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Abstract. In this note we propose a variational approach to a paramet-
ric differential problem where a prescribed mean curvature equation is
considered. In particular, without asymptotic assumptions at zero and at
infinity on the potential, we obtain an explicit positive interval of parame-
ters for which the problem under examination has at least one nontrivial
and nonnegative solution.
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1. Introduction

In this paper we look for solutions of the following Dirichlet problem

−
(

u′√
1 + |u′|2

)′
= λγ(t)f(u) in ]0, 1[, u(0) = u(1) = 0, (1.1)

where γ : [0, 1] → R is a continuous positive function, f : IR → IR is a
continuous function and λ is a positive parameter. Without loss of generality,
we can assume that ∫ 1

0

γ(t)dt = 1. (1.2)

Clearly, problem (1.1) represents the one-dimensional version of the el-
liptic differential problem

− div

(
∇u√

1 + |∇u|2

)
= λγ(x)f(u) in Ω, u = 0 on ∂Ω, (1.3)

and, in these latest years, both (1.1) and (1.3), or even more general problems,
have been widely investigated in order to assure the existence as well as the
multiplicity of solutions (for example see [1,7,8,12,16–21]). In particular, in [8],
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problem (1.1) has been treated in a very deep way obtaining different results
when the potential function is required to satisfy some asymptotic assumptions
at zero or at infinity, as well as both at zero and at infinity. Subsequently, in
[19], this analysis has been extended to the case of higher dimensions, namely
problem (1.3). For the existence and the multiplicity of solutions when the
prescribed curvature is sublinear we refer to [10,11,17,20].

Here, inspired by a technical device adopted in [19] and exploited also in
[15], we propose a variational approach to guarantee the existence of an explicit
interval Λ of positive parameters such that, for every λ ∈ Λ, problem (1.1)
admits at least one non trivial and nonnegative solution uλ. More precisely,
we first consider a modified problem on the basis of a suitable truncation of
the functional related to the mean curvature operator, and then we obtain
particular solutions of this new problem that, indeed, are solutions of problem
(1.1) too. We emphasize that the truncation mentioned above is different from
that considered in [19], in view of the fact that, thanks to the technique that
we use, we can exploit some a priori information on the values of uλ as well
as of u′

λ.
It worth noticing that our solution uλ is found by requiring only a suitable

algebraic inequality (see condition (3.18) of Corollary 3.1) and avoiding any
kind of asymptotic condition at zero and at infinity.

Our main result is Theorem 3.1 and we explicitly observe that it contains
the case when γ ≡ 1 and F (s) =

∫ s

0
f(t)dt, s ∈ IR, is sub-quadratic at zero

(see [8, Thorem 3.7] as well as [8, Thorem 3.2]). Indeed, as a consequence
of Theorem 3.1 we can state the following special case for the autonomous
problem

−
(

u′√
1 + |u′|2

)′
= λf(u) in ]0, 1[, u(0) = u(1) = 0. (1.4)

Theorem 1.1. Let f : IR → IR be a continuous, nonnegative function and
F (s) =

∫ s

0
f(t)dt for every s ∈ IR. Assume that

lim sup
s→0+

F (s)
s2

= +∞. (1.5)

Then, for each λ ∈ ]0, λ∗[, where

λ∗ = 2
{

[F (1)]2 + [2max
[0,1]

f ]2
}−1/2

,

problem (1.4) admits at least one positive solution uλ ∈ C2([0, 1]), such that

‖uλ‖C0 < 1, ‖u′
λ‖C0 ≤ max[0,1] f

F (1)
.

Notice that, in comparison with the results contained in [8], where λ∗ is
only stated to exist, we have here an explicit expression of it (see Remark 3.4).

Theorem 3.1 is also accompanied by a concrete example (see Example
3.1) with a simple case of possible nonlinearity, not covered by the results
contained in [8,19], and for which our result applies (see Remark 3.2).
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The main tool in studying problem (1.1) is a local minimum theorem es-
tablished in [2] (see [2, Theorem 3.1]) that we recall here in a convenient form
given in [6] (see Theorem 2.1). Such a local minimum result has been success-
fully exploited also in treating several other types of differential problems (see
[3–5,13,14]).

2. Preliminaries and variational settings

Here and in the sequel X denotes the usual Sobolev space W 1,2
0 ([0, 1]) endowed

with the norm

‖u‖ :=
(∫ 1

0

|u′(t)|2 dt

)1/2

, (2.1)

for every u ∈ X. Let f : IR → IR be a continuous function. We will assume
that

f(0) ≥ 0. (2.2)

Put

g(t) =
{

f(t) if t ≥ 0
f(0) if t < 0,

F (s) =
∫ s

0

f(t) dt, G(s) =
∫ s

0

g(t) dt ∀s ∈ IR,

Ψ(u) =
∫ 1

0

γ(t)G(u(t)) dt ∀u ∈ X. (2.3)

Since X ↪→↪→ C0([0, 1]) compactly, with

‖u‖C0 ≤ 1
2
‖u‖ ∀u ∈ X, (2.4)

it is easy to verify that Ψ is continuously Gâteaux differentiable, Ψ′ is a com-
pact operator and, in particular,

Ψ′(u)(v) =
∫ 1

0

γ(t)g(u(t))v(t) dt ∀u, v ∈ X. (2.5)

Moreover Ψ is sequentially weakly semicontinuous.
If z̄ > 0 and ε > 0 are fixed, we define the function α : [0,+∞[→ ]0,+∞[

by

α(z) = αz̄,ε(z) =

⎧⎨
⎩

1√
1+z

if 0 ≤ z < z̄

k1 (z − (1 + ε)z̄)2 + k2 if z̄ ≤ z < (1 + ε)z̄
k2 if z ≥ (1 + ε)z̄,

where

k1 =
1

4εz̄(1 + z̄)
√

1 + z̄
, k2 =

4 + (4 − ε)z̄
4(1 + z̄)

√
1 + z̄

.

It is simple to show that α ∈ C1,1([0,+∞[) is a non increasing function such
that

k2 ≤ α(z) ≤ 1 ∀z ∈ [0,+∞[. (2.6)
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Let a : IR → IR and A : IR → [0,+∞[ be two functions defined by

a(z) = α(z2)z, A(z) =
∫ |z|

0

α(s) ds ∀z ∈ IR.

Clearly, in view of (2.6),

k2z
2 ≤ A(z2) ≤ z2 ∀z ∈ IR, (2.7)

and a simple computation shows that the function z �→ A(z2) is convex.
Let Φ : X → IR be the functional defined by

Φ(u) =
1
2

∫ 1

0

A(|u′(t)|2) dt (2.8)

for every u ∈ X. It results that Φ is well-defined, convex and continuously
Gâteaux differentiable, with

Φ′(u)(v) =
∫ 1

0

a(|u′(t)|)v′(t) dt =
∫ 1

0

α(|u′(t)|2)u′(t)v′(t) dt (2.9)

for each u, v ∈ X. Moreover, in view of (2.7) one has
k2

2
‖u‖2 ≤ Φ(u) ≤ 1

2
‖u‖2 (2.10)

for each u ∈ X. This means that, taking in mind (2.4) and that 4+(4−ε)z̄
4(1+z̄) > 4−ε

4

for each ε > 0, we obtain, for every r > 0 and for every u ∈ X \ {0} such that
Φ(u) ≤ r

‖u‖2
C0 ≤ 1

4
‖u‖2 =

1
4

4
4 − ε

4 − ε

4
1√

1 + z̄
‖u‖2

√
1 + z̄

<
1

4 − ε
k2‖u‖2

√
1 + z̄ ≤ 2

4 − ε
Φ(u)

√
1 + z̄

≤ 2
4 − ε

r
√

1 + z̄,

for every ε ∈ ]0, 4[. In other words,

Φ−1(] − ∞, r]) = {u ∈ X : Φ(u) ≤ r}

⊆
{

u ∈ X : ‖u‖C0 <

√
2

4 − ε
r
√

1 + z̄

}
, (2.11)

for every ε ∈ ]0, 4[. Fix λ > 0 and recall that a solution to problem (1.1) is any
function u ∈ X such that∫ 1

0

u′(t)√
1 + |u′(t)|2 v′(t) dt = λ

∫ 1

0

γ(t)f(u(t))v(t) dt

for every v ∈ X. We find the solutions to problem (1.1) considering the fol-
lowing modified problem

− (
α(|u′|2)u′)′

= λγ(t)g(u) in ]0, 1[, u(0) = u(1) = 0. (2.12)

In particular, we first point out the following fact.

Lemma 2.1. Each solution to (2.12) is nonnegative.
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Proof. Indeed, if u solves (2.12) one has∫ 1

0

α(|u′(t)|2)u′(t)v′(t) dt = λ

∫ 1

0

γ(t)g(u(t))v(t) dt (2.13)

for every v ∈ X. Testing (2.13) with v = u− = max{0,−u} one has∫ 1

0

α(|u′(t)|2)u′(t)(u−(t))′ dt = λ

∫ 1

0

γ(t)g(u(t))u−(t) dt

= λ

∫
{u<0}

γ(t)g(u(t))u(t) dt = −λf(0)
∫

{u<0}
γ(t)u(t) dt. (2.14)

On the other hand∫ 1

0

α(|u′(t)|2)u′(t)(u−(t))′ dt =
∫

{u≥0}
α(|u′(t)|2)u′(t)(u−(t))′ dt

+
∫

{u<0}
α(|u′(t)|2)u′(t)(u−(t))′ dt

= −
∫

{u<0}
α(|(u−(t))′|2)(u−(t))′(u−(t))′ dt

= −
∫ 1

0

α(|(u−(t))′|2)(u−(t))′(u−(t))′ dt.(2.15)

Putting together (2.6), (2.15), (2.14) and (2.2) we conclude that

k2‖u−‖2 ≤
∫ 1

0

α(|(u−(t))′|2)(u−(t))′(u−(t))′ dt=λf(0)
∫

{u<0}
γ(t)u(t) dt ≤ 0,

that is u− is a.e. zero in [0, 1] and (2.1) holds. �

At this point, according to the definitions of α, g, Φ and Ψ it is clear that
any solution u to problem (2.12), namely every critical point of the functional
Iλ = Φ − λΨ, that, in addition, satisfies the condition

‖u′‖C0 ≤ √
z̄ (2.16)

is a solution to problem (1.1).

Remark 2.1. We explicitly observe that the described technique furnishes reg-
ular solutions. Indeed, if u is a solution of (2.12) satisfying (2.16), because the
function s �→ α(s2) ·s is invertible and the right-hand side of (2.12) is assumed
to be continuous, the function v(t) = ϕ(u′(t)) belongs to C1([0, 1]) (see [9,
Theorem VIII.2]) as well as u′ = ϕ−1(v), namely u ∈ C2([0, 1]). Moreover,
whenever the right-hand side is nonnegative, it is simple to verify that the
solution is concave and therefore, if nontrivial it must be positive.

We conclude this section recalling our main tool (see [6] and [2]) for
proving the existence of a solution to problem (1.1).

Theorem 2.1. [Theorem 2.1 of [6]] Let X be a reflexive real Banach space,
Φ : X → IR be a sequentially weakly lower semicontinuous, coercive and con-
tinuously Gâteaux differentiable function, Ψ : X → IR be a sequentially weakly
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upper semicontinuous and continuously Gâteaux differentiable functional. Put
Iλ = Φ − λΨ and assume that there are r1, r2 ∈ IR, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2), (2.17)

where

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u) − Ψ(v)
r2 − Φ(v)

and

ρ(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v) − supu∈Φ−1(]−∞,r1]) Ψ(u)
Φ(v) − r1

.

Then, for each λ ∈
]

1
ρ(r1,r2)

, 1
β(r1,r2)

[
there is uλ ∈ Φ−1(]r1, r2[) such that

Iλ(uλ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′
λ(uλ) = 0.

Remark 2.2. As we pointed out previously, the introduction of a truncation
of the mean curvature operator function through our α has been already done
in [19]. Here, the function α is considered in a different way with respect
to that of [19], in view of the fact that we apply Theorem 2.1 and obtain
particular solutions u of the modified problem (2.12), in the sense that a priori
information on the values of u and u′ are available.

3. Main results

Here is our main result.

Theorem 3.1. Assume that (2.2) hold and put

γ̃ :=
∫ 3/4

1/4

γ(t) dt. (3.1)

Assume furthermore that there exist two positive constants c, d with d < c,
such that ∫ d

0

F (s)γ
( s

4d

)
ds ≥ 0,

∫ d

0

F (s)γ
(
1 − s

4d

)
ds ≥ 0 (3.2)

and [(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]1/2

<
γ̃

2
F (d)
d2

. (3.3)

Then, for every

λ ∈
⎤
⎦ 4d2

γ̃F (d)
, 2

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2
⎡
⎣ ,

problem (1.1) admits at least one nontrivial, nonnegative solution uλ ∈ C2

([0, 1]), such that

‖uλ‖C0 < c, ‖u′
λ‖C0 <

2max[0,c] |f |
max[0,c] F

c2.
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Proof. Notice first that max[0,c] F ≥ F (0) = 0. Put

L = L(c) =
max[0,c] F

c2
, M = M(c) = max

[0,c]
|f |, (3.4)

z̄ = z̄(c) = 4
M2

L2
. (3.5)

Clearly, one has

√
1 + z̄ =

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]1/2
c2

max[0,c] F
,

hence

2

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2

=
1√

1 + z̄

2c2

max[0,c] F
,

and Assumption (3.3) implies the following inequality

F (d)
2

>
1
γ̃

√
1 + z̄ max

[0,c]
F

d2

c2
. (3.6)

Preliminarily we can also observe that

d <
1√

2 4
√

1 + z̄
c. (3.7)

Indeed, if (3.7) was false then, exploiting (3.3) and recalling that d < c, one
should obtain

1
2
√

1 + z̄

F (d)
d2

≤ max[0,c] F

c2
<

γ̃

2
√

1 + z̄

F (d)
d2

≤ 1
2
√

1 + z̄

F (d)
d2

,

a contradiction. From (3.7) and (3.6), there exists ε̄ ∈ ]0, 4[ such that, for every
ε ∈ ]0, ε̄[

4d2 <
c2(4 − ε)
2
√

1 + z̄
(3.8)

and
1
γ̃

√
1 + z̄ max

[0,c]
F

d2

c2

4
4 − ε

<
F (d)

2
. (3.9)

Now, fix λ ∈
]

4d2

γ̃F (d)
,

2c2

√
1 + z̄ max[0,c] F

[
and pick ε ∈ ]0, ε̄[ such that

λ
4

4 − ε
<

2c2

√
1 + z̄ max[0,c] F

. (3.10)

Our aim is to apply Theorem 2.1 with X = W 1,2
0 ([0, 1]) and Φ, Ψ as in

(2.8) and (2.3) respectively.
Let u0 ∈ X be defined by

u0(t) =

⎧⎨
⎩

4dt if 0 ≤ t ≤ 1
4

d if 1
4 < t ≤ 3

4
4d(1 − t) if 3

4 < t ≤ 1,
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and observe that

‖u0‖2 = 8d2.

Put

r1 = 0, r2 =
c2(4 − ε)
2
√

1 + z̄
.

Clearly r1 < r2 and, in view of (2.7) and (3.8),

r1 = 0 < Φ(u0) ≤ ‖u0‖2

2
= 4d2 <

c2(4 − ε)
2
√

1 + z̄
= r2. (3.11)

Moreover Φ−1(] − ∞, 0]) = {0} and Ψ(0) = 0. Since

∫ 1/4

0

γ(t)G(u0(t)) dt =
∫ 1/4

0

γ(t)F (u0(t)) dt =
1
4d

∫ d

0

F (s)γ
( s

4d

)
ds,

∫ 1

3/4

γ(t)G(u0(t)) dt =
∫ 1

3/4

γ(t)F (u0(t)) dt =
1
4d

∫ d

0

F (s)γ
(
1 − s

4d

)
ds,

taking in mind Assumption (3.2) one has that

Ψ(u0) =
∫ 1

0

γ(t)G(u0(t))dt ≥
∫ 3/4

1/4

γ(t)G(u0(t))dt = γ̃F (d). (3.12)

Exploiting (3.12) and (3.11) we can observe that

ρ(r1, r2) ≥ Ψ(u0)
Φ(u0)

≥ γ̃F (d)
Φ(u0)

≥ γ̃F (d)
4d2

. (3.13)

It is simple to verify that

max
[−c,c]

G = max
[0,c]

F. (3.14)

Indeed,

max
[−c,c]

G = max
{

max
[0,c]

G, max
[−c,0]

G

}
,

and

max
[0,c]

G = max
[0,c]

F ≥ F (0) = 0,

as well as, in view of (2.2),

max
[−c,0]

G = max
s∈[−c,0]

∫ s

0

g(t) dt = max
s∈[−c,0]

f(0)s = 0,

and (3.14) holds.
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Hence, thanks to (3.11), (2.11), (3.9), (3.14), (3.6), (3.10) and the choice
of λ, one has

β(r1, r2) ≤ supu∈Φ−1(]−∞,r2[) Ψ(u) − Ψ(u0)
r2 − Φ(u0)

≤ max|s|≤c G(s) − γ̃F (d)
r2 − Φ(u0)

=
max[0,c] F − γ̃F (d)

r2 − Φ(u0)
≤ max[0,c] F − γ̃F (d)

γ̃c2(4−ε)√
1+z̄

− 4d2

<
max[0,c] F − 8

4−ε

√
1 + z̄ d2

c2 max[0,c] F

c2(4−ε)

2
√

1+z̄

(
1 − 8

4−ε

√
1 + z̄ d2

c2

) (3.15)

=
max[0,c] F

(
1 − 8

4−ε

√
1 + z̄ d2

c2

)
c2(4−ε)

2
√

1+z̄

(
1 − 8

4−ε

√
1 + z̄ d2

c2

)
=

2
4 − ε

√
1 + z̄

max[0,c] F

c2

<
1
λ

<
γ̃F (d)
4d2

.

Putting together (3.13) and (3.15) one has

β(r1, r2) <
1
λ

< ρ(r1, r2)

and, from Theorem 2.1 there exists uλ ∈ X such that Φ′(uλ) − λΨ′(uλ) = 0,
with, in particular,

Φ(uλ) − λΨ(uλ) = inf
v∈Φ−1(]r1,r2[)

(Φ(v) − λΨ(v)) ≤ Φ(u0) − λΨ(u0)(3.16)

≤ 4d2 − λγ̃F (d) < 0,

and

0 < Φ(uλ) <
c2(4 − ε)
2
√

1 + z̄
,

namely uλ �= 0 and, in view of (2.11),

‖uλ‖2
C0 <

2
4 − ε

r2

√
1 + z =

2
4 − ε

c2(4 − ε)
2
√

1 + z

√
1 + z = c2.

Taking in mind the considerations made in Sect. 2, see in particular Lemma
2.1 and Remark 2.1, we can claim that uλ ∈ C2([0, 1]) and it is a (nontrivial)
nonnegative solution to problem (2.12) provided that

|u′
λ(t)| ≤ √

z̄ (3.17)

for every t ∈ [0, 1]. To this end, we already pointed out in Remark 2.1 that the
function v(·) = ϕ(u′(·)) = α(|u′(·)|2)·u′(·) is continuously differentiable. Hence,
u′ = ϕ−1(v) ∈ C0([0, 1]), namely uλ ∈ C1([0, 1]) and uλ(0) = uλ(1) = 0. Thus,
there exists t0 ∈ ]0, 1[ such that u′

λ(t0) = 0, and, in view of (3.10), for every
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t ∈ [0, 1] one has
1√

1 + z̄
|u′

λ(t)| ≤ 4
4 − ε

k2|u′
λ(t)| ≤ 4

4 − ε
α(|u′

λ(t)|2)|u′
λ(t)|

=
4

4 − ε
λ

∣∣∣∣
∫ t

t0

γ(t)f(uλ(σ)) dσ

∣∣∣∣ ≤ 4
4 − ε

λ max
[0,c]

|f |

<
2c2

√
1 + z̄ max[0,c] F

max
[0,c]

|f |.

That is, for every t ∈ [0, 1]

|u′
λ(t)| ≤ 2

M

L
=

√
z̄,

and the proof is complete. �

Remark 3.1. We explicitly observe that in order to study problem (1.1) phase
plane or time-maps methods can not be used.

We point out the following immediate consequence of Theorem 3.1. Ob-
serve that, when γ ≡ 1 then γ̃ = 1

2 .

Corollary 3.1. Let f : IR → IR be a continuous and nonnegative function and
assume that there exist two positive constants c, d, with d < c, such that[(

F (c)
c2

)2

+ (2max
[0,c]

f)2
]1/2

<
1
4

F (d)
d2

. (3.18)

Then, for every

λ ∈
⎤
⎦ 8d2

F (d)
, 2

[(
F (c)
c2

)2

+ (2max
[0,c]

f)2
]−1/2

⎡
⎣

problem (1.4) admits at least one positive solution uλ ∈ C2([0, 1]), such that

‖uλ‖C0 < c, ‖u′
λ‖C0 ≤ 2max[0,c] f

F (c)
c2.

Here we show an example of possible nonlinearity satisfying all the as-
sumptions of Theorem 3.1.

Example 3.1. Let m > 0 and put

fm(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t ≤ 0
mt if 0 < t ≤ 1

25

m
(

1
24 − t

)
if 1

25 < t ≤ 3
25

− m
25 if 3

25 < t ≤ 1
g(t) if t > 1

where g : IR → IR is any function. Then, for every λ ∈
]

24

m , 26√
5m

[
the problem

−
(

u′√
1 + |u′|2

)′
= λf(u) in ]0, 1[, u(0) = u(1) = 0, (Pλ)
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admits at least one (nontrivial) nonnegative solution uλ ∈ C1,τ ([0, 1]) for some
τ ∈ ]0, 1], such that ‖uλ‖C0 < 1 and ‖u′

λ‖C1 < 2. In fact, if we consider the
following function

f̄m(t) =
{

fm(t) if t ≤ 1
− m

25 if t > 1

we can apply Theorem 3.1 to f̄m in the case c = 1, d = 1
25 . Hence,

max[0,c] F̄m

c2
=

m

210
, max

[0,c]
2|f̄m| =

m

24
, F̄m(d) =

m

211

and it is easy to verify that all the assumptions of Theorem 3.1 hold. In par-
ticular,[(

max[0,c] F̄m

c2

)2

+
(

max
[0,c]

2̄|fm|
)2

]1/2

=
[
m2

220
+

m2

28

]1/2

=
m

24

(
1

212
+ 1

)1/2

<
m

8
=

1
4

m

211
210 =

1
4

F (d)
d2

,

and (3.3) is satisfied. At this point we conclude that for every λ ∈
]

24

m , 26√
5m

[
the following problem

−
(

u′√
1 + |u′|2

)′
= λf̄m(u) in ]0, 1[, u(0) = u(1) = 0,

admits at least one nontrivial and nonnegative solution uλ such that ‖uλ‖C0 <
1 and ‖u′

λ‖C0 < 2. The conclusion is achieved once observed that f̄m ≡ fm in
the interval [0, 1].
In particular, if f̃ = f20, the problem

−
(

u′√
1 + |u′|2

)′
= f̃(u) in ]0, 1[, u(0) = u(1) = 0, (P̃ )

has at least one nonnegative and nontrivial solution.

Remark 3.2. The previous example shows that our result is independent from
those contained in [8,19]. Indeed, we can observe that Theorem 3.1 of [19]
cannot be applied to problem (Pλ) since the potential of the nonlinearity has
a quadratic behaviour at zero. Moreover, in Theorem 3.6 of [19], among other
ones, the case of quadratic potential at zero is investigated too, but, in order
to assure the existence of at least one positive solution, a suitable condition
at infinity on the potential is required; hence the freedom of choice of the
function g considered in defining f prevent to treat problem (P̃ ). Furthermore,
all the results contained in [8] consider various cases where the potential of
the nonlinearity is either sub-quadratic or super-quadratic at zero, hence it is
excluded a case as proposed in Example 3.1.

Finally, we wish to stress that in both [8,19] the behaviour of the function
F (u)/up, for some p ≥ 1, at zero or at infinity is at the basis of the whole
analysis, while the assumptions of Theorem 3.1 do not require a particular
asymptotic behaviour of F (u)/up.
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As a consequence of Theorem 3.1 we can obtain the following result where
the case when F is subquadratic at zero is considered.

Theorem 3.2. Assume that there exists δ > 0 such that

F (s) ≥ 0 for every s ∈ [0, δ], (3.19)

and that condition (1.5) holds. Put

λ̄ = 2 sup
c>0

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2

.

Then, for every λ ∈ ]0, λ̄[, problem (1.4) admits at least one nontrivial, non-
negative solution uλ ∈ C2([0, 1]). Moreover, ‖uλ‖ → 0 as λ → 0.

Proof. First of all observe that from (3.19) and the continuity of f one has
that (2.2) holds. Fix λ ∈ ]0, λ̄[ and pick c > 0 such that 0 < λ < λ∗(c), with

λ∗(c) = 2

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2

.

From (3.19) and (1.5), corresponding to the positive number 8/λ there exists
d ∈ ]0, c[ such that

4

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]1/2

<
8
λ

<
F (d)
d2

, (3.20)

and
F (s) ≥ 0, (3.21)

for every s ∈ [0, d]. Hence, in particular, Assumptions (3.2) and (3.3) are
verified as well as

λ ∈
⎤
⎦ 8d2

F (d)
, 2

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2
⎡
⎣.

By applying Theorem 3.1 we obtain the existence of at least a nontrivial,
nonnegative positive solution uλ ∈ C1,τ ([0, 1]) for some τ ∈ ]0, 1], such that

‖uλ‖C0 < c and ‖u′
λ‖C0 <

2max[0,c] |f |
max[0,c] F

c2,

namely the first part of the theorem is proved.
Fix now μ ∈ ]0, λ̄[. Reasoning as above, there exists c̄ = c̄(μ) > 0 such

that 0 < μ < λ∗(c̄) and, for every λ ∈ ]0, μ] ⊂ ]0, λ∗(c̄)[ the solution uλ,
whose existence has been already shown, satisfies, in particular, the following
additional conditions

‖uλ‖C0 < c̄, ‖u′
λ‖C0 ≤ 2max[0,c̄] |f |

max[0,c̄] F
c̄2 = d̄.
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Hence, for every λ ∈ ]0, μ[ one has

1√
1 + d̄2

∫ 1

0

|u′
λ(t)|2 dt ≤

∫ 1

0

|u′
λ(t)|2√

1 + |u′(t)|2 dt

= λ

∫ 1

0

f(uλ(t))uλ(t) dt ≤ λc̄max
[0,c̄]

f,

from which one immediately obtains that ‖uλ‖ → 0 as λ → 0. �

Example 3.2. The problem

−
(

u′√
1 + |u′|2

)′
=

√
u + u2 in ]0, 1[, u(0) = u(1) = 0,

admits at least one positive solution. Indeed, we can apply Theorem 3.2 (recall
also Remark 2.1) to the function

f(t) =
√

|t| + t2

for every t ∈ IR. In this case, it is very simple to verify that F (s) = 2
3s
√|s|+ s3

3
for every s ∈ IR. Hence, F is an increasing function satisfying (3.19) and
(1.5). Moreover, a simple computation shows that λ̄ > 1 and the conclusion is
achieved.

Remark 3.3. We explicitly wish to point out that the interval ]0, λ̄[ obtained in
Theorem 3.2 may be not the best possible. Indeed, if we consider the function
f(t) = 1 for every t ∈ IR, it is easy to verify that all the assumptions of Theorem
3.2 are satisfied and, in addition, λ̄ = 1. Hence, according to Theorem 3.2 and
Remark 2.1, for every λ ∈ ]0, 1[ the problem

−
(

u′√
1 + |u′|2

)′
= λ in ]0, 1[, u(0) = u(1) = 0 (P)

admits at least one positive solution. On the other hand, Example 4 of [1]
assures that (P) admits a classical solution if and only if |λ| < 2, with

u(t) =
1
λ

⎡
⎣
√

1 − λ2

(
t − 1

2

)2

−
√

1 − λ2

4

⎤
⎦

the unique solution.

Looking at the proof of the previous theorem it is possible to point out
the following

Theorem 3.3. Assume that (3.19) and (1.5) hold. Then, for every c > 0, and
for every

λ ∈
⎤
⎦0, 2

[(
max[0,c] F

c2

)2

+
(

2max
[0,c]

|f |
)2

]−1/2
⎡
⎣
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problem (1.4) admits at least one nontrivial, nonnegative solution uλ ∈ C2

([0, 1]), such that

‖uλ‖C0 < c, ‖u′
λ‖C0 ≤ 2max[0,c] |f |

max[0,c] F
c2.

At this point it is very simple to produce the proof of Theorem 1.1 stated
in the Introduction.

Proof of Theorem 1.1. Apply Theorem 3.3 with c = 1. �

Remark 3.4. In Theorem 3.7 of [8] (see also [19, Theorem 3.1]), where the ex-
istence of a λ∗ such that, for every λ ∈ ]0, λ∗[, the differential problem has at
least one positive solution is only stated. We emphasize that the previous The-
orem 3.3, under slightly more restrictive assumptions, furnishes a numerical
information about a possible choice of such a λ∗.
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[3] Bonanno, G., D’Agùı, G.: Critical nonlinearities for elliptic Dirichlet prob-
lems. Dyn. Syst. Appl. 22, 411–417 (2013)

[4] Bonanno, G., Livrea, R.: Existence and multiplicity of periodic solutions for
second order Hamiltonian systems depending on a parameter. J. Convex Anal.
20(4), 1075–1094 (2013)

[5] Bonanno, G., Pizzimenti, P.: Existence results for nonlinear elliptic prob-
lems. Appl. Anal. 92, 411–423 (2013)

[6] Bonanno, G., Sciammetta, A.: An existence result of one non-trivial solution for
two point boundary value problems. Bull. Aust. Math. Soc. 84, 288–299 (2011)

[7] Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical
positive solutions of a prescribed curvature equation with singularities. Rend.
Istit. Math. Univ. Trieste 39, 63–85 (2007)

[8] Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical
solutions of a prescribed curvature equation. J. Differ. Eq. 243, 208–237 (2007)

[9] Brezis, H.: Analyse fonctionnelle. Masson, Paris (1987)



Vol. 22 (2015) Existence results for parametric boundary value problems 425

[10] Capietto, A., Dambrosio, W., Zanolin, F.: Infinitely many radial solutions to a
boundary value problem in a ball. Ann. Mat. Pura Appl. 179, 159–188 (2001)

[11] Chang, K.C., Zhang, T.: Multiple solutions of the prescribed mean curvature
equation. In: Chern, S.S. (ed.) Inspired. Nankai Tracts in Mathematics, vol. 11,
pp. 113–127. World Scientific Publications, Hackensack, NJ, 2006

[12] Cid, J.A., Torres, P.J.: Solvability for some boundary value problems with φ-
Laplacian operators. Discret. Contin. Dyn. Syst. A 23, 727–732 (2009)

[13] D’Agùı, G.: Existence results for a mixed bonundary value probelm with Sturm-
Liouville equation. Adv. Pure Appl. Math. 2, 237–248 (2011)
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