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derivatives of the energy with respect
to the crack length
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Abstract. We consider the weak solution of the Laplace equation in a
planar domain with a straight crack, prescribing a homogeneous Neumann
condition on the crack and a nonhomogeneous Dirichlet condition on the
rest of the boundary. For every k we express the k-th derivative of the
energy with respect to the crack length in terms of a finite number of
coefficients of the asymptotic expansion of the solution near the crack tip
and of a finite number of other parameters, which only depend on the
shape of the domain.
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1. Introduction

The variational approach to the problem of quasistatic crack growth is based
on the iterative solution of incremental minimum problems (see, e.g., [2]). In
the antiplane case, when the crack is supposed to grow along a prescribed
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straight line, identified with the xq-axis, the i-th minimum problem takes the
form

min {%/ |Vu|? dz + length(Ty) | u € H'(Q\Ts), u = g; on ON\T,
O\T,

u,s

s> si_l}, (1.1)

where Q is a bounded connected open set of the plane containing the origin,
gi is a prescribed function defined on the boundary 0€2,

[y :={(21,0) € Q| 21 < s},

and (u;—1,s;—1) is a solution of the (i — 1)-th minimum problem.
Let us examine a single problem of the form (1.1), where for simplicity
we denote g; by g. For given s, we consider the bulk energy £(s), defined by

1
E(s) = 2/9\F Vs |? de (1.2)

where ug is the solution of the minimum problem

1
min{f/ |Vu|? dz ‘ ue HY(O\T,), u=gon 8Q\FS}.
2Jonr,

Then problem (1.1) is equivalent to:
min{&€(s) +s | s> s;i-1},

and it is therefore useful to compute all derivatives of the function s — £(s),
in order to determine the minimality conditions. The main result of this paper
is an algorithm to compute
dke
(5
dsk
Similar results in the case of plane elasticity have been obtained in [1,5].
For simplicity, we will prove the formulas for the derivatives of £ at s = 0.
The starting point of our analysis is the fact that, for every s, us € H'(Q\T';)
solves the boundary value problem:
Aus =0 in Q\I
us =g on OO\l
Oug
v
The solution wug to problem (1.3) with s = 0 will be denoted by w. Since u is a
harmonic function satisfying a homogeneous Neumann condition on the crack,
it has the following asymptotic expansion near the crack tip:
+oo
2n+41

u(p,0) = Z [a%HpT sin (Q"Q—HG) + bapp"™ cos (nb) |, (1.4)

n=0

(1.3)

=0 only.

where (p, 0) are polar coordinates, with p > 0 and —7 < 6 < 7. This is an easy
consequence of the standard procedure which transforms a neighborhood of
the crack into a half disk using the complex square root (see Proposition 3.1).



Vol. 22 (2015) Higher order derivatives of the energy 451

An interesting result, obtained for the first time by Irwin [4], gives an
explicit relation between the energy release rate ,%(0) and the coefficient aq
of the expansion (1.4) of the solution w, called stress intensity factor (see, e.g.,

3):

d€ T 5

o (0) = 101
This equality shows that the first derivative of the energy uniquely depends on
the local behaviour of the solution near the crack tip and does not depend on
the shape of the domain 2. This is no longer true for higher order derivatives,
as noticed by [1,5] in the case of plane elasticity. For k > 2 we shall see that
gl;f (0) depends also on the solutions vg) € HY(OQ\I'g), 1 < j <k —1, of the
problems

Avd) =0 in Q\T'
vg) = —p & sin (=21H6) on 00\I'g (1.5)
o)
These functions have the following asymptotic expansion near the origin:
“+oo
; i 2n+1 n i n
of) = 37 [ (0™ sin (25516) + dB) (Q)p" cos (nd) | . (1.6)
n=0

For every k > 1, let

() = (541 ()
. k(k—1)
considered as an element of R~ =
We are now in a position to state the main result of the paper. Let A be
the collection of the admissible open sets 2, whose precise definition will be
given at the beginning of Sect. 2.

1.7
nj<k—1’ (L7)

Theorem 1.1. For every k > 1 there exists a function

k(k—1)

U, :RFxR 2z —R

such that for every admissible set Q@ € A and for every boundary condition

g € HY(Q\I'y) we have

dke

v (0) = Tilaw, A (),
where A\, (2) are defined in (1.7) and

o = (ala a3z, ..., (ng_l),
a; being the coefficients of the asymptotic expansion (1.4). Moreover, for all
e R , the function o — Vi (a, X) is a homogeneous polynomial of degree

2, and for every o € R¥ the function X — Wy (a, \) is a polynomial of degree
k—1.
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FIGURE 1. Example of 2 € A with Q™ not Lipschitz

The proof provides also an iterative algorithm for computing W;. An
essential ingredient is a careful analysis of the harmonic functions u(/) on Q\Ty,
defined as the derivatives of the solution with respect to the crack length:

(3—-1) (j—1)
U — U 4 . Us —u )
v =lim =2 ) i=1lim =0 for j > 2.
s—0 S s—0 S

A crucial step is the proof of the formulas

J
w9 = Z a(j%m+1 [p—zgpﬂ sin (_27;+1 9) Jrvgn)} ,
m=1

which connect the functions ) to the shape functions vg ) defined in (1.5).

2. Regularity of the solution with respect to crack length

Let € be a bounded connected open subset of R? with Lipschitz boundary.
Suppose that € contains the origin 0 € R2. To describe the crack lying on the
straight line R x {0}, we fix s, < 0 < sy such that (s,,,0) € 99, (sar,0) € Q,
and the open segment between (s,,,0) and (sps,0) is contained in 2. For every
5 € (Sm, Sn) we set

s :={(21,0) | s; < 1 < s}

Moreover, we suppose that the two sets QF = {(z1,22) € Q) | 22 > 0}
have Lipschitz boundary (Fig. 1). This condition can be slightly generalized
by assuming only that the open set Q\I',, can be written as the union of two
domains with Lipschitz boundary. The class of Lipschitz domains containing
the origin and satisfying the decomposition property mentioned above will
be denoted by A. It is easy to see that for every Q € A and for every s €
(Sm, $nr), also the open set Q\I's can be written as the union of two domains
with Lipschitz boundary and whose common boundary contains I'y. Therefore
we can define a trace operator from H!(Q\I') into L2(9Q\T's) and employ
the Poincaré inequality in Q\I'y, by considering separately these Lipschitz
subdomains (Fig. 1).
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We now fix a function g € H*(Q\Ig). In order to make precise the notion
of solution of problem (1.3), we introduce the space of test functions:

H, = {sp € H'(Q\T,) | v = 0 on ON\I'y}. (2.1)

For every s € (S, Sar), we say that ug is a solution of (1.3) if uy € HY(Q\Ly),
us = g on ONQ\I'y and

Vus-Vipde =0 for every ¢ € Hy. (2.2)
Q\T,
The solution of problem (1.3) corresponding to s = 0 will be simply denoted
by w.

Here we focus our attention on the dependence of the solution us on the
crack length and we study its regularity with respect to the parameter s. To do
this we reformulate (2.2) as an equation over a fixed domain, by using suitable
s-dependent diffeomorphisms. To this aim, we fix n € C2°(£2) such that n =1
in a neighbourhood of the crack tip 0 and consider the map F, : R? — R2
defined by

Fy(x1,22) = (21 4 sn(x1, 22), 2). (2.3)

Tt is easy to see that there exists 6o > 0 such that for every s € (—dg, dg) the
map Fj is a diffeomorphism and it satisfies the following properties: Fi(Ty) =
I's and F§ coincides with the identity near 9Q2. We may assume that s,, < —dg
and dg < sps. In addition, we suppose that 7 is radial and satisfies n(p) = 1
for p < Ry/2 and n(p) = 0 for p > Ry, for some 0 < Ry < dist(0, 09).

Let U be the solution ugs of problem (1.3) in the new coordinates, i.e.,

Us i=us0 Fy € HY(Q\Ty). (2.4)

Remark 2.1. Since F does not modify the boundary of Q, surely U; — g € Hy,
where Hy is the space defined in (2.1) for s = 0. Moreover, by applying the
change of coordinates in (2.2), it is straightforward to check that U solves

/ (VU)TC,VEdz =0 for all £ € H,, (2.5)
Q\Tp

where the matrix C; is defined by
Cy(z) := DF; Y (Fy(2))(DF; Y (Fy(z)))" det DF, (), (2.6)
which is a 2 x 2 symmetric matrix, smooth with respect to the variables (s, x)
and satisfies the uniform ellipticity condition, i.e.,
¢TCC = AP

for some A > 0, for all € Q\I'g, for all s € (—dp,dg) and for all ¢ € R2. An
explicit expression of the matrix C will be useful. From the definition (2.6)
we can compute

Colw) = ——— ( 1+ 8%(Day(x))? sD2n<x><1+st<x>>)
T T D) \~sDan(@)(1+sDin())  (1+sDig(@)* )
(2.7)
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Let Cﬁj ) be the j-th derivative of this matrix with respect to the parameter s;
as usual we set CS(O) =C,.

We now investigate the regularity of Ug(x) with respect to s and z. This
will be used to deduce the corresponding regularity properties of us(x).

Theorem 2.2. The function s € (—&g, ) — Us € HY(Q\Ig) is of class C>.

Proof. The theorem is a consequence of the Implicit Function Theorem on
Banach spaces. In fact, let H|, be the dual space of Hy, and for s € (—do, do),
let Ay : Hy — H{ be the operator defined by

(A V, &) = vVvTC,Veédr  for every V, € € H.
Q\Fo
For every s € (—0dp, dp), the function Vi := Uy — g € Hy is the unique solution
of the problem
L(s,V,) =0 in H},
where the map L : (—dg,d9) X Hy — H| is defined by
L(s,V):= AV + Agg.

It is possible to deduce from the smoothness of the matrix Cs that the map L
is smooth. Moreover, for every sg € (—dg,dg), its derivative with respect to V'
computed at (sg,0) is given by
oL
ov
and the operator A, is invertible by the Lax-Milgram Theorem. Hence, by

the Implicit Function Theorem, there exists § > 0 such that the locus defined
by L(s,V) =0 is the graph of a smooth function (sg — d, s9 + ) — Hp. O

(5050) = Aso S ‘C(HU,H(/))7

The next corollary deals with the regularity of the energy.
Corollary 2.3. The function s — E(s) introduced in (1.2) is C*°.

Proof. Using the change of variables (2.3) we obtain that

1
E(s) = f/ (VU C, VU, dz. (2.8)
2 Jonr,
The conclusion follows from Theorem 2.2 and from the fact that C depends
smoothly on s. O

The following theorem shows that all partial derivatives of U, depend
smoothly on s.

Theorem 2.4. Let w be an open set with w € Q\I'g. Then the function s €
(=00,00) — Us € H™(w) is of class C* for every integer m > 1.
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Proof. Consider an open set w’ such that w € w’ € Q\I'g and let ¢ be a
cut-off function compactly supported in w’ and such that ( = 1 on w. After
some computations done integrating by parts, one can see that the function
D;(¢Us) solves a problem of the form

AsD;(CUs) + G5 =0 in H (W)
where A, : H} (w') — H~1(w') is defined by

(AV ) = / (VI)TC,Vypda  for all V4 € Hy (W),

w!

and where G, is a suitable element of H~!(w’), depending smoothly on s.
Thanks to the smoothness of the matrix Cs and to the regularity of the function
s +— Us € HY(Q\Ig) obtained in Theorem 2.2, we deduce that the map L :
(—60,00) x Hi(w') — H~1(w') defined by
L(s,V):= AV + G,

is smooth. As in the proof of Theorem 2.2, it follows from the Implicit Function
Theorem that s € (—dg,do) — D;(CUs) € Hi(w') is C*. This shows that the
function s € (—dg,dp) — Us € H?(w) is C*. Arguing by induction, one can
prove that for every multi-index «a, the function s — D*(¢Us) belongs to

C>((—=60,00); H} (w')). This shows that for every integer m > 1 the function
s — U belongs to C°((—dp, dp); H™(w)). O

The next corollary easily follows from Theorem 2.4 and from the Sobolev
Embedding Theorem. For every bounded open set w C R?, the space C*(@) is
endowed with the usual topology of uniform convergence of the functions and
all their derivatives up to order k.

Corollary 2.5. Let w be an open set with w @ Q\I'g. Then the function s €
(—80,00) — Us € C*(w) is of class C*= for every integer k > 1.

We can extend the regularity result of Corollary 2.5 also for some open
sets w C Q\I'g whose boundary touches T'y.

Theorem 2.6. Let w be an open subset of Q\I'g of the form
w = B(x0)* = {(21,72) € Bp(x0) | 29 >0},

where xy € T'g. Assume that 0 ¢ W and w € Q. Then the function s €
(=80, 00) — Us € CH(w) is of class C*.

Proof. We give the proof only for B,.(z¢)". Under our assumptions there exists
some 1’ > r such that

W i=DBu(rg)t € and 0¢uw.
Consider the function U, € H' (B, (z)) defined by

[7 (Jj " )_ Us(:rl,xQ) 1f£172 Z O
st Us(xl,—xg) lfoSO
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Let ¢;; be the coefficients of the matrix Cs. Since 7 is radial, from (2.7) we
see that c¢17 and coo are even in xso, while ¢19 = c¢91 is odd in x5. Therefore,
from (2.5) it follows that U solves the problem

/ (VU)TC,Vpda =0 for all o € HY (B (x0)). (2.9)
B, (o)
We conclude now as in the proof of Theorem 2.4 and Corollary 2.5. 0

In view of Theorem 2.2, we are allowed to define the derivative of Uy with
respect to s by simply taking the limit

Ul o= tim Lot = U

§= lim = (2.10)

in the strong topology of H*(Q\I'g). Moreover, for j > 2, we can define further
derivatives of Uy by the recursive formula

gli-n _ -1

UG) = Jim Joth

lim - , (2.11)

where the limit is taken in the strong topology of H!(Q\I'g). Observe that, for
j > 1, the function Ugj ) is the limit of functions in Hy, and hence it belongs to
Hy. The convergence in (2.10) and (2.11) takes place in C*(@) for every open
set w € Q\I'g and also for every half-disk w as in Theorem 2.6. As usual we
set Us(o) = U, and we adopt the notation U for Ugj) computed at s = 0.

We can now deal with the regularity of the solution us with respect to
the parameter s.

Theorem 2.7. Let sg € (—dp,00) and let w be an open set with w € Q. Assume
that either w € Q\I'y, or that w = B,.(x0)* = {(x1,22) € B,(z0) | + 22 > 0}
with xg € T's, and (s9,0) ¢ @w. Then for every integer k > 0 there exists § > 0
such that the function s € (so — 6,80 + 8) — us € C¥(W) is of class C*.

Proof. The results follow from Corollary 2.5 and Theorem 2.6, by noticing that
us is the composition of Uy with the change of coordinates F,; 1. 0

The previous results allow us to define the derivatives of us; with respect
to the parameter s. Define

Us+h — Us

ul = }llli% W (2.12)
and for every j > 2, by the recursive formula,
(5-1) (G-1)
, U —us
ul?) = lim —sth 0 (2.13)

h—0 h

The convergence in (2.12) and (2.13) takes place in C¥(@) for every w as in

Theorem 2.7. As usual we set ugo) = us and we adopt the notation ul@) for
ug]) computed at s = 0.
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Proposition 2.8. For every j > 1, the function u9) is harmonic on O\I'g and

satisfies the Neumann condition ‘9“( 2 —0 on To\{0}, in the sense that
. oul
Jim 3 (m) =0 for every zy € I'o\{0}. (2.14)
wEQ\f)‘o v

Proof. The function v’ is harmonic, because by definition (2.12) it is the uni-
form limit on compact sets of harmonic functions. It also satisfies the Neumann
condition 8“ =0 on I'p)\{0}, since up — u satisfies the Neumann condition on
Iy and the hmlt in (2.12) takes place in C¥(w) for the half balls w considered
in Theorem 2.7. By induction, it follows from the same reasons that u(/) is

harmonic and satisfies the Neumann condition “V =0 on I'x\{0}. O

The following lemma shows the relationship between the derivatives of
U, with respect to s and the derivatives of us with respect to s and x7.

Lemma 2.9. For every j > 0 it holds
J
UD(x) =y (1)DIud P (Fo(x)) (), (2.15)
p=0
where n is the cut-off function involved in the definition (2.3) of the change of
coordinates Fs and DY denotes the derivative of order p in the direction x.

Proof. The simple proof can be done by induction and it is omitted. O

Remark 2.10. Since we chose the cut-off function 7 in such a way that it
vanishes outside the ball Brg,, from formula (2.15) we see that UU) and u(/)
coincide out of Bpg,. In particular (/) is H' far from the crack tip and its
trace on IN\I'y vanishes.

Moreover, since u(9) is smooth in O\I'p and can be smoothly extended to
both sides of T'o\{0}, we conclude that u()) belongs to H*((Br\B.)\I'), for
every 0 < e < R < dist(0,09).

The following lemma shows that the functions Us(j ) are weak solutions of
suitable differential equations.

Lemma 2.11. For all j > 0 we have
J
> (j)/ (VUFPHTCPVEdz =0 (2.16)
7 Jonr,

for all € € Hy.

Proof. The proof proceeds by induction on j. For j = 0, Eq. (2.16) is exactly
Eq. (2.5), which holds true.

Let 7 > 1 and assume that the statement is true for j — 1. Let us prove
that it is true for j. Equation (2.16) for j — 1 reads

Z >N / (VUU—IPHTCWPIGede =0 for all £ € H.
2T
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Thanks to Theorem 2.2, we can derive this equation with respect to s. We
obtain

j—1
0=>Y (1 / [(VUY=HTCPIve + (VUL —t=PhT et Ive] do
Q\I'y

p
p

I
o

j—1
= / (VU CvEde +> (1)1 / (VUU=PHTCPIVedn
O\To = " o

+Z h VU§j—1—P>)TC§P+1>vgdx+/ (VU)TCOIVEdx
Q\FQ Q\FO

J
:Z / (VUI=PHT P ve d,
Q\FO

p=

which is what we wanted to prove. O

3. Expansions near the crack tip

In this section we find the asymptotic expansions for the harmonic functions
w and u9) near the crack tip, which coincides with the origin. We start by
recalling the result for u, which can be obtained by elementary methods of
complex analysis.

Proposition 3.1. Let 0 < R < dist(0,09). Then (1.4) holds in the cracked
ball BR\I'g centred at 0, and the series in (1.4) converges uniformly on every
cracked ball B, \Ty, with 0 < r < R.

This expansion is a particular case of a more general result concerning
the u9) proved in Proposition 3.2 (see Remark 3.3). The new difficulty about
the u9) is that, in general, they do not belong to H'(Q\T'y), since they exhibit
a stronger singularity at the origin. We remark that Proposition 3.2 is only the
starting point in the study of the expansion of u/), which will be improved in
Proposition 3.8 and Theorem 3.9.

Proposition 3.2. Let j > 0 and 0 < R < dist(0,09). Then

+oo
uP(p,0)= Z [agjn)ﬂp 27 sin (22tLg) + bé]n)p” cos (n@)} +cWlogp (3.1)

n=-—oo

in the cracked ball BR\T'g centred at 0, and the series in (3.1) converges uni-
formly on every set of the form (B;\B;)\Io, with 0 <1’ <r < R.

Proof. We open the crack by using the bi-holomorphic change of coordinates
D BR\FO — B+ = {(.%’1,.%’2) S B\/* | xry > 0}
z f :
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where we identify (z1, z2) with the complex number z = x1 + iz2. Notice that
the change of coordinates ® transforms the part of the crack I'g N Bp into the
segment

S = {(z1,22) € R? | 21 =0, —VR < 23 < VR}.
Using the fact that ® is bi-holomorphic, it is easy to show that for every e > 0

the function v :=u) o ®=! belongs to Hl((B:;ﬁ\PS)\FO) and by Proposi-
tion 2.8 it solves the problem

Av=0 in (B;E\FE)\FO

v

o 0 on S\B..

By reflecting the function v, we can define a harmonic function on the whole
annulus B /z\B.:

( ) v(z1, z2) ifzg >0
w(x1,x2) = .
b2 v(—x1,x9) ifxy <O,

This construction can be repeated for every € > 0, hence we can extend the
function w to a harmonic function on the punctured disk B, 7\{0}. Therefore
there exists a constant ¢) such that the function w(x) — c¢\%)log|xz| is the
imaginary part of a holomorphic function f on the punctured disk B ,5\{0}.
The function f can be expanded in a Laurent series

“+oo
=3 (a53‘>+z‘b§g>)z”, ad, b9 e R, (3.2)

n=—oo

which uniformly converges on every annulus centred at 0 and strictly contained
in the punctured disk B ,z\{0}. By taking the imaginary part in (3.2), we
obtain an expansion for the function w and hence for the function v in polar

. L ter +
coordinates in the half disk B N
v(p,0) = Z [a&f)pn sin (n0) + b9 p™ cos (nd) | + ¢ log p.

By applying the holomorphic change of coordinates ® to this expansion, we
get exactly the expansion (3.1) in the statement of the proposition, since the

coefficients aslj ) for n even and bq(lj ) for n odd must vanish because the Neumann

.. ) . .
condition 2% = 0 is satisfied. O
90 O=+mr

Remark 3.3. In the case j = 0, the function u belongs to H'(Bg\I'y), hence
UNS HI(B\J;E). This implies that w € H'(B /). As a consequence A9 =0
and the function f is holomorphic in the whole disk Bz, and therefore (3.2)

reduces to a Taylor expansion, i.e. a%o) =0, bS?’ = 0 for n < 0. This leads to
the classical expansion (1.4) for w.
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For future use, we state the following corollary to Proposition 3.2, regard-
ing the regularity properties of a function whose expansion of type (3.1) starts
from a positive index.

Corollary 3.4. Let us fix j >0, k>0, let agQJrh béjn) be as in Proposition 3.2,
and let

“+o0
vk(p,0) == Z {aéJn)Hp = sin (25H0) +b5) o™ cos (nh)| .
n=k

Then vy, € H**Y(B,\I'y) for every 0 < r < R.
The proof is based on the following two technical lemmas.

Lemma 3.5. Let D be a domain in C, and let f : D — C be a holomorphic
function. Let u = Ref and v = Imf. Assume that f, f',...,f*) € L*(D).
Then u,v € H*(D).

Proof. The thesis follows from the fact that for every h > 1 and for every 0 <
a1, az, 1, B2 < hwith |ay — 1| =1, [ag — 2| = 1, and ay + g = f1+ B2 = h,
we have

f™ = |DM*DS2v + D" Dy?v

for a suitable constant o € {£1,+i}. This can be easily proved by induction
on h, using the fact that for every holomorphic function g we have ¢’ = D1g =
—iDgg. [l

Lemma 3.6. Let f : B /z — C be a holomorphic function and let p : BR\I'g —
C be defined by ¢(2) := f(y/2). Assume that f(z) = 2**g(2) for some k > 0 and
some holomorphic function g : B /; — C. Then p,¢’,. .., e+ e L2(B,\TI'y)
for every r < R.

Proof. We observe that (z) = zFy(z), where 1(z) = g(v/z). We can easily
prove by induction that for every A > 1 we have

h
() =Y g mM(VR)
m=1
for suitable constants c”,. Let us fix 0 < 7 < R. Since g is holomorphic in B VB

the functions ¢(™ are bounded in B - Hence there exists a constant C, such
that

1™ (2)] < Ch|z|%_h for every z € B,, for every 1 <h <k + 1.

Since p(2) = zFy(z), for every 1 < h < k, by Leibniz’s rule we have the
estimate
h
oM (2)] < D7 Conpel2l 227 4 Co g2
m=1

< C|z|k_h for every z € B,,
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which shows that cp(h) is bounded on B, for 1 < h < k. As for h = k+ 1, by
Leibniz’s rule we have

k41
le* D (2)] < Z Conil2| 712|727 < C|2|72  for every z € By,
m=1
which shows that p*+1) € L2(B,). O

Proof of Corollary 3.4 Since the function f introduced in the proof of
Proposition 3.2 has the expansion (3.2), we have that the function

+oo
falz) =Y (agg) + ibfj)) 2" (3.3)
n=2%k

is holomorphic in B VE As the coefficients aglj ) for n even and b%j ) for n odd
vanish (see again the proof of Proposition 3.2), the function vy, is the imaginary

part of fax(y/2). The conclusion follows now from Lemmas 3.5 and 3.6. O

The next step is to show that indeed the series in (3.1) has finitely many
nonzero terms for n negative. To do this, we prove an estimate on «?) which
shows that it belongs to the dual of a suitable subspace of H/~1(Bx\I'y).

Let B§ :={(z1,22) € Br | £x2 > 0} and let 7 be the class of test func-
tions ¢ € C>°(Br\I'p) NC>(B%)NC>(B}), which vanish on a neighbourhood
of 9Br\I'g and on a neighbourhood of the crack tip 0. For every ¢ € 7 and
for every k > 0 we set

Nl

”Dkw”LQ(BR\Fo) = Z |‘Da¢||%2(BR\FO)
|a|=k

Lemma 3.7. Let R > 0 with n = 1 on Bg. For every j > 1 there exists a
positive constant C; > 0 such that the estimate

‘/ um(pdx( < G107 | 12 (B ro) (3.4)
Br\T'o

holds for every p € T.

Proof. Let us prove the claim by induction on j. For the case j = 1, simply
observe that by Lemma 2.9 we have that

u' = U —Dyu € L*(BR\Iy)

and therefore estimate (3.4) holds.
Let j > 2 and suppose that the claim is true for j —p with 1 <p < j—1.
From Lemma 2.9 we deduce that
J
w9 =) — Z (;)Dfu(j*p) in BR\To.

p=1
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Fix a test function ¢ € 7. Since UU) € L?(Bg\I'y), by applying Holder
inequality and Poincaré inequality to all the derivatives of ¢ of order less or
equal than j — 2, we get the estimate

’/ U(j)<pd:E < HU(j)HL2(BR\F0)H‘PHL2(BR\F0)
Br\To

< HU(j)HL?(BR\FO)HDj_lsﬁHL?(BR\Fo)'

Let us estimate the other terms of the sum, integrating by parts with respect
to the variable x; and using the induction hypothesis:

‘/ (Dfu“‘m)gadx‘:‘/ u=P)DPy dx’ < CypDPPTIDEO| Lo (s
Br\To Br\To
< Ci—pID" ol L2 (Barro)-
This concludes the proof. 0
We now improve the result obtained in Proposition 3.2. Indeed we show

that in the asymptotic expansion (3.1) all coefficients of w9 with n < —j
vanish.

Proposition 3.8. Let 0 < R < dist(0,0%2). Then

“+oo
w9 (p,0)= Z [aéjn)ﬂ 27 sin (22tLg) + ) p cos (n@)} +cWlogp  (3.5)

n=-—j

in the cracked ball Bg\T'o, and the series in (3.5) converges uniformly on every

set of the form (By\By)\I'g, with 0 <1’ <r < R.

Proof. From Proposition 3.2 we know that (3.1) holds. Let us prove that for

every n > j we have a(jg%ﬂ) = 0. In order to do this, fix 0 < < R’ < R
such that 7 =1 on By and let ¢ € 7 be a test function of the form

p(p,0) = v (p) sin (25510),

where 1) is a nonzero smooth function, with suppy € (v, R’) and z/Ja(j
0. Define the rescaled function

pe(p:0) =@ (£,0) = $(2) sin (#520).

Estimate (3.4) holds for ., and therefore

)
(2n+1) <

eR' 7
CID el = [ [ uD(.0)0(2)sin (2520)pd0 .

By the uniform convergence of the series in (3.1) and by the orthogonality of
the trigonometric functions, from the previous inequality we obtain
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eR’
j — j __2n+1 1 2n+1

G0 el = 7 [ 0(8) [~ 5 + a1 ] pp

€

r!

2n41 2n+41

R .
:mz// ¥(p) [*a(fgan)p’Ts’ > }pdp

/

2n+1 2n+41
+7T82// P(p) [agjn)+1p 2 g 2 }pdp.
On the other hand

||Dj_1<,DeHL2(BR\Fo) — g2 ||Dj—1(p||L2(BR\Fo)

and hence we have that

/

j— _2n4l o9 2n+1
C;lID’ 1‘P”L?(BR/\Fo) > et ])/, w(p)[ (fgznﬂ)f’ ’ }Pdp

/

R
2n41 (o ; 2n41
+7TE2+ 3 (2 ])// r(/}(p) |:aé‘7n)+1p 2 :|pdp
(3.6)
If Y 22 1) were different from zero, the right-hand side in (3.6) would diverge

to +oo for € — 0. Therefore a_ 2,41y = 0.
Arguing in the same way and using a test function of the form

@(p,0) = ¥(p) cos (nd),

we obtain that b(_J%n =0 for n > j. O

We are now in a position to prove the final result on the asymptotic
expansion of u7). The improvement with respect to Proposition 3.8 is that the
coefficients of the cosines with negative index vanish as well as the coefficient
of the logarithmic term.

Theorem 3.9. Let 0 < R < dist(0,99). Then

u9 (p Z a2n+1p S sin (2219 —l—ij)p”cos 0) (3.7

n=—j
in the cracked ball BR\T'g, and the series in (3.7) converges uniformly on every
set of the form (B, \B;)\I'g, with 0 <1’ <r < R.

Proof. Besides the binomial coefficient, we shall use the Pochhammer symbol
defined by

(@) =x(x—1)---(x—p+1) (3.8)

for every x € R and every integer p > 1. We set also (x)g = 1.
Fix 0 < r < R’ < R where R’ is such that n = 1 on Bp/. Using
Proposition 3.8 and Corollary 3.4, it is straightforward to check that for every
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1 < p < j the function Dﬁ’u(j ~P) has the following expansion in B,\To:

p—1
- n i 2n4l n
DPuli—P) = Z (2ntly aé]nerl)p > Psin (2L — p)o)
n=—j+p
1 ‘
+ Y ()b, e P cos ((n— p)b)
n=—j+p

— (=1P(p — 1)1 V) p7P cos (ph) + v p,

where v;, € H*(B,\I'g). In the formula above ¢(?) = 0 by Remark 3.3. By
Lemma 2.9, on B,\I'y we have

U — ZJ: (9)DEul—P)
p

p=0
J p—1 ) p) 2nis
= () (35, az, i~ = "Psin (255 —p)o)
p=0n=—j+p
J -1 ‘ 4
£33 ()08 e cos (0 — p)o)
p=0n=—j+p
j—1
= > (=P =) (1)) 7P cos (pf)
p=1

+cDlogp + wy,

where w; € H'(B,\I'g). We set V1) := U() —w;. From the previous formula,
we obtain that the function

J
V) = Z o) p_zg+1 sin (=22419) + Z BY) p=" cos (nf) + ¢ log p,

n=1 n=1
where
J
) . i\ (2(p—n)+1 (3—p)
O‘Szj) = Z (;) ( £ 2 )p a2j(pfn)+1’ (3.9)
p=0
n—1
B9 =" (0) (= n)p b5, ")) = (=1)"(n = DI(Z) V. (3.10)
p=0

Since UY) € H'(Q\I'g) by Theorem 2.2, we conclude that V) € H*(B,\Ty).
Let us prove that /6’](4 ) = 0. To this aim we consider D,V which can
be written as

D,V = _jﬁj(.j)p’j’l (cos (50) + h(p,0)) (3.11)

where h(p,0) — 0 as p — 0, uniformly with respect to 6. Since D,V ¢
L?(B,\I'g), it follows that ﬁ](-] ) = 0. Then we can prove in a similar way that
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ag-j) = 0,5](-{)1 = O,...,agj) =0, and ¢ = 0. Therefore, by (3.10), for all
1 <n < j we have

n—1
> (0@ -n),b5, " =0 (3.12)
p=0

From (3.12) it is easy to see by induction on j that bY9) =0 forall 1 <n<j.

—2n —
The conclusion follows from (3.5). O

Remark 3.10. As a byproduct of the proof of Theorem 3.9, we obtain that

J

Z ) (2=t pa;{;le)ﬂ =0 foralll<n<j,

p=
as a consequence of (3.9) and from the equality a(J) =0 for 1 <n <j. These
relations will be useful in the proof of the main theorem.

4. Computation of the derivatives of the energy

In this section we express the derivatives ‘({%(O) of the energy £(s) defined
in (1.2) in terms of the coefficients of the asymptotic expansion (1.4) of the
solution u for s = 0 and in terms of the coefficients of the corresponding
expansions (3.7) of the j-th derivatives u9) of ug with respect to s. We already

know that & is C* by Corollary 2.3.
Proposition 4.1. For every k > 1 we have

d*e L~ gk (k=p)\T (x(p)
o s) = 5Z(p) o (VUE—PHToPIVU, dr (4.1)
0

for every s € (—do,dp).

Proof. In order to prove formula (4.1), we proceed by induction on k. For the
case k = 1, simply differentiate formula (2.8) with respect to s:

d& 1

—(s) = / (VU)TC, VU, dz + f/ (VU)TCIVU, dz.

ds O\T, 2 Jar,

Since U. belongs to the space Hy introduced in (2.1), we can use it as a test
function for problem (2.5). Since Cy is symmetric, this implies that

d& 1
- U)TC'vU, dz,

w0 =g ) FUTOTUw

which is formula (4.1) for k = 1.

Let us suppose by induction that the statement is true for k£ — 1, and let
us prove that it is true for k. By differentiating with respect to s the following
formula

k—1 k—1
d 5 1 Z k 1 / VU(}cflfp))Tc(p)VUs dz
Sk 1 2 o\l s s

p=1
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we obtain
dre 1k_1k1 (k=p\T A(p) (k=1—p\T ~(p+1)

_ - P p —1l=p P
=525 )/Q\FO (VU= TPV, + (VUEP) T vy,

+HVUE)T ey da.

We now use U/ as a test function for problem (2.16) solved by U and then

ng D as a test function for the problem solved by U., and we obtain that

72141/

T T
V) Cgmv[];dx:_l/ (VvUiD) covulde
o 2 Jo\r

T
:%/ (VUS“’I)) ClVU, dz,
Q\Ty

which, substituted in the expression of g%‘f, yields
dké’ 1 (+=1)
=3 ()]

+<VU(k 1- m) CP+1>VU] dz

[(VU(k—P)) T C(p)VUS

1 B
+/Q\FO (VU§k 1>) C'VU, do

kE—1 T
T2 wavwkn)(xvmdx

L ("1 / vuk-r) TC(p)VU d
+2pzz Q\ro( ) U

LS w=n\" )
- vuk—») oy, d
+2pz_:2 /Q\FO( ) s *

1

+—/ (VU)TCWVU, dx
2 Joar,
1 T

4o / (VUiE) vy, de
2 Jor,

— lzk: (*) / (VUS(’“*”))TO@VUS daz.
2 = P2 Jonr,
This concludes the proof. 0

In order to expand formula (4.1), we compute the derivatives of the matrix
C's with respect to s.
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Lemma 4.2. The following equalities hold

or - (~Pm =Dan\ e _ (=DFE(D) V20
~Dyy Dy ) 0 0 0

(=
for every k > 2.

Proof. From the expression of Cy written in (2.7), we have that

1
Cy, =DF Y DF HT detDF, = ——— M,
S ( S ) € 1+SD177
where
M. — 14 52Dan —sDan(1 + sDyn)
s 2 .
—sDan(1 4 sD1n) (1+ sD1n)
Hence, by differentiating with respect to s we obtain that
-D 1
Cl = L M! (4.2)

T +sDm2 T+ sDy

which computed in s = 0 gives the formula we wanted to prove for the first
derivative.

Instead of proving the statement of the lemma, it is convenient to show
by induction a stronger result, i.e., that for every k > 2

ow _ CVEDm* (DR (DR D2
s (1 —+ SDln)kJrl s (1 + SDln)k s 2(1 n 5D17])k71 s -

The base case k = 2 is obtained by simply differentiating formula (4.2) with
respect to s. The inductive step follows easily from the fact that the matrix
M!" does not actually depend on s, since the entries of M, are polynomials of
degree 2 with respect to s. 0

Proposition 4.3. For every k > 1, we have
k—1

dre k e [ i [" JH+1, (k—j—1)
@=52 (0 [ wemey [ [-piut D,

i=0 -
+%D2D{u(k*j*1)D9u} pdddp
where Ry is the radius of the ball which supports the cutoff function 7.

Proof. Let us start by computing % at 0 using formula (4.1) and employing
the expression of the derivatives of Cs found in Lemma 4.2:

dke 1L, T
I (k—p) (p)
0 2;:1 ) /Q . (vut=n) " ¢ Vude
k
_r [—DleU(k’DDlu — DynDU* DDy
2 Jar,

—DonDoU* DDy + DinD UV Doul| do

k
IE K =2\yp|2D, U P
5 —1)Pp!(Din)P~*|Vn|*D U P Dyude.
+2 (,p) /Q\FD( )P (D1n) |Vn|“D1 1udz
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By using Lemma 2.9 and expanding the derivatives, we get

d*e kN i 1, (k—1=3) j
@(0)_52( ; )/Q\FO[ DinDyuD? "

—J(Dln) DluD] (k—=1—j) it

_ D277D2UD{+1’LL(]€717J)77‘7

— leananuD{u(kflfj)r]jfl

— DanD1uDeDiu* 1y

— j(D2n)*DyuD]ut ==y

+ DinDauDe DI uF 1)y

leananuD{u(kflfj)njfl] dz

—P
+ 1 Z (k) (k__P)(—l)Pp!/ {(Dln)p—Q‘vn‘ZDluD{-‘-lu(k—p—j)n]‘
Q\TIg

2 p/\
=2 j=0

( n)P~ |V17|2D1uDJ1‘u(k7p7j)nj71] dx.
After some algebraic manipulations, we obtain
are ESS G
—(0) == - / —DinDiuD] " u Dp?
dsk 2 jgo ( J ) o\l [ !

_ D27]D2uD{+lu<k717j>77j
—DanD1uDo DI w17 4 DypDauDDIu* 7 | da

SZ 7 / JIVnPDruD] a1 dg

k k—p
1 — - —n—a .
+§ZZ Pp!/ (D1n)? 2| V|2 DyuDi =P~y dg
p=2 j= Q\To
LRl | N
T2 > (G5 / o 3O PP DrD ) b
p=2j=1 Q\T'o

=I+I1I+1II+1V.

where I, II,II11,1V are the four sums appearing in the formula above. Let us
consider the term of the sum I corresponding to p = 2:

k—2

5 Z (g) (k]2)2' [)\1" |V7’]|2D1’U,D]1+1u(k 2 ])nJ dzx
j=0 o
- 2 (I;-:)(J +1) /Q\r |V7I\2D1UDJ1+1U(’“7277)77J dz
j=0 0
o Bl ‘ o
“ 50 [ 19Dt e =
Q\To
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Let us now consider all the other terms of the sum I11:

k k—p
9 Z Z p'/ (Dln)p_Q|v7]‘2DluD]1+1u(k_P_j)nj dx
;D 335=0 O\l
1 k—1k—p—
2 Z p+1 i P (=1)PH (p + 1)
p=2 75=0
X / (D177)p71\V?]|2D1uD]1'+1u(k*pflfj)nj de
Q\T'o
1 k—1k—p
k k—p—1 1
D) Z (p+1)( jfl J(=1)PH(p +1)!
2 j=1

(Dln)p_l‘Vn|2D1uD{u(k—p—j)nj—1 de

lk 1k—
- 522 s

x/ (D1)P~ V)2 DyuDju* P~ pi =t dg = —TV.
O\Io

X

@\”ﬁ

It follows that
k—1

(1]675(0) -1 Z (ki‘l)/ [ D177D1UDj+1u(k_1_j)77]
ds* 2 =0 7 Janr, !
_D27’]D2’U,D]+1 (k—1— ])
—DynDyuDy D u* 1= 4 DyyDouDy DI w17 | da.

Now we integrate in polar coordinates to deduce

kk 1 Ro
r k 1 g+l (k=1-7)
—— ( E / / DlucosﬁD
ds 2] — e

— Dousin 9D]1+1u(k7177)

—Djusin HDQD'{u(k_l_j) + Dou cos GDQD{u(k_l_j)} pdfdp

ey [T e j+1 j

(5 [ oy [ [-oftut
+%D2D{u(k_j_1)D9u} pdfdp.

This concludes the proof. ([l

The following theorem allows us to express the k-th derivative of the
energy in terms of the following coefficients of the expansions of the solution
u and of its derivatives u) with respect to the crack length:
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(k—=1)  (k—2) (1)

A ok43 A gpys "7 A1 A1
(k—1) (k—2) (1)

A_opy5 Qo7 """ O as
(k—1)  (k—2) 1

a7Vl an s
k-1 E—2 1

aof ™ 0l al)  an

Theorem 4.4. For every k > 1 we have

dkg — - k 2n+1 (k—j—1)
dsk (0) = WZ Z (j+1> ( n2+ )j+2 Aop1  A2(j—n)+1- (4.3)
J=0n=—k+j5+1

Proof. Formula (4.3) easily follows from the expression of %(0) found in
Proposition 4.3, using the uniform convergence of the expansions (3.1) of the
functions u) to justify the integration term by term, and employing simple
trigonometric identities to integrate the single terms. 0

5. The main theorem

Formula (4.3) also holds for k£ = 1. Hence the first derivative of the energy is
given by

d&é T
g(0) = —Zai (5.1)

This is a well known result, which shows that the first derivative of the energy
uniquely depends on the local behaviour of the solution near the crack tip. We
now study the case k > 2. We shall see that the higher order derivatives of the
energy depend not only on the local behaviour of the solution near the crack
tip, but also on the shape of Q\I'g. Indeed, we shall show that these derivatives
can be expressed in terms of a finite number of coeflicients of the asymptotic
expansion of the solution and of a finite number of other parameters, which
only depend on the shape of the domain. In order to do this, we need to
introduce some technical tools.

Definition 5.1. For every j > 1 let vg) € HY(Q\I'o) be the weak solution of
the problem

Avd) =0 in O\I'g
vg) = 7p72g+1 sin (%9) on OO\TI'y

81}8)
Jv

=0 on I'y.

Remark 5.2. Notice that the function vézj ) depends only on the shape of the
domain Q\I'g, and does not depend on the boundary value g prescribed in
problem (1.3).
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In view of Proposition 3.1, the function vg)

near the crack tip:

can be expanded in a series

+oo
. 2n41 | n i .
US()J) = E [c§]73+1(ﬂ)p > sin (25H10) + déjn)(ﬂ)p ' cos (n@)} . (5.2)
n=0

The following proposition provides some equalities which will be used to
prove the main theorem, combined with those found in Remark 3.10.

Proposition 5.3. For every j > 1 and for every n > 0 we have

a2n+1 Za 2m+162n+1(Q)

Proof. Define on Q\I'g the function

W) i = 3 )™ i (2520) D 400, (53

m=1

We now show that w() is the variational solution of a suitable boundary
value problem. First of all, the function w®) belongs to H'(Q\I'g). Indeed,
the function u¥) is in H' away from the crack tip by Remark 2.10, and the
sum o) is also smooth away from the crack tip. Moreover, from (3.7), we
deduce that w@) has the following expansion

+oo
w? =3 [ag)H p=5 sin (25516) + b " cos (nd) |
n=0

which belongs to H' near the crack tip, by Corollary 3.4. We conclude that
wW) € HY(Q\I'y). We observe that w?) is harmonic in Q\Ty, since by Propo-
sition 2.8 the function u(?) is harmonic and by direct check the sum o) is
harmonic too. Let us see which boundary conditions are satisfied by w). Both
1) and the sum o) satisfy the Neumann condition on T'y\{0}, by Propo-
sition 2.8 and by direct check respectively. Let us consider now the trace of
w) on 8Q\I‘0 By Remark 2. 10 the trace of ul) vanishes on dQ\T'g, hence
the trace of w¥) on IN\Ty is 0¥). In conclusion, w) € HY(Q\Iy) is a weak
solution of the problem

Aw) =0 in O\I'g
J
- Za(]%m+1p72?+l sin (=222£19)  on 00\
() m=1
8161)) =0 on I'y.
v

By the uniqueness of the solution of this problem, we have that

wt = Z a(]2m+1UQ
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and hence by (5.3)

w9 = Z a_2m+1 [ 2mt1 sin (_2734-19) +v§()m):| .
Comparing the expansions of both sides of the last equation, we get the thesis.
O
For every k > 2, let
Akm) (cé&l(m)wgk_l, (5.4)

considered as an element of
of A\;(2) make up the following triangular matrix

the entries

1 2 k-2 k—1
Al @) @) )
cé”(@) %z) Q)

- SR (5.5)
1 2
C%{% 5(9) ék) 5(9)
cop—5(€2)
We are now ready to prove the main result of the paper.
Proof of Theorem 1.1 Fix Q € A and g € H'(Q\I'p). In view of (5.1) it

suffices to prove the theorem for k£ > 2. In formula (4.3) the k-th derivative of
the energy was expressed as a linear combination of the following terms:

(k—1) (k—2) (1)

A op302k—1 o) [ 5A2k—1 "+ A_102k—1 A102k—1
a® or s a*2 4 v aWPags_s asa
oki502k—3 A op {7A2k—3 1 A2K—3 A302k—3
: : (5.6)
k—1 k—2 1
(I( )a a(l )(13 cee a(%)_sag a2k 303
k—1 k—2 1
ag )al aé )CLl cee a(zk)_gal a2k —10a1
We collect the terms different from aq,--- ,asr_1 in the matrix
ok-D_ (k=-2) (2) (1)
O _ok+3 @945 """ G_3 G_4
kD k=2 @) (1)
A_opt5 A_okt7 a_j 1
A = : : c REx(k=1)
(k—l) (k—2) (2) (1)
a_y ay ©r Qg7 Ggp_s
(k=1) (k—2) a® (1)
ay as Tt Qg5 Qg3

With this notation, formula (4.3) for the k-th derivative of the energy can be
written in the following compact way

dke
3ok (0) = Bul(Ar, ar) + Fi(ow, ax), (5.7)
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where Ej, : RF>¥(F-1) « RF s R and F}, : R¥ x R¥ — R are suitable bilinear
maps.

We now prove that we can express the entries of Ay in terms of ay_1 :=
(a1, ,a95—3) and A\, (). Indeed, we show by induction that for every k > 2
there exists a map

Ak Rk 1 Rk(kf;l) N ka(k—l)
such that
Ak - Ak(ak,l, )\k(Q))

Moreover we shall see that for every \ € (o, A) is
linear, and for every a € RF¥=1 the function A — Ag(a, \) is a polynomial of
degree k—1. To do this, we will make use of the relations found in Remark 3.10
and in Proposition 5.3

k—1

alylli= =20 (50 () L, foralll<n<k—1 (58)
p=1
ag’;jl) = Z a(kzniﬂcé@rl(ﬂ), for all n > 0. (5.9)

Base case: Let us define Ag : R x R — R?X!, From Egs. (5.8) and (5.9)
with k£ = 2, we deduce that

a(j% =—21a; and agl) = agzcgl)(ﬂ) la cgl)(Q). (5.10)

Hence As = As(aq, cgl)(Q)), where

1
[ —2¢
AQ(a7)\). (_%a)\>.
The map A, is linear with respect to o and it is a polynomial of degree 1 with

respect to A.
Inductive step: Suppose that there exists a map

Ap_q: RF=2 % RW _, RE=1)x(k=2)
such that
Ap-1 = Ap—1(ar—2, Ae-1(2)),

and that for every A € R , the function o +— Ap_1(a, A) is linear, and

for every o € RF~2, the functlon A — Ak_1(a, \) is a polynomial of degree
k — 2. We want to define Ay.

The matrix Aj, can be written as a block matrix

Br Ak—l)
Ay — ( i
"™ A
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where
(k—1)
@ _2p43 agk_”
O .
6[{; _ —2k+5 c Rk_17 Yo = . c Rk_Q.

: a(2)
' e

at Aok—3

Thanks to formula (5.8), we can express all the entries of 85 in terms of

the entries of Ap_; and of ap_1. We can therefore define a linear map Ek :
RGE=Dx(k=2) o RF=1 _, RF¥=1 guch that

B = Br(Ar_1, 1)
Then we can use (5.9) to express all the elements of 7 in terms of the entries
of Agp_1 and of the elements of \;(Q). In particular, we can define a bilinear
map J, : RE=Dx(k=2) » R — R such that

Ve = Ve (Ar—1, M\ ().

Finally, we use again formula (5.9) to express agk_l) in terms of the elements of

Br and of A\, (Q). Hence there is a bilinear function @, : R*~1) x R*™F LR
such that

al* ™Y =, (Br, Ae(Q)).

In conclusion, applying the inductive hypothesis:

A :< ~5k(f4k 1,0%-1) Ap—1 )
ar (Br(Ar—1, ar—1), Ak () T (Ap—1, Ak ()"
B (Ar—1(ak—2, \e—1()), ax_1) Ap—1(ag—2,A—1(2))
:(ak(gk(/\k—l(ak—%/\k—l(Q))vak—l)a)‘k(Q)) %(Ak—l(ak—z,Ak—l(Q))v)\k(Q))T)
=t Ag(ag—1, A ()

(ar, A) is linear, and for
every a € RF~1 the function A — Ay (a, \) is a polynomial of degree k — 1.

Eventually, we can apply what we proved to formula (5.7), concluding
that

dre = Ex(A F
@(0)— ke (Ag, ar) + F(ag, o)
Ey (A (ak 1, A(Q)), ) + Fi (o, o)

( Ak(€)).

The map ¥ : RF x R*™™ 5 R defined as above satisfies the requested
properties. O

Remark 5.4. The proof of Theorem 1.1 is constructive. In particular it allows
us to obtain Ay from Ap_; using only elementary computations. In this way

for every kK > 2 we can find an explicit expression for dkf(O) in terms of
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ai,...,asx—1 and of the coefficients in (5.5). We write here the list of the first
three derivatives of the energy:

d&é T

E(O):_Za%

d25 T o (1) 3

@(O) = 144 Q) — 1Tnas,

d*e 9 (1) 30w L9 m 3 (2 >
5 (0) = graiage (@) + (5 (V@) + 5@ + V(@) ) wad

1
—§57m1a5 — %ﬂ'ag.
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