infty} |t|(l - a(t)) = 0. \tag{a_3}
$$

Gavioli [\[8](#page-17-1)] has studied the following class **Class 5:** There are $0 < l < L$ such that

$$
l \le a(t) \le L \ \forall t \in \mathbb{R}, \tag{a_4}
$$

$$
a(t) \to L \quad \text{as} \quad |t| \to +\infty, \tag{a_5}
$$

and L/l is suitably bounded from above.

After, Gavioli $[9]$ $[9]$ considered the situation where a is in the class

Class 6: $a \in L^{\infty}(\mathbb{R}, [0, +\infty))$ and there are $l > 0, S < T$, such that

$$
a(t) = l \quad \text{for} \quad t \notin [S, T]. \tag{a_6}
$$

Finally, in [\[12\]](#page-17-3), Spradlin established the existence of heteroclinic for the case where a within class

Class 7: There are $l, l >$ such that

$$
a(t)\to l\quad\text{as}\quad |t|\to+\infty,
$$

and

$$
\underline{l} \le a(t) \le L = \nu \sqrt{l} \underline{l} / \int_{-1}^{1} \sqrt{V(t)} dt,
$$

where

$$
\nu = \min \left\{ \int_{-1}^{\xi_{-}} \sqrt{V(t)} dt, \int_{\xi_{+}}^{1} \sqrt{V(t)} dt \right\}
$$

with

$$
\xi_{-} = \min \{ t : t > -1, V'(t) = 0 \}
$$
 and $\xi_{+} = \max \{ t : t < 1, V'(t) = 0 \}.$

In the above references, the main idea to get a solution for (1.1) – (1.2) is looking for critical point for the functional $J: H_{loc}^1(\mathbb{R}) \to [0, +\infty]$ given by

$$
J(x) = \int_{-\infty}^{+\infty} \left(\frac{1}{2}|\dot{x}|^2 + a(\epsilon t)V(x(t))\right) dt.
$$

In some of them, the existence of critical point was established showing that J possesses a critical point on one of the ensuing sets

$$
\Sigma = \left\{ x \in H_{loc}^1(\mathbb{R}) : x(-\infty) = -1 \text{ and } x(+\infty) = 1 \right\}
$$

or

$$
W = \left\{ x \in H_{loc}^1(\mathbb{R}) : x + 1 \in H^1((-\infty, 0]), x - 1 \in H^1([0, +\infty)) \right\}.
$$

The main tool used is the variational method, more precisely, deformation lemma and minimization techniques.

Motivated by cited references, we intend to study the existence of heteroclinic solution for (1.1) – (1.2) for three new classes of function a. Here, we will consider the following classes:

Class 8: $a \in L^{\infty}(\mathbb{R})$ and

$$
\liminf_{|t| \to \infty} a(t) = a_{\infty} > \inf_{t \in \mathbb{R}} a(t) = a(0) > 0.
$$
 (a₇)

This class of functions was introduced by Rabinowitz [\[14\]](#page-17-4) to study existence of solution for a P.D.E. of the type

$$
-\Delta u + V(\epsilon x)u = f(u), \ \mathbb{R}^N.
$$

This way, throughout this article, we will called it of Rabinowitz's condition.

Class 9: a is asymptotically periodic, that is, there is a continuous periodic function $a_P : \mathbb{R} \to \mathbb{R}$ satisfying:

$$
|a(t) - a_P(t)| \to 0 \quad \text{as} \quad |t| \to +\infty \tag{a8}
$$

and

$$
0 < \inf_{t \in \mathbb{R}} a(t) \le a(t) < a_P(t) \ \forall t \in \mathbb{R}.\tag{a_9}
$$

Class 10: a is coercive, that is,

$$
0 < \inf_{t \in \mathbb{R}} a(t) \quad \text{and} \quad a(t) \to +\infty \quad \text{as} \quad |t| \to +\infty. \tag{a_{10}}
$$

Our main result is the following

Theorem 1.1. *Assume* (V_1) – (V_4) *and that a belongs to Class* 9 *or* 10*. Then,* $for \ each \ \epsilon > 0, \ problem \ (1.1)-(1.2) \ has \ a \ solution \ x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ $for \ each \ \epsilon > 0, \ problem \ (1.1)-(1.2) \ has \ a \ solution \ x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ $for \ each \ \epsilon > 0, \ problem \ (1.1)-(1.2) \ has \ a \ solution \ x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ $for \ each \ \epsilon > 0, \ problem \ (1.1)-(1.2) \ has \ a \ solution \ x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ $for \ each \ \epsilon > 0, \ problem \ (1.1)-(1.2) \ has \ a \ solution \ x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ and $x(t) \in (0,1)$ *for all* $t \in \mathbb{R}$ *. If a belongs to Class 8, the existence of solution is* $estabilished$ for ϵ small enough.

In the proof of Theorem [1.1,](#page-2-0) we explored some arguments used in [\[3,](#page-16-0)[12](#page-17-3)]. The basic idea is working with a minimization problem, which will lead us to get a heteroclinic solution for the problem (1.1) – (1.2) , for more details, see Sects. [3,](#page-6-0) [4](#page-10-0) and [5.](#page-14-0)

Before to conclude this introduction, we would like to cite the papers of Bonheure et al. [\[5\]](#page-16-1), Bonheure et al. [\[4\]](#page-16-2), Coti Zelati and Rabinowitz $[6]$ $[6]$, Korman et al. [\[11](#page-17-6)], Rabinowitz [\[15](#page-17-7)], and their references, where the reader can

find interesting results about the existence of heteroclinic solutions for related problems.

The plan of the paper is as follows: in Sect. [2,](#page-3-0) we prove some technical results, which will be useful in the proof of Theorem [1.1.](#page-2-0) In Sects. [3](#page-6-0) and [4,](#page-10-0) we study the case where a verifies the Rabinowitz's condition and it is asymptotically periodic respectively, while the coercive case is considered in Sect. [5.](#page-14-0) In Sect. [6,](#page-16-3) we make some final considerations.

2. Technical results

In this section, we will show some results, which are crucial in the proof of Theorem [1.1.](#page-2-0) However, we would like to point out that in their proofs it is enough to assume that function a verifies the following condition: There are $l_0, l_1 > 0$ such that

$$
l_0 \le a(t) \le l_1 \quad \forall t \in \mathbb{R}.\tag{a_{11}}
$$

To begin with, we observe that from $(V_1) - (V_4)$, there are $C_1, C_2, \delta > 0$ with $C_1 < C_2$, such that

$$
C_1(t-1)^2 \le V(t) \le C_2(t-1)^2 \quad \forall t \in (1-\delta, 1+\delta)
$$
 (2.1)

and

$$
C_1(t+1)^2 \le V(t) \le C_2(t+1)^2 \quad \forall t \in (-1-\delta, -1+\delta). \tag{2.2}
$$

In what follows, we will make a modification on function V , by assuming that it satisfies the following properties:

 (V_5) $V(t) > 0$ for all $t \in (-\infty, -1-\delta) \cup (1+\delta, +\infty),$

 (V_5) $V'(t)t > 0$ for all $t \in (-\infty, -1) \cup (1, +\infty)$,

and

$$
(V_7) \t V(t) \to +\infty \t as \t |t| \to +\infty.
$$

Hereafter, we will denote by \tilde{V} the new function. This way,

$$
\tilde{V}(t) = V(t) \,\forall t \in (-1 - \delta, 1 + \delta), \ \tilde{V}'(t)t > 0 \quad \text{for} \quad |t| > 1 \quad \text{and} \quad \tilde{V}(t) \to +\infty
$$
\n
$$
\text{as} \quad |t| \to +\infty.
$$

Moreover, we denote by $W \subset H^1_{loc}(\mathbb{R})$ the set

$$
W = \left\{ x \in H_{loc}^1(\mathbb{R}) : x + 1 \in H^1((-\infty, 0]), x - 1 \in H^1([0, +\infty)) \right\},\
$$

and by $J_{\epsilon}: H^1_{loc}(\mathbb{R}) \to [0, +\infty]$ the functional given by

$$
J_{\epsilon}(x) = \int_{-\infty}^{+\infty} \left(\frac{1}{2}|\dot{x}|^{2} + a(\epsilon t)\tilde{V}(x(t))\right)dt.
$$

From $(V_1)-(V_4)$, more precisely $(2.1)-(2.2)$ $(2.1)-(2.2)$ $(2.1)-(2.2)$, it follows that $J_{\epsilon}(x) < +\infty$ for all $x \in W$ and J_{ϵ} is Fréchet differentiable, in the sense that,

$$
J'_{\epsilon}(x)v = \int_{-\infty}^{+\infty} \left(\dot{x}\dot{v} + a(\epsilon t)\tilde{V}(x(t))v(t) \right) dt \quad \forall x \in W \quad \text{and} \quad v \in H^{1}(\mathbb{R}).
$$

In the sequel, we say that (x_n) is a $(PS)_c$ sequence for J_{ϵ} , if $(x_n) \subset W$ with

$$
J_{\epsilon}(x_n) \to c \text{ and } ||J'_{\epsilon}(x_n)||_* \to 0 \text{ as } n \to \infty,
$$

where

$$
||J'_{\epsilon}(x)||_* = \sup \{J'_{\epsilon}(x)v : v \in H^1(\mathbb{R}), ||v|| = 1\},\,
$$

and $\|$ $\|$ denotes the usual norm in $H^1(\mathbb{R})$.

The next two lemmas can be found in [\[12\]](#page-17-3), however for reader's convenience we will write their proofs.

Lemma 2.1. If
$$
x \in H_{loc}^1(\mathbb{R})
$$
 and $J_{\epsilon}(x) < \infty$, then
 $x(t) \to -1$ or $x(t) \to 1$ as $t \to -\infty$

and

$$
x(t) \to 1
$$
 or $x(t) \to -1$ as $t \to +\infty$.

More precisely,

$$
x + 1 \in H^1((-\infty, 0])
$$
 or $x - 1 \in H^1((-\infty, 0])$

and

$$
x + 1 \in H^1([0, +\infty))
$$
 or $x - 1 \in H^1([0, +\infty)).$

Proof. Suppose the lemma is false. Then, there is $x \in H^1_{loc}(\mathbb{R})$ with $J_{\epsilon}(x) < \infty$, $\eta > 0$ and a sequence (t_n) with $|t_n| \to +\infty$ as $n \to +\infty$ such that

$$
x(t_n) \in (-\infty, -1-\eta) \cup (-1+\eta, 1-\eta) \cup (1+\eta, \infty).
$$
 (2.3)

Let

$$
d = \{\tilde{V}(t) : t \in (-\infty, -1-\eta/2) \cup (-1+\eta/2, 1-\eta/2) \cup (1+\eta/2, +\infty)\} > 0. \tag{2.4}
$$

We can assume, without loss of generality, $t_n \to +\infty$ and $t_{n+1} \geq t_n + 1$ for all $n \in \mathbb{N}$. If

$$
x(t) \in (-\infty, -1 - \eta/2) \cup (-1 + \eta/2, 1 - \eta/2) \cup (1 + \eta/2, +\infty) \ \forall t \in [t_n, t_{n+1}],
$$

we have that

we have that

$$
\int_{t_n}^{t_n+1} a(\epsilon t) \tilde{V}(x(t)) dt \ge l_0 d \ \forall n \in \mathbb{N}.
$$
 (2.5)

Otherwise, there exists $t^* \in [t_n, t_n + 1]$ with $|x(t^*) - x(t_n)| \ge \eta/2$. Thereby,

$$
\eta/2 \leq |x(t^*) - x(t_n)| \leq \int_{t_n}^{t^*} |\dot{x}| \, dt \leq \sqrt{t^* - t_n} \left(\int_{t_n}^{t^*} |\dot{x}|^2 \, dt \right)^{\frac{1}{2}},
$$

from where it follows that

$$
\int_{t_n}^{t_n+1} |\dot{x}|^2 dt \ge \eta^2/4.
$$
\n(2.6)

From (2.5) and (2.6) ,

$$
\int_{t_n}^{t_n+1} \left(\frac{1}{2}|\dot{x}|^2 + a(\epsilon t)\tilde{V}(x(t))\right) dt \ge \min\{l_0 d, \eta^2/4\}
$$

and so,

$$
J_{\epsilon}(x) \ge \sum_{n=1}^{+\infty} \int_{t_n}^{t_n+1} \left(\frac{1}{2}|\dot{x}|^2 + a(\epsilon t)\tilde{V}(x(t))\right) dt = +\infty
$$

which is a contradiction, because by hypothesis $J_{\epsilon}(x) < \infty$. Then,

$$
x(t) \to -1
$$
 or $x(t) \to 1$ as $t \to +\infty$.

The same argument works to prove that

 $x(t) \rightarrow -1$ or $x(t) \rightarrow 1$ as $t \rightarrow -\infty$.

By (2.1) – (2.2) , if $x(t) \rightarrow 1$ as $t \rightarrow +\infty$, there is $T > 0$ such that

$$
\int_{T}^{+\infty} (x(t) - 1)^2 \le \int_{T}^{+\infty} \frac{\tilde{V}(x(t))}{C_1} dt \le \frac{1}{l_0 C_1} \int_{T}^{+\infty} a(\epsilon t) \tilde{V}(x(t)) dt
$$

$$
\le \frac{1}{l_0 C_1} J_{\epsilon}(x) < \infty.
$$

The last inequality yields $x - 1 \in H^1([0, +\infty))$. Analogous approach can be repeated to the cases

$$
x(t) \to -1
$$
 as $t \to +\infty$, $x(t) \to 1$ as $t \to -\infty$
and $x(t) \to -1$ as $t \to -\infty$.

 \Box

The next lemma will be used to study the convergence of the Palais– Smale sequences associated with J_{ϵ} .

Lemma 2.2. *Let* $A, T > 0$ *. There is* $B > 0$ *, such that if* $x \in H_{loc}^1(\mathbb{R})$ *with* $J_{\epsilon}(x) \leq A$, then $||x||_{H^1([-T,T])} \leq B$.

Proof. First of all, note that

$$
\int_{-T}^{T} |\dot{x}|^2 dt \le 2A.
$$

By coercivity of \tilde{V} , there exists $C > 0$ such that

$$
\tilde{V}(t) > \frac{A}{l_0 T} \quad \text{for} \quad |t| \ge C.
$$

Since

$$
\int_{-T}^{T} a(\epsilon t) \tilde{V}(x(t)) dt \leq A,
$$

there is $t^* \in [-T, T]$ such that $\tilde{V}(x(t^*)) \leq \frac{A}{2T}$ and $|x(t^*)| \leq C$. Hence, for all $s \in [-T, T],$

$$
|x(s)| \le |x(t^*)| + \left| \int_{\min\{s,t^*\}}^{\max\{s,t^*\}} \dot{x}(t) dt \right| \le |x(t^*)| + \sqrt{|s-t^*|} \left| \int_{\min\{s,t^*\}}^{\max\{s,t^*\}} | \dot{x} |^2 dt \right|^{\frac{1}{2}}
$$

$$
\le C + 2\sqrt{T}A,
$$

showing that

$$
||x||_{\infty} \le C + 2\sqrt{AT}.
$$

3. Existence of solution for Rabinowitz's condition

In this section, we intend to prove Theorem [1.1,](#page-2-0) by assuming that a verifies the Rabinowitz's condition.

In what follows, we denote by \mathcal{B}_{ϵ} , \mathcal{B}_{0} and \mathcal{B}_{∞} the following real numbers

$$
\mathcal{B}_{\epsilon} = \inf \{ J_{\epsilon}(x) : x \in W \},
$$

$$
\mathcal{B}_{0} = \inf \{ J_{0}(x) : x \in W \},
$$

and

$$
\mathcal{B}_{\infty} = \inf \{ J_{\infty}(x) : x \in W \},\
$$

where $J_{\infty}: H^1_{loc}(\mathbb{R}) \to [0, +\infty]$ is the functional given by

$$
J_{\infty}(x) = \int_{-\infty}^{+\infty} \left(\frac{1}{2}|\dot{x}|^2 + a_{\infty}\tilde{V}(x(t))\right)dt.
$$

Related to the above numbers, we have the ensuing result

Lemma 3.1. *The numbers* \mathcal{B}_{ϵ} , \mathcal{B}_{0} *and* \mathcal{B}_{∞} *verify*

 $\mathcal{B}_0 < \mathcal{B}_{\infty}$ and $\lim_{\epsilon \to 0} \mathcal{B}_{\epsilon} = \mathcal{B}_0.$

Proof. In what follows, we denote by $w_0, w_\infty \in W$ the functions that verify

$$
\begin{cases} \n\ddot{w}_0(t) = a(0)V'(w_0(t)), \ t \in \mathbb{R}, \\ \nw_0(t) \in (-1, 1) \ \forall t \in \mathbb{R}, \\ \nw_0(t) \to -1 \text{ as } t \to -\infty, \ w_0(t) \to 1 \text{ as } t \to +\infty, \n\end{cases} \tag{P_0}
$$

and

 $\sqrt{ }$ \overline{J} $\sqrt{2}$

$$
w_{\infty}^{..}(t) = a_{\infty} V'(w_{\infty}(t)), \quad t \in \mathbb{R},
$$

\n
$$
w_{\infty}(t) \in (-1, 1) \quad \forall t \in \mathbb{R},
$$

\n
$$
w_{\infty}(t) \to -1 \text{ as } t \to -\infty, \quad w_{\infty}(t) \to 1 \text{ as } t \to +\infty.
$$

\n(P_{\infty})

with

$$
\mathcal{B}_0 = J_0(w_0)
$$
 and $\mathcal{B}_{\infty} = J_{\infty}(w_{\infty}).$

The existence of w_0 and w_∞ was established in [\[3](#page-16-0)].

By hypothesis $a_0 < a_{\infty}$, then

$$
\mathcal{B}_0 \leq J_0(w_{\infty}) < J_{\infty}(w_{\infty}) = \mathcal{B}_{\infty},
$$

showing the first part of the lemma. For the second part, we begin observing that

 $J_0(w) \leq J_{\epsilon}(w)$ $\forall w \in W$.

Consequently,

$$
\mathcal{B}_0\leq \mathcal{B}_{\epsilon} \ \forall \epsilon>0,
$$

leading to

$$
\mathcal{B}_0 \le \liminf_{\epsilon \to 0} \mathcal{B}_{\epsilon}.\tag{3.1}
$$

On the other hand, since $w_0 \in W$,

$$
\mathcal{B}_{\epsilon} \leq J_{\epsilon}(w_0) = \int_{-\infty}^{+\infty} \left(\frac{1}{2} |\dot{w_0}|^2 + a(\epsilon t) \tilde{V}(w_0(t)) \right) dt.
$$

Using Lebesgue's Theorem, we deduce that

$$
\limsup_{\epsilon \to 0} \mathcal{B}_{\epsilon} \le \int_{-\infty}^{+\infty} \left(\frac{1}{2} |\dot{w_0}|^2 + a(0) \tilde{V}(w_0(t)) \right) dt = J_0(w_0) = \mathcal{B}_0.
$$
 (3.2)

From (3.1) – (3.2) ,

$$
\lim_{\epsilon \to 0} \mathcal{B}_{\epsilon} = \mathcal{B}_0.
$$

 \Box

The next lemma establishes that minimum points of J on W are in fact solutions for (1.1) – (1.2) .

Lemma 3.2. *If* $x \in W$ *verifies* $J_{\epsilon}(x) = \mathcal{B}_{\epsilon}$, *then* x *solves problem* [\(1.1\)](#page-0-0)–[\(1.2\)](#page-0-1) *and* $x(t) \in (-1, 1)$ *for all* $t \in \mathbb{R}$ *.*

Proof. Since $J_{\epsilon}(x) = \mathcal{B}_{\epsilon}$, it is possible to prove that

$$
J'_{\epsilon}(x)v = 0 \ \forall v \in H^{1}(\mathbb{R}),
$$

showing that x is a critical point of J_{ϵ} . Therefore, x is a solution of O.D.E.

$$
\ddot{x}(t) = a(\epsilon t)\tilde{V}'(x(t)), \quad t \in \mathbb{R}.
$$

Moreover, by $x \in W$, one have

$$
x(t) \to -1
$$
 as $t \to -\infty$, $x(t) \to 1$ as $t \to +\infty$.

Now, we will prove that

 $x(t) \in (-1,1) \ \forall \ t \in \mathbb{R}.$

If $x(t) > 1$ for some $t \in \mathbb{R}$, then let $t_0 \in \mathbb{R}$ with $x(t_0) = \max_{t \in \mathbb{R}} x(t) > 1$. Thereby,

$$
\ddot{x}(t_0) \le 0 \quad \text{and} \quad \tilde{V}'(x(t_0)) > 0,
$$

which is an absurd. Thus $x(t) < 1$ for all $t \in \mathbb{R}$. The same type of argument works to show that $x(t) > -1$ for all $t \in \mathbb{R}$. From the above information, we can conclude that x is a solution for original problem (1.1) – (1.2) , because

$$
\tilde{V}(x(t)) = V(x(t)) \ \forall t \in \mathbb{R},
$$

finishing the proof of lemma. \Box

The next result shows that associated with \mathcal{B}_{ϵ} , we have a Palais–Smale sequence for J_{ϵ} .

Lemma 3.3. *There is a* $(PS)_{\mathcal{B}_{\epsilon}}$ *sequence for* J_{ϵ} *.*

Proof. Since J_{ϵ} is bounded from below, there is $(x_n) \subset W$ such that

$$
J_{\epsilon}(x_n) \to \mathcal{B}_{\epsilon}
$$
 as $n \to +\infty$.

Now, it is easy to check that if $x, z \in W$, then $x - z \in H^1(\mathbb{R})$. Therefore, we can define on W the metric $\rho: W \times W \to [0 + \infty)$ given by

$$
\rho(x,z) = ||x - z||,
$$

where $\|$ $\|$ denotes the usual norm in $H^1(\mathbb{R})$. A direct computation gives that (W, ρ) is a complete metric space. Since J_{ϵ} is lower semicontinuous and bounded from below on (W, ρ) , by Ekeland's Variational Principle there is $(u_n) \subset W$ verifying

$$
||x_n - u_n|| = o_n(1),
$$

with

 $J_{\epsilon}(u_n) \to \mathcal{B}_{\epsilon}$ and $J'_{\epsilon}(u_n) \to 0$ as $n \to +\infty$,

implying that (u_n) is a $(PS)_{\mathcal{B}_{\epsilon}}$ sequence for J_{ϵ} .

The next lemma is crucial in our approach and its proof can be found in [\[12](#page-17-3)].

Lemma 3.4. *Let* $x_0, x_1 \in (-1, 1), x_0 < x_1, t_0 < t_1$ *and* $x \in H^1([t_0, t_1])$ *with* $x(t_0) = x_0$ *and* $x(t_1) = x_1$ *. Then,*

$$
\int_{t_0}^{t_1} \left(\frac{1}{2}|\dot{x}|^2 + a_{\infty}V(x(t))\right) dt \ge \int_{w_{\infty}^{-1}(x_0)}^{w_{\infty}^{-1}(x_1)} \left(\frac{1}{2}|\dot{w}_{\infty}|^2 + a_{\infty}V(w_{\infty}(t))\right) dt,
$$

where w_{∞} *was given in the proof of Lemma* [3.1](#page-6-1)*.*

The main result this section can be stated as follows

Theorem 3.1. *Assume that* (V_1) *–* (V_4) *hold. If* a *belongs to Class* 8*, there is* $\epsilon^* > 0$, such that problem [\(1.1\)](#page-0-0)–[\(1.2\)](#page-0-1) has a solution $x \in H^1_{loc}(\mathbb{R}) \cap C^2(\mathbb{R})$ for $all \epsilon \in (0, \epsilon^*)$ *. Moreover,* $x(t) \in (0, 1)$ *for all* $t \in \mathbb{R}$ *.*

Proof. First of all, by Lemma [3.2,](#page-7-2) we see that to prove Theorem [1.1,](#page-2-0) it is enough to show that there exists $\epsilon^* > 0$ such that \mathcal{B}_{ϵ} is achieved for all $\epsilon \in$ $[0, \epsilon^*).$

To this end, we will set for each $\tau > 0$ the real number

$$
\Lambda_{\tau} = \int_{w_{\infty}^{-1}(-1+\tau)}^{w_{\infty}^{-1}(1-\tau)} \left(\frac{1}{2} |w_{\infty}|^2 + a_{\infty} V(w_{\infty}(t)) \right) dt,
$$

where $w_{\infty} \in W$, $w_{\infty}(t) \in (-1,1)$ for all $t \in \mathbb{R}$ and $J_{\infty}(w_{\infty}) = \mathcal{B}_{\infty}$. By a routine calculus,

$$
\Lambda_{\tau} \to \mathcal{B}_{\infty} \text{ as } \tau \to 0. \tag{3.3}
$$

In the last limit, we have used that $\lim_{t\to+\infty} w_{\infty}(t) = 1$ and $\lim_{t\to-\infty} w_{\infty}(t) = -1$.

The inequality $\mathcal{B}_0 < \mathcal{B}_{\infty}$ in conjunction with (3.3) implies that there is $\tau > 0$ small enough verifying

$$
\left(\frac{a_{\infty}-\tau}{a_{\infty}}\right)\Lambda_{\tau} > \mathcal{B}_0.
$$

From Lemma [3.1,](#page-6-1) we know that $\lim_{\epsilon \to 0} \mathcal{B}_{\epsilon} = \mathcal{B}_{0}$. Then, this limit together with the last inequality yields there is $\epsilon^* > 0$ such that

$$
\mathcal{B}_{\epsilon} < \left(\frac{a_{\infty} - \tau}{a_{\infty}}\right) \Lambda_{\tau}, \quad \forall \epsilon \in [0, \epsilon^*). \tag{3.4}
$$

To prove that \mathcal{B}_{ϵ} is achieved for each $\epsilon \in [0, \epsilon^*),$ we begin recalling that from Lemma [3.3,](#page-7-3) there is a $(PS)_{\mathcal{B}_{\epsilon}}$ sequence for J_{ϵ} , that is, there exists $(x_n^{\epsilon}) \subset$ W such that

$$
J_{\epsilon}(x_n^{\epsilon}) \to \mathcal{B}_{\epsilon}
$$
 and $||J'_{\epsilon}(x_n^{\epsilon})||_* \to 0$ as $n \to +\infty$.

From this,

$$
J_{\epsilon}(x_n^{\epsilon}) \le A^{\epsilon} = \sup_{n} J_{\epsilon}(x_n^{\epsilon}) \ \forall n \in \mathbb{N}.
$$

By Lemma [2.2,](#page-5-0) for each $T > 0$, there is $B = B(T, A) > 0$ such that

$$
||x_n^\epsilon||_{H^1([-T,T])}\leq B\ \ \forall n\in\mathbb{N}.
$$

Hence, there is a subsequence of (x_n^{ϵ}) , still denoted by itself, and $x^{\epsilon} \in H^1_{loc}(\mathbb{R})$ verifying

 $x_n^{\epsilon} \to x^{\epsilon}$ uniformly in $[-T, T]$ and $x_n^{\epsilon} \to x^{\epsilon}$ in $H^1([-T, T]) \ \forall T > 0$.

Combining these limits with the fact that J_{ϵ} is lower semicontinuous, we also derive that

$$
J_{\epsilon}(x^{\epsilon}) \leq \mathcal{B}_{\epsilon}.\tag{3.5}
$$

Next, we will show that $J'_{\epsilon}(x^{\epsilon}) = 0$. To see why, note that for each $v \in C_0^{\infty}(\mathbb{R})$ fixed, we have that $J'_{\epsilon}(x_n^{\epsilon})v = o_n(1)$. Then,

$$
\int_{\alpha}^{\beta} x_n^{\epsilon} \dot{v} dt + \int_{\alpha}^{\beta} a(\epsilon t) \tilde{V}'(x_n^{\epsilon}(t)) v(t) dt = o_n(1),
$$

where $supp v \subset [\alpha, \beta]$. Letting $n \to +\infty$, we get

$$
\int_{\alpha}^{\beta} \dot{x}^{\epsilon} \dot{v} dt + \int_{\alpha}^{\beta} a(\epsilon t) \tilde{V}'(x^{\epsilon}(t)) v(t) dt = 0,
$$

implying that x^{ϵ} is a solution of equation O.D.E.

$$
\ddot{x}^{\epsilon}(t) = a(\epsilon t) \tilde{V}'(x^{\epsilon}(t)),
$$

and so,

$$
J'_{\epsilon}(x^{\epsilon})=0.
$$

Moreover, by Fatous' Lemma $J_{\epsilon}(x^{\epsilon}) < +\infty$. Consequently, by Lemma [2.1](#page-4-2)

$$
x^{\epsilon}(t) \rightarrow -1
$$
 or $x^{\epsilon}(t) \rightarrow 1$ as $t \rightarrow -\infty$

and

$$
x^{\epsilon}(t) \to 1
$$
 or $x^{\epsilon}(t) \to -1$ as $t \to +\infty$.

Our next step is showing that the limit below

$$
x^{\epsilon}(t) \to -1 \quad \text{as } t \to +\infty \tag{3.6}
$$

does not hold.

Now, by (a_7) , let $T^{\epsilon} > 0$ be large enough so that $a(\epsilon t) \ge a_{\infty} - \tau$ on $[T^{\epsilon}, +\infty)$ and $x(T^{\epsilon}) < -1+\tau$. Let n be a large enough so that $x_n^{\epsilon}(T) < -1+\tau$. Let $T^{\epsilon} < \alpha^{\epsilon} < \beta^{\epsilon}$ with $x_n^{\epsilon}(\alpha^{\epsilon}) = -1 + \tau$ and $x_n^{\epsilon}(\beta^{\epsilon}) = 1 - \tau$. By Lemma [3.4,](#page-8-1) we get the inequality

$$
J_{\epsilon}(x_n^{\epsilon}) \ge \left(\frac{a_{\infty}-\tau}{a_{\infty}}\right) \int_{\alpha^{\epsilon}}^{\beta^{\epsilon}} \left(\frac{1}{2}|\dot{x}_n^{\epsilon}|^2 + a_{\infty}\tilde{V}(x_n^{\epsilon}(t))\right) dt \ge \left(\frac{a_{\infty}-\tau}{a_{\infty}}\right) \Lambda_{\tau},
$$

which gives

$$
\mathcal{B}_{\epsilon} = \lim_{n \to +\infty} J_{\epsilon}(x_n^{\epsilon}) \ge \left(\frac{a_{\infty} - \tau}{a_{\infty}}\right) \Lambda_{\tau},
$$

contradicting [\(3.4\)](#page-9-0). This way,

 $x^{\epsilon}(t) \to 1$ as $t \to +\infty$.

A similar argument can be used to show that

$$
x^{\epsilon}(t) \rightarrow -1
$$
 as $t \rightarrow -\infty$.

As in the proof of Lemma [2.1,](#page-4-2) we derive that $x^{\epsilon} + 1 \in H^{1}((-\infty,0])$ and $x^{\epsilon} - 1 \in H^{1}([0, +\infty))$. Then, $x^{\epsilon} \in W$, and by (3.5) , $J_{\epsilon}(x^{\epsilon}) = \mathcal{B}_{\epsilon}$ finishing the proof. \Box

4. Existence of solution for the asymptotically periodic case

In this section, we intend to prove the existence of solution for (1.1) – (1.2) , by assuming that a is asymptotically periodic.

The main result in this section is the following

Theorem 4.1. *Assume that* $(V_1) - (V_4)$ *hold. If* a *belongs to Class* 9*, problem* (1.1) – (1.2) *has a solution* $x \in H^1_{loc}(\mathbb{R}) \cap C^2(\mathbb{R})$ *for each* $\epsilon > 0$ *. Moreover,* $x(t) \in (0,1)$ *for all* $t \in \mathbb{R}$ *.*

In the proof of Theorem [4.1,](#page-10-1) without loss of generality, we assume that $\epsilon = 1$. Moreover, we will use the fact that problem (1.1) – (1.2) has an increasing solution $w_P \in H^1_{loc}(\mathbb{R}) \cap C^2(\mathbb{R})$ with $w_P \in W$ and $J_P(w_P) = \mathcal{B}_P$, where $J_P: H^1_{loc}(\mathbb{R}) \to [0, +\infty]$ is the functional given by

$$
J_P(x) = \int_{-\infty}^{+\infty} \left(\frac{1}{2}|\dot{x}|^2 + a_P(t)\tilde{V}(x(t))\right) dt.
$$

and

$$
\mathcal{B}_P = \inf \{ J_P(x) : x \in W \}.
$$

The existence of w_P can be seen in [\[3\]](#page-16-0).

In the sequel, we denote by $J: H^1_{loc}(\mathbb{R}) \to [0, +\infty]$ the functional given by

$$
J(x) = \int_{-\infty}^{+\infty} \left(\frac{1}{2}|\dot{x}|^2 + a(t)\tilde{V}(x(t))\right) dt
$$

and by β , the real number given by

$$
\mathcal{B} = \inf\{J(x) : x \in W\}.
$$

1206 C. O. Alves NoDEA

Here, we would like point out that all results proved in Sect. [2](#page-3-0) are true for functionals J and J_P . Moreover, from (a_9) , we also have

$$
\mathcal{B} < \mathcal{B}_P. \tag{4.1}
$$

Proof of Theorem [4.1](#page-10-1)

As in the proof of Theorem [3.1,](#page-8-2) our main goal is to show that β is achieved on W. Hereafter, $a_0 = \inf_{t \in \mathbb{R}} a(t) > 0$ and we fix $\delta > 0$ such that

$$
\mathcal{B} + \delta < \mathcal{B}_P. \tag{4.2}
$$

Moreover, we also fix $M = M(\delta) > 0$ such that

$$
|a(t) - aP(t)| < \frac{\delta a_0}{4B} \quad \text{for } |t| > M \tag{4.3}
$$

and $\gamma \in (0,1)$ verifying

$$
\tilde{V}(z) < \frac{\delta}{16M\|a_P\|_\infty} \quad \forall z \in [-1, -1 + \gamma] \cup [1 - \gamma, 1].\tag{4.4}
$$

Claim 4.1. For each $\gamma \in (0,1)$, there are sequences $(U_n) \subset W$, (s_n) , $(t_n) \subset \mathbb{R}$ with $s_n < t_n$ satisfying:

 $J(U_n) \to \mathcal{B}$ as $n \to +\infty$, (i)

$$
U_n(t) \in [-1, -1 + \gamma] \quad \forall t \in (-\infty, s_n], \tag{ii}
$$

$$
U_n(t) \in [1 - \gamma, 1] \ \forall t \in [t_n, +\infty), \tag{iii}
$$

$$
U_n(t) \in [-1 + \gamma, 1 - \gamma] \quad \forall t \in [s_n, t_n], \tag{iv}
$$

$$
U_n(t_n) = 1 - \gamma, \ \ U_n(s_n) = -1 + \gamma,
$$
 (v)

and

$$
(t_n - s_n) \text{ is bounded in } \mathbb{R}. \tag{vi}
$$

The existence of the above sequences can be found in [\[3\]](#page-16-0), however for reader's convenience, we will write its proof. Let $(u_n) \subset W$ be a minimizing sequence for J , that is,

$$
J(u_n)\to\mathcal{B}.
$$

By setting the sequence

$$
v_n(t) = \max\{-1, \min\{u_n(t), 1\}\},\
$$

a direct computation implies that $(v_n) \subset W$ and

$$
J(v_n) \leq J(u_n) \ \forall n \in \mathbb{N}.
$$

Therefore, we can assume without loss of generality

$$
-1 \le u_n(t) \le 1 \quad \forall t \in \mathbb{R}.
$$

Assuming that $\gamma \in (0,1)$ is small enough, it is possible to find an interval $[s_n, t_n]$ such that $u_n(s_n) = -1 + \gamma$, $u_n(t_n) = 1 - \gamma$ and

$$
-1 + \gamma \le u_n(t) \le 1 - \gamma \ \forall t \in [s_n, t_n].
$$

Using the above notations, we set a new sequence (U_n) given by

$$
U_n(t) = \begin{cases} \min\{-1 + \gamma, u_n(t)\}, & \text{if } t \le s_n, \\ u_n(t), & \text{if } s_n \le t \le t_n, \\ \max\{1 - \gamma, u_n(t)\}, & \text{if } t \ge t_n. \end{cases}
$$

A straightforward computation gives

$$
\int_{\mathbb{R}} |\dot{U}_n|^2 dt \le \int_{\mathbb{R}} |\dot{u}_n|^2 dt \quad \forall n \in \mathbb{N}.
$$

Moreover, by (V_6) , we also have

$$
\tilde{V}(U_n(t)) \leq \tilde{V}(u_n(t)) \quad \forall t \in \mathbb{R} \quad \text{and} \quad n \in \mathbb{N},
$$

leading to

$$
\int_{\mathbb{R}} a(t)\tilde{V}(U_n(t)) dt \leq \int_{\mathbb{R}} a(t)\tilde{V}(u_n(t)) dt \ \forall n \in \mathbb{N}.
$$

Thus,

$$
J(U_n) \leq J(u_n) \quad \forall n \in \mathbb{N}.
$$

Gathering these information, we deduce that (U_n) verifies $(i)-(v)$. Now, the boundedness of $(t_n - s_n)$ follows of the inequality below

$$
J(U_n) \ge a_0 \left(\min_{z \in [-1+\gamma, 1-\gamma]} V(z) \right) (t_n - s_n) \quad \forall n \in \mathbb{N},
$$

because $\min_{z \in [-1+\gamma,1-\gamma]} V(z) > 0$ and $a_0 = \inf_{t \in \mathbb{R}} a(t) > 0$.

Now, applying the Ekeland's variational principle, we will find a new sequence, still denoted by (U_n) , which verifies:

$$
J(U_n) \to \mathcal{B} \text{ and } J'(U_n) \to 0 \text{ as } n \to +\infty,
$$

\n
$$
U_n(t) \in [-1 - 1/n, -1 + \gamma + 1/n] \quad \forall t \in (-\infty, s_n],
$$

\n
$$
U_n(t) \in [1 - \gamma - 1/n, 1 + 1/n] \quad \forall t \in [t_n, +\infty),
$$

\n
$$
U_n(t) \in [-1 + \gamma - 1/n, 1 - \gamma + 1/n] \quad \forall t \in [s_n, t_n],
$$

\n
$$
U_n(t_n) = 1 - \gamma + o_n(1), \quad U_n(s_n) = -1 + \gamma + o_n(1)
$$

and

 $(t_n - s_n)$ is bounded in R.

A direct computation shows that for some subsequence of (U_n) , still denoted by itself, there is $U \in C(\mathbb{R}) \cap H^1_{loc}(\mathbb{R})$ such that

 $U_n \to U$ uniformly in $[-T, T]$ and $U_n \to U$ in $H^1([-T, T]) \forall T > 0$. (4.5) As in the proof of Theorem [3.1,](#page-8-2) we see that

$$
J(U) \leq \mathcal{B} \text{ and } J'(U) = 0.
$$

This way, the theorem follows provided that $U \in W$. To show this fact, we make the following claim

Claim 4.2. The sequence (s_n) is bounded.

Indeed, if the claim is not true, we must have for some subsequence,

 $s_n \to +\infty$ or $s_n \to -\infty$.

Using the above limits, we deduce that

$$
U(t) \in [-1, -1 + \gamma] \cup [1 - \gamma, 1] \quad \forall t \in \mathbb{R}.
$$

Thus by (4.4) ,

$$
\tilde{V}(U(t)) < \frac{\delta}{16M \|a_P\|_{\infty}} \quad \forall t \in \mathbb{R}.\tag{4.6}
$$

Note that

$$
J(U_n) = J_P(U_n) + \int_{\mathbb{R}} (a(t) - a_P(t)) \tilde{V}(U_n(t)) dt \geq \mathcal{B}_P
$$

+
$$
\int_{\mathbb{R}} (a(t) - a_P(t)) \tilde{V}(U_n(t)) dt.
$$
 (4.7)

Using [\(4.3\)](#page-11-1), we derive that

$$
\int_{|t|>M} |a(t)-a_P(t)| \tilde{V}(U_n(t)) dt \leq \frac{\delta a_0}{4\mathcal{B}} \int_{|t|>M} \tilde{V}(U_n(t)) dt \leq \frac{\delta}{4\mathcal{B}} J(U_n),
$$

from where it follows that

$$
\limsup_{n \to +\infty} \int_{|t| > M} |a(t) - a_P(t)| \tilde{V}(U_n(t)) dt \le \frac{\delta}{4}.
$$
 (4.8)

Now, by (4.5) and (4.6) ,

$$
\lim_{n \to +\infty} \int_{|t| \le M} |a(t) - a_P(t)| \tilde{V}(U_n(t)) dt
$$
\n
$$
= \lim_{n \to +\infty} \int_{|t| \le M} |a(t) - a_P(t)| \tilde{V}(U(t)) dt \le \frac{\delta}{4}.
$$
\n(4.9)

Consequently, from (4.8) and (4.9) ,

$$
\limsup_{n \to +\infty} \int_{\mathbb{R}} |a(t) - a_P(t)| \tilde{V}(U_n(t)) dt \le \frac{\delta}{2}.
$$

Thereby, there is $n_0 \in \mathbb{N}$ such that

$$
\int_{\mathbb{R}} |a(t) - a_P(t)| \tilde{V}(U_n(t)) dt < \delta \ \forall n \ge n_0.
$$
\n(4.10)

Combining (4.7) with (4.10) , we derive

$$
J(U_n) = J_P(U_n) + \int_{\mathbb{R}} (a(t) - a_P(t)) \tilde{V}(U_n(t)) dt \geq \mathcal{B}_P - \delta \ \forall n \geq n_0,
$$

that is,

$$
J(U_n) \geq \mathcal{B}_P - \delta \ \ \forall n \geq n_0.
$$

Taking the limit as $n \to +\infty$ in the last inequality, we obtain the estimate

$$
\mathcal{B} > \mathcal{B}_P - \delta,
$$

which contradicts [\(4.2\)](#page-11-2).

The boundedness of (s_n) implies that (t_n) is also bounded, thus we can assume without of generality, that there are $t, s \in \mathbb{R}$ verifying

 $s_n \to s$ and $t_n \to t$ as $n \to +\infty$.

This way,

$$
U(z) \in [-1, -1 + \gamma] \quad \forall z \in (-\infty, s) \quad \text{and} \quad U(z) \in [1 - \gamma, 1] \quad \forall z \in (t, +\infty).
$$

The above information together with Lemma [2.1](#page-4-2) gives

$$
U(z) \to 1
$$
 as $z \to +\infty$ and $U(z) \to -1$ as $z \to -\infty$.

This finishes the proof of Theorem [4.1.](#page-10-1) \Box

5. Existence of solution for the coercive case

In this section, we intend to prove the existence of solution for (1.1) – (1.2) , by assuming that a is *coercive*. Here, our main result has the following statement

Theorem 5.1. *Assume that* (V_1) *–* (V_4) *hold. If* a *is coercive, problem* (1.1) *–* (1.2) *has a solution* $x \in H_{loc}^1(\mathbb{R}) \cap C^2(\mathbb{R})$ *for all* $\epsilon > 0$ *. Moreover,* $x(t) \in (0,1)$ *for* $all t \in \mathbb{R}$.

In the sequel, we will assume that $\epsilon = 1$. However, in the proof of the above result, we must be careful to use the arguments of the previous sections, more precisely Sect. [2.](#page-3-0) In the sequel, we need to fix the following sets

$$
W_a = \left\{ x \in H_{loc}^1(\mathbb{R}) : x + 1 \in H_a^1((-\infty, 0]), x - 1 \in H_a^1([0, +\infty)) \right\}
$$

where

$$
H_a^1((-\infty,0]) = \left\{ v \in H^1((-\infty,0]) : \int_{-\infty}^0 a(t)|v(t)|^2 dt < +\infty \right\}
$$

endowed with the norm

$$
||v||_{a,-\infty} = \left(\int_{-\infty}^0 |v'(t)|^2 dt + \int_{-\infty}^0 a(t)|v(t)|^2 dt\right)^{\frac{1}{2}}.
$$

The space $H_a^1([0, +\infty))$ is defined of a similar way, that is,

$$
H_a^1([0,+\infty)) = \left\{ v \in H^1([0,+\infty)) : \int_0^{+\infty} a(t) |v(t)|^2 dt < +\infty \right\},\,
$$

endowed with the norm

$$
||v||_{a,+\infty} = \left(\int_0^{+\infty} |v'(t)|^2 dt + \int_0^{+\infty} a(t) |v(t)|^2 dt\right)^{\frac{1}{2}}.
$$

From (a_{10}) , we know that $\inf_{t\in\mathbb{R}} a(t) > 0$, then the embeddings

$$
H_a^1([0, +\infty)) \hookrightarrow H^1([0, +\infty)) \quad \text{and} \quad H_a^1((-\infty, 0]) \hookrightarrow H^1((-\infty, 0])
$$
 are continuous.

Proof Theorem [5.1](#page-14-1)

Hereafter, we follow the same approach of the previous section. Adapt-ing the same arguments explored in [\[3\]](#page-16-0), we can find sequences $(U_n) \subset W_a$, $(s_n), (t_n) \subset \mathbb{R}$ with $s_n < t_n$ satisfying:

$$
J(U_n) \to \mathcal{B}, J'(U_n) \to 0 \text{ as } n \to +\infty,
$$

$$
U_n(t) \in [-1 - 1/n, -1 + \gamma + 1/n] \quad \forall t \in (-\infty, s_n],
$$

$$
U_n(t) \in [1 - \gamma - 1/n, 1 + 1/n] \quad \forall t \in [t_n, +\infty),
$$

$$
U_n(t) \in [-1 + \gamma - 1/n, 1 - \gamma + 1/n] \quad \forall t \in [s_n, t_n],
$$

$$
U_n(t_n) = 1 - \gamma + o_n(1), \quad U_n(s_n) = -1 + \gamma + o_n(1),
$$

and

 $(t_n - s_n)$ is bounded in R.

A direct computation shows that for some subsequence of (U_n) , still denoted by itself, there is $U \in C(\mathbb{R}) \cap H^1_{loc}(\mathbb{R})$ such that

 $U_n \to U$ uniformly in $[-T, T]$ and $U_n \to U$ in $H^1([-T, T]) \forall T > 0$. (5.1) Moreover,

$$
J(U) \leq \mathcal{B} \text{ and } J'(U) = 0.
$$

Here, J and β are as in the proof of Theorem [4.1.](#page-10-1) Our goal is proving that β is achieved on W . To this end, we will study again the behavior of sequence $(s_n).$

Claim 5.1. The sequence (s_n) is bounded.

Arguing by contradiction, we will assume that (s_n) is unbounded. Then for some subsequence, still denoted by itself, we have that

$$
s_n \to +\infty \text{ or } s_n \to -\infty. \tag{5.2}
$$

Using the definition of J and the properties of (U_n) , we derive that

$$
J(U_n) \ge V_0 A_n(t_n - s_n),
$$

where

$$
A_n = \min_{z \in [s_n, t_n]} a(z) \text{ and } V_0 = \min_{-1 + \gamma/2 \le z \le 1 - \gamma/2} V(z) > 0.
$$

Using the fact that a is coercive in conjunction with (5.2) and the boundedness of $(t_n - s_n)$, we deduce that

$$
A_n \to +\infty \text{ as } n \to +\infty.
$$

Since $(J(U_n))$ is bounded, the last inequality implies that

$$
t_n - s_n \to 0 \quad \text{as } n \to +\infty. \tag{5.3}
$$

On the other hand, we know that $(U_n) \subset H^1_{loc}(\mathbb{R})$, then for all $s, t \in \mathbb{R}$ the inequality below occurs

$$
|U_n(t) - U_n(s)| \le \sqrt{|t-s|} \left(\int_{\min\{t,s\}}^{\max\{t,s\}} |U'_n(r)|^2 dr \right)^{\frac{1}{2}} \quad \forall n \in \mathbb{N}.
$$

Thus,

$$
|U_n(t) - U_n(s)| \le \sqrt{2|t-s|} J(U_n)^{\frac{1}{2}} \quad \forall n \in \mathbb{N}.
$$

Now, the boundedness of $(J(U_n))$ together with (5.3) gives

 $|U_n(t_n) - U_n(s_n)| \to 0 \quad n \to +\infty.$

However, this limit cannot occur, because

$$
|U_n(t_n) - U_n(s_n)| = 2 - 2\gamma + o_n(1) \quad \forall n \in \mathbb{N}.
$$

Therefore, the Claim [5.1](#page-15-2) is proved.

Now, the proof of Theorem [5.1](#page-14-1) follows the same steps of the proof of Theorem [4.1.](#page-10-1) \Box

6. Final remarks

In Sect. [2,](#page-3-0) we can remove the condition that $a \in L^{\infty}(\mathbb{R})$. Hovewer, we must work with the same spaces used in Sect. [5.](#page-14-0)

Acknowledgements

The author is grateful to the referees for a number of helpful comments for improvement in this article.

References

- [1] Alessio, F., Montecchiari, P.: Entire solutions in \mathbb{R}^2 for a class of Allen–Cahn equations. ESAIM: COCV **11**, 633–672 (2005)
- [2] Brézis, H.: Analyse Fonctionelle. Masson, Paris (1983)
- [3] Bonheure, D., Sanchez, L.: Heteroclinic orbits for some classes of second and fourth order differential equation. In: Canãda, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations, Chapter 2. Elsevier, Amsterdam
- [4] Bonheure, D., Obersnel, F., Omari, P.: Heteroclinic solutions of the prescribed curvature equation with a double-well potential. Differ. Integr. Equ. **26**, 1411– 1428 (2013)
- [5] Bonheure, D., Sanchez, L., Tarallo, M., Terracini, S.: Heteroclinc connections between nonconsecutive equilibria of a fourth order differential equation. Calc. Var. Partial Differ. Equ. **17**, 341–356 (2001)
- [6] Coti Zelati, V., Rabinowitz, P.H.: Heteroclinc solutions between stationay poinmts at different energy levels. Topol. Methods Nonlinear Anal. **17**, 1–21 (2001)
- [7] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. **47**, 324–353 (1974)
- [8] Gavioli, A.: On the existence of heteroclinic trajectories for asymptotically autonomous equations. Topol. Method Nonlinear Anal. **34**, 251–266 (2009)
- [9] Gavioli, A.: Monotone heteroclinic solutions to non-autonomous equations via phase plane analysis. Nonlinear Differ. Equ. Appl. **18**, 79–100 (2011)
- [10] Gavioli, A., Sanchez, L.: Heteroclinic for non-autonomous second order differential equations. Differ. Integr. Equ. **22**, 999–1018 (2009)
- [11] Korman, P., Lazer, A.C., Li, Y.: On homoclinic and heteroclinic orbits for Hamiltonian systems. Differ. Integr. Equ. **10**, 357–368 (1997)
- [12] Spradlin, G.S.: Heteroclinic solutions to an asymptotically autonomous secondorder equation. EJDE **137**, 1–14 (2010)
- [13] Rabinowitz, P.H.: A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic EDP. Discret. Contin. Dyn. Syst. **10**, 507– 515 (2004)
- [14] Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. **43**, 270–291 (1992)
- [15] Rabinowitz, P.H.: Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. Calc. Var. Partial Differ. Equ. **1**, 1–36 (1993)

Claudianor O. Alves Universidade Federal de Campina Grande Unidade Acadêmica de Matemática Campina Grande, PB CEP:58429-900 Brazil e-mail: coalves@dme.ufcg.edu.br

Received: 20 September 2014. Accepted: 28 February 2015.