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Abstract. In this note we consider the inviscid limit for the 3D Boussinesq
equations without diffusion, under slip boundary conditions of Navier’s
type. We first study more closely the Navier–Stokes equations, to better
understand the problem. The role of the initial data is also emphasized
in connection with the vanishing viscosity limit.
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1. Introduction

The aim of this note is to study the L∞(0, T ;L2(Ω)) convergence, as ν vanishes,
of (Leray–Hopf) weak solutions to the 3D Navier–Stokes equations (NSE), to-
wards smooth solutions of the 3D Euler equations. The dependence of the rate
of convergence in terms of different hypotheses on the initial data is studied
and the results are also applied to deal with the problem of convergence of
solution of the 3D Boussinesq equations to those of the Euler–Boussinesq.

We first study the problem with constant density (set for simplicity equal
to one) and then, in the final section, we treat the Boussinesq equations. In
particular, we start by considering the inviscid limit for the NSE in a bounded
domain Ω ⊂ R

3 with smooth boundary Γ := ∂Ω �= ∅.
For the reader’s convenience we recall that when Γ is non empty, for the

NSE with Dirichlet boundary conditions

∂tu
ν − νΔuν + (uν · ∇)uν + ∇pν = 0 in Ω × (0, T ],

∇ · uν = 0 in Ω × (0, T ],
uν = 0 on Γ × (0, T ],
uν(0, x) = uν

0 in Ω,

(1.1)
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in general one cannot have convergence (even in weak norms) towards smooth
solutions of the Euler equations, even with the same initial data uν

0 = uE
0

∂tu
E + (uE · ∇)uE + ∇pE = 0 in Ω × (0, T ],

∇ · uE = 0 in Ω × (0, T ],
uE · n = 0 on Γ × (0, T ],
uE(0, x) = uE

0 in Ω,

(1.2)

see e.g. the review in Constantin [9] and Mazzucato [23]. In fact, even if both
uE and uν are very smooth and both exist in [0, T ] (for some positive T
independent of the viscosity) certain extra-assumptions are needed in order to
show, at least, that

as ν → 0 uν(t) → uE(t) in L2(Ω), uniformly in t ∈ [0, T ].

Some necessary and sufficient conditions, related with the dissipation of energy
in a boundary-strip of width depending on ν, have been detected by Kato [14].
See also recent developments in Temam and Wang [27], Wang [28], and Kelli-
her [15]. The lack of convergence is due to the boundary layer created from the
difference between the tangential velocity of the Navier–Stokes solution and
that of the Euler solution at the boundary: the first vanishes, while we do not
have control on the tangential velocity of the Euler equations.

Better results can be obtained in the case of the NSE with Navier’s
boundary conditions. In Iftimie and Planas [12] it is considered the following
initial-boundary value problem

∂tu
ν − νΔuν + (uν · ∇)uν + ∇pν = 0 in Ω × (0, T ],

∇ · uν = 0 in Ω × (0, T ],
uν · n = 0 on Γ × (0, T ],
[D(uν)n+ β uν ]tan = 0 on Γ × (0, T ],
uν(0, x) = uν

0 in Ω,

(1.3)

where D(uν) = 1
2

[∇uν+(∇uν)T
]
is the deformation tensor, β ≥ 0 is a constant

(the friction coefficient) and [D(uν)n+β uν ]tan is the tangential component of
the vector D(uν)n+β uν . This system is very close to that originally proposed
by Navier [24] and studied analytically (in the stationary case) starting from
Solonnikov and Ščadilov [25]. In particular, the Navier’s slip conditions read
as [νD(uν)n+ β uν ]tan = 0, hence authors in [12] are implicitly assuming the
Maxwell scaling [22], with the friction parameter β depending linearly on the
viscosity. More details on the role of Navier’s boundary conditions especially
for numerical simulations, and some of the crucial differences between the two
dimensional and three dimensional case, can be found in the review paper [7].
In the 2D setting the problem is slightly less-hard and classical results em-
ploying slip boundary conditions are those of Yudovich [34], Lions [17], and
Bardos [1]. Interesting recent results in the 2D case are those in [19,20].

A recent vanishing viscosity result in the 3D is the following one (see
Theorem 1 in [12]).
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Theorem 1.1. Let Ω be a bounded smooth open set in R
3 and let u0 ∈ H3(Ω)

a divergence-free vector field tangent to the boundary. For each ν > 0 con-
sider uν

0 ∈ L2(Ω) a divergence free vector field tangent to the boundary such
that uν

0 → u0 strongly in L2(Ω), as ν → 0. Let uν be a weak solution of the
Navier–Stokes equations (1.3) with Navier’s boundary conditions and with ini-
tial datum uν

0 . Let uE ∈ C([0, T ];H3(Ω)) be the unique solution of the Euler
equations (1.2), with initial datum u0, for some T ∈]0, Tmax[, being Tmax the
maximal time of existence of the smooth solution of the Euler equations. Then,
uν converges to uE strongly in L∞(0, T ;L2(Ω)), as ν → 0.

Remark 1.2. By inspecting the proof, one can observe that, if the initial
data converge in L2(Ω) fast enough, then the same argument implies that
supt∈[0,T ] ‖uν(t) − uE(t)‖2 = O(ν) and

∫ T

0
‖∇uν(τ) − ∇uE(τ)‖2 dτ = O(1).

The result here is independent of the parameter β ≥ 0.

Our aim is to study the convergence under some different slip-without-
friction boundary conditions, involving the vorticity. More precisely we will
study the following initial-boundary value problem

∂tu
ν − νΔuν + (uν · ∇)uν + ∇pν = 0 in Ω × (0, T ],

∇ · uν = 0 in Ω × (0, T ],
uν · n = 0 on Γ × (0, T ],
curluν × n = 0 on Γ × (0, T ],
uν(0, x) = uν

0 in Ω.

(1.4)

and we will show how the convergence-rate can be improved.
The interest for these vorticity based Navier’s boundary conditions is

increasing, especially after the recent results by Xiao and Xin [31,32] and
Beirão da Veiga and Crispo [3–6], and [8] concerning strong solutions and
strong convergence. See also the related work by Xin et al. [29,30,33]. Next,
we point out that the connection between the two Navier’s type conditions,
(1.3) versus (1.4), is expressed by the following identity, valid for all tangential
vectors τ on the boundary Γ:

t · τ =
ν

2
(curlu× n) · τ − ν u · ∂n

∂τ
on Γ.

Here t is the Cauchy stress vector defined by

t(u, p) := n · T(u, p) =
n∑

k=1

Tik(u, p)nk,

with T(u, p) := −I p + νD(u). This vector identity valid on Γ shows that the
two Navier’s conditions are essentially the same in the case of a domain with
flat boundary. Moreover, in a general domain they differ by a lower order term.

Results similar to the present ones have been also recently obtained by
Xiao and Xin [32], while the results presented here are part of the Ph.D. the-
sis of the second author, completed at the end of 2011. We point out that
the approach in [32] is slightly different, focusing more on H1(Ω) convergence
in the case of well-prepared initial datum uν

0 = uE
0 ∈ H3(Ω) for NSE and
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Euler equations. In addition, the boundary value problem for the Navier–
Stokes equations is a non-standard one, slightly different from (1.4). On the
other hand, the aim of our result is not the study of the asymptotic limit of
boundary layer, see [13,21], in the case of vorticity based boundary conditions
but is to show how the initial data affect the convergence of the vanishing vis-
cosity even in the energy norm and to give a simple proof of the convergence
in the case of well-prepared initial data. The main result of this paper is The-
orem 3.2, which shows improved convergence in the L2-norm and convergence
also of first derivatives for the system (1.4), when the initial datum has vor-
ticity vanishing at the boundary. Observe that in Theorem 3.1 the vanishing
vorticity is requested only for the initial datum uE

0 of the Euler equations. The
initial data uν

0 of the NSE are just divergence-free vector fields, tangential to
the boundary, and converging merely in L2(Ω) (hence without any control on
the vorticity) to the datum of the Euler equations.

In the final section we use the results obtained for the NSE equations to
tackle the following problem: we study the convergence of (vν , ρν), solution of
the viscous Boussinesq equations

∂tv
ν − νΔvν + (vν · ∇) vν + ∇qν = −ρνe3 in Ω × (0, T ],

∂tρ
ν + (vν · ∇) ρν = 0 in Ω × (0, T ],

∇ · vν = 0 in Ω × (0, T ],
vν · n = 0 on Γ × (0, T ],
curl vν × n = 0 on Γ × (0, T ],
vν(0, x) = vν

0 in Ω,
ρν(0, x) = ρν

0 in Ω,

(1.5)

toward those of the Euler–Boussinesq equations

∂tv
E + (vE · ∇) vE + ∇qE = −ρEe3 in Ω × (0, T ],

∂tρ
E + (vE · ∇) ρE = 0 in Ω × (0, T ],

∇ · vE = 0 in Ω × (0, T ],
vE · n = 0 on Γ × (0, T ],
vE(0, x) = vE

0 in Ω,
ρE(0, x) = ρE

0 in Ω,

(1.6)

in the energy space L∞(0, T ;L2(Ω)), where e3 is the third vector of the canon-
ical basis in R

3.
Plan of the paper : In Sect. 2 we briefly recall the notation, some vector identi-
ties, and some existence results for the NSE (1.4). Next, in Sect. 3 we prove two
different vanishing viscosity results for the NSE, showing the critical depen-
dence on the initial datum. Finally, in Sect. 4 we study the vanishing viscosity
limit for the Boussinesq system.

2. Preliminaries

We consider a bounded domain Ω ⊂ R
3 with smooth boundary Γ, say of

class C4, and n denotes the exterior normal unit vector on Γ. We will use
the classical Lebesgue spaces (L2(Ω), ‖ . ‖) and (L2(Γ), ‖ . ‖Γ) and the Sobolev
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spaces (Hk(Ω), ‖ . ‖k) for k ∈ N (we do not distinguish between scalar and
vector valued functions). We will denote by (Hs(Γ), ‖ . ‖s,Γ) the standard trace
spaces on the boundary Γ. We will also denote by C generic constants, which
may change from line to line, but which are independent of the viscosity and
of the solution of the equations we are considering.

We first start by recalling the precise notion of weak solution for the NSE
we will use.

Definition 2.1. We say that uν ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), weakly
divergence-free and tangential to the boundary, is a (Leray–Hopf) weak solu-
tion of the Navier–Stokes equations (1.4) if the two following condition hold:

∫ T

0

∫

Ω

( − uνφt + ν∇uν∇φ− (uν · ∇)φuν
)
dxdτ

+ν
∫ T

0

∫

Γ

uν · (∇n)T · φdSdτ =
∫

Ω

uν
0φ(0) dx, (2.1)

for all vector-fields φ ∈ C∞
0 ([0, T [×Ω) such that ∇ · φ = 0 in Ω × [0, T [, and

φ · n = 0 on Γ × [0, T [. Moreover, the following energy estimate

1
2

∫

Ω

|uν(t)|2 dx+ ν

∫ t

0

∫

Ω

|∇uν |2 dxdτ

+ν
∫ t

0

∫

Γ

uν · (∇n)T · uν dSdτ ≤ 1
2

∫

Ω

|uν
0 |2 dx, (2.2)

is satisfied for all t ∈ [0, T ].

With this definition we have the following result.

Theorem 2.2. Let be given any positive T > 0 and uν
0 ∈ L2(Ω) which is weakly

divergence-free and such that uν
0 ·n = 0 on Γ. Then, there exists at least a weak

solution uν of the Navier–Stokes equations (1.4) on [0, T ].

The proof of global existence of weak solution in the sense of the Def-
inition 2.1 can be found for instance in [31, § 6]. We observe now that our
definition of energy inequality is slightly different from that in the above ref-
erence and we explain now the equivalence. To this end we recall the following
formulas for integration by parts (see Ref. [2] for the proof).

Lemma 2.3. Let u and φ be two smooth enough vector fields, tangential to the
boundary Γ. Then it follows

−
∫

Ω

Δuφ dx =
∫

Ω

∇u∇φdx−
∫

Γ

(ω × n)φdS +
∫

Γ

u · (∇n)T · φdS,

where ω = curlu. Moreover, if ∇ · u = 0, then −Δu = curl curlu, and
∫

Ω

curlω φdx = −
∫

Ω

Δuφ dx =
∫

Ω

ω(curlφ) dx+
∫

Γ

(ω × n)φdS.
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Constructing weak solutions by the usual Galerkin method as in [31], we
get for the approximate solutions {uν

m}m∈N the following identity:

1
2

∫

Ω

|uν
m(t)|2 dx+ ν

∫ t

0

∫

Ω

| curluν
m|2 dxdτ =

1
2

∫

Ω

|uν
0m|2 dx t ∈ [0, T ],

where we used as test function the function uν
m itself and the second integration

by parts formula from Lemma 2.3 with u = φ = uν
m (here the boundary integral

vanishes due to the vorticity-based Navier’s boundary conditions). Then, the
usual compactness tools imply that uν

m converge as m → +∞ to a weak
solution uν and the lower-semi-continuity of the norm implies that

1
2

∫

Ω

|uν(t)|2 dx+ ν

∫ t

0

∫

Ω

| curluν |2 dxdτ ≤ 1
2

∫

Ω

|uν
0 |2 dx, (2.3)

which is the energy inequality (6.12) in [31]. Finally, by using the first inte-
gration by parts formula from Lemma 2.3 we get (2.2). This inequality will be
used later on to make some of the calculations (which will be otherwise only
formal) completely justified.

To conclude, we recall a well-known existence theorem for smooth solu-
tions of the Euler equations (1.2) in Sobolev spaces.

Theorem 2.4. Let be given uE
0 ∈ H3(Ω) such that ∇ · uE

0 = 0 and uE
0 · n = 0

on Γ. Then, there exists a positive time T = T (‖uE
0 ‖3) > 0 such that a unique

solution of (1.2) exists in

uE ∈ C([0, T ];H3(Ω)).

The proof in the case of a bounded domain can be found in Ebin and
Marsden [10] and Temam [26]. In particular T ≥ C

‖uE
0 ‖3

, for some C > 0
independent of the solution and in the sequel T will be any positive time
strictly smaller than the maximal time of existence Tmax.

3. Proof of the convergence results

We start by showing the basic convergence result, which is the counterpart
of [12, Thm. 1] in our setting.

Theorem 3.1. Let Ω be a bounded smooth open set in R
3, and let uE

0 ∈
H3(Ω), be a divergence-free vector-field tangential to the boundary. Let uE ∈
C([0, T ];H3(Ω)) be the unique solution of the Euler equations (1.2), with ini-
tial datum u0 and defined in some interval [0, T ]. Let uν be a weak solution
of the NSE (1.4) with divergence-free and tangential to the boundary initial
datum uν

0 ∈ L2(Ω), and with the vorticity-based Navier’s conditions. Suppose
also that

‖uν
0 − uE

0 ‖ = O(ν
3
2 ).

Then,

sup
t∈[0,T ]

‖uν(t) − uE(t)‖2 = O(ν
3
2 )
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and
∫ T

0

‖∇uν(τ) − ∇uE(τ)‖2 dτ = O(ν
1
2 ).

Proof. The proof is simply obtained by taking the difference of the equation
satisfied by uν with that for uE , multiplying by u := uν − uE , and integrating
by parts over Ω × (0, T ). Unfortunately, this cannot be done in a so straight-
forward manner since uν is a weak solution, hence using directly u (having the
regularity of uν) as test function is not allowed. We need to pass to an inte-
gral formulation and to use the energy inequality (2.2) to make the argument
rigorous. The reader well-acquainted with the argument can go directly to the
formula (3.6).

We first observe that since uE is a smooth solutions of the Euler equa-
tions (1.2) in [0, T ]×Ω, uE is allowed as test function for the NSE. Then, after
certain integration by parts, we get for all t ∈ [0, T ]

∫

Ω

uν(t)uE(t) dx+
∫ t

0

∫

Ω

(
ν∇uν∇uE − uνuE

t + (uν · ∇)uνuE
)
dxdτ

+ν
∫ t

0

∫

Γ

uν(∇n)TuE dSdτ =
∫

Ω

uE
0 u

ν
0 dx. (3.1)

A further identity is obtained by multiplying the Euler equations by uν .
Since uE is a local smooth solution everything is well-defined and we get

∫ t

0

∫

Ω

(
uE

t u
ν + (uE · ∇)uEuν

)
dxdτ =

∫

Ω

uE
0 u

ν
0 dx. (3.2)

Next, by multiplying the Euler equations by uE and by the usual integrations
by parts we get the energy conservation

1
2

∫

Ω

|uE(t)|2 dx =
1
2

∫

Ω

|uE
0 |2 dx, (3.3)

where we used the fact that uE is smooth, tangential to the boundary, and
divergence-free.

Then, by adding together (2.2)–(3.3) and subtracting (3.1)–(3.2), we get

‖u(t)‖2

2
+ ν

∫ t

0

∫

Ω

∇uν∇u dxdτ +
∫ t

0

∫

Ω

(u · ∇)uEu dxdτ

+ν
∫ t

0

∫

Γ

uν(∇n)Tu dSdτ ≤ ‖u(0)‖2

2
. (3.4)

Let us consider the second term from the left-hand side of (3.4). By using the
parallelogram equality we get

∫ t

0

∫

Ω

∇uν∇u dxdτ =
1
2

∫ t

0

∫

Ω

|∇uν |2 dxdτ +
1
2

∫ t

0

∫

Ω

|∇u|2 dxdτ

−1
2

∫ t

0

∫

Ω

|∇uE |2 dxdτ.
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Then, we estimate the other two terms from the left-hand side of (3.4). We
handle the third term by using the higher-order regularity of uE , namely we
use uE ∈ C([0, T ];H3(Ω)) ↪→ C([0, T ];W 1,∞(Ω)), to get

∣
∣
∣
∣

∫ t

0

∫

Ω

(u · ∇)uE u dxdτ

∣
∣
∣
∣ ≤ C

∫ t

0

‖u(t)‖2 dτ,

for some C independent of ν. Concerning the boundary term in (3.4), by using
trace theorems and Young inequality we get, due to the smoothness of Γ,

∣
∣
∣
∣ν

∫ t

0

∫

Γ

uν(∇n)Tu dSdτ

∣
∣
∣
∣ ≤ ν

∫

Γ

|uν | |∇n| |u| dS
≤ C ν‖uν‖Γ‖u‖Γ

≤ C ν‖uν‖ 1
2 ‖∇uν‖ 1

2 ‖u‖ 1
2 ‖∇u‖ 1

2

≤ ν

4
‖∇uν‖2 +

ν

4
‖∇u‖2 + Cν‖uν‖‖u‖.

In particular, to remove the zero-order term we have used the fact that for
functions tangential to the boundary the Poincaré inequality holds true (see
for instance, Kozono and Yanagisawa [16]) and also that from the energy in-
equality both ‖uν‖ and uE are bounded.

By collecting all the estimates, from (3.4) we get that

‖u(t)‖2 + ν

∫ t

0

‖∇u(τ)‖2 dτ ≤ ‖u(0)‖2 + C

[∫ t

0

‖u(τ)‖2 dτ + ν

]
. (3.5)

We can now use Gronwall lemma, obtaining

‖uν − uE‖2
L∞(0,T ;L2(Ω)) = O(ν) and ‖∇uν − ∇uE‖2

L2(0,T ;L2(Ω)) = O(1),

exactly as in [12]. This is not the result stated in the Theorem 3.1, but the
calculations are given to better understand the differences/improvement.

We make now some slightly different manipulations, in order to show the
better rate-of-convergence stated in Theorem 3.1. To this end, in (3.4) we treat
the second term from the left-hand-side as follows

∫ t

0

∫

Ω

∇uν∇u dxdτ =
∫ t

0

∫

Ω

|∇u|2 dxdτ +
∫ t

0

∫

Ω

∇uE∇u dxdτ.

We arrive now at [cf. (3.4)]

‖u(t)‖2

2
+ ν

∫ t

0

‖∇u‖2dτ −
∫ t

0

∫

Ω

(u · ∇)uEu dxdτ + ν

∫ t

0

∫

Γ

uν(∇n)Tu dSdτ

≤ −ν
∫ t

0

∫

Ω

∇uE∇u dxdτ +
‖u(0)‖2

2
(3.6)

We handle the third term from the left-hand-side exactly as before and, by
integrating by parts the term from the right-hand-side (by using the second
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identity from Lemma 2.3), we get

−ν
∫ t

0

∫

Ω

∇uE∇u dxdτ = ν

∫ t

0

∫

Γ

(ωE × n)u dSdτ + ν

∫ t

0

∫

Ω

ΔuEu dxdτ

+ν
∫ t

0

∫

Γ

uE · (∇n)T · u dSdτ.

Then, we get the following inequality

‖u(t)‖2

2
+ ν

∫ t

0

‖∇u‖2dτ ≤ ‖u(0)‖2

2
− ν

∫ t

0

∫

Γ

u (∇n)Tu dSdτ

−
∫ t

0

∫

Ω

(u · ∇)uEu dxdτ + ν

∫ t

0

∫

Ω

ΔuEu dxdτ

−ν
∫ t

0

∫

Γ

(ωE × n)u dSdτ.

We estimate the absolute value of the space integral from the right-hand-
side by using Schwartz inequality, trace interpolation inequalities, and the
regularity of uE as follows:

ν

∣
∣
∣
∣

∫

Γ

(ωE × n)u dS
∣
∣
∣
∣ ≤ Cν‖u‖ 1

2 ‖∇u‖ 1
2 ≤ C ν

3
2 + C ‖u‖2 +

ν

2
‖∇u‖2,

ν

∣
∣
∣
∣

∫

Γ

u · (∇n)T · u dS
∣
∣
∣
∣ ≤ C ν‖u‖2

Γ ≤ C ν‖u‖‖∇u‖ ≤ C ν‖u‖2 +
ν

2
‖∇u‖2,

ν

∣
∣
∣
∣

∫

Ω

ΔuEu dx

∣
∣
∣
∣ ≤ C

(‖u‖2 + ν2
)
.

Then, by using also the energy inequality, we obtain the following differential
inequality [cf. with (3.5)]

‖u(t)‖2 + ν

∫ t

0

‖∇u(τ)‖2dτ ≤ ‖u(0)‖2 + C

[∫ t

0

‖u(τ)‖2dτ + ν2 + ν
3
2

]
.

By using Gronwall-Lemma we have that

‖uν − uE‖2
L∞(0,T ;L2(Ω)) = O(ν

3
2 ),

‖∇uν − ∇uE‖2
L2(0,T ;L2(Ω)) = O(ν

1
2 ).

ending the proof. �

We want now to show better convergence, and this happens if the ini-
tial datum belongs to a particular sub-class. In particular, we use the same
observation made in [8,32] to show strong convergence up to second order
derivatives. We prove now the main result of the paper.

Theorem 3.2. Let Ω be a bounded smooth open set in R
3, and let uE

0 ∈ H3(Ω),
be a divergence-free vector field tangential to the boundary, and such that

ωE
0 (x) = 0 ∀x ∈ Γ. (3.7)
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Let uE ∈ C([0, T ];H3(Ω)) be the unique solution of the Euler equations (1.2),
with initial datum uE

0 and defined in some interval [0, T ]. Let uν be a weak solu-
tion of the Navier–Stokes equations (1.3) with a divergence free and tangential
to the boundary initial datum un

0 ∈ L2(Ω) such that

‖uν
0 − uE

0 ‖ = O(ν).

Then,

sup
t∈[0,T ]

‖uν − uE‖2
L∞(0,T ;L2(Ω)) = O(ν2),

‖∇uν − ∇uE‖2
L2(0,T ;L2(Ω)) = O(ν).

A critical point in the proof is that of “having solution to the Euler
equations with vanishing tangential component of the vorticity, as the Navier–
Stokes equations”, that is ωE ×n = 0 on Γ × [0, T ]: in this way one can better
estimate the term − ∫

Ω
ΔuE u dx involved in the previous calculations.

In general the boundary condition for the vorticity cannot be enforced
for the Euler equations. In addition, also if the initial datum is such that
(ωE

0 × n)|Γ = 0 this is not enough to have the same boundary behavior for all
positive times. As observed in [4], by using the vorticity equation,

ωE
t + (uE · ∇)ωE = (ωE · ∇)uE ,

by taking the exterior product with the normal unit vector on Γ, and finally by
using that ωE ×n = 0 implies that ωE

t ×n = 0 on Γ, one has as a consequence
that an extra-compatibility condition, generically false, should be satisfied by
the initial velocity uE

0 . In particular, this implies that the Navier’s type con-
dition does not persist for positive time and hence excludes the chance of a
vanishing-viscosity limit in topologies such that the vorticity ωE has Sobolev
traces at the boundary. On the other hand, by using the fact that for the
Euler equations the vorticity is transported by the velocity uE and stretched
by ∇uE , one can employ the well-known representation formula for classical
solutions

ωE(X(α, t), t) = ∇αX(α, t)ωE(α, 0), (3.8)

where the path-lines X : Ω × [0, T ] → Ω ⊂ R
3 solve the Cauchy problem

{
d
dtX(α, t) = uE(X(α, t), t),
X(α, 0) = α,

for t ∈ [0, T ] and α ∈ Ω. Since uE · n = 0 on the boundary, the path-lines
starting on the boundary remain on the boundary for all positive times. The
fundamental effect for our studies is the following: let be given α ∈ Γ, then
X(α, t) ∈ Γ for all t ∈ [0, T ] and consequently

ωE(X(α, t), t) × n =
[∇αX(α, t)ωE(α, 0)

] × n, ∀ (α, t) ∈ Γ × [0, T ].

Being generically the matrix ∇αX(α, t) not a multiple of the identity, this
implies that generically ωE(X(α, t), t) × n �= 0. In particular ωE × n may
become non-zero, as soon as ∇aX induces a rotation along any axis not parallel
with the normal unit vector passing through α.
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On the other hand, this observation makes clear that it is possible to have
another type of persistence for the vorticity, by suitably restricting the class
of initial data. In fact, the same representation formula with the path-lines
shows also the following result.

Lemma 3.3. Let uE ∈ C([0, T ];H3(Ω)) be the unique solution of the Euler
equations (1.2). If ωE

0 (x) = 0 for all x ∈ Γ, then

ωE(x, t) = 0 for all couples (x, t) ∈ Γ × [0, T ].

Remark 3.4. The class of solutions with vanishing-vorticity of the boundary we
will employ is in some sense optimal, since in [5] it is shown that if ω0 · n �= 0,
then there exists a time T > 0 such that the ωE × n �= 0 for 0 < t ≤ T .
Moreover this class of initial data in non-empty, since smooth and divergence-
free functions with compact support satisfy the assumptions.

Remark 3.5. In the case of the Euler equations with a non-zero external force
fE the same approach shows that a formula similar to (3.8) holds true:

ωE(X(α, t), t) = ∇αX(α, t)ωE(α, 0) +
∫ t

0

curl fE(X(α, σ), σ) dσ,

hence a sufficient condition to have persistence of the vanishing vorticity at
the boundary is ωE

0 = curl fE = 0 on Γ.

This observation on the persistence of the boundary values for the vortic-
ity points out that probably the “ω-based” boundary conditions of Navier’s-
type are much better behaved (in the context of vanishing-viscosity) than the
classical “D(u)-based” Navier’s ones. The Navier’s conditions as in (1.3) in-
volve the symmetric part of the gradient. One can recall that the symmetric
part of the gradient D(uE) := [∇uE+(∇uE)T ]

2 has the following evolution equa-
tion

DD(uE)
Dt

+ D(uE)2 + O2(uE) = −HπE ,

where as usual D
Dt is the derivative along path-lines, O(uE) := [∇uE−(∇uE)T ]

2

is essentially the vorticity (since O(uE)h = 1
2ω

E × h for each vector h) and
HπE is the Hessian of the pressure. It seems that (contrary to the results for
ωE or equivalently O) the evolution of the matrix D(uE) cannot be handled,
since the pressure does not disappear and one cannot employ directly a trans-
port/stretching argument. Hence, the problem related with vanishing-viscosity
under the Navier’s boundary conditions seems to require different tools, even
if the friction parameter β vanishes.

Proof of Theorem 3.2. We can improve a little bit on the rate of convergence
of Theorem 3.1, by assuming that the initial datum is such that the vorticity
vanishes as the boundary. In fact, we have seen that by assuming (3.7) we have
ωE(x, t) = 0 for all (x, t) ∈ Γ× [0, T ]. Writing again the same energy estimates
we employed before to get (3.6), and by using

−ν
∫ t

0

∫

Ω

∇uE∇u dxdτ = ν

∫ t

0

∫

Γ

uE · (∇n)T · u dSdτ + ν

∫ t

0

∫

Ω

ΔuEu dxdτ,



160 L. C. Berselli and S. Spirito NoDEA

(notice that now the boundary integral
∫
Γ
(ωE ×n)u dS vanishes) we can re-do

the same calculations as before starting from (3.6) to obtain now

‖u(t)‖2 + ν

∫ t

0

‖∇u‖2 dτ ≤ ‖u(0)‖2 + C

[∫ t

0

‖u(τ)‖2 dτ + ν2

]
.

Finally, by Gronwall’s inequality we get

sup
t∈[0,T ]

‖uν − uE‖2
L∞(0,T ;L2(Ω)) = O(ν2),

‖∇uν − ∇uE‖2
L2(0,T ;L2(Ω)) = O(ν).

concluding the proof. �

4. Vanishing viscosity for the 3D Boussinesq equations

In this section we pass to consider the Boussinesq system (1.5) and a first step
concerns the existence of weak solutions. In particular, since the problem is
without diffusion in the equation for the density, a proper notion of weak solu-
tion is needed. Observe that the ρν entering the equations is not the density,
but represents the small variations of density from the constant state, hence
there is no need to assume ρν ≥ 0.

Definition 4.1. We say that the pair uν ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
and ρν ∈ L∞(0, T ;L2(Ω)) is weak solution of the Boussinesq equations (1.5)
if the two following conditions hold:

∫ T

0

∫

Ω

( − vνφt − ρνψt + ν∇vν∇φ− (vν · ∇)φ vν − (vν · ∇)ψ ρν
)
dxdτ

+ν
∫ T

0

∫

Γ

vν · (∇n)T · φdSdτ =
∫

Ω

vν
0φ(0) + ρν

0ψ(0) dx, (4.1)

for all vector-fields φ ∈ C∞
0 ([0, T [×Ω) such that ∇ · φ = 0 in Ω × [0, T [, and

φ · n = 0 on Γ × [0, T [ and scalars ψ ∈ C∞
0 ([0, T [×Ω).

In particular the resulting solution satisfies the equations in the sense of
D′((0, T ) × Ω) and the following energy estimate

‖vν(t)‖2 + ‖ρν(t)‖2

2
+ ν

∫ t

0

‖∇vν‖2 dτ + ν

∫ t

0

∫

Γ

vν · (∇n)T · vν dSdτ

≤ ‖vν
0‖2 + ‖ρν

0‖2

2
. (4.2)

is satisfied for all t ∈ [0, T ].

With this definition we have the following result.

Theorem 4.2. Let be given any positive T > 0, vν
0 ∈ L2(Ω), and ρν

0 ∈ L2(Ω),
such that vν

0 is divergence-free and such that vν
0 ·n = 0 on Γ. Then, there exists

at least a weak solution of the Boussinesq equations (1.5) on [0, T ].

Proof. By simplifying a procedure typical of compressible flows, as in Lions [18]
and Feireisl [11, § 4], we first consider the following approximate system, with
ε > 0
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∂tv
ν,ε − νΔvν,ε + (vν,ε · ∇) vν,ε + ∇pν,ε = −ρν,εe3 in Ω × (0, T ],

∂tρ
ν,ε + (vν,ε · ∇) ρν,ε = εΔρν,ε in Ω × (0, T ],

∇ · vν,ε = 0 in Ω × (0, T ],
vν,ε · n = 0 on Γ × (0, T ],
curl vν,ε × n = 0 on Γ × (0, T ],
n · ∇ρν,ε = 0 on Γ × (0, T ],
vν,ε(0, x) = vν

0 in Ω,
ρν,ε(0, x) = ρν

0 in Ω.

By standard techniques one can show that the above system has at least a
weak solution

vν,ε, ρν,ε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

satisfying the energy inequality

‖vν,ε(t)‖2 + ‖ρν,ε(t)‖2

2
+ ν

∫ t

0

‖∇vν,ε‖2 dτ + ε

∫ t

0

‖∇ρν,ε‖2 dτ

+ν
∫ t

0

∫

Γ

vν,ε · (∇n)T · vν,ε dSdτ ≤ ‖vν
0‖2 + ‖ρν

0‖2

2
.

As ε goes to zero, (and by standard results of compactness) one can find sub-
sequences such that

vν,ε ∗
⇀ vν and ρν,ε ∗

⇀ ρν in L∞(0, T ;L2)
vν,ε ⇀ vν in L2(0, T ;H1)
ρν,ε ⇀ ρε in L2(0, T ;L2)
vν,ε → vν in L2(0, T ;L2),

for some vν ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and ρν ∈ L∞(0, T ;L2(Ω)).
By standard arguments it turns out that (vν , ρν) is a weak solution to (1.5).
In particular, being vν,ε strongly convergent, while ρν,ε is weakly convergent
in L2(0, T ;L2(Ω)), one has

∫ T

0

∫

Ω

(vν,ε·)∇ψ ρν,ε dxdτ →
∫ T

0

∫

Ω

(vν · ∇)ψ ρν dxdτ,

and also

ε

∫ T

0

∫

Ω

∇ρν,ε∇ψ dxdτ → 0,

due to the uniform bound for ε
∫ T

0

∫
Ω

|∇ρν,ε|2dxdτ . This implies that the
(vν , ρν) is a weak solution in the sense of Definition 4.1 and in particular
that energy inequality (4.2) is satisfied. �

From the existence result we prove now the last result of this paper.

Theorem 4.3. Let Ω be a bounded smooth open set in R
3, let vE

0 ∈ H3(Ω), be a
divergence-free vector field tangential to the boundary, let also ρE

0 ∈ H3(Ω). Let
us suppose that the initial data satisfy the following conditions at the boundary:

ωE
0 (x) = 0 ∀x ∈ Γ,

∇ρE
0 (x) = 0 ∀x ∈ Γ.

(4.3)



162 L. C. Berselli and S. Spirito NoDEA

Let uE , ρE ∈ C([0, T ];H3(Ω)) be the unique solution of the Euler Boussinesq
equations (1.6), with initial datum (vE

0 , ρ
E
0 ) and defined in some interval [0, T ].

Let (vν , ρν) be a weak solution of the Boussinesq equations (1.5) with a
divergence free and tangential to the boundary initial datum un

0 ∈ L2(Ω) and
with ρν

0 ∈ L2(Ω) such that

‖uν
0 − uE

0 ‖ = O(ν) and ‖ρν
0 − ρE

0 ‖ = O(ν).

Then,

sup
t∈[0,T ]

‖uν − uE‖2
L∞(0,T ;L2(Ω)) = O(ν2),

sup
t∈[0,T ]

‖ρν − ρE‖2
L∞(0,T ;L2(Ω)) = O(ν2),

‖∇uν − ∇uE‖2
L2(0,T ;L2(Ω)) = O(ν).

Proof. The proof is based on the same techniques employed before. We multi-
ply (1.5) by (vE , ρE) and with suitable integration by parts we get
∫

Ω

vν(t)uE(t)+ρν(t)ρE(t) dx+
∫ t

0

∫

Ω

(
ν∇vν∇vE + (vν · ∇) vνvE

+(vν · ∇) ρνρE
)
dxdτ−

∫ t

0

∫

Ω

ρνρE
t + vνvE

t dxdτ + ν

∫ t

0

∫

Γ

vν(∇n)T vE dSdτ

=
∫

Ω

vE
0 v

ν
0 +ρE

0 ρ
ν
0 dx. (4.4)

We then obtain from the equation for (vE , ρE)
∫ t

0

∫

Ω

(
vE

t v
ν + ρE

t ρ
ν + (vE · ∇) vEvν + (vE · ∇) ρEvν

)
dxdτ

=
∫

Ω

vE
0 v

ν
0 + ρE

0 ρ
ν
0 dx. (4.5)

Next, by multiplying the Euler Boussinesq equations by uE and by the usual
integrations by parts we get the energy conservation

‖vE(t)‖2 + ‖ρE(t)‖2

2
=

‖vE
0 ‖2 + ‖ρE

0 ‖2

2
. (4.6)

Then, by adding together (4.2)–(4.6) and subtracting (4.4)–(4.5), we get

‖v(t)‖2 + ‖ρ(t)‖2

2
+ ν

∫ t

0

∫

Ω

∇vν∇v dxdτ +
∫ t

0

∫

Ω

(v · ∇) vEv dxdτ

−
∫ t

0

∫

Ω

(v · ∇) ρEρ dxdτ + ν

∫ t

0

∫

Γ

vν(∇n)T v dSdτ ≤ ‖v(0)‖ + ‖ρ(0)‖2

2
,

(4.7)

where

v := vν − vE and ρ := ρν − ρE .

With the same manipulations employed in the previous section we get
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‖v(t)‖2 + ‖ρ(t)‖2

2
+ ν

∫ t

0

‖∇v‖2dτ

≤ ‖v(0)‖2 + ‖ρ(0)‖2

2
− ν

∫ t

0

∫

Γ

v (∇n)T v dSdτ −
∫ t

0

∫

Ω

(v · ∇) vEv

+(v · ∇) ρEρ dxdτ − ν

∫ t

0

∫

Ω

ΔvEv dxdτ + ν

∫ t

0

∫

Γ

(curl vE × n) v dSdτ.

We then estimate most of the terms as before with
∣
∣
∣
∣

∫

Ω

(v · ∇) vE v + (v · ∇) ρEρ dx

∣
∣
∣
∣ ≤ C

(‖u(t)‖2 + ‖ρ(t)‖2
)
,

ν

∣
∣
∣
∣

∫

Γ

v · (∇n)T · v dS
∣
∣
∣
∣ ≤ C ν‖v‖2 +

ν

2
‖∇v‖2,

ν

∣
∣
∣
∣

∫

Ω

ΔvEv dx

∣
∣
∣
∣ ≤ C

(‖v‖2 + ν2
)
,

where we used that vE ∈ C([0, T ];H3(Ω)).
To handle the last integral involving curl vE on Γ, we observe that the

equation for the vorticity for the Euler–Boussinesq system implies, along path-
lines,

curl vE(X(α, t), t) = ∇αX(α, t) curl vE(α, 0) −
∫ t

0

curl(ρEe3)(X(α, σ), σ) dσ,

hence now curl vE
0 (x) = 0 on Γ is not enough to have curl vE = 0 on the bound-

ary for all positive times and a control also on curl(ρEe3) at the boundary is
needed. We then observe that ρE is transported by the velocity vE (it solves
the continuity equation), hence

ρE(X(α, t), t) = ρE
0 (α).

Consequently, we get the following evolution equation for the gradient of ρ:

∇ρE(X(α, t), t)∇αX(α, t) = ∇ρE
0 (α),

hence

∇ρE(X(α, t), t) = ∇ρE
0 (α)

[∇αX(α, t)
]−1

.

Since the matrix ∇αX is non-singular and since path-lines starting at the
boundary remain at the boundary, it follows that a sufficient condition to have
curl(ρEe3)(x, t) = 0 for all x ∈ Γ and for all t ∈ [0, T ] is that of asking (4.3).
Under the above assumptions the term

∫
Γ
(curl vE×n) v dS vanishes identically,

hence we arrive at the inequality

‖u(t)‖2 + ‖ρ(t)‖2 + ν

∫ t

0

‖∇u‖2 dτ ≤ ‖u(0)‖2 + ‖ρ(0)‖2

+C
[∫ t

0

‖u(τ)‖2 dτ + ν2

]
,

from which we have the thesis by applying the Gronwall lemma. �
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