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Abstract. We consider the weak solution of the Laplace equation in a
planar domain with a straight crack, prescribing a homogeneous Neumann
condition on the crack and a nonhomogeneous Dirichlet condition on the
rest of the boundary. For every k we express the k-th derivative of the
energy with respect to the crack length in terms of a finite number of
coefficients of the asymptotic expansion of the solution near the crack tip
and of a finite number of other parameters, which only depend on the
shape of the domain.
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1. Introduction

The variational approach to the problem of quasistatic crack growth is based
on the iterative solution of incremental minimum problems (see, e.g., [2]). In
the antiplane case, when the crack is supposed to grow along a prescribed
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straight line, identified with the x1-axis, the i-th minimum problem takes the
form

min
u,s

{1
2

∫

Ω\Γs

|∇u|2 dx + length(Γs)
∣∣∣ u ∈ H1(Ω\Γs), u = gi on ∂Ω\Γs,

s ≥ si−1

}
, (1.1)

where Ω is a bounded connected open set of the plane containing the origin,
gi is a prescribed function defined on the boundary ∂Ω,

Γs := {(x1, 0) ∈ Ω | x1 ≤ s},

and (ui−1, si−1) is a solution of the (i − 1)-th minimum problem.
Let us examine a single problem of the form (1.1), where for simplicity

we denote gi by g. For given s, we consider the bulk energy E(s), defined by

E(s) :=
1
2

∫

Ω\Γs

|∇us|2 dx (1.2)

where us is the solution of the minimum problem

min
u

{1
2

∫

Ω\Γs

|∇u|2 dx
∣∣∣ u ∈ H1(Ω\Γs), u = g on ∂Ω\Γs

}
.

Then problem (1.1) is equivalent to:

min
s

{E(s) + s | s ≥ si−1} ,

and it is therefore useful to compute all derivatives of the function s �→ E(s),
in order to determine the minimality conditions. The main result of this paper
is an algorithm to compute

dkE
dsk

(s).

Similar results in the case of plane elasticity have been obtained in [1,5].
For simplicity, we will prove the formulas for the derivatives of E at s = 0.

The starting point of our analysis is the fact that, for every s, us ∈ H1(Ω\Γs)
solves the boundary value problem:

⎧
⎪⎪⎨
⎪⎪⎩

Δus = 0 in Ω\Γs

us = g on ∂Ω\Γs

∂us

∂ν
= 0 on Γs.

(1.3)

The solution u0 to problem (1.3) with s = 0 will be denoted by u. Since u is a
harmonic function satisfying a homogeneous Neumann condition on the crack,
it has the following asymptotic expansion near the crack tip:

u(ρ, θ) =
+∞∑
n=0

[
a2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ b2nρn cos (nθ)
]
, (1.4)

where (ρ, θ) are polar coordinates, with ρ > 0 and −π < θ < π. This is an easy
consequence of the standard procedure which transforms a neighborhood of
the crack into a half disk using the complex square root (see Proposition 3.1).
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An interesting result, obtained for the first time by Irwin [4], gives an
explicit relation between the energy release rate −dE

ds (0) and the coefficient a1

of the expansion (1.4) of the solution u, called stress intensity factor (see, e.g.,
[3]):

dE
ds

(0) = −π

4
a2
1.

This equality shows that the first derivative of the energy uniquely depends on
the local behaviour of the solution near the crack tip and does not depend on
the shape of the domain Ω. This is no longer true for higher order derivatives,
as noticed by [1,5] in the case of plane elasticity. For k ≥ 2 we shall see that
dkE
dsk (0) depends also on the solutions v

(j)
Ω ∈ H1(Ω\Γ0), 1 ≤ j ≤ k − 1, of the

problems
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δv
(j)
Ω = 0 in Ω\Γ0

v
(j)
Ω = −ρ

−2j+1
2 sin

(−2j+1
2 θ

)
on ∂Ω\Γ0

∂v
(j)
Ω

∂ν
= 0 on Γ0.

(1.5)

These functions have the following asymptotic expansion near the origin:

v
(j)
Ω =

+∞∑
n=0

[
c
(j)
2n+1(Ω)ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ d
(j)
2n (Ω)ρn cos (nθ)

]
. (1.6)

For every k ≥ 1, let

λk(Ω) =
(
c
(j)
2n+1(Ω)

)
n+j≤k−1

, (1.7)

considered as an element of R
k(k−1)

2 .
We are now in a position to state the main result of the paper. Let A be

the collection of the admissible open sets Ω, whose precise definition will be
given at the beginning of Sect. 2.

Theorem 1.1. For every k ≥ 1 there exists a function

Ψk : Rk × R
k(k−1)

2 → R

such that for every admissible set Ω ∈ A and for every boundary condition
g ∈ H1(Ω\Γ0) we have

dkE
dsk

(0) = Ψk(αk, λk(Ω)),

where λk(Ω) are defined in (1.7) and

αk = (a1, a3, . . . , a2k−1),

ai being the coefficients of the asymptotic expansion (1.4). Moreover, for all
λ ∈ R

k(k−1)
2 , the function α �→ Ψk(α, λ) is a homogeneous polynomial of degree

2, and for every α ∈ R
k the function λ �→ Ψk(α, λ) is a polynomial of degree

k − 1.
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(sm, 0)

(0, 0)

Γs

(s, 0)

(sM , 0)

Ω

Figure 1. Example of Ω ∈ A with Ω− not Lipschitz

The proof provides also an iterative algorithm for computing Ψk. An
essential ingredient is a careful analysis of the harmonic functions u(j) on Ω\Γ0,
defined as the derivatives of the solution with respect to the crack length:

u′ := lim
s→0

us − u0

s
, u(j) := lim

s→0

u
(j−1)
s − u

(j−1)
0

s
, for j ≥ 2.

A crucial step is the proof of the formulas

u(j) =
j∑

m=1

a
(j)
−2m+1

[
ρ

−2m+1
2 sin

(−2m+1
2 θ

)
+ v

(m)
Ω

]
,

which connect the functions u(j) to the shape functions v
(j)
Ω defined in (1.5).

2. Regularity of the solution with respect to crack length

Let Ω be a bounded connected open subset of R
2 with Lipschitz boundary.

Suppose that Ω contains the origin 0 ∈ R
2. To describe the crack lying on the

straight line R×{0}, we fix sm < 0 < sM such that (sm, 0) ∈ ∂Ω, (sM , 0) ∈ Ω,
and the open segment between (sm, 0) and (sM , 0) is contained in Ω. For every
s ∈ (sm, sM ) we set

Γs := {(x1, 0) | sm ≤ x1 ≤ s}.

Moreover, we suppose that the two sets Ω± = {(x1, x2) ∈ Ω) | ± x2 > 0}
have Lipschitz boundary (Fig. 1). This condition can be slightly generalized
by assuming only that the open set Ω\ΓsM

can be written as the union of two
domains with Lipschitz boundary. The class of Lipschitz domains containing
the origin and satisfying the decomposition property mentioned above will
be denoted by A. It is easy to see that for every Ω ∈ A and for every s ∈
(sm, sM ), also the open set Ω\Γs can be written as the union of two domains
with Lipschitz boundary and whose common boundary contains Γs. Therefore
we can define a trace operator from H1(Ω\Γs) into L2(∂Ω\Γs) and employ
the Poincaré inequality in Ω\Γs, by considering separately these Lipschitz
subdomains (Fig. 1).
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We now fix a function g ∈ H1(Ω\Γ0). In order to make precise the notion
of solution of problem (1.3), we introduce the space of test functions:

Hs := {ψ ∈ H1(Ω\Γs) | ψ = 0 on ∂Ω\Γs}. (2.1)

For every s ∈ (sm, sM ), we say that us is a solution of (1.3) if us ∈ H1(Ω\Γs),
us = g on ∂Ω\Γs and

∫

Ω\Γs

∇us · ∇ψ dx = 0 for every ψ ∈ Hs. (2.2)

The solution of problem (1.3) corresponding to s = 0 will be simply denoted
by u.

Here we focus our attention on the dependence of the solution us on the
crack length and we study its regularity with respect to the parameter s. To do
this we reformulate (2.2) as an equation over a fixed domain, by using suitable
s-dependent diffeomorphisms. To this aim, we fix η ∈ C∞

c (Ω) such that η ≡ 1
in a neighbourhood of the crack tip 0 and consider the map Fs : R2 → R

2

defined by

Fs(x1, x2) = (x1 + sη(x1, x2), x2). (2.3)

It is easy to see that there exists δ0 > 0 such that for every s ∈ (−δ0, δ0) the
map Fs is a diffeomorphism and it satisfies the following properties: Fs(Γ0) =
Γs and Fs coincides with the identity near ∂Ω. We may assume that sm < −δ0

and δ0 < sM . In addition, we suppose that η is radial and satisfies η(ρ) = 1
for ρ ≤ R0/2 and η(ρ) = 0 for ρ ≥ R0, for some 0 < R0 < dist(0, ∂Ω).

Let Us be the solution us of problem (1.3) in the new coordinates, i.e.,

Us := us ◦ Fs ∈ H1(Ω\Γ0). (2.4)

Remark 2.1. Since Fs does not modify the boundary of Ω, surely Us −g ∈ H0,
where H0 is the space defined in (2.1) for s = 0. Moreover, by applying the
change of coordinates in (2.2), it is straightforward to check that Us solves

∫

Ω\Γ0

(∇Us)T Cs∇ξ dx = 0 for all ξ ∈ H0, (2.5)

where the matrix Cs is defined by

Cs(x) := DF−1
s (Fs(x))(DF−1

s (Fs(x)))T det DFs(x), (2.6)

which is a 2 × 2 symmetric matrix, smooth with respect to the variables (s, x)
and satisfies the uniform ellipticity condition, i.e.,

ζT Csζ ≥ λ|ζ|2

for some λ > 0, for all x ∈ Ω\Γ0, for all s ∈ (−δ0, δ0) and for all ζ ∈ R
2. An

explicit expression of the matrix Cs will be useful. From the definition (2.6)
we can compute

Cs(x) =
1

1 + sD1η(x)

(
1 + s2(D2η(x))2 −sD2η(x)(1 + sD1η(x))

−sD2η(x)(1 + sD1η(x)) (1 + sD1η(x))2

)
.

(2.7)
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Let C
(j)
s be the j-th derivative of this matrix with respect to the parameter s;

as usual we set C
(0)
s = Cs.

We now investigate the regularity of Us(x) with respect to s and x. This
will be used to deduce the corresponding regularity properties of us(x).

Theorem 2.2. The function s ∈ (−δ0, δ0) �→ Us ∈ H1(Ω\Γ0) is of class C∞.

Proof. The theorem is a consequence of the Implicit Function Theorem on
Banach spaces. In fact, let H ′

0 be the dual space of H0, and for s ∈ (−δ0, δ0),
let As : H0 → H ′

0 be the operator defined by

〈AsV, ξ〉 :=
∫

Ω\Γ0

∇V T Cs∇ξ dx for every V, ξ ∈ H0.

For every s ∈ (−δ0, δ0), the function Vs := Us − g ∈ H0 is the unique solution
of the problem

L(s, Vs) = 0 in H ′
0,

where the map L : (−δ0, δ0) × H0 → H ′
0 is defined by

L(s, V ) := AsV + Asg.

It is possible to deduce from the smoothness of the matrix Cs that the map L
is smooth. Moreover, for every s0 ∈ (−δ0, δ0), its derivative with respect to V
computed at (s0, 0) is given by

∂L

∂V
(s0, 0) = As0 ∈ L(H0,H

′
0),

and the operator As0 is invertible by the Lax-Milgram Theorem. Hence, by
the Implicit Function Theorem, there exists δ > 0 such that the locus defined
by L(s, V ) = 0 is the graph of a smooth function (s0 − δ, s0 + δ) → H0. �

The next corollary deals with the regularity of the energy.

Corollary 2.3. The function s �→ E(s) introduced in (1.2) is C∞.

Proof. Using the change of variables (2.3) we obtain that

E(s) :=
1
2

∫

Ω\Γ0

(∇Us)T Cs∇Us dx. (2.8)

The conclusion follows from Theorem 2.2 and from the fact that Cs depends
smoothly on s. �

The following theorem shows that all partial derivatives of Us depend
smoothly on s.

Theorem 2.4. Let ω be an open set with ω � Ω\Γ0. Then the function s ∈
(−δ0, δ0) �→ Us ∈ Hm(ω) is of class C∞ for every integer m ≥ 1.
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Proof. Consider an open set ω′ such that ω � ω′ � Ω\Γ0 and let ζ be a
cut-off function compactly supported in ω′ and such that ζ ≡ 1 on ω. After
some computations done integrating by parts, one can see that the function
Dj(ζUs) solves a problem of the form

AsDj(ζUs) + Gs = 0 in H−1(ω′)

where As : H1
0 (ω′) → H−1(ω′) is defined by

〈AsV, ψ〉 :=
∫

ω′
(∇V )T Cs∇ψ dx for all V, ψ ∈ H1

0 (ω′),

and where Gs is a suitable element of H−1(ω′), depending smoothly on s.
Thanks to the smoothness of the matrix Cs and to the regularity of the function
s �→ Us ∈ H1(Ω\Γ0) obtained in Theorem 2.2, we deduce that the map L :
(−δ0, δ0) × H1

0 (ω′) → H−1(ω′) defined by

L(s, V ) := AsV + Gs

is smooth. As in the proof of Theorem 2.2, it follows from the Implicit Function
Theorem that s ∈ (−δ0, δ0) �→ Dj(ζUs) ∈ H1

0 (ω′) is C∞. This shows that the
function s ∈ (−δ0, δ0) �→ Us ∈ H2(ω) is C∞. Arguing by induction, one can
prove that for every multi-index α, the function s �→ Dα(ζUs) belongs to
C∞((−δ0, δ0);H1

0 (ω′)). This shows that for every integer m ≥ 1 the function
s �→ Us belongs to C∞((−δ0, δ0);Hm(ω)). �

The next corollary easily follows from Theorem 2.4 and from the Sobolev
Embedding Theorem. For every bounded open set ω ⊂ R

2, the space Ck(ω) is
endowed with the usual topology of uniform convergence of the functions and
all their derivatives up to order k.

Corollary 2.5. Let ω be an open set with ω � Ω\Γ0. Then the function s ∈
(−δ0, δ0) �→ Us ∈ Ck(ω) is of class C∞ for every integer k ≥ 1.

We can extend the regularity result of Corollary 2.5 also for some open
sets ω ⊂ Ω\Γ0 whose boundary touches Γ0.

Theorem 2.6. Let ω be an open subset of Ω\Γ0 of the form

ω := Br(x0)± = {(x1, x2) ∈ Br(x0) | ± x2 > 0},

where x0 ∈ Γ0. Assume that 0 /∈ ω and ω � Ω. Then the function s ∈
(−δ0, δ0) �→ Us ∈ Ck(ω) is of class Ck.

Proof. We give the proof only for Br(x0)+. Under our assumptions there exists
some r′ > r such that

ω′ := Br′(x0)+ � Ω and 0 /∈ ω′.

Consider the function Ũs ∈ H1(Br′(x0)) defined by

Ũs(x1, x2) :=

{
Us(x1, x2) if x2 ≥ 0
Us(x1,−x2) if x2 ≤ 0.
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Let cij be the coefficients of the matrix Cs. Since η is radial, from (2.7) we
see that c11 and c22 are even in x2, while c12 = c21 is odd in x2. Therefore,
from (2.5) it follows that Ũs solves the problem

∫

Br′ (x0)

(∇Ũs)T Cs∇ψ dx = 0 for all ψ ∈ H1
0 (Br′(x0)). (2.9)

We conclude now as in the proof of Theorem 2.4 and Corollary 2.5. �

In view of Theorem 2.2, we are allowed to define the derivative of Us with
respect to s by simply taking the limit

U ′
s := lim

h→0

Us+h − Us

h
(2.10)

in the strong topology of H1(Ω\Γ0). Moreover, for j ≥ 2, we can define further
derivatives of Us by the recursive formula

U (j)
s := lim

h→0

U
(j−1)
s+h − U

(j−1)
s

h
, (2.11)

where the limit is taken in the strong topology of H1(Ω\Γ0). Observe that, for
j ≥ 1, the function U

(j)
s is the limit of functions in H0, and hence it belongs to

H0. The convergence in (2.10) and (2.11) takes place in Ck(ω) for every open
set ω � Ω\Γ0 and also for every half-disk ω as in Theorem 2.6. As usual we
set U

(0)
s = Us and we adopt the notation U (j) for U

(j)
s computed at s = 0.

We can now deal with the regularity of the solution us with respect to
the parameter s.

Theorem 2.7. Let s0 ∈ (−δ0, δ0) and let ω be an open set with ω � Ω. Assume
that either ω � Ω\Γs0 or that ω = Br(x0)± = {(x1, x2) ∈ Br(x0) | ± x2 > 0}
with x0 ∈ Γs0 and (s0, 0) /∈ ω. Then for every integer k ≥ 0 there exists δ > 0
such that the function s ∈ (s0 − δ, s0 + δ) �→ us ∈ Ck(ω) is of class Ck.

Proof. The results follow from Corollary 2.5 and Theorem 2.6, by noticing that
us is the composition of Us with the change of coordinates F−1

s . �

The previous results allow us to define the derivatives of us with respect
to the parameter s. Define

u′
s := lim

h→0

us+h − us

h
(2.12)

and for every j ≥ 2, by the recursive formula,

u(j)
s := lim

h→0

u
(j−1)
s+h − u

(j−1)
s

h
. (2.13)

The convergence in (2.12) and (2.13) takes place in Ck(ω) for every ω as in
Theorem 2.7. As usual we set u

(0)
s = us and we adopt the notation u(j) for

u
(j)
s computed at s = 0.
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Proposition 2.8. For every j ≥ 1, the function u(j) is harmonic on Ω\Γ0 and
satisfies the Neumann condition ∂u(j)

∂ν = 0 on Γ0\{0}, in the sense that

lim
x→x0

x∈Ω\Γ0

∂u(j)

∂ν
(x) = 0 for every x0 ∈ Γ0\{0}. (2.14)

Proof. The function u′ is harmonic, because by definition (2.12) it is the uni-
form limit on compact sets of harmonic functions. It also satisfies the Neumann
condition ∂u′

∂ν = 0 on Γ0\{0}, since uh − u satisfies the Neumann condition on
Γ0 and the limit in (2.12) takes place in Ck(ω) for the half balls ω considered
in Theorem 2.7. By induction, it follows from the same reasons that u(j) is
harmonic and satisfies the Neumann condition ∂u(j)

∂ν = 0 on Γ0\{0}. �
The following lemma shows the relationship between the derivatives of

Us with respect to s and the derivatives of us with respect to s and x1.

Lemma 2.9. For every j ≥ 0 it holds

U (j)
s (x) =

j∑
p=0

(
j
p

)
Dp

1u
(j−p)
s (Fs(x))ηp(x), (2.15)

where η is the cut-off function involved in the definition (2.3) of the change of
coordinates Fs and Dp

1 denotes the derivative of order p in the direction x1.

Proof. The simple proof can be done by induction and it is omitted. �
Remark 2.10. Since we chose the cut-off function η in such a way that it
vanishes outside the ball BR0 , from formula (2.15) we see that U (j) and u(j)

coincide out of BR0 . In particular u(j) is H1 far from the crack tip and its
trace on ∂Ω\Γ0 vanishes.

Moreover, since u(j) is smooth in Ω\Γ0 and can be smoothly extended to
both sides of Γ0\{0}, we conclude that u(j) belongs to H1((BR\Bε)\Γ0), for
every 0 < ε < R < dist(0, ∂Ω).

The following lemma shows that the functions U
(j)
s are weak solutions of

suitable differential equations.

Lemma 2.11. For all j ≥ 0 we have
j∑

p=0

(
j
p

) ∫

Ω\Γ0

(∇U (j−p)
s )T C(p)

s ∇ξ dx = 0 (2.16)

for all ξ ∈ H0.

Proof. The proof proceeds by induction on j. For j = 0, Eq. (2.16) is exactly
Eq. (2.5), which holds true.

Let j ≥ 1 and assume that the statement is true for j − 1. Let us prove
that it is true for j. Equation (2.16) for j − 1 reads

j−1∑
p=0

(
j−1

p

) ∫

Ω\Γ0

(∇U (j−1−p)
s )T C(p)

s ∇ξ dx = 0 for all ξ ∈ H0.
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Thanks to Theorem 2.2, we can derive this equation with respect to s. We
obtain

0 =
j−1∑
p=0

(
j−1

p

) ∫

Ω\Γ0

[
(∇U (j−p)

s )T C(p)
s ∇ξ + (∇U (j−1−p)

s )T C(p+1)
s ∇ξ

]
dx

=
∫

Ω\Γ0

(∇U (j)
s )T Cs∇ξ dx +

j−1∑
p=1

(
j−1

p

) ∫

Ω\Γ0

(∇U (j−p)
s )T C(p)

s ∇ξ dx

+
j−2∑
p=0

(
j−1

p

) ∫

Ω\Γ0

(∇U (j−1−p)
s )T C(p+1)

s ∇ξ dx +
∫

Ω\Γ0

(∇Us)T C(j)
s ∇ξ dx

=
j∑

p=0

(
j
p

) ∫

Ω\Γ0

(∇U (j−p)
s )T C(p)

s ∇ξ dx,

which is what we wanted to prove. �

3. Expansions near the crack tip

In this section we find the asymptotic expansions for the harmonic functions
u and u(j) near the crack tip, which coincides with the origin. We start by
recalling the result for u, which can be obtained by elementary methods of
complex analysis.

Proposition 3.1. Let 0 < R < dist(0, ∂Ω). Then (1.4) holds in the cracked
ball BR\Γ0 centred at 0, and the series in (1.4) converges uniformly on every
cracked ball Br\Γ0, with 0 < r < R.

This expansion is a particular case of a more general result concerning
the u(j) proved in Proposition 3.2 (see Remark 3.3). The new difficulty about
the u(j) is that, in general, they do not belong to H1(Ω\Γ0), since they exhibit
a stronger singularity at the origin. We remark that Proposition 3.2 is only the
starting point in the study of the expansion of u(j), which will be improved in
Proposition 3.8 and Theorem 3.9.

Proposition 3.2. Let j ≥ 0 and 0 < R < dist(0, ∂Ω). Then

u(j)(ρ, θ)=
+∞∑

n=−∞

[
a
(j)
2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ b
(j)
2n ρn cos (nθ)

]
+c(j) log ρ (3.1)

in the cracked ball BR\Γ0 centred at 0, and the series in (3.1) converges uni-
formly on every set of the form (Br\Br′)\Γ0, with 0 < r′ < r < R.

Proof. We open the crack by using the bi-holomorphic change of coordinates

Φ : BR\Γ0 → B+√
R

:= {(x1, x2) ∈ B√
R | x1 > 0}

z �→
√

z,
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where we identify (x1, x2) with the complex number z = x1 + ix2. Notice that
the change of coordinates Φ transforms the part of the crack Γ0 ∩ BR into the
segment

S := {(x1, x2) ∈ R
2 | x1 = 0, −

√
R ≤ x2 ≤

√
R}.

Using the fact that Φ is bi-holomorphic, it is easy to show that for every ε > 0
the function v := u(j) ◦ Φ−1 belongs to H1((B+√

R
\Bε)\Γ0) and by Proposi-

tion 2.8 it solves the problem
⎧
⎨
⎩

Δv = 0 in (B+√
R
\Bε)\Γ0

∂v

∂ν
= 0 on S\Bε.

By reflecting the function v, we can define a harmonic function on the whole
annulus B√

R\Bε:

w(x1, x2) =

{
v(x1, x2) if x1 ≥ 0
v(−x1, x2) if x1 < 0.

This construction can be repeated for every ε > 0, hence we can extend the
function w to a harmonic function on the punctured disk B√

R\{0}. Therefore
there exists a constant c(j) such that the function w(x) − c(j) log |x| is the
imaginary part of a holomorphic function f on the punctured disk B√

R\{0}.
The function f can be expanded in a Laurent series

f(z) =
+∞∑

n=−∞

(
a(j)

n + ib(j)
n

)
zn, a(j)

n , b(j)
n ∈ R, (3.2)

which uniformly converges on every annulus centred at 0 and strictly contained
in the punctured disk B√

R\{0}. By taking the imaginary part in (3.2), we
obtain an expansion for the function w and hence for the function v in polar
coordinates in the half disk B+√

R

v(ρ, θ) =
+∞∑

n=−∞

[
a(j)

n ρn sin (nθ) + b(j)
n ρn cos (nθ)

]
+ c(j) log ρ.

By applying the holomorphic change of coordinates Φ to this expansion, we
get exactly the expansion (3.1) in the statement of the proposition, since the
coefficients a

(j)
n for n even and b

(j)
n for n odd must vanish because the Neumann

condition ∂u(j)

∂θ

∣∣∣
θ=±π

= 0 is satisfied. �

Remark 3.3. In the case j = 0, the function u belongs to H1(BR\Γ0), hence
v ∈ H1(B+√

R
). This implies that w ∈ H1(B√

R). As a consequence c(0) = 0
and the function f is holomorphic in the whole disk B√

R, and therefore (3.2)

reduces to a Taylor expansion, i.e. a
(0)
n = 0, b

(0)
n = 0 for n < 0. This leads to

the classical expansion (1.4) for u.
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For future use, we state the following corollary to Proposition 3.2, regard-
ing the regularity properties of a function whose expansion of type (3.1) starts
from a positive index.

Corollary 3.4. Let us fix j ≥ 0, k ≥ 0, let a
(j)
2n+1, b

(j)
2n be as in Proposition 3.2,

and let

vk(ρ, θ) :=
+∞∑
n=k

[
a
(j)
2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ b
(j)
2n ρn cos (nθ)

]
.

Then vk ∈ Hk+1(Br\Γ0) for every 0 < r < R.

The proof is based on the following two technical lemmas.

Lemma 3.5. Let D be a domain in C, and let f : D → C be a holomorphic
function. Let u = Ref and v = Imf . Assume that f, f ′, . . . , f (k) ∈ L2(D).
Then u, v ∈ Hk(D).

Proof. The thesis follows from the fact that for every h ≥ 1 and for every 0 ≤
α1, α2, β1, β2 ≤ h with |α1 −β1| = 1, |α2 −β2| = 1, and α1 +α2 = β1 +β2 = h,
we have

f (h) = σ
[
Dα1

1 Dα2
2 v + iDβ1

1 Dβ2
2 v

]

for a suitable constant σ ∈ {±1,±i}. This can be easily proved by induction
on h, using the fact that for every holomorphic function g we have g′ = D1g =
−iD2g. �

Lemma 3.6. Let f : B√
R → C be a holomorphic function and let ϕ : BR\Γ0 →

C be defined by ϕ(z) := f(
√

z). Assume that f(z) = z2kg(z) for some k ≥ 0 and
some holomorphic function g : B√

R → C. Then ϕ,ϕ′, . . . , ϕ(k+1) ∈ L2(Br\Γ0)
for every r < R.

Proof. We observe that ϕ(z) = zkψ(z), where ψ(z) = g(
√

z). We can easily
prove by induction that for every h ≥ 1 we have

ψ(h)(z) =
h∑

m=1

ch
m g(m)(

√
z) z

1
2m−h,

for suitable constants ch
m. Let us fix 0 < r < R. Since g is holomorphic in B√

R,
the functions g(m) are bounded in B√

r. Hence there exists a constant Ch such
that

|ψ(h)(z)| ≤ Ch|z| 1
2−h for every z ∈ Br, for every 1 ≤ h ≤ k + 1.

Since ϕ(z) = zkψ(z), for every 1 ≤ h ≤ k, by Leibniz’s rule we have the
estimate

|ϕ(h)(z)| ≤
h∑

m=1

Cm,h,k|z|k−h+m|z| 1
2−m + C0,h,k|z|k−h

≤ C|z|k−h for every z ∈ Br,
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which shows that ϕ(h) is bounded on Br for 1 ≤ h ≤ k. As for h = k + 1, by
Leibniz’s rule we have

|ϕ(k+1)(z)| ≤
k+1∑
m=1

Cm,k|z|−1+m|z| 1
2−m ≤ C|z|− 1

2 for every z ∈ Br,

which shows that ϕ(k+1) ∈ L2(Br). �

Proof of Corollary 3.4 Since the function f introduced in the proof of
Proposition 3.2 has the expansion (3.2), we have that the function

f2k(z) =
+∞∑

n=2k

(
a(j)

n + ib(j)
n

)
zn (3.3)

is holomorphic in B√
R. As the coefficients a

(j)
n for n even and b

(j)
n for n odd

vanish (see again the proof of Proposition 3.2), the function vk is the imaginary
part of f2k(

√
z). The conclusion follows now from Lemmas 3.5 and 3.6. �

The next step is to show that indeed the series in (3.1) has finitely many
nonzero terms for n negative. To do this, we prove an estimate on u(j) which
shows that it belongs to the dual of a suitable subspace of Hj−1(BR\Γ0).

Let B±
R := {(x1, x2) ∈ BR | ±x2 > 0} and let T be the class of test func-

tions ϕ ∈ C∞(BR\Γ0)∩C∞(B+
R)∩C∞(B−

R), which vanish on a neighbourhood
of ∂BR\Γ0 and on a neighbourhood of the crack tip 0. For every ϕ ∈ T and
for every k ≥ 0 we set

‖Dkϕ‖L2(BR\Γ0) :=

⎛
⎝ ∑

|α|=k

‖Dαϕ‖2
L2(BR\Γ0)

⎞
⎠

1
2

.

Lemma 3.7. Let R > 0 with η = 1 on BR. For every j ≥ 1 there exists a
positive constant Cj > 0 such that the estimate

∣∣∣
∫

BR\Γ0

u(j)ϕ dx
∣∣∣ ≤ Cj‖Dj−1ϕ‖L2(BR\Γ0) (3.4)

holds for every ϕ ∈ T .

Proof. Let us prove the claim by induction on j. For the case j = 1, simply
observe that by Lemma 2.9 we have that

u′ = U ′ − D1u ∈ L2(BR\Γ0)

and therefore estimate (3.4) holds.
Let j ≥ 2 and suppose that the claim is true for j − p with 1 ≤ p ≤ j − 1.

From Lemma 2.9 we deduce that

u(j) = U (j) −
j∑

p=1

(
j
p

)
Dp

1u
(j−p) in BR\Γ0.
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Fix a test function ϕ ∈ T . Since U (j) ∈ L2(BR\Γ0), by applying Hölder
inequality and Poincaré inequality to all the derivatives of ϕ of order less or
equal than j − 2, we get the estimate

∣∣∣
∫

BR\Γ0

U (j)ϕ dx
∣∣∣ ≤ ‖U (j)‖L2(BR\Γ0)‖ϕ‖L2(BR\Γ0)

≤ ‖U (j)‖L2(BR\Γ0)‖Dj−1ϕ‖L2(BR\Γ0).

Let us estimate the other terms of the sum, integrating by parts with respect
to the variable x1 and using the induction hypothesis:
∣∣∣
∫

BR\Γ0

(Dp
1u(j−p))ϕ dx

∣∣∣=
∣∣∣
∫

BR\Γ0

u(j−p)Dp
1ϕ dx

∣∣∣ ≤ Cj−p‖Dj−p−1Dp
1ϕ‖L2(BR\Γ0)

≤ Cj−p‖Dj−1ϕ‖L2(BR\Γ0).

This concludes the proof. �

We now improve the result obtained in Proposition 3.2. Indeed we show
that in the asymptotic expansion (3.1) all coefficients of u(j) with n < −j
vanish.

Proposition 3.8. Let 0 < R < dist(0, ∂Ω). Then

u(j)(ρ, θ)=
+∞∑

n=−j

[
a
(j)
2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ b
(j)
2n ρn cos (nθ)

]
+c(j) log ρ (3.5)

in the cracked ball BR\Γ0, and the series in (3.5) converges uniformly on every
set of the form (Br\Br′)\Γ0, with 0 < r′ < r < R.

Proof. From Proposition 3.2 we know that (3.1) holds. Let us prove that for
every n ≥ j we have a

(j)
−(2n+1) = 0. In order to do this, fix 0 < r′ < R′ < R

such that η = 1 on BR′ and let ϕ ∈ T be a test function of the form

ϕ(ρ, θ) = ψ(ρ) sin
(

2n+1
2 θ

)
,

where ψ is a nonzero smooth function, with suppψ � (r′, R′) and ψa
(j)
−(2n+1) ≤

0. Define the rescaled function

ϕε(ρ, θ) := ϕ
(

ρ
ε , θ

)
= ψ

(
ρ
ε

)
sin

(
2n+1

2 θ
)
.

Estimate (3.4) holds for ϕε, and therefore

Cj‖Dj−1ϕε‖L2(BR′\Γ0) ≥
∫ εR′

εr′

∫ π

−π

u(j)(ρ, θ)ψ
(

ρ
ε

)
sin

(
2n+1

2 θ
)
ρdθ dρ.

By the uniform convergence of the series in (3.1) and by the orthogonality of
the trigonometric functions, from the previous inequality we obtain
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Cj‖Dj−1ϕε‖L2(BR′ \Γ0) ≥ π

∫ εR′

εr′
ψ

(
ρ
ε

) [
−a

(j)
−(2n+1)ρ

− 2n+1
2 + a

(j)
2n+1ρ

2n+1
2

]
ρdρ

= πε2

∫ R′

r′
ψ(ρ)

[
−a

(j)
−(2n+1)ρ

− 2n+1
2 ε− 2n+1

2

]
ρdρ

+ πε2

∫ R′

r′
ψ(ρ)

[
a
(j)
2n+1ρ

2n+1
2 ε

2n+1
2

]
ρdρ.

On the other hand

‖Dj−1ϕε‖L2(BR\Γ0) = ε2−j‖Dj−1ϕ‖L2(BR\Γ0)

and hence we have that

Cj‖Dj−1ϕ‖L2(BR′ \Γ0) ≥ πε2− 2n+1
2 −(2−j)

∫ R′

r′
ψ(ρ)

[
−a

(j)
−(2n+1)ρ

− 2n+1
2

]
ρdρ

+πε2+ 2n+1
2 −(2−j)

∫ R′

r′
ψ(ρ)

[
a
(j)
2n+1ρ

2n+1
2

]
ρdρ.

(3.6)

If a
(j)
−(2n+1) were different from zero, the right-hand side in (3.6) would diverge

to +∞ for ε → 0+. Therefore a−(2n+1) = 0.
Arguing in the same way and using a test function of the form

ϕ(ρ, θ) = ψ(ρ) cos (nθ),

we obtain that b
(j)
−2n = 0 for n > j. �

We are now in a position to prove the final result on the asymptotic
expansion of u(j). The improvement with respect to Proposition 3.8 is that the
coefficients of the cosines with negative index vanish as well as the coefficient
of the logarithmic term.

Theorem 3.9. Let 0 < R < dist(0, ∂Ω). Then

u(j)(ρ, θ) =
+∞∑

n=−j

a
(j)
2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+
+∞∑
n=0

b
(j)
2n ρn cos (nθ) (3.7)

in the cracked ball BR\Γ0, and the series in (3.7) converges uniformly on every
set of the form (Br\Br′)\Γ0, with 0 < r′ < r < R.

Proof. Besides the binomial coefficient, we shall use the Pochhammer symbol
defined by

(x)p := x(x − 1) · · · (x − p + 1) (3.8)

for every x ∈ R and every integer p ≥ 1. We set also (x)0 = 1.
Fix 0 < r < R′ < R where R′ is such that η = 1 on BR′ . Using

Proposition 3.8 and Corollary 3.4, it is straightforward to check that for every
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1 ≤ p ≤ j the function Dp
1u

(j−p) has the following expansion in Br\Γ0:

Dp
1u

(j−p) =
p−1∑

n=−j+p

( 2n+1
2 )p a

(j−p)
2n+1 ρ

2n+1
2 −p sin

((
2n+1

2 − p
)
θ
)

+
−1∑

n=−j+p

(n)p b
(j−p)
2n ρn−p cos ((n − p)θ)

− (−1)p(p − 1)! c(j−p)ρ−p cos (pθ) + vj,p,

where vj,p ∈ H1(Br\Γ0). In the formula above c(0) = 0 by Remark 3.3. By
Lemma 2.9, on Br\Γ0 we have

U (j) =
j∑

p=0

(
j
p

)
Dp

1u
(j−p)

=
j∑

p=0

p−1∑
n=−j+p

(
j
p

) (
2n+1

2

)
p

a
(j−p)
2n+1 ρ

2n+1
2 −p sin

((
2n+1

2 − p
)
θ
)

+
j∑

p=0

−1∑
n=−j+p

(
j
p

)
(n)p b

(j−p)
2n ρn−p cos ((n − p)θ)

−
j−1∑
p=1

(−1)p(p − 1)!
(

j
p

)
c(j−p)ρ−p cos (pθ)

+ c(j) log ρ + wj ,

where wj ∈ H1(Br\Γ0). We set V (j) := U (j) −wj . From the previous formula,
we obtain that the function

V (j) =
j∑

n=1

α(j)
n ρ

−2n+1
2 sin

(−2n+1
2 θ

)
+

j∑
n=1

β(j)
n ρ−n cos (nθ) + c(j) log ρ,

where

α(j)
n :=

j∑
p=0

(
j
p

) (
2(p−n)+1

2

)
p

a
(j−p)
2(p−n)+1, (3.9)

β(j)
n :=

n−1∑
p=0

(
j
p

)
(p − n)p b

(j−p)
2(p−n) − (−1)n(n − 1)!

(
j
n

)
c(j−n). (3.10)

Since U (j) ∈ H1(Ω\Γ0) by Theorem 2.2, we conclude that V (j) ∈ H1(Br\Γ0).
Let us prove that β

(j)
j = 0. To this aim we consider DρV

(j), which can
be written as

DρV
(j) = −jβ

(j)
j ρ−j−1 (cos (jθ) + h(ρ, θ)) (3.11)

where h(ρ, θ) → 0 as ρ → 0, uniformly with respect to θ. Since DρV
(j) ∈

L2(Br\Γ0), it follows that β
(j)
j = 0. Then we can prove in a similar way that
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α
(j)
j = 0, β

(j)
j−1 = 0, . . . , α

(j)
1 = 0, and c(j) = 0. Therefore, by (3.10), for all

1 ≤ n ≤ j we have
n−1∑
p=0

(
j
p

)
(p − n)p b

(j−p)
2(p−n) = 0 (3.12)

From (3.12) it is easy to see by induction on j that b
(j)
−2n = 0 for all 1 ≤ n ≤ j.

The conclusion follows from (3.5). �

Remark 3.10. As a byproduct of the proof of Theorem 3.9, we obtain that
j∑

p=0

(
j
p

)
( 2(p−n)+1

2 )p a
(j−p)
2(p−n)+1 = 0 for all 1 ≤ n ≤ j,

as a consequence of (3.9) and from the equality α
(j)
n = 0 for 1 ≤ n ≤ j. These

relations will be useful in the proof of the main theorem.

4. Computation of the derivatives of the energy

In this section we express the derivatives dkE
dsk (0) of the energy E(s) defined

in (1.2) in terms of the coefficients of the asymptotic expansion (1.4) of the
solution u for s = 0 and in terms of the coefficients of the corresponding
expansions (3.7) of the j-th derivatives u(j) of us with respect to s. We already
know that E is C∞ by Corollary 2.3.

Proposition 4.1. For every k ≥ 1 we have

dkE
dsk

(s) =
1
2

k∑
p=1

(
k
p

) ∫

Ω\Γ0

(∇U (k−p)
s )T C(p)

s ∇Us dx (4.1)

for every s ∈ (−δ0, δ0).

Proof. In order to prove formula (4.1), we proceed by induction on k. For the
case k = 1, simply differentiate formula (2.8) with respect to s:

dE
ds

(s) =
∫

Ω\Γs

(∇U ′
s)

T Cs∇Us dx +
1
2

∫

Ω\Γs

(∇Us)T C ′
s∇Us dx.

Since U ′
s belongs to the space H0 introduced in (2.1), we can use it as a test

function for problem (2.5). Since Cs is symmetric, this implies that
dE
ds

(s) =
1
2

∫

Ω\Γs

(∇Us)T C ′
s∇Us dx,

which is formula (4.1) for k = 1.
Let us suppose by induction that the statement is true for k − 1, and let

us prove that it is true for k. By differentiating with respect to s the following
formula

dk−1E
dsk−1

(s) =
1
2

k−1∑
p=1

(
k−1

p

) ∫

Ω\Γ0

(∇U (k−1−p)
s )T C(p)

s ∇Us dx
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we obtain

dkE
dsk

(s) =
1
2

k−1∑
p=1

(
k−1

p

) ∫

Ω\Γ0

[
(∇U (k−p)

s )T C(p)
s ∇Us + (∇U (k−1−p)

s )T C(p+1)
s ∇Us

+(∇U (k−1−p)
s )T C(p)

s ∇U ′
s

]
dx.

We now use U ′
s as a test function for problem (2.16) solved by U

(k−1)
s and then

U
(k−1)
s as a test function for the problem solved by U ′

s, and we obtain that

1

2

k−1∑
p=1

(
k−1
p

) ∫

Ω\Γ0

(
∇U (k−1−p)

s

)T
C(p)

s ∇U ′
s dx = −1

2

∫

Ω\Γ0

(
∇U (k−1)

s

)T
Cs∇U ′

s dx

=
1

2

∫

Ω\Γ0

(
∇U (k−1)

s

)T
C′

s∇Us dx,

which, substituted in the expression of dkE
dsk , yields

dkE
dsk

(s) =
1
2

k−1∑
p=1

(
k−1

p

) ∫

Ω\Γ0

[(
∇U (k−p)

s

)T

C(p)
s ∇Us

+
(
∇U (k−1−p)

s

)T

C(p+1)
s ∇Us

]
dx

+
1
2

∫

Ω\Γ0

(
∇U (k−1)

s

)T

C ′
s∇Us dx

=
k − 1

2

∫

Ω\Γ0

(
∇U (k−1)

s

)T

C ′
s∇Us dx

+
1
2

k−1∑
p=2

(
k−1

p

) ∫

Ω\Γ0

(
∇U (k−p)

s

)T

C(p)
s ∇Us dx

+
1
2

k−1∑
p=2

(
k−1
p−1

) ∫

Ω\Γ0

(
∇U (k−p)

s

)T

C(p)
s ∇Us dx

+
1
2

∫

Ω\Γ0

(∇Us)T C(k)
s ∇Us dx

+
1
2

∫

Ω\Γ0

(
∇U (k−1)

s

)T

C ′
s∇Us dx

=
1
2

k∑
p=1

(
k
p

) ∫

Ω\Γ0

(
∇U (k−p)

s

)T

C(p)
s ∇Us dx.

This concludes the proof. �

In order to expand formula (4.1), we compute the derivatives of the matrix
Cs with respect to s.
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Lemma 4.2. The following equalities hold

C ′
0 =

(
−D1η −D2η
−D2η D1η

)
, C

(k)
0 =

(
(−1)kk!(D1η)k−2|∇η|2 0

0 0

)

for every k ≥ 2.

Proof. From the expression of Cs written in (2.7), we have that

Cs = DF−1
s (DF−1

s )T det DFs =
1

1 + sD1η
Ms,

where

Ms =
(

1 + s2D2η −sD2η(1 + sD1η)
−sD2η(1 + sD1η) (1 + sD1η)2

)
.

Hence, by differentiating with respect to s we obtain that

C ′
s =

−D1η

(1 + sD1η)2
Ms +

1
1 + sD1η

M ′
s (4.2)

which computed in s = 0 gives the formula we wanted to prove for the first
derivative.

Instead of proving the statement of the lemma, it is convenient to show
by induction a stronger result, i.e., that for every k ≥ 2

C(k)
s =

(−1)kk!(D1η)k

(1 + sD1η)k+1
Ms +

(−1)k−1k!(D1η)k−1

(1 + sD1η)k
M ′

s +
(−1)kk!(D1η)k−2

2(1 + sD1η)k−1
M ′′

s .

The base case k = 2 is obtained by simply differentiating formula (4.2) with
respect to s. The inductive step follows easily from the fact that the matrix
M ′′

s does not actually depend on s, since the entries of Ms are polynomials of
degree 2 with respect to s. �

Proposition 4.3. For every k ≥ 1, we have

dkE
dsk

(0) =
k

2

k−1∑
j=0

(
k−1

j

) ∫ R0

0

η′(ρ)η(ρ)j

∫ π

−π

[
−Dj+1

1 u(k−j−1)Dρu

+ 1
ρD2D

j
1u

(k−j−1)Dθu
]
ρdθ dρ

where R0 is the radius of the ball which supports the cutoff function η.

Proof. Let us start by computing dkE
dsk at 0 using formula (4.1) and employing

the expression of the derivatives of Cs found in Lemma 4.2:

dkE
dsk

(0) =
1

2

k∑
p=1

(
k
p

) ∫

Ω\Γ0

(
∇U (k−p)

)T
C

(p)
0 ∇u dx

=
k

2

∫

Ω\Γ0

[
−D1ηD1U

(k−1)D1u − D2ηD1U
(k−1)D2u

−D2ηD2U
(k−1)D1u + D1ηD2U

(k−1)D2u
]

dx

+
1

2

k∑
p=2

(
k
p

) ∫

Ω\Γ0

(−1)pp!(D1η)p−2|∇η|2D1U
(k−p)D1u dx.
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By using Lemma 2.9 and expanding the derivatives, we get

dkE
dsk

(0) =
k

2

k−1∑
j=0

(
k−1
j

) ∫

Ω\Γ0

[
−D1ηD1uDj+1

1 u(k−1−j)ηj

− j(D1η)2D1uDj
1u

(k−1−j)ηj−1

− D2ηD2uDj+1
1 u(k−1−j)ηj

− jD1ηD2ηD2uDj
1u

(k−1−j)ηj−1

− D2ηD1uD2D
j
1u

(k−1−j)ηj

− j(D2η)2D1uDj
1u

(k−1−j)ηj−1

+ D1ηD2uD2D
j
1u

(k−1−j)ηj

+jD1ηD2ηD2uDj
1u

(k−1−j)ηj−1
]

dx

+
1

2

k∑
p=2

k−p∑
j=0

(
k
p

)(
k−p
j

)
(−1)pp!

∫

Ω\Γ0

[
(D1η)p−2|∇η|2D1uDj+1

1 u(k−p−j)ηj

+j(D1η)p−1|∇η|2D1uDj
1u

(k−p−j)ηj−1
]

dx.

After some algebraic manipulations, we obtain

dkE
dsk

(0) =
k

2

k−1∑
j=0

(
k−1
j

) ∫

Ω\Γ0

[
−D1ηD1uDj+1

1 u(k−1−j)ηj

− D2ηD2uDj+1
1 u(k−1−j)ηj

−D2ηD1uD2D
j
1u

(k−1−j)ηj + D1ηD2uD2D
j
1u

(k−1−j)ηj
]

dx

− k

2

k−1∑
j=1

(
k−1
j

) ∫

Ω\Γ0

j|∇η|2D1uDj
1u

(k−1−j)ηj−1 dx

+
1

2

k∑
p=2

k−p∑
j=0

(
k
p

)(
k−p
j

)
(−1)pp!

∫

Ω\Γ0

(D1η)p−2|∇η|2D1uDj+1
1 u(k−p−j)ηj dx

+
1

2

k−1∑
p=2

k−p∑
j=1

(
k
p

)(
k−p
j

)
(−1)pp!

∫

Ω\Γ0

j(D1η)p−1|∇η|2D1uDj
1u

(k−p−j)ηj−1 dx

= I + II + III + IV.

where I, II, III, IV are the four sums appearing in the formula above. Let us
consider the term of the sum III corresponding to p = 2:

1
2

k−2∑
j=0

(
k
2

)(
k−2

j

)
2!

∫

Ω\Γ0

|∇η|2D1uDj+1
1 u(k−2−j)ηj dx

=
k

2

k−2∑
j=0

(
k−1
j+1

)
(j + 1)

∫

Ω\Γ0

|∇η|2D1uDj+1
1 u(k−2−j)ηj dx

=
k

2

k−1∑
j=1

(
k−1

j

)
j

∫

Ω\Γ0

|∇η|2D1uDj
1u

(k−1−j)ηj−1 dx = −II.
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Let us now consider all the other terms of the sum III:

1
2

k∑
p=3

k−p∑
j=0

(
k
p

)(
k−p

j

)
(−1)pp!

∫

Ω\Γ0

(D1η)p−2|∇η|2D1uDj+1
1 u(k−p−j)ηj dx

=
1
2

k−1∑
p=2

k−p−1∑
j=0

(
k

p+1

)(
k−p−1

j

)
(−1)p+1(p + 1)!

×
∫

Ω\Γ0

(D1η)p−1|∇η|2D1uDj+1
1 u(k−p−1−j)ηj dx

=
1
2

k−1∑
p=2

k−p∑
j=1

(
k

p+1

)(
k−p−1

j−1

)
(−1)p+1(p + 1)!

×
∫

Ω\Γ0

(D1η)p−1|∇η|2D1uDj
1u

(k−p−j)ηj−1 dx

= −1
2

k−1∑
p=2

k−p∑
j=1

(
k
p

)(
k−p

j

)
(−1)pp!j

×
∫

Ω\Γ0

(D1η)p−1|∇η|2D1uDj
1u

(k−p−j)ηj−1 dx = −IV.

It follows that

dkE
dsk

(0) =
k

2

k−1∑
j=0

(
k−1

j

) ∫

Ω\Γ0

[
−D1ηD1uDj+1

1 u(k−1−j)ηj

−D2ηD2uDj+1
1 u(k−1−j)ηj

−D2ηD1uD2D
j
1u

(k−1−j)ηj + D1ηD2uD2D
j
1u

(k−1−j)ηj
]

dx.

Now we integrate in polar coordinates to deduce

dkE
dsk

(0) =
k

2

k−1∑
j=0

(
k−1

j

) ∫ R0

0

∫ π

−π

η′(ρ)η(ρ)j
[
−D1u cos θDj+1

1 u(k−1−j)

− D2u sin θDj+1
1 u(k−1−j)

−D1u sin θD2D
j
1u

(k−1−j) + D2u cos θD2D
j
1u

(k−1−j)
]
ρdθ dρ

=
k

2

k−1∑
j=0

(
k−1

j

) ∫ R0

0

η′(ρ)η(ρ)j

∫ π

−π

[
−Dj+1

1 u(k−j−1)Dρu

+ 1
ρD2D

j
1u

(k−j−1)Dθu
]
ρdθ dρ.

This concludes the proof. �

The following theorem allows us to express the k-th derivative of the
energy in terms of the following coefficients of the expansions of the solution
u and of its derivatives u(j) with respect to the crack length:
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a
(k−1)
−2k+3 a

(k−2)
−2k+5 · · · a

(1)
−1 a1

a
(k−1)
−2k+5 a

(k−2)
−2k+7 · · · a

(1)
1 a3

...
...

...
...

a
(k−1)
−1 a

(k−2)
1 · · · a

(1)
2k−5 a2k−3

a
(k−1)
1 a

(k−2)
3 · · · a

(1)
2k−3 a2k−1.

Theorem 4.4. For every k ≥ 1 we have

dkE
dsk

(0) = π

k−1∑
j=0

j∑
n=−k+j+1

(
k

j+1

) (
2n+1

2

)
j+2

a
(k−j−1)
2n+1 a2(j−n)+1. (4.3)

Proof. Formula (4.3) easily follows from the expression of dkE
dsk (0) found in

Proposition 4.3, using the uniform convergence of the expansions (3.1) of the
functions u(j) to justify the integration term by term, and employing simple
trigonometric identities to integrate the single terms. �

5. The main theorem

Formula (4.3) also holds for k = 1. Hence the first derivative of the energy is
given by

dE
ds

(0) = −π

4
a2
1. (5.1)

This is a well known result, which shows that the first derivative of the energy
uniquely depends on the local behaviour of the solution near the crack tip. We
now study the case k ≥ 2. We shall see that the higher order derivatives of the
energy depend not only on the local behaviour of the solution near the crack
tip, but also on the shape of Ω\Γ0. Indeed, we shall show that these derivatives
can be expressed in terms of a finite number of coefficients of the asymptotic
expansion of the solution and of a finite number of other parameters, which
only depend on the shape of the domain. In order to do this, we need to
introduce some technical tools.

Definition 5.1. For every j ≥ 1 let v
(j)
Ω ∈ H1(Ω\Γ0) be the weak solution of

the problem
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δv
(j)
Ω = 0 in Ω\Γ0

v
(j)
Ω = −ρ

−2j+1
2 sin

(−2j+1
2 θ

)
on ∂Ω\Γ0

∂v
(j)
Ω

∂ν
= 0 on Γ0.

Remark 5.2. Notice that the function v
(j)
Ω depends only on the shape of the

domain Ω\Γ0, and does not depend on the boundary value g prescribed in
problem (1.3).
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In view of Proposition 3.1, the function v
(j)
Ω can be expanded in a series

near the crack tip:

v
(j)
Ω =

+∞∑
n=0

[
c
(j)
2n+1(Ω)ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ d
(j)
2n (Ω)ρn cos (nθ)

]
. (5.2)

The following proposition provides some equalities which will be used to
prove the main theorem, combined with those found in Remark 3.10.

Proposition 5.3. For every j ≥ 1 and for every n ≥ 0 we have

a
(j)
2n+1 =

j∑
m=1

a
(j)
−2m+1c

(m)
2n+1(Ω).

Proof. Define on Ω\Γ0 the function

w(j) := u(j) −
j∑

m=1

a
(j)
−2m+1ρ

−2m+1
2 sin

(−2m+1
2 θ

)
=: u(j) + σ(j). (5.3)

We now show that w(j) is the variational solution of a suitable boundary
value problem. First of all, the function w(j) belongs to H1(Ω\Γ0). Indeed,
the function u(j) is in H1 away from the crack tip by Remark 2.10, and the
sum σ(j) is also smooth away from the crack tip. Moreover, from (3.7), we
deduce that w(j) has the following expansion

w(j) =
+∞∑
n=0

[
a
(j)
2n+1ρ

2n+1
2 sin

(
2n+1

2 θ
)

+ b
(j)
2n ρn cos (nθ)

]
,

which belongs to H1 near the crack tip, by Corollary 3.4. We conclude that
w(j) ∈ H1(Ω\Γ0). We observe that w(j) is harmonic in Ω\Γ0, since by Propo-
sition 2.8 the function u(j) is harmonic and by direct check the sum σ(j) is
harmonic too. Let us see which boundary conditions are satisfied by w(j). Both
u(j) and the sum σ(j) satisfy the Neumann condition on Γ0\{0}, by Propo-
sition 2.8 and by direct check respectively. Let us consider now the trace of
w(j) on ∂Ω\Γ0. By Remark 2.10 the trace of u(j) vanishes on ∂Ω\Γ0, hence
the trace of w(j) on ∂Ω\Γ0 is σ(j). In conclusion, w(j) ∈ H1(Ω\Γ0) is a weak
solution of the problem

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Δw(j) = 0 in Ω\Γ0

w(j) = −
j∑

m=1

a
(j)
−2m+1ρ

−2m+1
2 sin

(−2m+1
2 θ

)
on ∂Ω\Γ0

∂w(j)

∂ν
= 0 on Γ0.

By the uniqueness of the solution of this problem, we have that

w(j) =
j∑

m=1

a
(j)
−2m+1v

(m)
Ω
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and hence by (5.3)

u(j) =
j∑

m=1

a
(j)
−2m+1

[
ρ

−2m+1
2 sin

(−2m+1
2 θ

)
+ v

(m)
Ω

]
.

Comparing the expansions of both sides of the last equation, we get the thesis.
�

For every k ≥ 2, let

λk(Ω) = (c(j)
2n+1(Ω))n+j≤k−1, (5.4)

considered as an element of R
k(k−1)

2 . Written in a convenient way, the entries
of λk(Ω) make up the following triangular matrix

c
(1)
1 (Ω) c

(2)
1 (Ω) · · · c

(k−2)
1 (Ω) c

(k−1)
1 (Ω)

c
(1)
3 (Ω) c

(2)
3 (Ω) · · · c

(k−2)
3 (Ω)

...
... . . .

c
(1)
2k−5(Ω) c

(2)
2k−5(Ω)

c
(1)
2k−3(Ω)

(5.5)

We are now ready to prove the main result of the paper.
Proof of Theorem 1.1 Fix Ω ∈ A and g ∈ H1(Ω\Γ0). In view of (5.1) it

suffices to prove the theorem for k ≥ 2. In formula (4.3) the k-th derivative of
the energy was expressed as a linear combination of the following terms:

a
(k−1)
−2k+3a2k−1 a

(k−2)
−2k+5a2k−1 · · · a

(1)
−1a2k−1 a1a2k−1

a
(k−1)
−2k+5a2k−3 a

(k−2)
−2k+7a2k−3 · · · a

(1)
1 a2k−3 a3a2k−3

...
...

...
...

a
(k−1)
−1 a3 a

(k−2)
1 a3 · · · a

(1)
2k−5a3 a2k−3a3

a
(k−1)
1 a1 a

(k−2)
3 a1 · · · a

(1)
2k−3a1 a2k−1a1

(5.6)

We collect the terms different from a1, · · · , a2k−1 in the matrix

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(k−1)
−2k+3 a

(k−2)
−2k+5 · · · a

(2)
−3 a

(1)
−1

a
(k−1)
−2k+5 a

(k−2)
−2k+7 · · · a

(2)
−1 a

(1)
1

...
...

...
...

a
(k−1)
−1 a

(k−2)
1 · · · a

(2)
2k−7 a

(1)
2k−5

a
(k−1)
1 a

(k−2)
3 · · · a

(2)
2k−5 a

(1)
2k−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
k×(k−1).

With this notation, formula (4.3) for the k-th derivative of the energy can be
written in the following compact way

dkE
dsk

(0) = Ek(Ak, αk) + Fk(αk, αk), (5.7)
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where Ek : Rk×(k−1) × R
k → R and Fk : Rk × R

k → R are suitable bilinear
maps.

We now prove that we can express the entries of Ak in terms of αk−1 :=
(a1, · · · , a2k−3) and λk(Ω). Indeed, we show by induction that for every k ≥ 2
there exists a map

Λk : Rk−1 × R
k(k−1)

2 → R
k×(k−1)

such that

Ak = Λk(αk−1, λk(Ω)).

Moreover we shall see that for every λ ∈ R
k(k−1)

2 , the function α �→ Λk(α, λ) is
linear, and for every α ∈ R

k−1, the function λ �→ Λk(α, λ) is a polynomial of
degree k−1. To do this, we will make use of the relations found in Remark 3.10
and in Proposition 5.3

a
(k−1)
−2n+1 = −

k−1∑
p=1

(
k−1

p

) (
2(p−n)+1

2

)
p

a
(k−1−p)
2(p−n)+1, for all 1 ≤ n ≤ k − 1, (5.8)

a
(k−1)
2n+1 =

k−1∑
m=1

a
(k−1)
−2m+1c

(m)
2n+1(Ω), for all n ≥ 0. (5.9)

Base case: Let us define Λ2 : R × R → R
2×1. From Eqs. (5.8) and (5.9)

with k = 2, we deduce that

a
(1)
−1 = − 1

2a1 and a
(1)
1 = a

(1)
−1c

(1)
1 (Ω) = − 1

2a1c
(1)
1 (Ω). (5.10)

Hence A2 = Λ2(a1, c
(1)
1 (Ω)), where

Λ2(α, λ) :=
(

− 1
2α

− 1
2αλ

)
.

The map Λ2 is linear with respect to α and it is a polynomial of degree 1 with
respect to λ.

Inductive step: Suppose that there exists a map

Λk−1 : Rk−2 × R
(k−1)(k−2)

2 → R
(k−1)×(k−2)

such that

Ak−1 = Λk−1(αk−2, λk−1(Ω)),

and that for every λ ∈ R
(k−1)(k−2)

2 , the function α �→ Λk−1(α, λ) is linear, and
for every α ∈ R

k−2, the function λ �→ Λk−1(α, λ) is a polynomial of degree
k − 2. We want to define Λk.

The matrix Ak can be written as a block matrix

Ak =
(

βk Ak−1

a
(k−1)
1 γT

k

)
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where

βk =

⎛
⎜⎜⎜⎜⎜⎝

a
(k−1)
−2k+3

a
(k−1)
−2k+5

...

a
(k−1)
−1

⎞
⎟⎟⎟⎟⎟⎠

∈ R
k−1, γk =

⎛
⎜⎜⎜⎜⎝

a
(k−2)
3

...
a
(2)
2k−5

a
(1)
2k−3

⎞
⎟⎟⎟⎟⎠

∈ R
k−2.

Thanks to formula (5.8), we can express all the entries of βk in terms of
the entries of Ak−1 and of αk−1. We can therefore define a linear map β̃k :
R

(k−1)×(k−2) × R
k−1 → R

k−1 such that

βk = β̃k(Ak−1, αk−1).

Then we can use (5.9) to express all the elements of γk in terms of the entries
of Ak−1 and of the elements of λk(Ω). In particular, we can define a bilinear
map γ̃k : R(k−1)×(k−2) × R

k(k−1)
2 → R

k−1 such that

γk = γ̃k(Ak−1, λk(Ω)).

Finally, we use again formula (5.9) to express a
(k−1)
1 in terms of the elements of

βk and of λk(Ω). Hence there is a bilinear function ãk : R(k−1) ×R
k(k−1)

2 → R

such that

a
(k−1)
1 = ãk (βk, λk(Ω)) .

In conclusion, applying the inductive hypothesis:

Ak =

⎛
⎝ β̃k(Ak−1, αk−1) Ak−1

ãk(β̃k(Ak−1, αk−1), λk(Ω)) γ̃k(Ak−1, λk(Ω))T

⎞
⎠

=

⎛
⎝ β̃k(Λk−1(αk−2, λk−1(Ω)), αk−1) Λk−1(αk−2, λk−1(Ω))

ãk(β̃k(Λk−1(αk−2, λk−1(Ω)), αk−1), λk(Ω)) γ̃k(Λk−1(αk−2, λk−1(Ω)), λk(Ω))T

⎞
⎠

=: Λk(αk−1, λk(Ω))

Notice that for every λ ∈ R
k(k−1)

2 , the function α �→ Λk(α, λ) is linear, and for
every α ∈ R

k−1 the function λ �→ Λk(α, λ) is a polynomial of degree k − 1.
Eventually, we can apply what we proved to formula (5.7), concluding

that
dkE
dsk

(0) = Ek(Ak, αk) + Fk(αk, αk)

= Ek (Λk(αk−1, λk(Ω)), αk) + Fk(αk, αk)

=: Ψk(αk, λk(Ω)).

The map Ψk : R
k × R

k(k−1)
2 → R defined as above satisfies the requested

properties. �
Remark 5.4. The proof of Theorem 1.1 is constructive. In particular it allows
us to obtain Λk from Λk−1 using only elementary computations. In this way
for every k ≥ 2 we can find an explicit expression for dkE

dsk (0) in terms of
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a1, . . . , a2k−1 and of the coefficients in (5.5). We write here the list of the first
three derivatives of the energy:

dE
ds

(0) = −π

4
a2
1,

d2E
ds2

(0) =
π

4
a2
1c

(1)
1 (Ω) − 3

4
πa1a3,

d3E
ds3

(0) =
9
8
πa1a3c

(1)
1 (Ω) +

(
−3

8

(
c
(1)
1 (Ω)

)2

+
9
16

c
(1)
3 (Ω) +

3
16

c
(2)
1 (Ω)

)
πa2

1

−15
8

πa1a5 − 9
8
πa2

3.
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