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1. Introduction

In this note we want to consider evolution problems in a non-cylindrical
domain, as for instance

⎧
⎨

⎩

∂u
∂t − Δxu = f in Q
u(x, t) = 0 in Γ
u(x, 0) = uo(x) in Ω(0),

where Δx :=
∑n

i=1
∂

∂xi
, Q is an open subset of A× [0, T ] where A is a subset of

Rn (Q is ∪t∈(0,T )Ω(t) for some open and non-empty Ω(t) ⊂ A), the variable
in Q is denoted by (x, t) meaning in fact (x1, . . . xn, t), and Γ is ∪t∈(0,T )∂Ω(t)
and uo and f are suitable data.

This problem has been considered by many authors and can be attacked
in different ways. We confine to quote a few papers trying to draw the atten-
tion to the different techniques. A first paper we quote is [4], where the authors
suppose the existence of a C2-diffeomorphism between the non-cylindrical set
and a proper cylinder in Rn+1.

As far as we know other techniques are the following: the problem can
be studied via semigroup theory, in which one can see the equation as u′(t) +
A(t)u(t) = f(t) for t > 0 where A(t) is an operator whose domain DA(t)

depends on t and may change with t (see, for instance [2] and the references
therein); can be solved taking the perturbed equation ut − Δxu − εutt = f
and then study the limit behaviour of a suitable problem for ε → 0+ (see, for
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instance [5,9]); another way of seeing this problem is via minimizing move-
ments (see, for instance [7]).

Again, as far as we know, about the variation with respect to t of the
open sets Ω(t)’s it is required the already mentioned regularity in [4], a Lips-
chitz or Hölder continuity (as required in [5]) an increasing monotonicity, i.e.
Ω(s) ⊆ Ω(t) for s < t (as required in [7]).

Another paper we mention is [1], where the porous medium equation is
considered in a non-cylindrical domain.

In this paper our purpose is to consider the problem in a different way,
a technique by which we weaken the requirements, at least those mentioned
above. We do not look at the equation as an abstract evolution equation in
the variable t, but simply as an equation in a domain of Rn+1. As regards
the assumptions, we do not require monotonicity on Ω(t)’s and about regular-
ity we assume the variation of Ω(t) to be an absolute continuous function in
time and not to be Lipschitz or Hölder continuous (see (H.2) below for more
details).

Finally we do not confine to consider linear operators, but we consider
⎧
⎨

⎩

∂u
∂t + Au = f in Q
u(x, t) = 0 in Γ
u(x, 0) = uo(x) in Ω(0),

(1)

with A monotone operator; for example Au = −div(|Du|p−2Du), p ≥ 2 is
admitted.

2. Assumptions and preliminary results

Consider p ≥ 2, T > 0 and A an open and bounded subset of Rn, for simplicity
suppose moreover A connected. Consider Q̂ ⊂ A × [0, T ] a measurable subset
of Rn+1 in such a way that

Ω(t) := Q̂ ∩ (A × {t}) is an open, connected subset of Rn for every t ∈ (0, T ).

In this way we have

Q̂ = ∪t∈[0,T ]Ω(t);

moreover we define

Q = ∪t∈(0,T )Ω(t), Γ := ∪t∈(0,T )∂Ω(t). (2)

Notice that the set Ω(t) is measurable, at least for almost every t ∈ [0, T ].

Remark 2.1. Notice that we are not requiring Ω(0) 	= ∅ or Ω(0) connected.
This means that the sets Ω(0) and Ω(T ) could be in principle not connected
and also empty: for example Q ∩ (Ā × {0}) could be a closed set whose inner
part is empty. Moreover Ω(t) in fact can be also disconnected, but we con-
fine to consider Ω(t) connected and will show in the last section with some
examples how Ω(t) can be disconnected.
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In fact the set Ω(t) will turn out to be measurable for every t ∈ [0, T ].
Indeed about the family of open sets Ω(t) we will make the following assump-
tions:

(H.1) Ω(t) is a subset of A for every t ∈ [0, T ], A being a bounded open
subset of Rn, and Ω(t) is an open, connected and not empty set with
Lipschitz boundary for almost every t ∈ [0, T ];

(H.2) we suppose that for every to ∈ [0, T ] there exists a family of maps
depending on the parameter t ∈ Ito

∩ [0, T ] where Ito
is an open neigh-

bourhood of to

Gto
t = Gto(·, t) : Ω(to) → Ω(t)

such that the map G satisfies
– Gto(·, t) is a bijection for almost every t ∈ Ito

,
– Gto(·, t) is Lipschitz continuous with its inverse for every t ∈ Ito

– Gto(x, ·) and |DGto(x, ·)| are absolutely continuous for almost every
x ∈ Ω(to),

– |DGto(·, t)| ∈ L1(Ω(to)) for every t and ∂
∂t |DGto | ∈ L1(Ω(to) ×

(0, T )),

where |DGto(·, t)| = |DGto
t | denotes the absolute value of determinant of the

Jacobian matrix of Gto
t .

Comments about assumptions Assumption (H.1) is simply the request
that Ω(t) is a an open set with Lipschitz boundary. One could probably weaken
the assumption about the regularity of ∂Ω(t), but our main goal is not this.
We stress that (H.1) may hold for almost every t, i.e. it could fail for some
t’s. We have in mind some particular cases which will be explained in the last
section. The meaning of (H.2) is essentially the following: we want that Ω(t)
is a regular deformation of its neighbours, at least for almost every t. By reg-
ular, and this is the important thing, we mean that Gto(x, ·) and |DGto(x, ·)|
are absolutely continuous with respect to t (see the first example in the last
section). These requirements about these two functions ensure the absolute
continuity, and then the differentiability, of the two functions

t �→
∫

Ω(t)

dx, t �→
∫

Ω(t)

w(x, t)dx with w ∈ C1(Q̄)

as shown below to obtain formula (4). Thanks to density of regular functions
in the space W defined below, in which the solution of problem (1) lives, and
thanks to the boundary conditions (u = 0 in Γ) we obtain the differentiability
of the function t �→ ∫

Ω(t)
u(x, t)v(x, t)dx for u, v ∈ W.

We continue now giving some definitions and preliminary results. We
consider C1

c (Q), the set of C1 functions defined in Q and whose support is
contained in Q. For a function v belonging to C1

c (Q) we denote the gradient
of v as follows

grad v = (D1v, . . . , Dnv, vt) := (Dv, vt)
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where Dv is the vector in Rn of the first n derivatives. For v ∈ C1
c (Q) consider

the quantity

N(v) :=
(∫∫

Q

|Dv|pdxdt

)1/p

.

It is immediate to verify that N is a norm: indeed if v ∈ C1
c (Q) and

N(v) = 0 we have that v is a function depending only on t. We want to show
that v ≡ 0 in I, where I is the projection in [0, T ] of Q. Notice that I is also
the projection of ∂Q and since v = 0 in ∂Q we get that v(t) = 0 for every
t ∈ I, i.e. v ≡ 0. For v ∈ C1

c (Q) define the two norms

‖v‖1 :=
(∫∫

Q

[|v|p + |Dv|p]dxdt

)1/p

, ‖v‖2 :=
(∫∫

Q

|Dv|pdxdt

)1/p

.

Lemma 2.2. The two norms ‖ · ‖1 and ‖ · ‖2 are equivalent in C1
c (Q).

Proof. The only thing to verify is that there is a positive constant c such that

‖v‖1 ≤ c‖v‖2 for every v ∈ C1
c (Q).

Since v(·, t) ∈ C1
c (Ω(t)) we have (see, e.g. [8, section 7.8])

∫

Ω(t)

|v(x, t)|pdxdt ≤
( |Ω(t)|

ωn

)p/n ∫

Ω(t)

|Dv(x, t)|pdxdt

where ωn denotes the measure in Rn of the ball of radius 1 and since
∫∫

Q

|v(x, t)|pdxdt =
∫ T

0

∫

Ω(t)

|v(x, t)|pdxdt

we conclude
∫∫

Q

|v|pdxdt ≤
(

1
ωn

)p/n
(

sup
t∈(0,T )

|Ω(t)|
)p/n ∫∫

Q

|Dv|pdxdt.

�

Now we define the spaces

H and V
respectively as the completion of C1

c (Q) or alternatively of the space U defined
by

U :=

{

u ∈ C(Ā × [0, T ])

∣
∣
∣
∣
∣

w(·, t) ∈ C1
c (Ω(t)) for every t ∈ [0, T ],

w(x, ·) ∈ C1(0, T ) for every x ∈ A

}

with respect to the following norms

‖u‖H :=
(∫∫

Q

u2(x, t)dxdt

)1/2

, ‖u‖V :=
(∫∫

Q

|Du|p(x, t)dxdt

)1/p
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and V ′ as the dual space of V. We will consider p ≥ 2 in such a way that V ⊂ H
and since Ω(t) ⊂ A for every t ∈ (0, T ) by the previous lemma and Hölder’s
inequality we get

‖u‖H ≤ (|A|T )
p−2
2p

( |A|
ωn

)1/n

‖u‖V .

We also define the Banach space

W := {u ∈ V|ut ∈ V ′}, ‖u‖W := ‖u‖V + ‖ut‖V′

where by ut we denote the distributional derivative with respect to time Dtu
defined by

∫∫

Q

u
∂φ

∂t
dxdt = −〈Dtu, φ〉 =: −〈ut, φ〉 for every φ ∈ C∞

c (Q).

Since the embedding V ⊂ H is continuous and dense and identifying H′

with H we have

V ⊂ H ⊂ V ′

with continuous embeddings.
Notice that if we consider the following family of evolution triplets

V (t) ⊂ H(t) ⊂ V (t)′ t ∈ [0, T ]

where

V (t) = W 1,p
0 (Ω(t)), H(t) = L2(Ω(t)), V ′(t) = W−1,p′

(Ω(t))

for every t ∈ (0, T ), then the spaces V and H defined above can be also seen
as the closure of U with respect to the following norms

‖v‖p
V :=

∫ T

0

‖v(t)‖p
V (t)dt and ‖v‖2

H :=
∫ T

0

‖v(t)‖2
H(t)dt

since the functions t �→ ‖v(t)‖p
V (t) and t �→ ‖v(t)‖2

H(t) turn out to be measur-
able and where by v(t) we denote the function v(·, t). Because of that we will
sometimes write

v(t) to denote the function v(·, t).
Lemma 2.3. The space U is dense in the space W.

Proof. Consider ∂Q = Γ ∪ ∂Ω(0) ∪ Ω(0) ∪ ∂Ω(T ) ∪ Ω(T ). Any function u ∈ U
vanishes in Γ̂ := Γ ∪ ∂Ω(0) ∪ ∂Ω(T ) and so the only part of the boundary in
which may be not zero is Ω(0) ∪ Ω(T ). This part of the boundary clearly sat-
isfies the segment property (see, e.g., Theorem 3.18 in [3]) and then the space
U is dense in

W 1,p

Γ̂
(Q) = {u ∈ Lp(Q)|Dju ∈ Lp(Q), j = 1, . . . n,Dtu ∈ Lp(Q), u|Γ̂ = 0}

and, by the density of Lp(Q) in V ′, this is dense in

{u ∈ Lp(Q)|Dju ∈ Lp(Q), j = 1, . . . n,Dtu ∈ V ′, u|Γ̂ = 0} = W.

�
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Before going on we recall a couple of results (formula (3) and the following
lemma).

Lemma 2.4. Consider E a measurable subset of Rn, a measurable function
f : E × [0, T ] → R such that t �→ f(x, t) is absolutely continuous for almost
every x ∈ E, f(·, t) ∈ L1(E) for every t ∈ [0, T ] and ∂f

∂t ∈ L1(E ×(0, T )). Then
we have that the function t �→ ∫

E
f(x, t)dx is absolutely continuous in [0, T ]

and

d

dt

∣
∣
∣
t=s

∫

E

f(x, t)dx =
∫

E

∂f

∂t
(x, s)dx

for almost every s ∈ (0, T ).

Proof. Once called F the function F (t) =
∫

E
f(x, t)dx one has, by the absolute

continuity of f with respect to time,

lim
h→0

F (s + h) − F (s)
h

= lim
h→0

1
h

∫

E

[f(x, s + h) − f(x, s)]dx

= lim
h→0

1
h

∫

E

[∫ s+h

s

∂f

∂t
(x, t)dt

]

dx

= lim
h→0

1
h

∫ s+h

s

[∫

E

∂f

∂t
(x, t)dx

]

dt =
∫

E

∂f

∂t
(x, s)dx,

provided that s ∈ (0, T ) is a Lebesgue’s point for the function t �→
∫

E
∂f
∂t (x, t)dx and t �→ f(x, t) is differentiable in s. �

With assumptions (H.1) and (H.2) we get that the function t �→ ∫

Ω(t)
dx

is absolutely continuous and then differentiable and using Lemma 2.4 the fol-
lowing hold

d

dt

∣
∣
∣
t=to

∫

Ω(t)

dx =
d

dt

∣
∣
∣
t=to

∫

Ω(to)

|DG(x, t)|dx =
∫

Ω(to)

∂|DG|
∂t

(x, to)dx,

∫

Ω(t2)

dx −
∫

Ω(t1)

dx =
∫ t2

t1

∫

Ω(s)

∂|DG|
∂t

(x, s) dxds.

To compute the quantity in the right hand side of this last equality one
can use the formula

d

dt
(detA(t)) = detA(t) tr

(

A−1(t)
d

dt
A(t)

)

, (3)

where A(t) is a matrix whose coefficients depend on the parameter t. More in
general, given w ∈ C1(Q̄), using the change of variable Gto

t and formula (3)
by a direct computation one gets (see also [6])
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d

dt

∣
∣
∣
t=to

∫

Ω(t)

w(y, t)dy =
d

dt

∣
∣
∣
t=to

∫

Ω(to)

w(G(x, t), t)|DG(x, t)|dx

=
∫

Ω(to)

n∑

i=1

∂w

∂yi
(G(x, to), to)

∂Gi

∂t
(x, to)|DG(x, to)|dx

+
∫

Ω(to)

∂w

∂t
(G(x, to), to)|DG(x, to)|dx

+
∫

Ω(to)

w(G(x, t), t)
∂

∂t

∣
∣
∣
t=to

|DG(x, t)|dx

=
∫

Ω(to)

∂w

∂t
(y, to) dy +

∫

Ω(to)

div (w(y, to)V (y, to))dy

=
∫

Ω(to)

∂w

∂t
(y, to) dy +

∫

∂Ω(to)

w(y, to)V (y, to) · ν(y, to) dH n−1(y)

where ν(·, to) is the external normal (where it exists) to Ω(to), dH n−1 denotes
the Hausdorff (n − 1)-dimensional measure and V is a vector field whose com-
ponents are given by Vi(y, t) = ∂Gi

∂t (G−1
t (y), t). In particular taking w ∈ U we

get
d

dt

∣
∣
∣
t=to

∫

Ω(t)

w(x, t) dx =
∫

Ω(to)

∂w

∂t
(x, to) dx. (4)

Using this formula with w = uv with u, v ∈ U we get
∫ t2

t1

∫

Ω(t)

∂

∂t
(uv)dxdt =

∫

Ω(t2)

u(x, t2)v(x, t2) dx −
∫

Ω(t1)

u(x, t1)v(x, t1) dx.

(5)

Now notice that in fact for u, v ∈ U we have

(u(t), v(t))H(t) = (u(t), v(t))L2(Ω(t)) = (u(t), v(t))L2(A).

Proposition 2.5. For every u, v ∈ W we have that

t �→
∫

Ω(t)

u(x, t)v(x, t) dx

is continuous in [0, T ] and there is a constant c, depending only on T, such
that

max
t∈[0,T ]

∫

Ω(t)

u(x, t)2 dx ≤ c‖u‖W .

Proof. First we show that the function t �→ ∫

Ω(t)
u(x, t)v(x, t) dx is bounded.

Notice that, by the absolute continuity of t �→ ∫

Ω(t)
dx, the function above is

surely measurable for u, v ∈ C0(Q̄). Notice that formula (5) holds also if we
consider u, v ∈ Ũ , the space defined reflecting the functions in time as follows:
first define

Q̃ := Q̂ ∪
⋃

t∈[−T,0]

(Ω(−t) × {t})
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and for every u ∈ U consider a function ũ defined in Q̃ as follows

ũ(x, t) =
{

u(x, t) for t ≥ 0,
u(x,−t) for t ≤ 0,

and denote by Ũ the space of such ũ. Now if we fix t ∈ [0, T ], consider ϕ ∈
C1([−T, T ];R) such that ϕ(−T ) = 0, ϕ(s) = 1 for s ∈ [0, t], 0 ≤ ϕ ≤ 1, 0 ≤
ϕ′ ≤ 2/T , consider ũ, ṽ ∈ Ũ and notice that ϕũ belongs to Ũ . Apply (5) to
(ϕũ)ṽ with t1 = −T, t2 = t to get that ∂t(ϕũṽ) = ũ∂tṽϕ + ṽ∂tũϕ + ũṽϕ′ and
get

∣
∣
∣
∣
∣

∫

Ω(t)

u(x, t)v(x, t) dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ t

−T

∫

Ω(s)

[ũ∂tṽϕ + ṽ∂tũϕ + ũṽϕ′]dxds

∣
∣
∣
∣
∣

≤
∫ T

−T

∫

Ω(s)

[|ũ∂tṽϕ| + |ṽ∂tũϕ| + |ũṽϕ′|]dxds

≤ 2
∫ T

0

∫

Ω(s)

[|u||∂tv| + |v||∂tv| + uvϕ′]dxds

≤ ‖u‖2
V + ‖vt‖2

V′ + ‖v‖2
V + ‖ut‖2

V′ +
2
T

(‖u‖2
H + ‖v‖2

H)

≤ c̃(‖u‖2
W + ‖v‖2

W)

where c̃ = c̃(T ). In particular taking u = v we have (c = 2c̃)

sup
t∈(0,T )

∫

Ω(t)

u(x, t)2 dx ≤ c‖u‖2
W . (6)

Moreover, taking u = v in (5), u ∈ U and letting t1 → t2 we also get that

t �→
∫

Ω(t)

u(x, t)2 dx is continuous in [0, T ]. (7)

By inequality (6) and by the density of U in W we also get that the
embedding (as done in Problem 23.10 in [10])

j : U → X :=

{

u ∈ V|t �→
∫

Ω(t)

u(x, t)2 dx is continuous in [0, T ]

}

has a unique extension j : W → X (see Proposition 18.29 in [10]) and in this
sense (7) holds.

To conclude we observe that indeed we have that a function u ∈ W
belongs to C0([0, T ];H), where H = L2(A) and A ⊃ Ω(t) for very t ∈ [0, T ],
and u(·, t) ∈ H1

0 (Ω(t)) for almost every t ∈ [0, T ]. Then
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∣
∣
∣
∣
∣

∫

Ω(t2)

u(x, t2)v(x, t2) dx −
∫

Ω(t1)

u(x, t1)v(x, t1) dx

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

A

u(x, t2)v(x, t2) dx −
∫

A

u(x, t1)v(x, t1) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

A

u(x, t2)v(x, t2) dx −
∫

A

u(x, t2)v(x, t1) dx

+
∫

A

u(x, t2)v(x, t1) dx −
∫

A

u(x, t1)v(x, t1) dx

∣
∣
∣
∣

≤ ‖u‖C0([0,T ];H)‖v(t2) − v(t1)‖H + ‖v‖C0([0,T ];H)‖u(t2) − u(t1)‖H

by which we also get that t �→ ∫

Ω(t)
u(x, t)v(x, t) dx is continuous. �

Proposition 2.6. For every u, v ∈ W we have that
d

dt

∣
∣
∣
t=s

∫

Ω(t)

u(x, t)v(x, t) dx = 〈ut(s), v(s)〉V ′(s)×V (s) + 〈vt(s), u(s)〉V ′(s)×V (s),

and for t1, t2 ∈ [0, T ]
∫ t2

t1

[〈ut(s), v(s)〉V ′(s)×V (s) + 〈vt(s), u(s)〉V ′(s)×V (s)]ds

=
∫

Ω(t2)

u(x, t2)v(x, t2) dx −
∫

Ω(t1)

u(x, t1)v(x, t1) dx.

Proof. The formulas stated in the proposition are clearly true for u, v ∈ U . We
want to show they are true also for u, v ∈ W. The proof follows by density of
U in W and by formula (5). We have the two triplets

V ⊂ H ⊂ V ′

VA := Lp(0, T ;V ) ⊂ L2(0, T ;H) ⊂ Lp′
(0, T ;V ′) =: V ′

A

where we have defined V := W 1,p
0 (A),H = L2(A), V ′ = W−1,p′

(A), and notice
that V continuously embeds in VA and is a closed subspace of VA (clearly by
extending functions in V by 0 to (A×[0, T ])\Q). Since V is a closed and proper
subspace of VA also every linear and continuous form f ∈ V ′ can be extended
to an element of V ′

A, again extending by 0 outside of Q. Indeed, denoting by
ū the extension to VA of a function u ∈ V, i.e.

ū = u in Q, ū = 0 in A × (0, T ) \ Q,

we get (ū)t ∈ V ′
A. This can be easily seen since ut can be represented, in

a unique way, by n + 1 functions f0, f1, . . . fn ∈ Lp′
(Q) such that (see, e.g.,

Theorem 3.8 in [3])

〈ut, v〉 =
∫ T

0

∫

A

f0v dxdt +
n∑

j=1

∫ T

0

∫

A

fjDjv dxdt

and ‖ut‖V′ = ‖(f0, f1, . . . fn)‖(Lp′ (Q))n+1 .

Then (ū)t is analogously (and uniquely) represented by (f̄0, f̄1, . . . f̄n).
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We conclude that if u ∈ W we have that ū ∈ WA = {u ∈ VA|ut = u′ ∈
V ′

A} and we define
∫ T

0

〈ut(s), v(s)〉V ′(s)×V (s)ds :=
∫ T

0

〈(ū)t(s), v̄(s)〉V ′×V ds.

Now, by a standard procedure, using the density of U in W and using the
right hand side of the last equality, we can conclude (see also Problem 23.10
in [10]). �

Before ending this section we recall some classical definitions and a clas-
sical result we will apply in the next section. By X we denote a Banach space
endowed with the norm ‖ · ‖, and by 〈·, ·〉 the duality between its dual space
X ′ and X.

Definition 2.7. We say that an operator B : X → X ′ is coercive if

lim
‖x‖→+∞

〈Bx, x〉
‖x‖ → +∞,

is bounded if it maps a bounded set in a bounded set, is pseudomonotone if

xn → xin X-weak and lim sup
n

〈Bxn, xn − x〉 ≤ 0

implies that

〈Bx, x − y〉 ≤ lim inf
n

〈Bxn, xn − y〉 for every y ∈ X.

Finally we say that B is monotone if 〈Bx − By, x − y〉 ≥ 0 for every x, y ∈ X
and strictly monotone if 〈Bx − By, x − y〉 > 0 for every x, y ∈ X with x 	= y.

We recall now a classical result (see, for instance, Section 32.4 in [10]).

Theorem 2.8. Let A : X → X ′ (X ′ the dual space of X,X Banach space) be
pseudomonotone, bounded and coercive. Suppose L : X → 2X′

to be maximal
monotone. Then for every f ∈ X ′ the following equation has a solution

Lu + Au � f

and in particular if L,A are single-valued the equation Lu + Au = f has a
solution.

3. The existence result

In this section we want to prove a general existence result for an evolution
equation. Thanks to Proposition 2.5 we can define

W0 = {u ∈ W | u(x, 0) = 0 in Ω(0)}
and then consider the operator

Lu = ut, D(L) = W0.

Proposition 3.1. The operator L : D(L) ⊂ V → V ′ is maximal monotone.
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Proof. For simplicity we will denote by 〈·, ·〉 the quantity 〈·, ·〉V′×V . The first
step

〈Lu, u〉 ≥ 0

follows from Proposition 2.6 since for u ∈ W0

〈Lu, u〉 =
1
2

∫

Ω(T )

u2(x, T ) dx − 1
2

∫

Ω(0)

u2(x, 0) dx ≥ 0.

To see that it is maximal monotone fix w ∈ V ′ and v ∈ V and suppose

〈w − Lu, v − u〉 ≥ 0

for every u ∈ D(L). We want to show that v ∈ D(L) and w = Lv. If we define
z = v − u we obtain that

〈w, z〉 − 〈L(v − z), z〉 ≥ 0.

Fix z and consider λz with λ ∈ R. Since L is linear for every positive λ we
obtain

λ〈Lz, z〉 ≥ 〈Lv − w, z〉
and for every negative λ

λ〈Lz, z〉 ≤ 〈Lv − w, z〉
for every z ∈ v + D(L). Letting λ go to zero we obtain that 〈w − Lv, z〉 = 0,
i. e.

〈w − Lv, v〉 = 〈w − Lv, u〉
for every u ∈ D(L) which implies 〈w − Lv, u〉 = 0 for every u ∈ D(L). By the
density of W0 in V we get that

Lv = w in V ′.

Then, since v ∈ V and w ∈ V ′ and Lv = vt we conclude that v ∈ W. We have
to see now that v ∈ D(L). For every u ∈ D(L) we have that

2〈L(v − u), v − u〉 =
∫

Ω(T )

(v(x, T ) − u(x, T ))2 dx −
∫

Ω(0)

v(x, 0))2 dx.

It is sufficient to consider u ∈ D(L) satisfying u(x, T ) = v(x, T ) to get

−
∫

Ω(0)

v(x, 0))2 dx ≥ 0

which implies that v(x, 0) = 0 in Ω(0) which concludes the proof. �

Now consider an operator A : V −→ V ′ satisfying the following assump-
tions:

A pseudomonotone, coercive, bounded (see Definition 2.7). (8)
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Definition 3.2. Given f ∈ V ′, uo ∈ L2(Ω(0)) we say solution of the problem
⎧
⎨

⎩

ut + Au = f in Q
u = 0 in Γ
u(0) = uo in Ω(0),

(9)

a function u ∈ W such that ut +Au = f in V ′ and u(x, 0) = uo(x) in L2(Ω(0)).
If Ω(0) = ∅ the initial condition has no meaning.

Remark 3.3. If Ω(0) = ∅ the problem can be simply written
{

ut + Au = f in Q
u = 0 in Γ,

(10)

even if we continue to write u(0) = uo in Ω(0) just to consider the general
case.

Now we start considering the following problem
⎧
⎨

⎩

ut + Au = f in Q
u = 0 in Γ
u(0) = 0 in Ω(0),

(11)

Theorem 3.4. Suppose A pseudomonotone, coercive, bounded, according to
Definition 2.7. Then problems (11) admit a solution for every f ∈ V ′. If more-
over A is strictly monotone the solution is unique.

Remark 3.5. In fact we obtain an existence result also for the Cauchy problem

ut + Au � f, u ∈ W0.

Moreover the solution is unique if the operator A of Theorem 3.4 is strictly
monotone.

Proof. By Theorem 2.8 (see for more details Theorem 32.A, Corollary 32.25,
Corollary 32.26 and also Proposition 27.7 in [10]) and Proposition 3.1 we obtain
the existence.

As regards uniqueness it is sufficient to observe that if u, v are two solu-
tions we have

0 = 〈(u − v)t + Au − Av, u − v〉 ≥ 〈Au − Av, u − v〉 ≥ 0.

Since A is strictly monotone we conclude that u = v. �

Now we give some a priori estimates supposing the operator A satisfies
some standard growth conditions.

Theorem 3.6. Suppose there exist two positive constants α, β > 0 such that for
some p ∈ [2,+∞)

〈Au − Av, u − v〉V′×V ≥ α‖u − v‖p
V , ‖Au‖V′ ≤ β‖u‖p−1

V (12)

for every u, v ∈ V. Then, defined the operator P : W → V ′ by Pu = u′ + Au,
the following estimates hold: there is a constant c = c(α, β, p) (depending only
on α, β and p) such that for every u ∈ W

‖u‖W ≤ c[‖Pu‖V′ + ‖Pu‖1/(p−1)
V′ + ‖u(0)‖2/p

H(0)].
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Moreover for every f ∈ V ′ and uo ∈ H(0) = L2(Ω(0)) problem (9) has a
unique solution.

Proof. We estimate (q = p/(p − 1)), for every ε > 0,

‖Pu‖V′‖u‖V ≤ εp

p
‖u‖p

V +
1
q

(
1
ε

)q/p2

‖Pu‖q
V′ (13)

and, by Proposition 2.6,

2〈ut, u〉 = (u(T ), u(T ))H(T ) − (u(0), u(0))H(0)

=
∫

Ω(T )

u2(x, T ) dx −
∫

Ω(0)

u2(x, 0) dx.

Then, since 〈Au, u〉 = 〈Pu, u〉 − 〈ut, u〉, we have

α‖u‖p
V ≤ ‖Pu‖V′‖u‖V +

1
2
[(u(0), u(0))H(0) − (u(T ), u(T ))H(T )] (14)

and using (13) for a suitable and little enough value of ε (which can be chosen
depending only on α and p) we infer

‖u‖V ≤ c(α, p)[‖Pu‖p/(p−1)
V′ + (u(0), u(0))H(0) − (u(T ), u(T ))H(T )]1/p.

We conclude estimating ‖ut‖ as follows: since ut = Pu − Au we obtain that
‖ut‖V′ ≤ ‖Pu‖V′ + β‖u‖p−1

V

‖u‖W ≤ c(α, β, p)[‖Pu‖V′ + ‖Pu‖1/(p−1)
V′ + ‖u(0)‖2/p

H(0)].

As regards the existence and uniqueness of the solution notice that thanks to
Proposition 2.5 every function u ∈ W is such that u(·, t) ∈ L2(Ω(t)) for every
t ∈ [0, T ]. In particular we can choose a function w ∈ W in such a way that
w(·, 0) = uo in L2(Ω(0)). By Theorem 3.4 the problem

⎧
⎨

⎩

vt + A(v + w) = f − wt in Q
v = 0 in Γ
v(0) = 0 in Ω(0),

has a unique solution v. Indeed the operator Ã(v) := A(v+w) is bounded and
pseudomonotone. Moreover if we suppose (12) we see that Ã is also coercive:

〈Ãv, v〉 = 〈A(v + w) − Aw, v〉 + 〈Aw, v〉.
Dividing by ‖v‖ we obtain for the second term that

∣
∣
∣
∣
〈Aw, v〉

‖v‖
∣
∣
∣
∣ ≤ ‖Aw‖

and for the first, by the monotonicity of A,

〈A(v + w) − Aw, v + w − w〉
‖v‖ ≥ α‖v‖p−1.

Then the function u = v + w satisfies (9). �
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Remark 3.7. If A is linear we also have the corresponding existence result for
the problem

⎧
⎨

⎩

ut + Au + λu = f in Q
u = 0 in Γ
u(0) = uo in Ω(0),

for every λ ∈ R. It is sufficient indeed to consider the change of variable
v(x, t) = eλtu(x, t) to obtain

⎧
⎨

⎩

vt + Av = f̃ = feλt in Q
v = 0 in Γ
v(0) = uo in Ω(0),

which has a unique solution v. Then u(x, t) = v(x, t)e−λt solves the original
problem.

4. Examples

Here we give some simple example showing some pictures representing some
possible sets Q in which Eq. (1) holds. We confine to draw some pictures in
R2. In the following pictures the vertical axis represents the variable t. In the
following we will denote by A an operator satisfying the assumptions made in
Theorem 3.6. In this section we want to focus our attention on the possible
sets Q in which problem (9) is solvable with attention to assumption (H.2).
The set Q will be contained in A × [S, T ] for some open set A.
1. In the first example the set Q (see Fig. 1) is a subset of R2 of the following
type:

Q = {(x, t) ∈ R2|t ∈ [S, T ], γ1(t) ≤ x ≤ γ2(t)}.

In this simple case Ω(t) turns out to be the interval (γ1(t), γ2(t)). The existence
of a family of maps Gto required in assumption (H.2) becomes the existence
of only one map G : [a, b] × [T0, T1] → Q where, for instance, one can choose
a = γ1(T0), b = γ2(T0). A choice for the map G can be the following:

G(x, t) =
x − a

b − a
(γ2(t) − γ1(t)) + γ1(t).

Then it is quite easy to see that the functions

t �→
∫

Ω(t)

dx =
∫ γ2(t)

γ1(t)

dx,

t �→ G(x, t), t �→ DG(x, t) for (almost) every x ∈ [a, b]

are absolutely continuous, and then our assumptions (H.1) and (H.2) are sat-
isfied, if the profiles γ1 and γ2 are absolutely continuous.

A simple example in higher dimension could be a set Q whose profile
is obtained rotating the graph of an absolute continuous function around the
vertical axis.
2. In the second example the set Q is a connected subset of A × [S, T ], being
A an open set containing Ω(t) for every t, but we suppose there is to ∈ (S, T )
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Figure 1.

such that Ω(t) is not connected, but may be the union of two (or more) disjoint
and connected sets. For simplicity, as shown in Fig. 2 (where Ω(t) is an interval
or the union of two disjoin intervals) we suppose to have S1, S2, to with

S1 = S, S1 < S2 < to.

We denote by Ω1(t) and Ω2(t) the two potential connected components
of Ω(t) for t ∈ [S, to). For t ∈ [S1, S2) the set Ω2(t) is the empty set and
Ω(t) = Ω1(t), while for t ∈ [S2, to) we have

Ω(t) = Ω1(t) ∪ Ω2(t), Ω1(t) 	= ∅, Ω2(t) 	= ∅.

Once defined Q− and Q+ the sets

Q− := Q ∩ (A × (S1, to)), Q+ := Q ∩ (A × (to, T )),

also the set Q− turns out to be not connected and is the union of Q−
1 and Q−

2

where

Q−
1 = ∪t∈(S1,to)Ω1(t), Q−

2 = ∪t∈(S2,to)Ω2(t).

We define moreover

Γ−
1 := ∪t∈(S1,to)∂Ω1(t), Γ−

2 := ∪t∈(S2,to)∂Ω2(t).

Figure 2.
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Assumptions (H.1) and (H.2) can be satisfied even if the sections Ω(t) are
disconnected for t < to and connected for t > to. Then the problem

(P)

⎧
⎪⎪⎨

⎪⎪⎩

ut + Au = f in Q
u = 0 in Γ
u(x, S1) = u1(x) in Ω1(S1)
u(x, S2) = u2(x) in Ω2(S2),

has a (unique) solution. In general one could consider as many “initial condi-
tions” as the connected components of Ω(t).

To show that the problem above has a unique solution one can solve the
two following problems

I)

⎧
⎨

⎩

ut + Au = f in Q−
1

u = 0 in Γ−
1

u(x, S1) = u1(x) in Ω1(S1),
II)

⎧
⎨

⎩

ut + Au = f in Q−
2

u = 0 in Γ−
2

u(x, S2) = u2(x) in Ω2(S1),

denote by u−
1 the solution of problem I) and by u−

2 the solution of problem
II), solve the third problem

III)

⎧
⎨

⎩

ut + Au = f in Q+

u = 0 in Γ+

u(x, to) = v(x) in Ω(to),

where

Ω(to) = Ω1(to) ∪ Ω2(to), v(x) :=
{

u1(x, to) for x ∈ Ω1(to)
u2(x, to) for x ∈ Ω2(to),

and denote by u+ the solution of problem III). The solution u of problem (P)
is then defined as

u = u−
1 in Q−

1 , u = u−
2 in Q−

2 , u = u+ in Q+.

3. We can also consider problems without a real initial conditions. For example
a set Q like that in Fig. 3 may be considered and, provided that assump-

tions (H.1) and (H.2) are satisfied, one can consider the problem

(P̃)
{

ut + Au = f in Q
u = 0 in Γ.

Figure 3.
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Figure 4.

Figure 5.

If Q = ∪t∈(S,T )Ω(t) we suppose that Ω(S) = ∅ and Ω(t) 	= ∅ for t > S. In fact
the initial condition is contained in the boundary condition in Γ.
4. Arguing as in the example 2. and as in the example 3. one could also con-
sider problem (P̃) with Q like in Fig. 4 in which no initial condition is given.
Also a set like that in Fig. 5 could be considered, i.e. a set where Ω(t) can
become empty for some to ∈ (S, T ).

Even in this case one can treat the problem as two different problems:
one for t ∈ [S, to] and another for t ∈ [to, T ].
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