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1. Introduction

Second differential equation with singularities, as an important class of mod-
els in non-smooth dynamical systems, has been studied by many researchers,
involving the existence and multiplicity of periodic solutions by means of topol-
ogy degree theory [1–4], Poincaré–Birkhoff twist theorem [5], invariant curves
and boundedness of solutions via Moser’s small twist theorem [6,7]. The mono-
graph [8] presents an updated review of models with singularities arising in
the applied sciences.

Recently, the research of radially symmetric systems with singularities
has been a hot topic [9–13]. In this paper, we are concerned with the existence
of periodic, quasi-periodic and unbounded solutions of a radially symmetric
system in R

N of singular type

u′′(t) = −h(|u(t)|, t) u(t)
|u(t)| , (1.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-015-0316-3&domain=pdf


1116 Q. Liu, P. J. Torres and D. Qian NoDEA

where h : (0,+∞) × R → R is a continuous function with a T -periodic de-
pendence with respect to the second variable and has a possible singularity at
the origin in the first variable. We investigate solutions u(t) ∈ R

N which never
attain the singularity, in the sense that,

u(t) �= 0, for every t ∈ R. (1.2)

Recently, exploiting the radial symmetry of the system, the existence of peri-
odic solutions of system (1.1) has been proved by means of a topological degree
approach [4,9–13]. The repulsive case was studied in [10] for nonlinearities with
sublinear growth at infinity, in [13] for nonlinearities with superlinear growth,
and in [9] for those with a linearly controlled growth where a non-resonance
condition is needed, that is,

(
kπ

T

)2

< α ≤ lim inf
x→+∞

h(x, t)
x

≤ lim sup
x→+∞

h(x, t)
x

≤ β <

(
(k + 1)π

T

)2

with some integer k and two constants α, β.
In this paper, our main interest is to analyze the resonant case and to

find out a sufficient condition for the existence of radially T -periodic solutions
for system (1.1) in case of resonances. For convenience, we fix T = 2π from
now on. We shall assume that

h(x, t) = ax + f(x, t),

where f : (0,+∞) × R → R is continuous, 2π-periodic with respect to its
second variable, and the resonance condition

a =
n2

4
, for any integer n ∈ N, (1.3)

holds. Moreover, we assume that

(f1) The function f : (0,+∞) × R → R is locally Lipschitzian continuous,
T -periodic and satisfies that

lim
x→+∞ f(x, t) = f(+∞, t) (1.4)

holds uniformly for t ∈ [0, 2π];
(f2) there exist some positive constants M and 0 < δ, ν < 1 such that, for any

x ∈ (0, δ) and t ∈ [0, 2π],∣∣∣∣xν

(
f(x, t) +

1
x3

)∣∣∣∣ ≤ M. (1.5)

The dynamics of the system is closely related to the function σf : [0, 2π] → R

defined by

σf (θ) =
∫ 2π

0

| sin(θ/2 +
√

at)|f(+∞, t)dt. (1.6)

Now let us state our main result.
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Theorem 1.1. Assume that h(x, t) = ax+ f(x, t) satisfies (1.3), (f1) and (f2).
(i) If the function σf (θ) has no zeros, i.e.,

σf (θ) �= 0, θ ∈ [0, 2π], (1.7)

then there exist infinitely many integers p, q with (q, p) = 1, such that system
(1.1) has periodic solutions uqp(t) with minimal period 2pπ, rotating exactly q
times around the origin in the period time 2pπ. Moreover, for any ω ∈ R \ Q

such that ω � 1, system (1.1) has at least one quasi-periodic solution with
frequencies 〈1, ω〉.

Furthermore, for any μ1, μ2 close to zero, there is a constant B > 0
independent of q, p such that, all those periodic 2pπ-solutions uqp(t;μ) with
the angular momentum μ ∈ [μ1, μ2] satisfy that

1
B(μ1, μ2)

< |uqp(t;μ)| < B(μ1, μ2), for every t ∈ R. (1.8)

(ii) Assume that σf (θ) has at least one zero θ0 and for all θ ∈ [0, 2π],
|σf (θ)| + |σ′

f (θ)| > 0. Then,

1. if σ′
f (θ0) > 0, there exists λ0 > 0 such that, for |u(0)| ≥ λ0, the solution

u(t) of system (1.1) satisfies

lim
j→+∞

|u(tj)| = +∞

for some sequence {tj}n
j=0 with lim

j→+∞
tj = +∞.

2. if σ′
f (θ0) < 0, then there exists λ0 > 0 such that, for |u(0)| ≥ λ0, the

solution u(t) of system (1.1) satisfies

lim
j→−∞

|u(tj)| = +∞

for some sequence {tj}n
j=0 with lim

j→+∞
tj = −∞.

The rest of the paper is organized as follows. In Sect. 2, we shall in-
troduce a related scalar singular equation for the radial component that can
be regarded as a perturbed isochronous oscillator. Then, an auxiliary result
(Theorem 2.1) is stated, which may be of independent interest for the theory
of scalar singular equations. Its proof will be the key point for the proof of
the main result stated above. After introducing action and angle variables in
Sect. 3, we derive an expression for the Poincaré map of (2.12) in Sect. 4 and
complete the proof in Sect. 5. Two auxiliary lemmas involving some technical
computations are placed separately at the end of the paper.

2. A related singular equation for the radial component

The idea of the proof of Theorem 1.1 is to split the system into its radially
and angular components and to consider the scalar angular momentum as a
parameter. Since system (1.1) is radially symmetric, the orbit of a solution lies
on a plane (see, e.g., [4, Appendix A]), so it is possible assume, without loss
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of generality, that N = 2. Then, writing the solutions of system (1.1) in polar
coordinates

u(t) = x(t)eiθ(t),

system (1.1) is equivalent to equations

x′′(t) − μ2

x3(t)
+ ax(t) + f(x(t), t) = 0, (2.9)

and

x2(t)θ′(t) = μ, (2.10)

where μ is the scalar angular momentum of u(t), which remains constant along
solutions, cf. [4,14]. When considering a solution of system (1.1), we will always
implicitly assume that μ > 0 and x > 0, so (1.2) is automatically satisfied.

A solution u : R → R
2 \{0} of (1.1) is said to be radially T -periodic if the

radial component x(t) is T -periodic. In this case, the number ω = θ(T )−θ(0)
T

can be interpreted as the average angular speed of u and will be called the
rotation number of u and denoted by ω = rot u. Then, a radially T -periodic
solution u is T - periodic if and only if rot u is an integer multiple of 2π/T . If
rot u = (m/n) (2π/T ) for some relatively prime integers m �= 0 �= n, then u
will be a subharmonic with minimal period nT . In other case, u is quasiperiodic
with two natural frequencies.

As a matter of fact, (2.9) not only models non-zero angular momentum
motions in the rotationally symmetric two-dimensional harmonic oscillator
[15], but it is also related to other relevant problems arising in the applied
sciences, like radially symmetric systems in celestial mechanics [16,17], and
Bose–Einstein condensates systems in quantum physics [18].

Equation (2.9) can be regarded as the perturbation of an isochronous
system. The second order differential equation

x′′ + V ′(x) = 0

is called an isochronous system if there exist constants x0, T > 0 and a contin-
uous differentiable function V with V ′(x0) = 0, (x−x0)V ′(x) > 0, for x �= x0,
such that every solution is periodic with periodic T . Obviously, the nonlinear
equation

x′′ + ax − μ2

x3
= 0

is an isochronous system. It is not difficult to show that all solutions are
π/

√
a-periodic and the least positive period T = π/

√
a is independent of the

adjustable parameter μ.
In [19], Bonheure, Fabry and Smets study the forced isochronous oscil-

lators with jumping nonlinearities and oscillators with a repulsive singularity.
The results show that if f(x, t) = g(x)−p(t) satisfies that g(x) is bounded and
lim

x→+∞ g(x) = g(+∞) exists, then the condition of Lazer–Landesman type:

4g(+∞) > max
θ

∫ 2π

0

| sin(nt/2)|p
(

t +
θ

n

)
dt (2.11)
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guarantees the existence of 2π-periodic solutions of (2.9) with a = n2/4. In this
case, unbounded solutions are also treated in [20,21]. Recently, Liu [7] proved
the boundedness of solutions with the bounded perturbation g(x) under the
condition (2.11) of Lazer–Landesman type and other smoothness conditions
via Moser’s twist theorem. Some analogous problems were considered by many
authors for perturbed asymmetric or harmonic isochronous oscillators (e.g.
[22–28]). We mention that all these previous results depend on the boundedness
of f , however, in our assumptions f may be unbounded at the origin.

Without loss of generality, for μ �= 0, we take μ = 1. Otherwise, replacing
x with

√
μx, and performing a shift to (2.9), then we get

x′′ + a(x + c0) − 1
(x + c0)3

+
1√
μ

f (
√

μ(x + c0), t) = 0, (2.9′)

and

(x(t) + c0)2ϕ′(t) = 1, (2.10′)

where c0 = a− 1
4 . For convenience, we restate the notation of 1√

μf(
√

μx, t) by
f(x, t) so that (2.9′) becomes that

x′′ + a(x + c0) − 1
(x + c0)3

+ f((x + c0), t) = 0. (2.12)

We assume that

(f3) there exist some positive constants M and 0 < δ, ν < 1 such that, for any
x ∈ (0, δ) and t ∈ [0, 2π],

|xνf(x, t)| ≤ M.

Now we are ready to state the following result.

Theorem 2.1. Assume that the function f satisfies assumptions (f1) and (f3),
and the resonant condition (1.3) holds. Then,

(i) if the function σf (θ) has no zeros, i.e.,

σf (θ) �= 0, θ ∈ [0, 2π] (2.13)

holds, then (2.9) has at least one 2π-periodic solution;
(ii) if the function σf (θ) has a zero θ0 and for all θ ∈ [0, 2π], |σf (θ)|+|σ′

f (θ)| >
0. Furthermore, the following conditions hold:

1. if σ′
f (θ0) > 0, then there exists λ0 > 0 such that, for x2

0 + y2
0 ≥ λ0, the

solution x(t) of (2.9) with x(0) = x0, x
′(0) = y0 satisfies

lim
t→+∞

(
x(t)2 + x′(t)2 + x′(t)−2

)
= +∞.

Moreover, there exits a sequence {tj}n
j=0 with lim

j→+∞
tj = +∞ such that

lim
j→+∞

(|x(tj)| + |x′(tj)|) = +∞.
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2. if σ′
f (θ0) < 0, then there exists λ0 > 0 such that, for x2

0 + y2
0 ≥ λ0, the

solution x(t) of (2.9) with x(0) = x0, x
′(0) = y0 satisfies

lim
t→−∞

(
x(t)2 + x′(t)2 + x′(t)−2

)
= +∞.

Moreover, there exits a sequence {tj}n
j=0 with lim

j→+∞
tj = −∞ such that

lim
j→−∞

(|x(tj)| + |x′(tj)|) = +∞.

Remark 2.1. In case of f(x, t) = g(x)−p(t) with the limit lim
x→+∞ g(x) = g(+∞)

and boundedness of g, the condition (2.11) of Lazer–Landesman type implies
that (2.13) holds, that is, σp(θ) �= 0. In fact, let τ = t + θ

n , then
∫ 2π

0

p(t)| sin(nt/2 + θ/2)|dt =
∫ 2π+ θ

n

θ
n

| sin(nτ/2)|p
(

τ − θ

n

)
dt

=
∫ 2π

0

| sin(nτ/2)|p
(

τ − θ

n

)
dt.

Therefore, it follows that

σp(θ) = 4g(+∞) −
∫ 2π

0

p(t)| sin(nt/2 + θ/2)|dt

≥ 4g(+∞) − max
θ

∫ 2π

0

| sin(nt/2)|p
(

t +
θ

n

)
dt > 0.

In this case, the results proved by Liu [7] show that there exist infinitely many
invariant curves with arbitrarily large amplitude, which implies the bounded-
ness of the solutions of (2.9). On the contrary, Theorem 2.1 shows that when
the condition (2.11) of Lazer–Landesman type is lost, all large solutions of
(2.9) may be unbounded.

We finish this section by observing that Theorem 2.1 may have an inde-
pendent interest on the framework of scalar differential equations with singu-
larities.The following illustrative examples are direct applications.

Example 2.1. For any constants μ and ν ∈ (0, 1), we can apply Theorem 2.1
to the following equation

x′′ +
1
4
x − μ2

x3
± 1

xν
+

λ

π
arctan x =

(x + ln x) sin t

1 + x
. (2.14)

It is not difficult to verify that if |λ| > 1/3, then (2.14) has a 2π-periodic
solution; if |λ| < 1/3, then for all large solutions are unbounded in the future
or in the past.

Example 2.2. All large solutions of the following equation

x′′ +
1
4
x − 1

x3
= sin t.

are unbounded.
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3. Construction of action and angle variables

We carry out the standard reduction for Eq. (2.12) to the action and angle
variables [14]. In order to introduce action and angle variables, we consider the
auxiliary autonomous system

x′ = y, y′ = −a(x + c0) +
1

(x + c0)3
. (3.1)

For each ĥ ∈ (0,+∞),

Γ :
1
2
y2 +

1
2
a(x + c0)2 +

1
2(x + c0)2

= ĥ +
√

a

defines a simple closed curve in the half plane (−c0,+∞).
Now we define the function I : (0,+∞) → R by I(ĥ) = 1

2π

∮
Γ

y dx, that
is,

I(ĥ) =
1
π

∫ x+

x−

√
2(ĥ +

√
a) − a(x + c0)2 − (x + c0)−2 dx, (3.2)

where

x± = −c0 +

√
a−1(ĥ +

√
a ±
√

ĥ2 + 2
√

aĥ), for h ∈ (0,+∞).

Generally, I is called the action of Hamiltonian system on the period annulus.
The value of the function I is normalized area of the region in the phase space
enclosed by the periodic orbit Γ. Using Lemma 4.1 in the Appendix, I(ĥ) can
be calculated in a simple implicit form

I(ĥ) =
ĥ

2
√

a
. (3.3)

Then for every (x, y) ∈ (−c0,+∞) × R, the action and angle variables
can be defined by

θ̃(x, y) =

⎧⎨
⎩
∫ x

x−
2
√

a√
2(h+

√
a)−a(τ+c0)2−(τ+c0)−2

dτ, if y ≥ 0,

2π − ∫ x

x−
2
√

a√
2(h+

√
a)−a(τ+c0)2−(τ+c0)−2

dτ, if y < 0,

=

⎧⎨
⎩

π
2 − arcsin h+

√
a−a(x+c0)

2√
h2+2

√
ah

, if y ≥ 0,

3π
2 + arcsin h+

√
a−a(x+c0)

2√
h2+2

√
ah

, if y < 0,
(3.4)

and

Ĩ(x, y) =
1

2
√

a
h. (3.5)

For the convenience of the reader, the calculation of (3.4) is arranged in Ap-
pendix B. Here, for simplification of the expression, we omit the independent
variables x, y of h, and the function h : (−c0,+∞) ×R → (0,+∞) is given by

h(x, y) =
1
2
y2 +

a

2
(x + c0)2 +

1
2(x + c0)2

− √
a. (3.6)
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Consequently, we have defined the symplectic map

Φ̃ : (−c0,R) × R → R/2πZ × (0,+∞), (x, y) �→ (θ̃, Ĩ)

by (3.4) and (3.5), and the associated generating function G is given by

G(x, Ĩ) =

⎧⎨
⎩
∫ x

x−

√
2h(Ĩ) − a(ξ + c0)2 − (ξ + c0)−2 dξ, if y ≥ 0,

2πĨ − ∫ x

x−

√
2h(Ĩ) − a(ξ + c0)2 − (ξ + c0)−2 dξ, if y < 0,

which satisfies that

θ̃ =
∂G(x, Ĩ)

∂Ĩ
, y =

∂G(x, Ĩ)
∂x

, (3.7)

where h(Ĩ) is the inverse function of Ĩ(h) defined by (3.3).
In order to simplify the calculations, first we perform a shift of I, that is,

let I = Ĩ − 1
2 , θ = θ̃. In view of (3.4) and together with (3.5) and (3.6), then

we have a new symplectic change of variables Φ : (−c0,R) × R → R/2πZ ×
(1
2 ,+∞), (x, y) �→ (θ, I) defined by

x(θ, I) =
1

a1/4

√
2I −

√
4I2 − 1 cos θ − c0, (3.8)

y(θ, I) =

(
a1/2(4I2 − 1)

(2I +
√

4I2 − 1 cos θ)
4I2 sin2 θ + cos2 θ

) 1
2

sin θ. (3.9)

The deductions of (3.8) and (3.9) are a little long, therefore we place them at
the Appendix B. We have examined the Jacobian determinant

det
[
∂(x, y)
∂(θ, I)

]
= 1,

which implies that the map Φ preserves the symplectic form dx∧dy = dθ∧dI.
The Hamiltonian induced by (2.12) may be written as

H(x, y, t) =
1
2
y2 +

a

2
(x + c0)2 +

1
2(x + c0)2

+ F (x + c0, t)

= h(x, y) + F (x + c0, t), (3.10)

where

F (x + c0) =
∫ x

−c0

f(x + c0, t)dx.

In the action and angle variables coordinates (θ, I) as defined above, the canon-
ically transformed Hamiltonian becomes

H(θ, I, t) = h(x(θ, I), y(θ, I)) + F (x(θ, I) + c0, t)
= H0(I) + F (x(θ, I) + c0, t), (3.11)

where H0(I) = 2
√

aI is the unperturbed component of the Hamiltonian. Note
that the unperturbed Hamiltonian system with the Hamiltonian H0(I) is an
isochronous system, i.e., each solution of the unperturbed Hamiltonian system
is a periodic solution with the least period τ = π/

√
a.
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4. An expression for the Poincaré map of (2.12)

In the new coordinates (θ, I), the Eq. (2.12) with the new Hamiltonian (3.11)
has the form

dθ

dt
=

∂H
∂I

(θ, I, t)

= 2
√

a +
a−1/4(

√
4I2 − 1 − 2I cos θ)√

4I2 − 1 ·
√

2I − √
4I2 − 1 cos θ

f ((x(θ, I) + c0, t) , (4.1)

dI

dt
= −∂H

∂θ
(θ, I, t)

= − a−1/4
√

4I2 − 1 sin θ

2
√

2I − √
4I2 − 1 cos θ

f ((x(θ, I) + c0, t) . (4.2)

Denote by (θ(t, θ0, I0), I(t, θ0, I0)) the solution of (4.1) and (4.2) satisfying the
initial condition θ(0) = θ0, I(0) = I0 with x0 = x(θ0, I0), y0 = y(θ0, I0).

Now we fix the positive constant δ0 = min{δ, 10−4, 1
2a−1/4}. First we

have the rough estimates for the derivatives of θ and I
1
2 on some intervals in

the following lemmas.

Lemma 4.1. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f2), then we have the estimate

∣∣∣∣dθ

dt
− 2

√
a

∣∣∣∣ ≤ 4M0δ
1−ν
0√

4I2 − 1
, (4.3)

for the time t such that

t ∈ Ω0 :=

{
t :

2I(t) − √
aδ2

0√
4I2(t) − 1

< cos θ(t) ≤ 1 and I(t) >
1√
aδ2

0

}
.

Proof. If t ∈ Ω0, then

cos θ >
2I − √

aδ2
0√

4I2 − 1
≥ 2I − 1

4√
4I2 − 1

≥ 1
2

and we can verify that x + c0 = a−1/4
√

2I − √
4I2 − 1 cos θ < δ0 ≤ δ. By the

condition (f2), we have

|(x(θ, I) + c0)f(x(θ, I) + c0, t)| ≤ M0, t ∈ Ω0.

From (4.1), we have
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dθ

dt
= 2

√
a +

√
4I2 − 1 − 2I cos θ√

4I2 − 1 · (2I − √
4I2 − 1 cos θ)

· (x(θ, I) + c0)f (x(θ, I) + c0, t)

= 2
√

a +
2I +

√
4I2 − 1 cos θ√

4I2 − 1 · (
√

4I2 − 1 + 2I cos θ)

· 4I2 sin2 θ − 1
4I2 sin2 θ + cos2 θ

(x(θ, I) + c0)f (x(θ, I) + c0, t)

= 2
√

a +
2I +

√
4I2 − 1 cos θ√

4I2 − 1 · (
√

4I2 − 1 + 2I cos θ)

·
[

(4I2 − 1) sin2 θ

4I2 sin2 θ + cos2 θ
+

sin2 θ − 1
4I2 sin2 θ + cos2 θ

]
(x(θ, I)+c0)f (x(θ, I)+c0, t) .

Using Lemma 5.2 in the Appendix A, and taking n = 1, b = 4I2, x = cos2 θ

and λ = (
√

b−√
aδ2

0)2

b−1 , we obtain that

(4I2 − 1) sin2 θ

4I2 sin2 θ + cos2 θ
=

(4I2 − 1)(1 − cos2 θ)
4I2 + (4I2 − 1) cos2 θ

≤ max {0, f(λ)} =
4I2 − 1 − (2I − √

aδ2
0)2

4I2 − (2I − √
aδ2

0)2
≤ 1.

On the other hand, we have

2I +
√

4I2 − 1 cos θ√
4I2 − 1 + 2I cos θ

≤ 4
3

and
∣∣∣∣ sin2 θ − 1
4I2 sin2 θ + cos2 θ

∣∣∣∣ ≤ 2.

Therefore, it follows that, for t ∈ Ω1,∣∣∣∣dθ

dt
− 2

√
a

∣∣∣∣ ≤ 4M0δ
1−ν
0√

4I2 − 1
. (4.4)

So we concludes that (4.3) holds. �

Lemma 4.2. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f3), then there exists a positive constant C such that
∣∣∣∣dI1/2

dt

∣∣∣∣ ≤ C :=
a−1/4

2
M1, (4.5)

for t ∈ [0, 2π] \ Ω0 with

M1 = sup
{

|f(x, t)| : (x, t) ∈
[
δ0

2
,+∞

)
× [0, 2π]

}
.

Proof. When t ∈ [0, 2π] \ Ω0, if

cos θ ≤ 2I − √
aδ2

0√
4I2 − 1

and I ≥ 1√
aδ2

0

,
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then x(θ, I) + c0 ≥ δ0 ≥ δ0/2; if I ≤ 1/(
√

aδ2
0), then

x(θ, I) + c0 ≥ a− 1
4

√
2I −

√
4I2 − 1

≥ a− 1
4√

2I +
√

4I2 − 1
≥ a− 1

4√
4I

≥ δ0

2
.

In view of (4.2), we have that

dI
1
2

dt
= − a−1/4

√
4I2 − 1 sin θ

4
√

I ·
√

2I − √
4I2 − 1 cos θ

f (x(θ, I) + c0, t) . (4.6)

Note that∣∣√4I2 − 1 sin θ
∣∣

2
√

I ·
√

2I − √
4I2 − 1 cos θ

=

∣∣√4I2 − 1 sin θ
∣∣ ·√2I +

√
4I2 − 1 cos θ

2
√

I ·
√

4I2 sin2 θ + cos2 θ

≤
∣∣√4I2 − 1 sin θ

∣∣ ·√2I +
√

4I2 − 1 cos θ

2
√

I ·
√

(4I2 − 1) sin2 θ

=

√
2I +

√
4I2 − 1 cos θ

2
√

I
≤ 1.

Consequently, by (4.6) we have the desired inequality (4.5). �

Lemma 4.3. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f3). Then the solution (θ, I) of (4.1) and (4.2) satisfies that

I(t)
1
2 = I

1
2
0 + O(1), t ∈ [0, 2π], I0 → +∞, (4.7)

θ(t) = θ0 + 2
√

at + O(I− 1
2

0 ), t ∈ [0, 2π] and θ0 ∈ R, I0 → +∞,

(4.8)

where O(1) denotes a bounded quantity which is independent of I0, and O(I−1/2
0 )

denotes an infinitesimal of the same order as I
−1/2
0 .

Proof. First, we claim that

I(t)
1
2 = I

1
2
0 + O(1), t ∈ Ω0, I0 → +∞.

If t ∈ Ω0, then we can verify that

x + c0 = a−1/4

√
2I −

√
4I2 − 1 cos θ < δ0 ≤ δ.

Form (4.6), we have

dI
1
2

dt
= − a−1/4

√
4I2 − 1 sin θ

4
√

I ·
√

2I − √
4I2 − 1 cos θ

f (x(θ, I) + c0, t)

= −
√

4I2 − 1 sin θ

4
√

I(2I − √
4I2 − 1 cos θ)

· (x(θ, I) + c0)f (x(θ, I) + c0, t) .
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Then it follows that

I− 1
2
d I

1
2

dt
= −

√
4I2 − 1 sin θ

4I(2I − √
4I2 − 1 cos θ)

· (x(θ, I) + c0)f (x(θ, I) + c0, t)

= −2I +
√

4I2 − 1 cos θ

4I
·

√
4I2 − 1 sin θ

4I2 − (4I2 − 1) cos2 θ

·(x(θ, I) + c0)f (x(θ, I) + c0, t) .

Again, using Lemma 5.2 and taking n = 2, b = 4I2, x = cos2 θ and λ =
(
√

b−√
aδ2

0)2

b−1 , we obtain that
( √

4I2 − 1 sin θ

4I2 − (4I2 − 1) cos2 θ

)2

=
(4I2 − 1)(1 − cos2 θ)

(4I2 − (4I2 − 1) cos2 θ)2
≤ max

{
1
4
, f(λ)

}

= max

{
1
4
,
4I2 − 1 − (2I − √

aδ2
0)2

(4I2 − (2I − √
aδ2

0)2)2

}

≤ max
{

1
4
,

1
4I2

}
≤ 1.

Therefore, we obtain ∣∣∣∣∣I− 1
2
dI

1
2

dt

∣∣∣∣∣ ≤ M0δ
1−ν
0 ,

which yields that∣∣∣ln I(t)
1
2 − ln I

1
2
0

∣∣∣ ≤ M0δ
1−ν
0

∫
Ω0

dt ≤ 2πM0δ
1−ν
0 . (4.9)

Then we get that, for t ∈ Ω0,

I
− 1

2
0 exp(−2πM0δ

1−ν
0 ) ≤ I(t)− 1

2 ≤ I
− 1

2
0 exp(2πM0δ

1−ν
0 ).

At the same time, when t ∈ Ω0, we note that

cos θ >
2I − √

aδ2
0√

4I2 − 1
=

1 −
√

aδ2
0

2I√
1 − 1

4I2

≥ 1 −
√

aδ2
0

2I
≥ 1 −

√
aδ2

0

2
exp(4πM0δ

1−ν
0 ) · 1

I0
.

By Lemma 4.2, we have

dθ

dt
≥ 2

√
a − 2M0

I0
exp(4πM0δ

1−ν
0 ) ≥ √

a,

for I0 large enough.
Consequently, for I0 large enough, we have that

Meas(Ω0) ≤ 2√
a

arccos
(

1 −
√

aδ2
0

2
exp(4πM0δ

1−ν
0 ) · 1

I0

)

≤ 2
√

2δ0

a
1
4

exp(2πM0δ
1−ν
0 )I− 1

2
0 ,
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where the second inequality is obtained by the inequality arccos(1 − x) ≤
2
√

x, x ∈ [0, 1]. Now returning to (4.9), we will give a more concise estimate
for I(t) when t ∈ Ω0. So it follows form (4.9) that∣∣∣ln I(t)

1
2 − ln I

1
2
0

∣∣∣ ≤ M0δ
1−ν
0

∫
Ω0

dt ≤ 2
√

2M0δ2−ν
0

a
1
4

exp(2πM0δ
1−ν
0 )I− 1

2
0 . (4.10)

Then

I(t)
1
2 = I

1
2
0 exp[O(I− 1

2
0 )] = I

1
2
0 + O(1), as I0 → +∞.

When t ∈ [0, 2π]\Ω0, integrating both sides of the Eq. (4.5) with respect
to t on the interval [0, t], by Lemma 4.2 we obtain (4.7). Therefore, we have
proved the first part of the lemma.

In the following, we will prove the second equality (4.8) in the lemma. In
case of t ∈ Ω0, integrating both sides of the Eq. (4.3) and together with (4.7),
we obtain the desired equality (4.8).

When t ∈ [0, 2π] \ Ω0, x(θ, I) + c0 ≥ δ0 ≥ δ0/2. Furthermore, by (4.8) we
have that

I(t)− 1
2 = I

− 1
2

0 + O(I−1
0 ), t ∈ [0, 2π], I0 → +∞. (4.11)

Now we claim that

|
√

4I2 − 1 − 2I cos θ| ≤ 2
√

I

√
2I −

√
4I2 − 1 cos θ. (4.12)

In fact, squaring both sides of (4.12), performing transposition of terms and
simplifying, we have that 4I2 cos2 θ ≤ 4I2 + 1, which holds naturally.

On the other hand, using the equalities (4.11) and (4.12), we have∣∣∣∣∣
a−1/4(

√
4I2 − 1 − 2I cos θ)√

4I2 − 1 ·
√

2I − √
4I2 − 1 cos θ

f (x(θ, I) + c0, t)

∣∣∣∣∣
≤ a−1/42

√
I√

4I2 − 1
M1 ≤ a−1/4

√
I

M1

= O(I− 1
2

0 ), t ∈ [0, 2π] \ Ω0, I0 → +∞, (4.13)

where M1 is a positive constant defined in Lemma 4.2. Consequently, in view
of (4.1) we know that, for I0 → +∞,

dθ

dt
= 2

√
a + O(I− 1

2
0 ), t ∈ [0, 2π] \ Ω0,

which implies the desired equality (4.8). �

From Lemma 4.3, the equalities (4.7) and (4.8) imply the global existence
of solutions of Eqs. (4.1) and (4.2) with the initial value (θ0, I0), when I0 is
large enough. Therefore, the Poincaré mapping P

P : (θ0, I0) → (θ1, I1) = (θ(2π, θ0, I0), I(2π, θ0, I0)).

is well defined. In the following, we will give a scale of solutions for (4.1) and
(4.2) when I0 is taken for large enough.
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Using Taylor series expansion, together with (4.8) we have that, for any

t ∈ [0, 2π] and θ0 ∈ R, sin θ = sin(θ0 + 2
√

at) + O(I− 1
2

0 ) as I0 → +∞. Also, by
(4.7), we have

I(t)−2 = I−2
0 + O(I− 5

2
0 ), t ∈ [0, 2π], I0 → +∞, (4.14)

which implies that√
4 − I−2 =

√
4 − I−2

0 + O(I− 5
2

0 ), t ∈ [0, 2π], I0 → +∞.

Similarly, for any t ∈ [0, 2π],
√

2 −
√

4 − I−2 cos θ =

√
2 −
√

4 − I−2
0 cos(θ0 + 2

√
at) + O(I− 1

2
0 ), I0 → +∞.

Therefore, we know that
√

4I2 − 1 sin θ√
I ·
√

2I − √
4I2 − 1 cos θ

=
√

4 − I−2 · 1√
2 − √

4 − I−2 cos θ
· sin θ

=

√
4I2

0 − 1 sin(θ0 + 2
√

at)
√

I0 ·
√

2I0 −
√

4I2
0 − 1 cos(θ0 + 2

√
at)

+ O(I− 1
2

0 ), I0 → +∞,

Let K(I0) =
√

1 − 1/4I2
0 . Then it follows that

dI
1
2

dt
=

⎡
⎣− a−1/4

√
4I2

0 − 1 sin(θ0 + 2
√

at)

4
√

I0 ·
√

2I0 −
√

4I2
0 − 1 cos(θ0 + 2

√
at)

+ O(I− 1
2

0 )

⎤
⎦

·f
(

a−1/4

√
2I0 −

√
4I2

0 − 1 cos(θ0 + 2
√

at) + O(1), t

)

= − a−1/4K(I0) sin(θ0 + 2
√

at)

2
√

2
√

1 − K(I0) cos(θ0 + 2
√

at)
f(x(θ0, I0) + O(1), t)

+O(I− 1
2

0 )f(x(θ0, I0) + O(1), t), I0 → +∞. (4.15)

Integrating both sides of (4.15) over the interval [0, 2π] and setting γ =
(4a)−1/4, we obtain

I
1
2
1 = I

1
2
0 − γ

∫ 2π

0

K(I0) sin(θ0 + 2
√

at)

2
√

1 − K(I0) cos(θ0 + 2
√

at)
· f(x(θ0, I0) + O(1), t)dt

+
∫ 2π

0

O(I− 1
2

0 )f(x(θ0, I0) + O(1), t)dt, I0 → +∞.

Similarly, substituting (4.8) into (4.1), we obtain that, for t ∈ [0, 2π] and
I0 → +∞,

dθ

dt
= 2

√
a +

[
γI

− 1
2

0

K(I0) − cos(θ0 + 2
√

at)

K(I0)
√

1 − K(I0) cos(θ0 + 2
√

at)
+ O(I−1

0 )

]

·f
(
a−1/4

√
2I0

√
1 − K(I0) cos(θ0 + 2

√
at) + O(1), t

)
.
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Therefore, we get that, for I0 → +∞,

θ1 = θ0 + 4
√

aπ + γI
− 1

2
0

∫ 2π

0

K(I0) − cos(θ0 + 2
√

at)

K(I0)
√

1 − K(I0) cos(θ0 + 2
√

at)

·f
(
a−1/4

√
2I0

√
1 − K(I0) cos(θ0 + 2

√
at) + O(1), t

)
dt

+
∫ 2π

0

O(I−1
0 ) · f

(
a−1/4

√
2I0

√
1 − K(I0) cos(θ0 + 2

√
at) + O(1), t

)
dt.

Write

ϕ1(θ0, I0, t) =
K(I0) − cos(θ0 + 2

√
at)√

2K(I0)
√

1 − K(I0) cos(θ0 + 2
√

at)
,

ϕ2(θ0, I0, t) =
K(I0) sin(θ0 + 2

√
at)√

2
√

1 − K(I0) cos(θ0 + 2
√

at)
,

ψ1(θ0, I0) =
∫ 2π

0

ϕ1(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt,

ψ2(θ0, I0) =
∫ 2π

0

ϕ2(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt.

Then for I0 → +∞, we get the Poincaré map⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ1 = θ0 + 4
√

aπ + a−1/4I
− 1

2
0 ψ1(θ0, I0)

+
∫ 2π

0
O(I−1

0 )f(x(θ0, I0) + O(1), t)dt,

I
1
2
1 = I

1
2
0 − 1

2a−1/4ψ2(θ0, I0)

+
∫ 2π

0
O(I− 1

2
0 )f(x(θ0, I0) + O(1), t)dt.

(4.16)

Lemma 4.4. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f3). Then for I0 → +∞, we have that

ψ1(θ0, I0) =
∫ 2π

0

∣∣ sin(θ0/2 +
√

at)
∣∣f(+∞, t)dt + o(1)

and

ψ2(θ0, I0) =
∫ 2π

0

sign(sin(θ0/2 +
√

at)) · cos(θ0/2 +
√

at)f(+∞, t)dt + o(1)

uniformly with respect to θ0 ∈ [0, 2π], where o(1) denotes an infinitesimal as
I0 → +∞.

Proof. Let us define the sets Σ1(θ0), Σ2(θ0) and Σ3(θ0) by

Σ1(θ0) =

{
t

∣∣∣∣∣cos(θ0 + 2
√

at) >
2I0 − √

aδ2
0√

4I2
0 − 1

, t ∈ [0, 2π]

}
,

Σ2(θ0) =

{
t

∣∣∣∣∣
2I2

0 − √
aδ2

0√
4I2

0 − 1
≥ cos(θ0 + 2

√
at) ≥ 1 − 1

4I
1/2
0

, t ∈ [0, 2π]

}
,
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and

Σ3(θ0) = [0, 2π] \ (Σ1(θ0) ∪ Σ2(θ0)),

for I0 large enough, respectively.
For any θ0 ∈ R, t ∈ Σ1(θ0) and I0 is large enough, using the definition of

K(I0) and the inequality (4.12) we know that∣∣∣ϕ1(θ0, I0, t)f
(
x(θ0, I0)+O(1), t

)∣∣∣
≤
∣∣∣∣∣

K(I0)−cos(θ0+2
√

at)√
2K(I0)

√
1−K(I0) cos(θ0+2

√
at)

∣∣∣∣∣ ·
M0(√

2I0−
√

4I2
0 −1 cos θ0+O(1)

)ν

≤
∣∣∣∣∣∣

√
I0(
√

4I2
0 − 1 − 2I0 cos(θ0 + 2

√
at))√

4I2
0 − 1 ·

√
2I0 −

√
4I2

0 − 1 cos(θ0 + 2
√

at)

∣∣∣∣∣∣ · M0I
ν
2
0

≤ 2M0I
1+ ν

2
0√

4I2
0 − 1

≤ 3M0I
ν
2
0 .

Thus, we have∣∣∣∣∣
∫

Σ1(θ0)

ϕ1(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt

∣∣∣∣∣
≤
∫

Σ1(θ0)

|ϕ1(θ0, I0, t)f(x(θ0, I0) + O(1), t)| dt ≤ 3M0I
ν
2
0 · Meas[Σ1(θ0)]

≤ 6M0I
ν
2
0 arccos

(
2I0 − √

aδ2
0√

4I2
0 − 1

)

≤ 6M0I
ν
2
0 arccos

(
1 −

√
aδ2

0

2I0

)
→ 0, as I0 → ∞.

Therefore, we obtain that

lim
I0→+∞

∫
Σ1(θ0)

ϕ1(θ0, I0, t)p(t)dt = 0. (4.17)

When t ∈ Σ2(θ0) and I0 is large enough, we have x(t; θ0, I0) + c0 ≥ δ0.
Then∣∣∣∣∣
∫

Σ1(θ0)

ϕ1(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt

∣∣∣∣∣
≤
∫

Σ1(θ0)

|ϕ1(θ0, I0, t)f(x(θ0, I0) + O(1), t)| dt ≤ 2I0M1√
4I2

0 − 1
· Meas[Σ2(θ0)]

≤ 4M1 · Meas[Σ2(θ0)] → 0, as I0 → +∞,

where M1 is a constant defined in Lemma 4.2. Consequently, we obtain that

lim
I0→+∞

∫
Σ2(θ0)

ϕ1(θ0, I0, t)p(t)dt = 0. (4.18)
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Note that

x(θ0, I0) = a−1/4
√

2I0

√
1 − K(I0) cos(θ0 + 2

√
at) + O(1), I0 → +∞.

For any θ0 ∈ [0, 2π], if t ∈ Σ3(θ0), then cos(θ0+2
√

at) < 1−I
−1/2
0 /4. Moreover,

we have

x(θ0, I0) = a−1/4

√
2I0 −

√
4I2

0 − 1 cos(θ0 + 2
√

at) + O(1)

≥ a−1/4

√
2I0 −

√
4I2

0 − 1(1 − I
−1/2
0 /4) + O(1)

≥ a−1/4

√
2I0 − 2I0(1 − I

−1/2
0 /4) + O(1)

=
√

2a−1/4

2
I
1/4
0 + O(1) → +∞, as I0 → +∞.

On the other hand, for any fixed θ0 ∈ R, t ∈ Σ3(θ0) and I0 large enough,
K(I0) − cos(θ0 + 2

√
at) ≥ K(I0) − (1 − I

−1/2
0 /4) ≥ K2(I0) − (1 − I

−1/2
0 /4) ≥ 0,

which implies that ϕ1(θ0, I0, t) ≥ 0. Note that the limit

lim
I0→+∞

ϕ1(θ0, I0, t) · f
(
x(θ, I) + C0, t

)

= lim
I0→+∞

K(I0) − cos(θ0 + 2
√

at)√
2K(I0)

√
1 − K(I0) cos(θ0 + 2

√
at)

· f(x(θ0, I0) + O(1), t)

= lim
ζ→1−0

ζ − cos(θ0 + 2
√

at)√
2ζ
√

1 − ζ cos(θ0 + 2
√

at)
· f(+∞, t) (let ζ = K(I0).)

=
√

1 − cos(θ0 + 2
√

at) · f(+∞, t) =
∣∣ sin(θ0/2 +

√
at)
∣∣f(+∞, t)

holds uniformly for t ∈ Σ3(θ0), for any fixed θ0 ∈ R. In view of the bounded-
ness of ϕ1(θ0, I0, t) · f(x(θ, I) + c0, t) on t ∈ Σ3(θ0), by Lebesgue’s dominated
convergence theorem, we have

lim
I0→+∞

∫
Σ3(θ0)

ϕ1(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt

= lim
I0→+∞

(∫
Σ3(θ0)

−
∫ 2π

0

)
ϕ1(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt

+ lim
I0→+∞

∫ 2π

0

ϕ1(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt

=
∫ 2π

0

∣∣ sin(θ0/2 +
√

at)
∣∣f(+∞, t)dt. (4.19)

Together with (4.17), (4.18) and (4.19), we have

lim
I0→+∞

ψ1(θ0, I0) = lim
I0→+∞

∫ 2π

0

ϕ1(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt

=
∫ 2π

0

∣∣ sin(θ0/2 +
√

at)
∣∣f(+∞, t)dt.
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Thus, we have proved the first equality in Lemma 4.3. In the following, we will
prove the second equality.

For any θ0 ∈ R, t ∈ Σ1(θ0) and I0 is large enough, from the proof of
Lemma 4.2, we know that

|ϕ2(θ0, I0, t) · f(x(θ0, I0) + O(1), t)|

≤
∣∣∣∣∣

K(I0) sin(θ0 + 2
√

at)√
2
√

1 − K(I0) cos(θ0 + 2
√

at)

∣∣∣∣∣ ·
M0(√

2I0 −
√

4I2
0 − 1 cos θ0 + O(1)

)ν

≤
∣∣∣∣∣∣

√
4I2

0 − 1 sin(θ0 + 2
√

at)

2
√

I0 ·
√

2I0 −
√

4I2
0 − 1 cos(θ0 + 2

√
at)

∣∣∣∣∣∣ · M0I
ν
2
0 ≤ M0I

ν
2
0 .

Similarly,∣∣∣∣∣
∫

Σ1(θ0)

ϕ2(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt

∣∣∣∣∣ ≤
∫

Σ1(θ0)

|ϕ2(θ0, I0, t)f(·, t)| dt

≤ M0I
ν
2
0 · Meas[Σ1(θ0)] → 0, as I0 → +∞,

which leads to

lim
I0→+∞

∫
Σ1(θ0)

ϕ2(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt = 0. (4.20)

Recall x(θ, I) + c0 > δ0 for all t ∈ Σ2(θ0). With the same argument, for
I0 → +∞,∣∣∣∣∣

∫
Σ2(θ0)

ϕ2(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt

∣∣∣∣∣ ≤ M1 · Meas[Σ2(θ0)] → 0.

Then we have

lim
I0→+∞

∫
Σ2(θ0)

ϕ2(θ0, I0, t)f(x(θ0, I0) + O(1), t)dt = 0. (4.21)

For any fixed θ0 ∈ R, the limit

lim
I0→+∞

ϕ2(θ0, I0, t) · f(x(θ0, I0) + O(1), t)

= lim
I0→+∞

K(I0) sin(θ0 + 2
√

at)√
2
√

1 − K(I0) cos(θ0 + 2
√

at)
· f(x(θ0, I0) + O(1), t)

= lim
ζ→1−0

ζ sin(θ0 + 2
√

at)√
2
√

1 − ζ cos(θ0 + 2
√

at)
· f(+∞, t) (let ζ = K(I0).)

=
sin(θ0 + 2

√
at)√

1 − cos(θ0 + 2
√

at)
· f(+∞, t)

= sign(sin(θ0/2 +
√

at)) · cos(θ0/2 +
√

at)f(+∞, t)
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holds uniformly for t ∈ Σ3(θ0). Therefore, by Lebesgue’s dominated conver-
gence theorem, we have

lim
I0→+∞

ψ2(θ0, I0) = lim
I0→+∞

∫
Σ3(θ0)

ϕ2(θ0, I0, t) · f(x(θ0, I0) + O(1), t)dt

=
∫ 2π

0

sign(sin(θ0/2 +
√

at)) · cos(θ0/2 +
√

at)f(+∞, t)dt.

Combined with (4.20) and (4.21), we have proved (4.8). �

Lemma 4.5. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f3). Then for I0 → +∞, we have that∫ 2π

0

O(I−1
0 )f

(
x(θ0, I0) + O(1), t

)
dt = O(I−1

0 ) (4.22)

and ∫ 2π

0

O(I− 1
2

0 )f
(
x(θ0, I0) + O(1), t

)
dt = O(I− 1

2
0 ), (4.23)

uniformly with respect to θ0 ∈ [0, 2π].

Proof. The proof of Lemma 4.5 is similar to the proof of Lemma 4.4. Notice
that∣∣∣∣
∫ 2π

0

O(I−1
0 )f

(
x(θ0, I0) + O(1), t

)
dt

∣∣∣∣
=

∣∣∣∣∣
(∫

Σ1(θ0)

+
∫

[0,2π]\Σ1(θ0)

)
O(I−1

0 )f
(
x(θ0, I0) + O(1), t

)
dt

∣∣∣∣∣
≤ I

ν
2
0 · Meas[Σ1(θ0)] · O(I−1

0 ) + M1 · O(I−1
0 ) = O(I−1

0 ), as I0 → +∞.

Therefor, we obtain the desired (4.22), and (4.23) can be proved similarly. �

Set r0 = I
1
2
0 and

σf (θ) =
∫ 2π

0

| sin(θ/2 +
√

at)|f(+∞, t)dt, (4.24)

then we have

σ′
f (θ) =

1
2

∫ 2π

0

sign(sin(θ/2 +
√

at)) · cos(θ/2 +
√

at)f(+∞, t)dt. (4.25)

By (4.16) and Lemma 4.4 and Lemma 4.5 we get that

Lemma 4.6. Assume that the continuous function f : (−c0,+∞)× [0, 2π] → R

satisfies (f1) and (f2). Then for r0 → +∞, we have the mapping P1 as{
θ1 = θ0 + 4

√
aπ + a−1/4r−1

0 σf (θ0) + H(θ0, r0)
r1 = r0 − a−1/4σ′

f (θ0) + G(θ0, r0),
(4.26)

where H(θ0, r0), G(θ0, r0) ∈ C[R/2πZ × (1,+∞), R] are 2π-periodic with re-
spect to θ0 such that H(θ0, r0) = o(r−1

0 ) and G(θ0, r0) = o(1).
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5. The proofs of Theorem 1.1 and Theorem 2.1

5.1. Proof of Theorem 2.1

First, we proof the existence of 2π-periodic solutions. If σf (θ) �= 0, θ ∈ [0, 2π],
then σf (θ) has a constant sign, which implies that there exists a positive
constant d such that σf (θ) > d or σf (θ) < −d for any θ ∈ [0, 2π]. By Lemma
4.5, for r0 large enough, we have |θ1 − θ0 − 2

√
aπ| < 1. So it follows that

the image (θ1, r1) can never lie on the ray θ1 = θ0. Hence, by Poincaré–Bohl
theorem [29], the mapping P1 has at least one fixed point and therefore the
Poincaré mapping P has at least one fixed point, which implies the existence
of 2π-periodic solutions.

In the following, we will prove the first part for existence of unbounded
solutions. By Proposition 2.1 of [23], if σ′

f (θ) > 0 and for all θ ∈ [0, 2π],
|σf (θ)| + |σ′

f (θ)| > 0, we know that there exists R0 > 0 such that, if r0 ≥ R0,
then the orbit {(θj , rj)} exists in the future and satisfies lim

j→+∞
rj = +∞.

Then for I0 large enough, the orbit {(θj , Ij)} exists in the future and satisfies
lim

j→+∞
Ij = +∞. So it follows that lim

t→+∞ I(t) = +∞ by the conservation of

energy. In view of (3.3) and (4.16), we get

lim
t→+∞

(
y(t)2 + x(t)2 + x(t)−2

)
= +∞.

If for all t ∈ [t0,+∞),

lim sup
t→+∞

|x(t)| ≤ d < +∞,

then we get

lim
t→+∞

(
y(t)2 + x(t)−2

)
= +∞. (5.1)

Let us define the positive function

J(t) = y(t)2 + x(t)−2

and we have ∣∣∣∣dJ

dt

∣∣∣∣ = |2y(t)y′(t) − 2x(t)−3x′(t)|
= | − 2ax(t)y(t) + 2y(t)(p(t) − g(x))|
≤ C3J(t).

Using the Gronwall’s inequality, we have J(t) ≤ J(0), which contradicts (5.1).
The case σ′

f (θ) < 0 can be handled in a similar way.

5.2. Proof of Theorem 1.1

Now, we consider the existence of periodic solutions of (2.9) under the assump-
tion (f2). Rewrite Eq. (2.9) in the following equivalent form

x′′(t) − 1 + μ2

x3(t)
+ ax(t) + f̄(x(t), t) = 0, (5.2)

where f̄(x(t), t) = f(x(t), t) +
1
x3

.
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We can verify that f̄ satisfies (f1) and (f3). For μ ∈ [0, 1], we can rescale
Eq. (5.2) as

x′′(t) − 1
x3(t)

+ ax(t) +
f̄(x(t), t)

(1 + μ2)1/4
= 0. (5.3)

With similar arguments for Eq. (2.9), we obtain a family of Poincaré map-
pings P(z, μ) with the parameter μ ∈ [0, 1], whose generalized polar expression
is written in the following form{

θ1 = θ0 + 4
√

aπ + a−1/4r−1
0 σf̄ (θ0) + H(θ0, r0;μ),

r1 = r0 − a−1/4σ ′̄
f
(θ0) + G(θ0, r0;μ), (5.4)

where H(θ0, r0;μ), G(θ0, r0;μ) ∈ C[R/2πZ×(1,+∞)×[0, 1], R] are 2π-periodic
with respect to θ0 such that H(θ0, r0;μ) = o(r−1

0 ) and G(θ0, r0;μ) = o(1) as
r0 → +∞ uniformly for μ ∈ [0, 1].

Let Br0 be a open and bound ball with radius r0 and center at the origin
O:

Br0 = {|z| < r0},

and let Ω = Br0 × [0, 1], Ωμ = {z : (z, μ) ∈ Ω}. Let

Σ = {(z, μ) ∈ Ω̄ : z − P(z, μ) = 0},

and for μ ∈ [0, 1], let Σμ = {z : (z, μ) ∈ Σ}. Consider the operator equation

z − P(z, μ) = 0, (z, μ) ∈ Ω̄. (5.5)

Clearly, P is a continuous operator on Ω̄. If σf (θ) �= 0, for any θ ∈ [0, 2π],
we know that, for any (z, μ) ∈ ∂Ω, we have z �= P(z, μ) as r0 large enough.
Moreover, the polar image (θ1, r1) of P(z, μ) can never lie on the ray θ = θ0.
Then Poincaré–Bohl theorem [29] allows one to conclude that

deg(P,Ω0, O) = deg(Id,Ω0, O) = 1.

Using the continuation lemma [30, §4.4], there exists a closed connected subset
Σ∗ of Σ joining Σ0 × {0} to Σ1 × {1}. Note that every fixed point zμ of the
Poincaré map P corresponds to the periodic solution x(t; θ0, r0, μ) of (5.3).
Consequently, by the continuation of the solution with respect to the initial
value, we have obtained a closed connected set of 2π-periodic solutions

C = {(μ, x) : μ ∈ [0, 1], x(t;μ) is 2π-periodic and satisfies equation (5.2)}
such that C ⊂ [0, 1] × CT .

Now defining

ϕ(t) =
∫ t

0

μ

x2(s;μ)
ds,

we know that Eq. (2.10) is satisfied and

ϕ(t + 2π) − ϕ(t)
2π

=
1
2π

∫ t+2π

t

μ

x2(t;μ)
dt

=
1
2π

∫ 2π

0

μ

x2(t;μ)
dt = ϑ(μ).
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Note that

ϕ̃(t) =
∫ t

0

[
μ

x2(t;μ)
− ϑ(μ)

]
dt = ϕ(t) − ϑt

is 2π-periodic, and

u(t) = x(t)
(
cos(ϕ̃(t) + ϑt), sin(ϕ̃(t) + ϑt)

)
.

Consider μ ∈ [0, 1], and we know that ϑ(0) = 0 and ϑ(1) > 0. Therefore,
there exists constants μ1, μ2 being close to zero such that, 0 < μ1 < μ2 and

min
μ∈[μ1,μ2]

ϑ(μ) < max
μ∈[μ1,μ2]

ϑ(μ).

Now for any ϑ(μqp) = q
p ∈ [ min

μ∈[μ1,μ2]
ϑ(μ), max

μ∈[μ1,μ2]
ϑ(μ)] with (p, q) = 1 and

μqp ∈ [μ1, μ2], then uμqp
(t) is periodic with minimal period 2pπ, and ro-

tates exactly p times around the origin in the period time 2pπ. For any
ω ∈ [ min

μ∈[μ1,μ2]
ϑ(μ), max

μ∈[μ1,μ2]
ϑ(μ)] \ Q, uω(t) is a quasi-periodic with the fre-

quencies 〈1, ω〉. We also recall

u(t) = xμ(t)eiϕ(t).

is a radially 2π-periodic solution of the original system (1.1). Since x(t;μ) is
continuous on [0, 2π] × [μ1, μ2], we obtain (1.8) while taking

B(μ1, μ2) = max
(t,μ)∈[0,2π]×[μ1,μ2]

|x(t;μ)|.

The second part of the proof follows from Theorem 2.1 directly. Thus we
end the proof.
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Appendix A

Lemma 5.1. Assume that Γ is a simple closed curve on the plane defined by

Γ :
1
2
y2 +

1
2
a(x + c0)2 +

1
2(x + c0)2

= ĥ +
√

a (ĥ ≥ 0).

Then the area enclosed by Γ in phase space swept out in one period/2π is given
by

I(ĥ) =
1
2π

∮
Γ

y dx =
ĥ

2
√

a
.



Vol. 22 (2015) Periodic, quasi-periodic and unbounded solutions 1137

Proof. Notice that x + c0 > 0. By the definition of the curve Γ, we have
√

a(x + c0) +
1

x + c0
=
√

2(ĥ + 2
√

a) − y2.

It follows that

x(y) =
1

2
√

a

(√
2(ĥ + 2

√
a) − y2 ±

√
2ĥ − y2

)
− c0.

So we divide the curve Γ into two parts

x1(y) =
1

2
√

a

(√
2(ĥ + 2

√
a) − y2 −

√
2ĥ − y2

)
− c0, −

√
2ĥ ≤ y ≤

√
2ĥ,

x2(y) =
1

2
√

a

(√
2(ĥ + 2

√
a) − y2 +

√
2ĥ − y2

)
− c0, −

√
2ĥ ≤ y ≤

√
2ĥ,

as shown is Fig. 1. Using the Green formula, We have

I(ĥ) =
1
2π

∮
Γ

y dx =
1
2π

∫∫
D

dx dy =
1
2π

∫ √
2ĥ

−
√

2ĥ

(
x2(y) − x1(y)

)
dy

=
1

2
√

aπ

∫ √
2h

−√
2h

√
2ĥ − y2 dy =

1
2
√

aπ
· 1
2
π(
√

2ĥ)2 =
ĥ

2
√

a
,

where D is the domain enclosed by Γ and we take Γ the negative direction
along the boundary of D. �

Lemma 5.2. Assume that

f(x) =
(b − 1)(1 − x)
[b − (b − 1)x]n

, n ≥ 1,

where b > 1 is a positive constant, then

|f(x)| � max
{

(n − 1)n+1

nn
,

(b − 1)(1 − λ)
[b − (b − 1)λ]n

}
,

for x ∈ [λ, 1] and 0 < λ < 1.

Proof. The function has the minimum and maximum values for x ∈ [λ, 1],
since it is continuous on the closed interval. Note that, if n > 1, then

f ′(x) =
b − 1

[b − (b − 1)x]n+1 [(n − 1)b − n − (n − 1)(b − 1)x] .

It follows that the function f has a stationary point

x0 =
(n − 1)b − n

(n − 1)b − (n − 1)
.

Moreover, we have

f(x0) =
(n − 1)n+1

nn
, f(1) = 0

and
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0c

y

x
x1(y)

x2(y)

ĥ2

ĥ2

Figure 1. The area enclosed by Γ in phase space swept out
in one period/2π

f(λ) =
(b − 1)(1 − λ)
[b − (b − 1)λ]n

.

Therefore, for x ∈ [λ, 1], we get that

0 ≤ f(x) ≤ max {f(x0), f(1), f(λ)} .

In case of n = 1, we have f ′(x) < 0. Also for x ∈ [λ , 1], we get that

0 ≤ f(x) ≤ max {f(1), f(λ)} .

Thus the proof is finished. �
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Appendix B: Calculations of (3.4), (3.8) and (3.9)

B.1. Calculation of (3.4)

Note that ξ = (τ + c0)2 is a monotone increasing function on the interval
t ∈ (x−, x). Then we have∫ x

x−

2
√

a√
2(h +

√
a) − a(τ + c0)2 − (τ + c0)−2

dτ

=
∫ (x+c0)

2

(x−+c0)2

2
√

a√
2(h +

√
a)ξ − aξ2 − 1

dξ (let ξ = (τ + c0)2)

=

⎡
⎣arcsin

√
aξ − h+

√
a√

a√
h2

a + 2h√
a

⎤
⎦

(x+c0)
2

(x−+c0)2

=
π

2
− arcsin

h +
√

a − a(x + c0)2√
h2 + 2

√
ah

.

B.2. Calculations of (3.8) and (3.9)

By (3.4), we know that

cos θ = sin(π/2 − θ) =
h +

√
a − a(x + c0)2√
h2 + 2

√
ah

.

From (3.4), we have

cos θ =
2
√

aĨ +
√

a − a(x + c0)2√
4aĨ2 + 4aĨ

.

Note that x + c0 > 0. Then we have

x =
1

a1/4

√
2Ĩ + 1 +

√
4Ĩ2 + 4Ĩ cos θ − c0.

Substituting I = Ĩ − 1
2 into the equality above, we obtain the desired equality

(3.8). On the other hand, in view of (3.8), we get

(x + c0)2 =
1

a1/2

(
2I −

√
4I2 − 1 cos θ

)
.

Substituting it into (3.6), together with (3.5), we obtain the desired equality
(3.9).
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