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1. Introduction

Consider the non-autonomous second-order differential equation

ẍ(t) = a(εt)V ′(x(t)), t ∈ R, (1.1)

x(t) → −1 as t → −∞, x(t) → 1 as t → +∞, (1.2)

where ε > 0 is a positive parameter and V : R → R is a function verifying:
(V1) V ∈ C2(RN ,R).
(V2) V (t) ≥ 0 ∀t ∈ R and V (−1) = V (1) = 0.
(V3) V (t) > 0 for all t ∈ (−1, 1),
and
(V4) V ′′(−1), V ′′(1) > 0.

Related to function a : R → R, we assume that it is a bounded continuous
function satisfying some conditions which will be mentioned later on.

The main goal of the present paper is to prove the existence of solution
for problem (1.1)–(1.2), which is called a heteroclinic solution, connecting the
equilibria −1 and 1.

The existence of heteroclinic solution has received a special attention,
because this type of solution appears in a lot of mathematical models, such
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as Mechanics, Chemistry and Biology, for more details about this subject, we
cite Bonheure and Sanchez [3].

In [3], the existence of heteroclinic solution for (1.1)–(1.2) has been stud-
ied for some classes of function a. More precisely, in that paper the following
classes were considered:

Class 1: a is a positive constant.
Class 2: a is a periodic continuous function with

inf
t∈R

a(t) = a0 > 0. (a0)

Class 3: a is a bounded continuous function and there are a1, a2 > 0
verifying

a1 ≤ a(t) ≤ a2 ∀t ∈ R (a1)
and

a(t) → a2, as |t| → +∞, (a2)
with a(t) < a2 in some set of nonzero measure.

In [10], Gavioli and Sanchez have assumed that a belongs to ensuing class:
Class 4: There is t0 such that a is increasing in (−∞, t0], a is decreasing in

[t0,+∞),
lim

|t|→+∞
a(t) = l > 0, and

lim
|t|→+∞

|t|(l − a(t)) = 0. (a3)

Gavioli [8] has studied the following class
Class 5: There are 0 < l < L such that

l ≤ a(t) ≤ L ∀t ∈ R, (a4)

a(t) → L as |t| → +∞, (a5)
and L/l is suitably bounded from above.

After, Gavioli [9] considered the situation where a is in the class
Class 6: a ∈ L∞(R, [0,+∞)) and there are l > 0, S < T , such that

a(t) = l for t /∈ [S, T ]. (a6)

Finally, in [12], Spradlin established the existence of heteroclinic for the
case where a within class

Class 7: There are l, l > such that

a(t) → l as |t| → +∞,

and

l ≤ a(t) ≤ L = ν
√

ll/

∫ 1

−1

√
V (t) dt,

where

ν = min

{∫ ξ−

−1

√
V (t) dt,

∫ 1

ξ+

√
V (t) dt

}

with

ξ− = min {t : t > −1, V ′(t) = 0} and ξ+ = max {t : t < 1, V ′(t) = 0} .
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In the above references, the main idea to get a solution for (1.1)–(1.2) is
looking for critical point for the functional J : H1

loc(R) → [0,+∞] given by

J(x) =
∫ +∞

−∞

(
1
2
|ẋ|2 + a(εt)V (x(t))

)
dt.

In some of them, the existence of critical point was established showing that
J possesses a critical point on one of the ensuing sets

Σ =
{
x ∈ H1

loc(R) : x(−∞) = −1 and x(+∞) = 1
}

or

W =
{
x ∈ H1

loc(R) : x + 1 ∈ H1((−∞, 0]), x − 1 ∈ H1([0,+∞))
}

.

The main tool used is the variational method, more precisely, deformation
lemma and minimization techniques.

Motivated by cited references, we intend to study the existence of hete-
roclinic solution for (1.1)–(1.2) for three new classes of function a. Here, we
will consider the following classes:

Class 8: a ∈ L∞(R) and

lim inf
|t|→∞

a(t) = a∞ > inf
t∈R

a(t) = a(0) > 0. (a7)

This class of functions was introduced by Rabinowitz [14] to study existence
of solution for a P.D.E. of the type

−Δu + V (εx)u = f(u), R
N .

This way, throughout this article, we will called it of Rabinowitz’s condition.
Class 9: a is asymptotically periodic, that is, there is a continuous periodic

function aP : R → R satisfying:

|a(t) − aP (t)| → 0 as |t| → +∞ (a8)

and
0 < inf

t∈R

a(t) ≤ a(t) < aP (t) ∀t ∈ R. (a9)

Class 10: a is coercive, that is,

0 < inf
t∈R

a(t) and a(t) → +∞ as |t| → +∞. (a10)

Our main result is the following

Theorem 1.1. Assume (V1)–(V4) and that a belongs to Class 9 or 10. Then,
for each ε > 0, problem (1.1)–(1.2) has a solution x ∈ H1

loc(R) ∩ C2(R) and
x(t) ∈ (0, 1) for all t ∈ R. If a belongs to Class 8, the existence of solution is
established for ε small enough.

In the proof of Theorem 1.1, we explored some arguments used in [3,12].
The basic idea is working with a minimization problem, which will lead us to
get a heteroclinic solution for the problem (1.1)–(1.2), for more details, see
Sects. 3, 4 and 5.

Before to conclude this introduction, we would like to cite the papers
of Bonheure et al. [5], Bonheure et al. [4], Coti Zelati and Rabinowitz [6],
Korman et al. [11], Rabinowitz [15], and their references, where the reader can
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find interesting results about the existence of heteroclinic solutions for related
problems.

The plan of the paper is as follows: in Sect. 2, we prove some technical
results, which will be useful in the proof of Theorem 1.1. In Sects. 3 and
4, we study the case where a verifies the Rabinowitz’s condition and it is
asymptotically periodic respectively, while the coercive case is considered in
Sect. 5. In Sect. 6, we make some final considerations.

2. Technical results

In this section, we will show some results, which are crucial in the proof of
Theorem 1.1. However, we would like to point out that in their proofs it is
enough to assume that function a verifies the following condition: There are
l0, l1 > 0 such that

l0 ≤ a(t) ≤ l1 ∀t ∈ R. (a11)

To begin with, we observe that from (V1) − (V4), there are C1, C2, δ > 0
with C1 < C2, such that

C1(t − 1)2 ≤ V (t) ≤ C2(t − 1)2 ∀t ∈ (1 − δ, 1 + δ) (2.1)

and
C1(t + 1)2 ≤ V (t) ≤ C2(t + 1)2 ∀t ∈ (−1 − δ,−1 + δ). (2.2)

In what follows, we will make a modification on function V , by assuming
that it satisfies the following properties:

(V5) V (t) > 0 for all t ∈ (−∞,−1 − δ) ∪ (1 + δ,+∞),
(V5) V ′(t)t > 0 for all t ∈ (−∞,−1) ∪ (1,+∞),

and

(V7) V (t) → +∞ as |t| → +∞.

Hereafter, we will denote by Ṽ the new function. This way,

Ṽ (t) = V (t) ∀t ∈ (−1 − δ, 1 + δ), Ṽ ′(t)t > 0 for |t| > 1 and Ṽ (t) → +∞
as |t| → +∞.

Moreover, we denote by W ⊂ H1
loc(R) the set

W =
{
x ∈ H1

loc(R) : x + 1 ∈ H1((−∞, 0]), x − 1 ∈ H1([0,+∞))
}

,

and by Jε : H1
loc(R) → [0,+∞] the functional given by

Jε(x) =
∫ +∞

−∞

(
1
2
|ẋ|2 + a(εt)Ṽ (x(t))

)
dt.

From (V1)–(V4), more precisely (2.1)–(2.2), it follows that Jε(x) < +∞ for all
x ∈ W and Jε is Fréchet differentiable, in the sense that,

J ′
ε(x)v =

∫ +∞

−∞

(
ẋv̇ + a(εt)Ṽ (x(t))v(t)

)
dt ∀x ∈ W and v ∈ H1(R).
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In the sequel, we say that (xn) is a (PS)c sequence for Jε, if (xn) ⊂ W
with

Jε(xn) → c and ‖J ′
ε(xn)‖∗ → 0 as n → ∞,

where

‖J ′
ε(x)‖∗ = sup

{
J ′

ε(x)v : v ∈ H1(R), ‖v‖ = 1
}

,

and ‖ ‖ denotes the usual norm in H1(R).
The next two lemmas can be found in [12], however for reader’s conve-

nience we will write their proofs.

Lemma 2.1. If x ∈ H1
loc(R) and Jε(x) < ∞, then

x(t) → −1 or x(t) → 1 as t → −∞
and

x(t) → 1 or x(t) → −1 as t → +∞.

More precisely,

x + 1 ∈ H1((−∞, 0]) or x − 1 ∈ H1((−∞, 0])

and

x + 1 ∈ H1([0,+∞)) or x − 1 ∈ H1([0,+∞)).

Proof. Suppose the lemma is false. Then, there is x ∈ H1
loc(R) with Jε(x) < ∞,

η > 0 and a sequence (tn) with |tn| → +∞ as n → +∞ such that

x(tn) ∈ (−∞,−1 − η) ∪ (−1 + η, 1 − η) ∪ (1 + η,∞). (2.3)

Let

d = {Ṽ (t) : t ∈ (−∞,−1−η/2)∪(−1+η/2, 1−η/2)∪(1+η/2,+∞)} > 0. (2.4)

We can assume, without loss of generality, tn → +∞ and tn+1 ≥ tn + 1 for all
n ∈ N. If

x(t) ∈ (−∞,−1 − η/2) ∪ (−1 + η/2, 1 − η/2) ∪ (1 + η/2,+∞) ∀t ∈ [tn, tn+1],

we have that ∫ tn+1

tn

a(εt)Ṽ (x(t)) dt ≥ l0d ∀n ∈ N. (2.5)

Otherwise, there exists t∗ ∈ [tn, tn + 1] with |x(t∗) − x(tn)| ≥ η/2. Thereby,

η/2 ≤ |x(t∗) − x(tn)| ≤
∫ t∗

tn

|ẋ| dt ≤ √
t∗ − tn

(∫ t∗

tn

|ẋ|2 dt

) 1
2

,

from where it follows that
∫ tn+1

tn

|ẋ|2 dt ≥ η2/4. (2.6)

From (2.5) and (2.6),
∫ tn+1

tn

(
1
2
|ẋ|2 + a(εt)Ṽ (x(t))

)
dt ≥ min{l0d, η2/4}
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and so,

Jε(x) ≥
+∞∑

n=1

∫ tn+1

tn

(
1
2
|ẋ|2 + a(εt)Ṽ (x(t))

)
dt = +∞

which is a contradiction, because by hypothesis Jε(x) < ∞. Then,

x(t) → −1 or x(t) → 1 as t → +∞.

The same argument works to prove that

x(t) → −1 or x(t) → 1 as t → −∞.

By (2.1)–(2.2), if x(t) → 1 as t → +∞, there is T > 0 such that
∫ +∞

T

(x(t) − 1)2 ≤
∫ +∞

T

Ṽ (x(t))
C1

dt ≤ 1
l0C1

∫ +∞

T

a(εt)Ṽ (x(t)) dt

≤ 1
l0C1

Jε(x) < ∞.

The last inequality yields x − 1 ∈ H1([0,+∞)). Analogous approach can be
repeated to the cases

x(t) → −1 as t → +∞, x(t) → 1 as t → −∞
and x(t) → −1 as t → −∞.

�

The next lemma will be used to study the convergence of the Palais–
Smale sequences associated with Jε.

Lemma 2.2. Let A, T > 0. There is B > 0, such that if x ∈ H1
loc(R) with

Jε(x) ≤ A, then ‖x‖H1([−T,T ]) ≤ B.

Proof. First of all, note that
∫ T

−T

|ẋ|2 dt ≤ 2A.

By coercivity of Ṽ , there exists C > 0 such that

Ṽ (t) >
A

l0T
for |t| ≥ C.

Since
∫ T

−T

a(εt)Ṽ (x(t)) dt ≤ A,

there is t∗ ∈ [−T, T ] such that Ṽ (x(t∗)) ≤ A
2T and |x(t∗)| ≤ C. Hence, for all

s ∈ [−T, T ],

|x(s)|≤ |x(t∗)| +

∣∣
∣∣∣

∫ max{s,t∗}

min{s,t∗}
ẋ(t) dt

∣∣
∣∣∣
≤ |x(t∗)| +

√
|s − t∗|

∣∣
∣∣∣

∫ max{s,t∗}

min{s,t∗}
|ẋ|2 dt

∣∣
∣∣∣

1
2

≤ C + 2
√

TA,
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showing that

‖x‖∞ ≤ C + 2
√

AT.

�

3. Existence of solution for Rabinowitz’s condition

In this section, we intend to prove Theorem 1.1, by assuming that a verifies
the Rabinowitz’s condition.

In what follows, we denote by Bε, B0 and B∞ the following real numbers

Bε = inf{Jε(x) : x ∈ W},

B0 = inf{J0(x) : x ∈ W},

and

B∞ = inf{J∞(x) : x ∈ W},

where J∞ : H1
loc(R) → [0,+∞] is the functional given by

J∞(x) =
∫ +∞

−∞

(
1
2
|ẋ|2 + a∞Ṽ (x(t))

)
dt.

Related to the above numbers, we have the ensuing result

Lemma 3.1. The numbers Bε, B0 and B∞ verify

B0 < B∞ and lim
ε→0

Bε = B0.

Proof. In what follows, we denote by w0, w∞ ∈ W the functions that verify
⎧
⎨

⎩

ẅ0(t) = a(0)V ′(w0(t)), t ∈ R,
w0(t) ∈ (−1, 1) ∀t ∈ R,
w0(t) → −1 as t → −∞, w0(t) → 1 as t → +∞,

(P0)

and ⎧
⎨

⎩

ẅ∞(t) = a∞V ′(w∞(t)), t ∈ R,
w∞(t) ∈ (−1, 1) ∀t ∈ R,
w∞(t) → −1 as t → −∞, w∞(t) → 1 as t → +∞.

(P∞)

with

B0 = J0(w0) and B∞ = J∞(w∞).

The existence of w0 and w∞ was established in [3].
By hypothesis a0 < a∞, then

B0 ≤ J0(w∞) < J∞(w∞) = B∞,

showing the first part of the lemma. For the second part, we begin observing
that

J0(w) ≤ Jε(w) ∀w ∈ W.

Consequently,

B0 ≤ Bε ∀ε > 0,
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leading to
B0 ≤ lim inf

ε→0
Bε. (3.1)

On the other hand, since w0 ∈ W ,

Bε ≤ Jε(w0) =
∫ +∞

−∞

(
1
2
|ẇ0|2 + a(εt)Ṽ (w0(t))

)
dt.

Using Lebesgue’s Theorem, we deduce that

lim sup
ε→0

Bε ≤
∫ +∞

−∞

(
1
2
|ẇ0|2 + a(0)Ṽ (w0(t))

)
dt = J0(w0) = B0. (3.2)

From (3.1)–(3.2),

lim
ε→0

Bε = B0.

�

The next lemma establishes that minimum points of J on W are in fact
solutions for (1.1)–(1.2).

Lemma 3.2. If x ∈ W verifies Jε(x) = Bε, then x solves problem (1.1)–(1.2) and
x(t) ∈ (−1, 1) for all t ∈ R.

Proof. Since Jε(x) = Bε, it is possible to prove that

J ′
ε(x)v = 0 ∀v ∈ H1(R),

showing that x is a critical point of Jε. Therefore, x is a solution of O.D.E.

ẍ(t) = a(εt)Ṽ ′(x(t)), t ∈ R.

Moreover, by x ∈ W , one have

x(t) → −1 as t → −∞, x(t) → 1 as t → +∞.

Now, we will prove that

x(t) ∈ (−1, 1) ∀ t ∈ R.

If x(t) > 1 for some t ∈ R, then let t0 ∈ R with x(t0) = max
t∈R

x(t) > 1. Thereby,

ẍ(t0) ≤ 0 and Ṽ ′(x(t0)) > 0,

which is an absurd. Thus x(t) < 1 for all t ∈ R. The same type of argument
works to show that x(t) > −1 for all t ∈ R. From the above information, we
can conclude that x is a solution for original problem (1.1)–(1.2), because

Ṽ (x(t)) = V (x(t)) ∀t ∈ R,

finishing the proof of lemma. �

The next result shows that associated with Bε, we have a Palais–Smale
sequence for Jε.

Lemma 3.3. There is a (PS)Bε
sequence for Jε.
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Proof. Since Jε is bounded from below, there is (xn) ⊂ W such that

Jε(xn) → Bε as n → +∞.

Now, it is easy to check that if x, z ∈ W , then x − z ∈ H1(R). Therefore, we
can define on W the metric ρ : W × W → [0 + ∞) given by

ρ(x, z) = ‖x − z‖,

where ‖ ‖ denotes the usual norm in H1(R). A direct computation gives
that (W,ρ) is a complete metric space . Since Jε is lower semicontinuous and
bounded from below on (W,ρ), by Ekeland’s Variational Principle there is
(un) ⊂ W verifying

‖xn − un‖ = on(1),

with

Jε(un) → Bε and J ′
ε(un) → 0 as n → +∞,

implying that (un) is a (PS)Bε
sequence for Jε. �

The next lemma is crucial in our approach and its proof can be found in
[12].

Lemma 3.4. Let x0, x1 ∈ (−1, 1), x0 < x1, t0 < t1 and x ∈ H1([t0, t1]) with
x(t0) = x0 and x(t1) = x1. Then,

∫ t1

t0

(
1
2
|ẋ|2 + a∞V (x(t))

)
dt ≥

∫ w−1
∞ (x1)

w−1∞ (x0)

(
1
2
| ˙w∞|2 + a∞V (w∞(t))

)
dt,

where w∞ was given in the proof of Lemma 3.1.

The main result this section can be stated as follows

Theorem 3.1. Assume that (V1)–(V4) hold. If a belongs to Class 8, there is
ε∗ > 0, such that problem (1.1)–(1.2) has a solution x ∈ H1

loc(R) ∩ C2(R) for
all ε ∈ (0, ε∗). Moreover, x(t) ∈ (0, 1) for all t ∈ R.

Proof. First of all, by Lemma 3.2, we see that to prove Theorem 1.1, it is
enough to show that there exists ε∗ > 0 such that Bε is achieved for all ε ∈
[0, ε∗).

To this end, we will set for each τ > 0 the real number

Λτ =
∫ w−1

∞ (1−τ)

w−1∞ (−1+τ)

(
1
2
| ˙w∞|2 + a∞V (w∞(t))

)
dt,

where w∞ ∈ W,w∞(t) ∈ (−1, 1) for all t ∈ R and J∞(w∞) = B∞. By a routine
calculus,

Λτ → B∞ as τ → 0. (3.3)
In the last limit, we have used that lim

t→+∞ w∞(t) = 1 and lim
t→−∞ w∞(t) = −1.

The inequality B0 < B∞ in conjunction with (3.3) implies that there is
τ > 0 small enough verifying

(
a∞ − τ

a∞

)
Λτ > B0.
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From Lemma 3.1, we know that lim
ε→0

Bε = B0. Then, this limit together with
the last inequality yields there is ε∗ > 0 such that

Bε <

(
a∞ − τ

a∞

)
Λτ , ∀ε ∈ [0, ε∗). (3.4)

To prove that Bε is achieved for each ε ∈ [0, ε∗), we begin recalling that
from Lemma 3.3, there is a (PS)Bε

sequence for Jε, that is, there exists (xε
n) ⊂

W such that

Jε(xε
n) → Bε and ‖J ′

ε(x
ε
n)‖∗ → 0 as n → +∞.

From this,

Jε(xε
n) ≤ Aε = sup

n
Jε(xε

n) ∀n ∈ N.

By Lemma 2.2, for each T > 0, there is B = B(T,A) > 0 such that

‖xε
n‖H1([−T,T ]) ≤ B ∀n ∈ N.

Hence, there is a subsequence of (xε
n), still denoted by itself, and xε ∈ H1

loc(R)
verifying

xε
n → xε uniformly in [−T, T ] and xε

n ⇀ xε in H1([−T, T ]) ∀T > 0.

Combining these limits with the fact that Jε is lower semicontinuous, we also
derive that

Jε(xε) ≤ Bε. (3.5)
Next, we will show that J ′

ε(x
ε) = 0. To see why, note that for each v ∈ C∞

0 (R)
fixed, we have that J ′

ε(x
ε
n)v = on(1). Then,

∫ β

α

ẋε
nv̇ dt +

∫ β

α

a(εt)Ṽ ′(xε
n(t))v(t) dt = on(1),

where supp v ⊂ [α, β]. Letting n → +∞, we get
∫ β

α

ẋεv̇ dt +
∫ β

α

a(εt)Ṽ ′(xε(t))v(t) dt = 0,

implying that xε is a solution of equation O.D.E.

ẍε(t) = a(εt)Ṽ ′(xε(t)),

and so,

J ′
ε(x

ε) = 0.

Moreover, by Fatous’ Lemma Jε(xε) < +∞. Consequently, by Lemma 2.1

xε(t) → −1 or xε(t) → 1 as t → −∞
and

xε(t) → 1 or xε(t) → −1 as t → +∞.

Our next step is showing that the limit below

xε(t) → −1 as t → +∞ (3.6)

does not hold.
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Now, by (a7), let T ε > 0 be large enough so that a(εt) ≥ a∞ − τ on
[T ε,+∞) and x(T ε) < −1+τ . Let n be a large enough so that xε

n(T ) < −1+τ .
Let T ε < αε < βε with xε

n(αε) = −1 + τ and xε
n(βε) = 1 − τ . By Lemma 3.4,

we get the inequality

Jε(xε
n) ≥

(
a∞ − τ

a∞

) ∫ βε

αε

(
1
2
|ẋε

n|2 + a∞Ṽ (xε
n(t))

)
dt ≥

(
a∞ − τ

a∞

)
Λτ ,

which gives

Bε = lim
n→+∞ Jε(xε

n) ≥
(

a∞ − τ

a∞

)
Λτ ,

contradicting (3.4). This way,

xε(t) → 1 as t → +∞.

A similar argument can be used to show that

xε(t) → −1 as t → −∞.

As in the proof of Lemma 2.1, we derive that xε + 1 ∈ H1((−∞, 0]) and
xε − 1 ∈ H1([0,+∞). Then, xε ∈ W , and by (3.5), Jε(xε) = Bε finishing the
proof. �

4. Existence of solution for the asymptotically periodic case

In this section, we intend to prove the existence of solution for (1.1)–(1.2), by
assuming that a is asymptotically periodic.

The main result in this section is the following

Theorem 4.1. Assume that (V1) − (V4) hold. If a belongs to Class 9, problem
(1.1)–(1.2) has a solution x ∈ H1

loc(R) ∩ C2(R) for each ε > 0. Moreover,
x(t) ∈ (0, 1) for all t ∈ R.

In the proof of Theorem 4.1, without loss of generality, we assume that
ε = 1. Moreover, we will use the fact that problem (1.1)–(1.2) has an increasing
solution wP ∈ H1

loc(R) ∩ C2(R) with wP ∈ W and JP (wP ) = BP , where
JP : H1

loc(R) → [0,+∞] is the functional given by

JP (x) =
∫ +∞

−∞

(
1
2
|ẋ|2 + aP (t)Ṽ (x(t))

)
dt.

and

BP = inf{JP (x) : x ∈ W}.

The existence of wP can be seen in [3].
In the sequel, we denote by J : H1

loc(R) → [0,+∞] the functional given
by

J(x) =
∫ +∞

−∞

(
1
2
|ẋ|2 + a(t)Ṽ (x(t))

)
dt

and by B, the real number given by

B = inf{J(x) : x ∈ W}.
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Here, we would like point out that all results proved in Sect. 2 are true for
functionals J and JP . Moreover, from (a9), we also have

B < BP . (4.1)

Proof of Theorem 4.1
As in the proof of Theorem 3.1, our main goal is to show that B is achieved

on W . Hereafter, a0 = inf
t∈R

a(t) > 0 and we fix δ > 0 such that

B + δ < BP . (4.2)

Moreover, we also fix M = M(δ) > 0 such that

|a(t) − aP (t)| <
δa0

4B for |t| > M (4.3)

and γ ∈ (0, 1) verifying

Ṽ (z) <
δ

16M‖aP ‖∞
∀z ∈ [−1,−1 + γ] ∪ [1 − γ, 1]. (4.4)

Claim 4.1. For each γ ∈ (0, 1), there are sequences (Un) ⊂ W , (sn), (tn) ⊂ R

with sn < tn satisfying:

J(Un) → B as n → +∞, (i)

Un(t) ∈ [−1,−1 + γ] ∀t ∈ (−∞, sn], (ii)

Un(t) ∈ [1 − γ, 1] ∀t ∈ [tn,+∞), (iii)

Un(t) ∈ [−1 + γ, 1 − γ] ∀t ∈ [sn, tn], (iv)

Un(tn) = 1 − γ, Un(sn) = −1 + γ, (v)

and
(tn − sn) is bounded in R. (vi)

The existence of the above sequences can be found in [3], however for
reader’s convenience, we will write its proof. Let (un) ⊂ W be a minimizing
sequence for J , that is,

J(un) → B.

By setting the sequence

vn(t) = max{−1,min{un(t), 1}},
a direct computation implies that (vn) ⊂ W and

J(vn) ≤ J(un) ∀n ∈ N.

Therefore, we can assume without loss of generality

−1 ≤ un(t) ≤ 1 ∀t ∈ R.

Assuming that γ ∈ (0, 1) is small enough, it is possible to find an interval
[sn, tn] such that un(sn) = −1 + γ, un(tn) = 1 − γ and

−1 + γ ≤ un(t) ≤ 1 − γ ∀t ∈ [sn, tn].
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Using the above notations, we set a new sequence (Un) given by

Un(t) =

⎧
⎨

⎩

min{−1 + γ, un(t)}, if t ≤ sn,
un(t), if sn ≤ t ≤ tn,
max{1 − γ, un(t)}, if t ≥ tn.

A straightforward computation gives
∫

R

|U̇n|2 dt ≤
∫

R

|u̇n|2 dt ∀n ∈ N.

Moreover, by (V6), we also have

Ṽ (Un(t)) ≤ Ṽ (un(t)) ∀t ∈ R and n ∈ N,

leading to
∫

R

a(t)Ṽ (Un(t)) dt ≤
∫

R

a(t)Ṽ (un(t)) dt ∀n ∈ N.

Thus,

J(Un) ≤ J(un) ∀n ∈ N.

Gathering these information, we deduce that (Un) verifies (i)–(v). Now, the
boundedness of (tn − sn) follows of the inequality below

J(Un) ≥ a0

(
min

z∈[−1+γ,1−γ]
V (z)

)
(tn − sn) ∀n ∈ N,

because min
z∈[−1+γ,1−γ]

V (z) > 0 and a0 = inf
t∈R

a(t) > 0.

Now, applying the Ekeland’s variational principle, we will find a new
sequence, still denoted by (Un), which verifies:

J(Un) → B and J ′(Un) → 0 as n → +∞,

Un(t) ∈ [−1 − 1/n,−1 + γ + 1/n] ∀t ∈ (−∞, sn],

Un(t) ∈ [1 − γ − 1/n, 1 + 1/n] ∀t ∈ [tn,+∞),

Un(t) ∈ [−1 + γ − 1/n, 1 − γ + 1/n] ∀t ∈ [sn, tn],

Un(tn) = 1 − γ + on(1), Un(sn) = −1 + γ + on(1)

and

(tn − sn) is bounded in R.

A direct computation shows that for some subsequence of (Un), still de-
noted by itself, there is U ∈ C(R) ∩ H1

loc(R) such that

Un → U uniformly in [−T, T ] and Un ⇀ U in H1([−T, T ]) ∀T > 0. (4.5)

As in the proof of Theorem 3.1, we see that

J(U) ≤ B and J ′(U) = 0.

This way, the theorem follows provided that U ∈ W . To show this fact, we
make the following claim
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Claim 4.2. The sequence (sn) is bounded.

Indeed, if the claim is not true, we must have for some subsequence,

sn → +∞ or sn → −∞.

Using the above limits, we deduce that

U(t) ∈ [−1,−1 + γ] ∪ [1 − γ, 1] ∀t ∈ R.

Thus by (4.4),

Ṽ (U(t)) <
δ

16M‖aP ‖∞
∀t ∈ R. (4.6)

Note that

J(Un) = JP (Un) +
∫

R

(a(t) − aP (t))Ṽ (Un(t)) dt ≥ BP

+
∫

R

(a(t) − aP (t))Ṽ (Un(t)) dt. (4.7)

Using (4.3), we derive that
∫

|t|>M

|a(t) − aP (t)|Ṽ (Un(t)) dt ≤ δa0

4B
∫

|t|>M

Ṽ (Un(t)) dt ≤ δ

4BJ(Un),

from where it follows that

lim sup
n→+∞

∫

|t|>M

|a(t) − aP (t)|Ṽ (Un(t)) dt ≤ δ

4
. (4.8)

Now, by (4.5) and (4.6),

lim
n→+∞

∫

|t|≤M

|a(t) − aP (t)|Ṽ (Un(t)) dt

= lim
n→+∞

∫

|t|≤M

|a(t) − aP (t)|Ṽ (U(t))dt ≤ δ

4
. (4.9)

Consequently, from (4.8) and (4.9),

lim sup
n→+∞

∫

R

|a(t) − aP (t)|Ṽ (Un(t)) dt ≤ δ

2
.

Thereby, there is n0 ∈ N such that
∫

R

|a(t) − aP (t)|Ṽ (Un(t)) dt < δ ∀n ≥ n0. (4.10)

Combining (4.7) with (4.10), we derive

J(Un) = JP (Un) +
∫

R

(a(t) − aP (t))Ṽ (Un(t)) dt ≥ BP − δ ∀n ≥ n0,

that is,

J(Un) ≥ BP − δ ∀n ≥ n0.

Taking the limit as n → +∞ in the last inequality, we obtain the estimate

B > BP − δ,

which contradicts (4.2).
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The boundedness of (sn) implies that (tn) is also bounded, thus we can
assume without of generality, that there are t, s ∈ R verifying

sn → s and tn → t as n → +∞.

This way,

U(z) ∈ [−1,−1 + γ] ∀z ∈ (−∞, s) and U(z) ∈ [1 − γ, 1] ∀z ∈ (t,+∞).

The above information together with Lemma 2.1 gives

U(z) → 1 as z → +∞ and U(z) → −1 as z → −∞.

This finishes the proof of Theorem 4.1. �

5. Existence of solution for the coercive case

In this section, we intend to prove the existence of solution for (1.1)–(1.2), by
assuming that a is coercive. Here, our main result has the following statement

Theorem 5.1. Assume that (V1)–(V4) hold. If a is coercive, problem (1.1)–(1.2)
has a solution x ∈ H1

loc(R) ∩ C2(R) for all ε > 0. Moreover, x(t) ∈ (0, 1) for
all t ∈ R.

In the sequel, we will assume that ε = 1. However, in the proof of the
above result, we must be careful to use the arguments of the previous sections,
more precisely Sect. 2. In the sequel, we need to fix the following sets

Wa =
{
x ∈ H1

loc(R) : x + 1 ∈ H1
a((−∞, 0]), x − 1 ∈ H1

a([0,+∞))
}

where

H1
a((−∞, 0]) =

{
v ∈ H1((−∞, 0]) :

∫ 0

−∞
a(t)|v(t)|2 dt < +∞

}

endowed with the norm

‖v‖a,−∞ =
(∫ 0

−∞
|v′(t)|2 dt +

∫ 0

−∞
a(t)|v(t)|2 dt

) 1
2

.

The space H1
a([0,+∞)) is defined of a similar way, that is,

H1
a([0,+∞)) =

{
v ∈ H1([0,+∞)) :

∫ +∞

0

a(t)|v(t)|2 dt < +∞
}

,

endowed with the norm

‖v‖a,+∞ =
(∫ +∞

0

|v′(t)|2 dt +
∫ +∞

0

a(t)|v(t)|2 dt

) 1
2

.

From (a10), we know that inf
t∈R

a(t) > 0, then the embeddings

H1
a([0,+∞)) ↪→ H1([0,+∞)) and H1

a((−∞, 0]) ↪→ H1((−∞, 0])

are continuous.
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Proof Theorem 5.1
Hereafter, we follow the same approach of the previous section. Adapt-

ing the same arguments explored in [3], we can find sequences (Un) ⊂ Wa,
(sn), (tn) ⊂ R with sn < tn satisfying:

J(Un) → B, J ′(Un) → 0 as n → +∞,

Un(t) ∈ [−1 − 1/n,−1 + γ + 1/n] ∀t ∈ (−∞, sn],

Un(t) ∈ [1 − γ − 1/n, 1 + 1/n] ∀t ∈ [tn,+∞),

Un(t) ∈ [−1 + γ − 1/n, 1 − γ + 1/n] ∀t ∈ [sn, tn],

Un(tn) = 1 − γ + on(1), Un(sn) = −1 + γ + on(1),

and

(tn − sn) is bounded in R.

A direct computation shows that for some subsequence of (Un), still denoted
by itself, there is U ∈ C(R) ∩ H1

loc(R) such that

Un → U uniformly in [−T, T ] and Un ⇀ U in H1([−T, T ]) ∀T > 0. (5.1)

Moreover,

J(U) ≤ B and J ′(U) = 0.

Here, J and B are as in the proof of Theorem 4.1. Our goal is proving that B
is achieved on W . To this end, we will study again the behavior of sequence
(sn).

Claim 5.1. The sequence (sn) is bounded.

Arguing by contradiction, we will assume that (sn) is unbounded. Then
for some subsequence, still denoted by itself, we have that

sn → +∞ or sn → −∞. (5.2)

Using the definition of J and the properties of (Un), we derive that

J(Un) ≥ V0An(tn − sn),

where

An = min
z∈[sn,tn]

a(z) and V0 = min
−1+γ/2≤z≤1−γ/2

V (z) > 0.

Using the fact that a is coercive in conjunction with (5.2) and the boundedness
of (tn − sn), we deduce that

An → +∞ as n → +∞.

Since (J(Un)) is bounded, the last inequality implies that

tn − sn → 0 as n → +∞. (5.3)
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On the other hand, we know that (Un) ⊂ H1
loc(R), then for all s, t ∈ R the

inequality below occurs

|Un(t) − Un(s)| ≤
√

|t − s|
(∫ max{t,s}

min{t,s}
|U ′

n(r)|2dr

) 1
2

∀n ∈ N.

Thus,

|Un(t) − Un(s)| ≤
√

2|t − s|J(Un)
1
2 ∀n ∈ N.

Now, the boundedness of (J(Un)) together with (5.3) gives

|Un(tn) − Un(sn)| → 0 n → +∞.

However, this limit cannot occur, because

|Un(tn) − Un(sn)| = 2 − 2γ + on(1) ∀n ∈ N.

Therefore, the Claim 5.1 is proved.
Now, the proof of Theorem 5.1 follows the same steps of the proof of

Theorem 4.1. �

6. Final remarks

In Sect. 2, we can remove the condition that a ∈ L∞(R). Hovewer, we must
work with the same spaces used in Sect. 5.
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