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Passing from bulk to bulk-surface evolution
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Abstract. In this paper we formulate a boundary layer approximation for
an Allen–Cahn-type equation involving a small parameter ε. Here, ε is
related to the thickness of the boundary layer and we are interested in
the limit ε → 0 in order to derive nontrivial boundary conditions. The
evolution of the system is written as an energy balance formulation of the
L2-gradient flow with the corresponding Allen–Cahn energy functional.
By transforming the boundary layer to a fixed domain we show the con-
vergence of the solutions to a solution of a limit system. This is done
by using concepts related to Γ- and Mosco convergence. By consider-
ing different scalings in the boundary layer we obtain different boundary
conditions.
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1. Introduction

In the recent years there has been a growing interest in the coupling of bulk
and surface processes. One important example is the theory of spinodal decom-
position of binary mixtures where dynamic boundary conditions are used to
model the effective short-range interaction between the two mixture compo-
nents and the wall (i.e., the boundary), see e.g. [20,29] and the references
therein. Moreover, we refer to [7,8,15,17,19,26,30,37] for an (incomplete) list
of articles related to the mathematical analysis of dynamic boundary condi-
tions for various evolutionary systems including the heat equation, the iso-
and non-isothermal Allen–Cahn equation, the Cahn–Hilliard equation and the
Caginalp system. In addition, we point out to the book [39] for the connection
to Feller semigroups and Markov processes.

This work was supported by the DFG research center Matheon in project D22.
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Figure 1. Transformation of the boundary layer

In this paper we discuss the question whether such dynamic boundary
conditions can be obtained as a limit of a family of bulk systems in the case of
the Allen–Cahn equation. More precisely, for a domain Ω with C2-boundary Γ
we introduce a boundary layer of thickness ε > 0, denoted by Σε, that shrinks
to Γ as ε tends to 0 (see Fig. 1). In the domains Ω and Σε we consider the
following system of (bulk) Allen–Cahn-type equations

τb∂tuε − AbΔuε + W ′
b(uε) = 0 in Ω,

τε∂tuε − AεΔuε +
1
ε
W ′

s(uε) = 0 in Σε,

subject to natural continuity and transmission conditions (see (1)) at the com-
mon boundary between the fixed bulk domain Ω and the thin boundary layer
Σε. Here, Wb and Ws are given, in general nonconvex, bulk and surface poten-
tials.

In order to derive nontrivial boundary conditions when ε goes to 0 we
assume that the relaxation time τε and the diffusion coefficient Aε depend
on ε in the boundary layer Σε. This amounts to different length and time
scales in the bulk and in the boundary layer. We then show that the solutions
of this system converge (up to subsequences) to a solution of a limit system
which describes the coupling of bulk and surface evolution. The specific form
of the derived limit system depends on the scalings of the coefficients τε and
Aε. In particular, we will derive a hierarchy of dynamic and static boundary
conditions depending on the scalings.

This approach is quite common in the derivation of lower-dimensional
models in static elasticity, see e.g. [9,16]. Furthermore, we refer to [35] for the
derivation of models for conductive thin sheets using asymptotic expansion
and to [10] for the (non-rigorous) derivation of boundary conditions for the
heat equation.

Here, however, we give a rigorous convergence proof which is based on
an energy balance formulation of the underlying gradient flow structure of the
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Allen–Cahn equation. More precisely, by defining the Allen–Cahn energy func-
tionals Eε the bulk equations can be written as L2-gradient flow in form of a
force balance between the dissipative forces and the potential restoring forces
given by the derivative of Eε. This force balance formulation is equivalent to a
scalar energy balance equation written in terms of the energy functionals and
quadratic dissipation potentials Rε, which in this case are given by the squares
of the L2-norm (see also [1,24])

Eε(uε(t)) +
∫ t

0

[
Rε(u̇ε) + R∗

ε(−DEε(uε))
]
ds = Eε(uε(0)),

where R∗
ε denotes the dual dissipation potential, i.e., the Legendre transform

of Rε.
The energy balance formulation opens the door for the application of

notions of variational convergence such as Mosco and Γ-convergence [3,6,11].
Here we follow the ideas in [33] (see also [5,21,22]) where a method to prove
the convergence of gradient flows for Γ-converging energy functionals was pre-
sented and applied to derive the limiting dynamics of vortices for the heat
flow of the Ginzburg–Landau energy. However, we emphasize that the con-
vergence of the gradient flow cannot follow from the Γ-convergence of the
energy functionals only and extra conditions are required for the interplay of
the convergence of the energy and the dissipation potentials. These extra con-
ditions amount to the construction of mutual recovery curves for the energy
and dissipation potentials.

Additionally, for λ-convex energy functionals the evolution of the system
can be equivalently described by an evolution variational inequality

Eε(uε(t)) + 〈Gεu̇ε(t), uε(t)−ũ〉 ≤ Eε(ũ) − Λε(uε(t)−ũ) ∀ ũ,

where Gε denotes the linear and self-adjoint operator associated with Rε and
Λε corresponds to the λ-convexity of Eε.

We show that we can pass to the limit in the energy balance and the
evolution variational inequality, respectively, in order to obtain correspond-
ing limit formulations, written in terms of limit functionals E0 and R0, which
describe the coupling of bulk and surface evolution.

Let us remark here that the purpose of this paper is twofold: first, we
want to identify the relevant scalings in the boundary layer system for deriving
nontrivial boundary conditions. In particular, this identification can be used
to obtain more information about the structure of the limit systems (see, e.g.
[4]). As a longterm goal we shall apply this approach to the related problem of
deriving interface conditions in reaction-diffusion systems. Nonstandard inter-
face and transmission conditions in semiconductor heterostructures and bio-
logical systems are of great importance (see [14,18,36]). Especially in organic
photovoltaics interfaces are the fundamental building block, see [28, Sect. 8].

Second, the paper contributes to the theory of application of Γ-conver-
gence methods to evolutionary problems, especially to gradient flows. We refer
to [2,23,25] for the application of the principles of Γ-convergence to rate-
independent evolution, Hamiltonian systems and Wasserstein gradient flows,
respectively.
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The paper is organized as follows: in Sect. 2 we introduce the underly-
ing geometry of the boundary layer approximation and present the system of
Allen–Cahn-type equations along with technical details such as growth condi-
tions, etc. The bulk system will then be cast into the gradient flow framework,
in particular in the energy balance formulation. Furthermore, we introduce
a change of coordinates in order to transform the system to a fixed domain
(see Sect. 2.3). In this change of coordinates we characterize a point in the
boundary layer by its projection and distance onto, resp., to Γ. Therefore we
can decompose directions in Σε into tangential and normal parts relative to
Γ. The normal direction is then rescaled in order to obtain a fixed domain.

In Sect. 3 we present the main result of the paper, i.e., the limit passage
in the energy balance. This is based on the results in [33] which for the conve-
nience of the reader will be reformulated here. Applied to our specific problem
the construction of the mutual recovery curves is akin to the construction of
the recovery sequences for the energy functionals in the sense of Γ-convergence.

In the final Sect. 4 the derived limit models will be discussed. In particu-
lar, depending on the scaling of the relaxation time and the diffusion coefficient
in the boundary layer we obtain the usual Dirichlet- and Neumann boundary
conditions as well as dynamic boundary conditions and boundary conditions
that are to our knowledge not addressed in the literature so far, e.g., coupling
of the bulk equation to an elliptic equation for the trace on Γ (see (17))

Notably, we also obtain the system recently considered in [37] where it
was studied regarding existence and uniqueness of global solutions, as well as
asymptotic behavior and the existence of a global attractor. The system con-
sists of the following bulk equation and dynamic boundary condition for the
bulk and surface order parameters u and U = u|Γ

τb∂tu − AbΔu + W ′
b(u) = 0 in Ω,

τs∂tU − AsΔΓU + Ab
∂u
∂ν + W ′

s(U) = 0 on Γ,

where ΔΓ denotes the Laplace–Beltrami operator on Γ.

2. Setting of the model

2.1. Definitions and notations

We consider an open and bounded domain Ω ⊂ R
d, d ≥ 2, with a C2-boundary

denoted by Γ := ∂Ω. For a sufficiently small parameter ε > 0 we introduce the
domain Ωε defined by

Ωε :=
{
x ∈ R

d : dist(x,Ω) < ε
}
,

where dist(x,Ω) := infy∈Ω |x − y| denotes the distance to Ω. We call the set
Σε := Ωε \Ω the boundary layer (or ε-neighborhood) of Ω. Obviously, we have
the convergence Ωε → Ω for ε → 0 with respect to the Hausdorff distance.

Let T > 0 be a finite time horizon. In the domain Ωε we consider the
following system of Allen–Cahn-type equations:



Vol. 20 (2013) From bulk to bulk-surface evolution 923

τb∂tuε − AbΔuε + W ′
b(uε) = 0 in [0, T ] × Ω,

τε∂tuε − AεΔuε +
1
ε
W ′

s(uε) = 0 in [0, T ] × Σε,
(ACε)

where τb, τε > 0 denote the relaxation times, Ab, Aε the diffusion coefficients,
and W ′

b, W ′
s are the derivatives of potentials Wb,Ws ∈ C1(R) in the bulk

and in the boundary layer, respectively. The equations above are subjected to
the following natural boundary and transmission conditions at ∂Ωε and at the
interface Γ

Aε
∂uε

∂ν = 0 on [0, T ] × ∂Ωε,

Ab
∂uε

∂ν = Aε
∂uε

∂ν on [0, T ] × Γ,

[[uε]] = 0 on [0, T ] × Γ,

(1)

where ν denotes the outer unit normal on Γ and ∂Ωε and [[ · ]] denotes the jump
across the interface Γ. Finally, the system is completed by imposing the initial
condition uε(0) = u0

ε in Ωε.
We assume that in the boundary layer Σε the coefficients satisfy the

scalings

τε = ε−αRτs and Aε = ε−βEAs

for given τs, As > 0 and αR ∈ R, βE ∈]−1,∞[.
The nonlinearities Wb and Ws are at least of quadratic growth and satisfy

the growth conditions

|W ′
b/s(u)| ≤ C(1+|u|p) with p ∈ [1, q[ and q =

{
∞ d = 2,
d+2
d−2 d ≥ 3.

(WGrow)

These are the same growth conditions imposed in [37] for the bulk poten-
tial Wb, while we have a stronger growth condition for the boundary potential
since we are in the full d-dimensional domain Σε in contrast to the (d−1)-
dimensional boundary Γ in [37].

A prominent example for the (nonconvex) potentials Wb and Ws is the
double well potential u �→ 1

4 (1−u2)2, which obviously satisfies the above
growth conditions for d = 2, 3.

We show that solutions of the system above converge in a certain sense
to a solution of a limit system which consists of the bulk equation in Ω in
(ACε) coupled to an equation posed on the boundary Γ. As we will see, the
form of the latter equation will heavily depend on the choices for the scaling
exponents αR and βE.

To put the above system in an abstract framework we introduce the func-
tion spaces Vε := H1(Ωε) and Hε := L2(Ωε). Then, the weak formulation of
the system (ACε) reads: Find uε ∈ H1(0, T ;Hε)∩L2(0, T ;Vε) with uε(0) = u0

ε

such that for all ϕ ∈ Vε and almost all t ∈ [0, T ] we have

0 =
∫

Ωε

[
Gε(x)∂tuεϕ + Aε(x)∇uε · ∇ϕ + W

′
ε(x, uε)ϕ

]
dx, (w-ACε)
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where we use the notation

Gε(x) =

{
τb in Ω,

τε in Σε,
Aε(x) =

{
Ab in Ω,

Aε in Σε,
Wε(x, ·) =

{
Wb(·) in Ω,

1
εWs(·) in Σε.

The existence of solutions of (ACε), resp. (w-ACε), follows from standard
arguments, see e.g. [31,37].

Theorem 2.1. (Existence of solutions) For fixed ε > 0 let u0
ε ∈ Vε be given.

Moreover, assume that the growth condition (WGrow) holds. Then, there exists
a solution uε ∈ H1(0, T ; L2(Ωε)) ∩ L∞(0, T ; H1(Ωε)) of the system (ACε).

2.2. Different formulations of gradient flows

It is well know that Eq. (ACε) is the L2-gradient flow of the Allen–Cahn func-
tional Eε : Vε → R defined by

Eε(u) =
∫

Ωε

[
Aε(x)

2
|∇u|2 + Wε(x, u)

]
dx.

More precisely, by defining the symmetric and positive metric tensor Gε :
Hε → H∗

ε via 〈Gεu̇, v̇〉 =
∫
Ωε

Gε(x)u̇v̇dx the equation in (w-ACε) can then be
written in the form

Gεu̇ε(t) = −DEε(uε(t)), (fbε)

with DEε(u) denoting the Gâteaux derivative of Eε which is well-defined due
to (WGrow). Note that we (notationally) distinguish between Hε and H∗

ε since
the former is the space of velocities u̇, while the latter is the space of forces
ξ = DEε(u). Thus, Gε maps velocities to forces. The equation above can be seen
as a force balance formulation of the gradient flow, where Gεu̇ε and DEε(uε) are
the dissipative and potential restoring forces, respectively. Defining the inverse
operator Kε = G−1

ε :H∗
ε →Hε, mapping forces to velocities, we can write the

force balance (fbε) as rate equation in Hε

u̇ε(t) = −KεDEε(uε(t)) =: −∇Gε
Eε(uε(t)), (reε)

where ∇Gε
E denotes the gradient of Eε with respect to the metric tensor Gε.

Note that we have 〈ξ,Kεη〉 =
∫
Ωε

Gε(x)−1ξη dx. The operator Gε defines the
quadratic dissipation potential Rε(u̇) = 1

2 〈Gεu̇, u̇〉 whose Legendre transform
is given by Kε, i.e., we have R∗

ε(ξ) = 1
2 〈ξ,Kεξ〉, where ξ denotes the “dual vari-

able” (also called chemical potential or thermodynamically conjugated driving
force, see [24]). Furthermore, by using the chain rule we have that

Eε(uε(0)) − Eε(uε(t)) =
∫ t

0

〈Gεu̇ε, u̇ε〉ds

=
∫ t

0

〈DE(uε),KεDEε(uε)〉ds

=
∫ t

0

[
Rε(u̇ε) + R∗

ε(−DEε(uε))
]
ds.
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Hence, we see that the force balance (fbε) and the rate equation (reε) are
equivalent to the energy balance

Eε(uε(t)) +
∫ t

0

[
Rε(u̇ε) + R∗

ε(−DEε(uε))
]
ds = Eε(uε(0)). (ebε)

This formulation (which is based on a principle by De Giorgi and whose
solutions are also called curves of maximal slope see [1, Sect. 1.3]) is indeed
equivalent due to the Legendre Fenchel equivalences for convex potentials, i.e.,

μ = DRε(v) ⇐⇒ v = DR∗
ε(μ) ⇐⇒ Rε(v) + R∗

ε(μ) = 〈v, μ〉.

We also used the chain rule d
dtEε(u) = 〈DEε(u), u̇〉.

In fact, in (ebε) we only need the lower estimate “≤”, the reverse estimate
follows from the definition of the Legendre transform. The advantage of (ebε)
is that it is a scalar equation in R in contrast to Eqs. (fbε) and (reε) in H∗

ε

and Hε, respectively.
Let us remark here that 2Rε(u̇) and 2R∗

ε(−DEε(u)) are nothing but the
squares of the so called metric derivative of u and the metric slope of Eε cal-
culated with respect to the metric induced by Gε, see [1].

If the potentials Wb and Ws are λb-convex, resp., λs-convex, (s �→
Wb/s(s)− λb/s

2 |s|2 is convex) the energy functional satisfies the convexity esti-
mate

Eε(ũ) ≥ Eε(u) + 〈DEε(u), ũ−u〉 + Λε(ũ−u) ∀ ũ ∈ Vε,

where Λε(w) =
∫
Ω

λb
2 |w|2 dx +

∫
Σε

λs
2ε |w|2 dx. Note, that λb and λs do not

have to be positive and therefore Wb and Ws are in general nonconvex. The
double well potential u �→ 1

4 (1−u2)2 is λ-convex with λ = −1. Moreover, every
W ∈ C1,1(R) is λ-convex.

Using the force balance formulation (fbε) we arrive at the equivalent for-
mulation as evolution variational inequality (see [1,12])

Eε(uε(t)) + 〈Gεu̇ε(t), uε(t)−ũ〉 ≤ Eε(ũ) − Λε(uε(t)−ũ) ∀ ũ ∈ Vε. (eviε)

Note that this formulation is written only in terms of the functional Eε

and the operator Gε, and is therefore derivative free.
We study the behavior of the solutions uε when ε → 0. In this case the

boundary layer Σε shrinks to Γ and we show that the “limit” of the sequence
uε|Σε

describes the evolution on Γ.

2.3. Transformation of the problem

In order to provide a notion of convergence of the solutions uε we transform
the variable domain Ωε to a fixed domain.

For this, note that due to the smoothness of the boundary Γ and for
sufficiently small ε a point x ∈ Σε can be characterized in the following way:
there exist unique y ∈ Γ and ϑ ∈]0, ε[ such that x = y+ϑν(y) (see, e.g. [40,
Chap. 2]), where ν denotes the unit outer normal on Γ (see Fig. 1). Hence, we
introduce the change of coordinates in Σε
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Xε(y, θ) := y + εθν(y), (y, θ) ∈ Γ×]0, 1[,

Yε(x) :=
(
yε(x), θε(x)

)
:=

(
Pε(x), dε(x)/ε

)
, x ∈ Ωε,

where Pε and dε denote the projection from Σε on Γ and the distance to Γ,
respectively.

With this change of coordinates we define Σ := Γ×]0, 1[ and for a func-
tion u : Σε → R we set U = u ◦ Xε : Σ → R. Since the boundary Γ is of class
C2 we have that the outer unit normal satisfies ν ∈ C1(Γ; Rd). Therefore, if
u ∈ H1(Σε) we have U ∈ H1(Σ). More precisely, it holds(

∇ΓU
∂θU

)
=

(
P(y)−εθ S(y)

ε ν(y)�

)
∇u, and ∇u =

(
Qε(x)

∣∣∣1
ε
ν(Pε(x))

) (
∇ΓU
∂θU

)
,

where ∇ΓU ∈ T (Γ) denotes the tangential gradient of U on Γ, P(y) is the
projection onto the tangential space at y ∈ Γ, S = −∂ν/∂y is the so-called
shape operator (see, e.g. [13]) and Qε is such that Qε(P−εθS) = P.

The tangential gradient ∇ΓU on Γ can be characterized in the following
way (see [13,34]): For V : Γ → R denote by Ṽ a smooth extension of V to R

d,
then ∇ΓV (y) = P(y)[∇Ṽ ]. It is easy to check that this definition is well-defined
and independent of the extension Ṽ , moreover, we have that P = I−ν ⊗ ν.
Similarly, the divergence on Γ for vector fields V can be defined as

divΓV = divṼ − ∇(Ṽ · ν)ν,

where Ṽ is again a smooth extension of V. In this framework the Laplace-Bel-
trami operator ΔΓ has the simple form ΔΓU = divΓ(∇ΓU). For a vector field
V ∈ L2(Γ; T (Γ)) such that divΓV ∈ L2(Γ) and U ∈ H1(Γ) we have Green’s
formula

−
∫

Γ

∇ΓU · VdΓ =
∫

Γ

UdivΓVdΓ.

In contrast to Σε we leave the bulk domain Ω untransformed. Hence, we
introduce the spaces for the bulk variable u : Ω → R and the surface variable
U : Σ → R

V :=
{
(u,U) ∈ H1(Ω)×H1(Σ) : u|Γ = U |{θ=0}

}
, H := L2(Ω) × L2(Σ).

The measure on Σ is given by dμ = dΓ⊗ dλ1, i.e., the product of the
surface measure on Γ and the one-dimensional Lebesgue measure on ]0, 1[. The
space H1(Σ) is defined in the usual way, i.e., the closure of C1(Σ) with respect
to the norm ‖ · ‖H1(Σ), where

‖U‖2
H1(Σ) =

∫
Σ

[
|U |2 + |∇ΓU |2 + |∂θU |2

]
dμ.

Now, substituting the above transformations in Eε we arrive at the trans-
formed energy functional Eε : V → [0,∞[, for u = (u,U) defined by

Eε(u) =
∫

Ω

[
Ab

2
|∇u|2 + Wb(u)

]
dx

+
∫

Σ

[
Aε

2

(
∇ΓU · Bε(y, θ)∇ΓU +

1
ε2

|∂θU |2
)

+ Wε(U)
]

Jε(y, θ)dμ,
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where Bε = Q
�
ε Qε and Jε describes the change of volume due to the transfor-

mation. Additionally, the transformed dissipation potential Rε : H → [0,∞[
reads

Rε(u̇) =
∫

Ω

τb

2
|u̇|2 dx +

∫
Σ

τε

2
|U̇ |2Jε(y, θ)dμ.

We denote by Gε : H → H∗ the associated operator, i.e., Rε(u̇) =
1
2 〈Gεu̇, u̇〉. The inverse operator Kε = G−1

ε : H∗ → H gives the dual dissi-
pation potential R∗

ε, more precisely, for a dual variable ξ = (ξ,Ξ) it reads

Eε(uε(t)) +
∫ t

0

[
Rε(u̇ε) + R∗

ε(−DEε(uε))
]
ds = Eε(uε(0)). (EBε)

Moreover, in the λ-convex case the evolution of the transformed system is
equivalently described by the following evolution variational inequality which
corresponds to (eviε)

Eε(uε(t)) + 〈Gεu̇ε(t),uε(t)−ũ〉 ≤ Eε(ũ) − Λε(uε(t)−ũ), (EVIε)

where Λε(u) =
∫
Ω

λb
2 |u|2 dx +

∫
Σ

λs
2 |U |2 Jε

ε dμ.
We will use both formulations, (EBε) and (EVIε), for the convergence

analysis. Note that (EBε) contains the derivative of the energy functional Eε

while (EVIε) does not. Conversely, (EVIε) contains the derivative of the dissi-
pation potential Rε while (EBε) is free of it.

The following lemma is concerned with the convergences of the geomet-
rical quantities Bε and Jε.

Lemma 2.2. It holds that Bε → I uniformly in Σ, with I denoting the identity
in the tangent bundle of Γ, and Jε/ε → 1 uniformly in Σ.

The easiest (although not most elegant) way to see that the convergence
is indeed as stated, is to switch to local coordinates and calculate Bε and Jε

explicitly in terms of the covariant and contravariant basis vectors (see [9] for
a related problem in the theory of elastic shells).

3. Convergence of the system

Our result is formulated abstractly in terms of Mosco convergence of Eε

towards a limit E0 and of Rε towards R0. For functionals Fn, defined on a
Banach space Q, the definition of Mosco convergence is as follows:

Fn
M−→ F ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) Liminf estimate for weakly converging sequences:
qn ⇀ q =⇒ F(qn) ≤ lim inf

n→∞ Fn(q),

(ii) Existence of strongly converging recovery sequences:
∀ q̂ ∈ Q ∃ (q̂n)n : q̂n → q̂ and F(q̂) ≥ lim sup

n→∞
Fn(q̂n).

Hence, Mosco convergence is nothing but Γ-convergence in the weak and
in the strong topology.

Since it is essential to choose the right topology for computing the Γ-
or Mosco limits, the first step in our convergence proof is to derive a priori
estimates for the solutions (uε, Uε). This is addressed in the following lemma.
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Lemma 3.1. (A priori estimate) Let Eε(uε(0)) ≤ C < ∞ and define ΩT =
Ω × ]0, T [ and ΣT = Σ × ]0, T [. Then, there exist constants C1, C2, C3, C4 > 0,
independent of ε, such that∥∥u̇ε

∥∥2

L2(ΩT )
+ ε1−αR

∥∥U̇ε

∥∥2

L2(ΣT )
≤ C1,

∥∥DuEε(uε)
∥∥2

L2(ΩT )
+

1
ε1−αR

∥∥DUEε(uε)
∥∥2

L2(ΣT )
≤ C2, (2a)

and ∥∥∇uε(t)
∥∥2

L2(Ω)
+

∥∥uε(t)
∥∥2

L2(Ω)
+

∥∥Uε(t)
∥∥2

L2(Σ)
≤ C3,

ε1−βE
∥∥∇ΓUε(t)

∥∥2

L2(Σ)
+

1
ε1+βE

∥∥∂θUε(t)
∥∥2

L2(Σ)
≤ C4, (2b)

for all t ∈ [0, T ].

Proof. The estimates in (2) are a direct consequence of the energy balance
(EBε). We remind that the relaxation time and the diffusion coefficient are
given by τε = τsε

−αR , Aε = Asε
−βE . The energy functional satisfies the esti-

mate

Eε(uε) ≥ C(‖∇uε‖2
L2(Ω) + ‖uε‖2

L2(Ω) + ‖Uε‖2
L2(Ω)

+ε1−βE‖∇ΓUε‖2
L2(Σ) + ε−(βE+1)‖∂θUε‖2

L2(Σ)) − c,

where we have used the quadratic growth of the nonlinearities Wb and Ws as
well as Lemma 2.2. The dissipation potential satisfies

Rε(u̇ε) ≥ C(‖u̇ε‖2
L2(Ω)+ε1−αR‖U̇ε‖2

L2(Σ)),

R∗
ε(ξε) ≥ C(‖DuEε(uε)‖2

L2(Ω)+εαR−1‖DUEε(uε)‖2
L2(Σ)).

By assumption the lefthand-side in the energy balance (EBε) is bounded,
thus we arrive at (2). �

The a priori estimates show that the critical scaling for the relaxation
time τε = ε−αRτs is αR = 1. For αR < 1 we expect the time derivatives in Σ to
blow up while the thermodynamically conjugated driving forces tend to 0 in
the limit. This means that we have a much faster timescale in the boundary
layer, such that in the limit the system is always in equilibrium on the bound-
ary. Conversely, αR > 1 amounts to a slower timescale in the boundary layer
with no evolution. In contrast to these degenerate cases αR = 1 results in a
nontrivial dynamic boundary condition as in [37].

In addition, we find the characteristic values βE ∈ {−1,+1} for the sca-
lings of the diffusion coefficient Aε = ε−βEAs in the boundary layer. For βE > 1
all derivatives have to vanish such that U is constant (in every connected com-
ponent of Σ). However, it is not fixed and may evolve in time, we refer to this
as the fast diffusion case. Conversely, for βE < 1 we expect the tangential
derivatives to blow up in the boundary layer (no diffusion case). For βE = 1
we expect genuine surface diffusion.

The crucial point is that in all of the cases above the derivative with
respect to θ has to vanish. Hence, in the limit the surface variable U is given
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only by its trace on Γ which allows for the reduction to surface evolution, see
Sect. 4 for the final discussion.

Lemma 3.1 shows that we can extract a (not relabeled) subsequence uε =
(uε, Uε) such that for the bulk variable uε we have the convergence

uε
∗
⇀ u in L∞(0, T ; H1(Ω)),

u̇ε ⇀ u̇ in L2(ΩT ).
(3)

Moreover, the second estimate in (2a) shows (by eventually extracting
another subsequence) that we have the convergence DEb(uε) ⇀ ξ in L2(ΩT ),
where Eb(u) denotes the bulk energy part. However, due to (3) we can argue
that uε → u in Lq(ΩT ) with 1 ≤ q < ∞ for d = 2 and 1 ≤ q < 2d/(d−2) for
d ≥ 3. In particular, considering an almost everywhere converging subsequence
and using the growth condition (WGrow) the Dominated Convergence theorem
yields ξ = DEb(u), hence

DEb(uε) ⇀ DEb(u) in L2(ΩT ). (4)

Moreover, we have the following convergences for Uε

Uε
∗
⇀ U in L∞(0, T ; L2(Ω)),

∂θUε → 0 in L∞(0, T ; L2(Σ)),
(5)

where the last convergence follows from βE > −1 and ε−(1+βE)‖∂θUε(t)‖2
L2(Σ)

being bounded. Depending on the value of βE we find a subsequence such that
the tangential gradients of Uε satisfy

∇ΓUε
∗
⇀ ∇ΓU for βE = 1

∇ΓUε → 0 for βE > 1

}
in L∞(0, T ; L2(Σ)). (6)

Furthermore, we can assume that

for αR = 1 : U̇ε ⇀ U̇ and DEs,ε(Uε) ⇀ Ξ, (7)

where we denoted by Es,ε the surface energy part such that Eε(u,U) = Eb(u)+
Es,ε(U). The limit Ξ ∈ L2(ΣT ) is to be determined. For the remaining cases
αR < 1 and αR > 1 we have

DEs,ε(Uε) → 0 for αR < 1
U̇ε → 0 for αR > 1

}
in L2(ΣT ). (8)

Obviously, the energy functionals Eε blow up if the derivative with respect
to θ does not vanish (for βE > 1 the same holds for the tangential derivatives).
Thus, we expect the limit problems to be defined on the subspace of functions
that are constant in normal direction (and tangential direction for βE > 1).

Let us consider the case βE ≥ 1 first: We define the reduced spaces Vtang,
Vconst and their closures in H via

Vtang := {(u,U) ∈ V : ∂θU = 0 a.e. in Σ}, Htang := Vtang
H

,

Vconst := {(u,U) ∈ V : U = const a.e. in Σ}, Hconst := Vconst
H

.

In the following theorem we prove the Mosco convergence of the energy
functionals Eε for βE ≥ 1 in V.
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Theorem 3.2. (Mosco convergence for βE ≥ 1) For βE = 1 the energy function-
als Eε converge in the sense of Mosco to the limit functional Etang : V → R∞
given by

Etang(u) =

{
Eb(u) +

∫
Σ

[
As
2 |∇ΓU |2 + Ws(U)

]
dμ if u ∈ Vtang,

+∞ otherwise.

For βE > 1 the Mosco limit of Eε, denoted Econst, is given by

Econst(u) =

⎧⎨
⎩

Eb(u) +
∫
Σ

Ws(U)dμ if u ∈ Vconst,

+∞ otherwise.

Proof. Here we only consider the case βE = 1. The result for the other case
follows analogously.

Liminf estimate for weak convergence. For all sequences uε = (uε, Uε) ⇀
u = (u,U) in V we have to show Etang(u) ≤ lim infε→0 Eε(uε). Assuming that
lim infε→0 Eε(uε) < ∞ due to the weak lower semicontinuity of the norm on
V we necessarily have that u ∈ Vtang.

The compact embedding V ⊂⊂ Lq(Ω)×Lq(Σ), where q ∈ [1,∞[ for d = 2
and q < 2d/(d−2) otherwise, yields the strong convergence (uε, Uε) → (u,U)
in Lq(Ω)×Lq(Σ). Thus, using the growth conditions for Wb and Ws we con-
clude that∫

Ω

Wb(uε)dx →
∫

Ω

Wb(u)dx and
∫

Σ

Ws(Uε)dμ →
∫

Σ

Ws(U)dμ.

As before, we denote the bulk and surface energy parts of Eε by Eb and
Es,ε, such that Eε(uε) = Eb(uε) + Es,ε(Uε). It holds that

Eε(uε) ≥ Eb(uε) +
∫

Σ

[
As

2
∇ΓUε · Bε(y, θ)∇ΓUε + Ws(Uε)

]
Jε(y, θ)

ε
dμ.

Hence, by the uniform convergence of Bε and Jε/ε we obtain the lim inf
estimate.

Limsup estimate for strongly converging recovery sequences. The con-
struction of recovery sequences ûε such that ûε → u and Eε(ûε) → Etang(u)
is straightforward: For u /∈ Vtang the result is trivial since Etang(u) = ∞ and
we may take ûε = u and argue as in the first step.

For u ∈ Vtang we can choose the constant sequence ûε = u since the
derivative with respect to θ does not appear in Eε and we can conclude

Eε(u) = Eb(u) +
∫

Σ

[
As

2
∇ΓU · Bε(y, θ)∇ΓU + Ws(U)

]
Jε(y, θ)

ε
dμ → Etang(u),

where we used Lemma 2.2 again. �

The remaining case βE ∈]−1, 1[ is more complicated since we lose the
uniform coercivity of the energy functionals on V. Hence, we have to work in
the coarser topology of the bigger space W defined by

W :=
{
(u,U) ∈ H1(Ω)×L2(Σ) : ∂θU ∈ L2(Σ), u|Γ = U |{θ=0}

}
.
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Let us point out here that the existence of the derivative with respect to
θ in L2(Σ) suffices for the well-definedness of the trace on Γ since for arbitrary
U ∈ C∞(Σ) it holds that

‖U |{θ=0}‖L2(Γ) ≤ C
(
‖U‖L2(Σ) + ‖∂θU‖L2(Σ)

)
.

As before we introduce a reduced space of functions which are constant
in normal direction

Wnodiff := {(u,U) ∈ W : ∂θU = 0 a.e. in Σ} .

Since the convergence of the surface variable Uε is in general only weak in
L2(Σ) and the nonlinearity Ws is allowed to be nonconvex we have to replace
Ws in the limit by its convex envelope, denoted W ∗∗

s in the following (see, e.g.
[6,11]).

Theorem 3.3. (Mosco convergence for −1 < βE < 1) The energy functionals
Eε Γ-converge on W to the limit functional Enodiff : W → R∞ given by

Enodiff(u) =

{
Eb(u) +

∫
Σ

W ∗∗
s (U)dμ if u ∈ Wnodiff ,

+∞ otherwise.

Proof. Liminf estimate for weak convergence. Let uε = (uε, Uε) ⇀ u = (u,U)
in W. By arguing as in Theorem 3.2 we can assume that u ∈ Wnodiff and
sup0<ε<ε0

Eε(uε) < ∞. We have the estimate

Eε(uε) ≥ Eb(uε) +
∫

Σ

W ∗∗
s (Uε)

Jε(y, θ)
ε

dμ.

Applying lim infε→0 to both sides of the estimate and using the uniform
convergence of Jε/ε and the weak lower semicontinuity of U �→

∫
Σ

W ∗∗(U)dμ

on L2(Σ) we conclude that lim infε→0 Eε(uε) ≥ Enodiff(u).
Limsup estimate for recovery sequences. Let u ∈ Wnodiff be such that

Enodiff(u) < ∞. By the density of Vtang in Wnodiff we can find a sequence
(ûε)ε>0 ⊂ Vtang such that ûε → u (strongly) in W and εσ‖∇ΓÛε‖2

L2(Σ) → 0,

where σ = 1−βE ∈]0, 2[. Since ûε = (ûε, Ûε) converges strongly in W we can
extract a (not relabeled) sequence such that Ûε(y, θ) → U(y, θ) a.e. in Σ. Using
Fatou’s lemma we obtain

lim sup
ε→0

Eε(ûε) ≤ lim sup
ε→0

{
Eb(ûε) +

∫
Σ

[
Cεσ|∇ΓÛε|2 + Ws(Uε)

]
Jε(y, θ)

ε
dμ

}

≤ Eb(u) +
∫

Σ

Ws(U)dμ.

The left-hand side, also known as Γ-limes superior (or upper Γ-limit),
is weakly lower semicontinuous on W (see [6,11]). Hence, by taking the
lower semicontinuous envelope on both sides we arrive at lim supε→0 Eε(uε) ≤
Enodiff(u). �

Let us emphasize here that for Ws satisfying the growth condition
(WGrow) the directional derivative 〈DEnodiff(u),w〉 is in general not well-
defined for u,w ∈ Wnodiff since we do not have the embedding Wnodiff ⊂
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Lq(Ω) × Lq(Σ) for 1 ≤ q < ∞ for d = 2 and 1 ≤ q < 2d/(d−2) for d ≥ 3.
Thus, we restrict ourselves to the case of a quadratic potential, such that
Ws(U) = ωs

2 |U |2 with ωs > 0. In this much simpler case the (strongly converg-
ing) recovery sequences are given by ûε in the proof of Theorem 3.3. Hence,
Eε Mosco converges to Enodiff in W.

The limits for the dissipation potential Rε and the dual dissipation poten-
tials R∗

ε for the cases αR = 1, αR > 1 and αR < 1 are easily computed. Note
that for the last two cases the uniform coercivity of R∗

ε and Rε on H∗ and H,
respectively, is lost.

For the nondegenerate case αR = 1 we have the convergence

Rε
M−→ Rdyn with Rdyn(u̇) =

∫
Ω

τb

2
|u̇|2 dx +

∫
Σ

τs

2
|U̇ |2 dμ

while for the other two cases (the slow and the fast evolution cases, see dis-
cussion in Sect. 3) it holds

αR > 1 : Rε(u̇) → Rslow(u̇) with Rslow(u̇, U̇) =

⎧⎨
⎩

∫
Ω

τb

2
|u̇|2 dx if U̇ = 0,

∞ else,

αR < 1 : Rε(u̇) → Rfast(u̇) with Rfast(u̇, U̇) =
∫

Ω

τb

2
|u̇|2 dx.

The Legendre transforms are easily computed as

R∗
slow(ξ,Ξ) =

∫
Ω

τ−1
b

2
|ξ|2 dx and R∗

fast(ξ,Ξ) =

⎧⎨
⎩

∫
Ω

τ−1
b

2
|ξ|2 dx if Ξ = 0,

∞ else.

We see that the limits for Rε correspond to the observations made in
Sect. 3. For αR > 1 we obtain the static condition U̇ = 0, i.e., fixed (boundary)
evolution. While for αR < 1 the condition Ξ = 0 for the thermodynamically
conjugated driving force means that the (boundary-)system is in equilibrium.

3.1. Passing to the limit in the energy balance (EBε)
In this subsection we focus on the energy balance formulation (EBε) and show
that the limit u = (u,U) in (3)–(7) is a solution of the limit system (E0,R0)
with E0 = Etang,Econst,Enodiff and R0 = Rslow,Rdyn. In particular, we do not
treat the case R0 = Rfast since in this limit case the chain rule is not available.
Hence, the abstract framework discussed in Sect. 2.2 does not apply and we
are not able to characterize the limit u as a solution of a corresponding force
balance formulation, i.e., a system of partial differential equations. However,
we show in the following subsection that for λ-convex energies the EVI-formu-
lation can be used instead.

In particular, we show in this subsection that

lim inf
ε→0

{
Eε(uε(t)) +

∫ t

0

[
Rε(u̇ε) + R∗

ε(−DEε(uε))
]
ds

}

≥ E0(u(t)) +
∫ t

0

[
R0(u̇) + R∗

0(−DE0(u))
]
ds.
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Here and subsequently we use the the notation V0 = Vtang,Vconst and
Wnodiff when we refer to the domains of the corresponding limit energy func-
tionals E0 = Etang, etc. Note that the situation for Etang and Econst is quite
different from that for Enodiff due to the different underlying space, which fails
to be compact in L2(Ω).

Remark 3.4. In order to pass to the limit we use the pointwise (in time)
weak convergence of the solutions in the space V (resp., W), i.e., uε(t) ⇀
u(t) in V (resp., W). Indeed, let Vweak denote the space V endowed with the
weak topology then the continuous embedding L∞(0, T ;V) ∩ H1(0, T ;H) ⊂
C([0, T ];Vweak) (see, e.g. [31, Sect. 8.3]) implies that the weak* convergence
uε

∗
⇀ u in L∞(0, T ;V)∩H1(0, T ;H) implies uε(t) ⇀ u(t) in V (the same holds

for V replaced by W). This can be seen by means of a simple contradiction
argument.

Following the ideas in [33] we define for a given curve uε : [0, T ] → V with
uε(t) ⇀ u(t) in V (resp., in W) the energy excess D : [0, T ] → [0,∞] by

Dε(t) = Eε(uε(t)) − E0(u(t)), D(t) = lim sup
ε→0

Dε(t) ≥ 0.

We call uε well-prepared initially if D(0) = 0.
The additional conditions for the convergence of the gradient flow given

in [33] can be directly translated in our case to
1. (Lower Bound) There exists f ∈ L1(0, T ) such that for every t ∈ [0, T ]

lim inf
ε→0

∫ t

0

Rε(u̇ε)ds ≥
∫ t

0

[
R0(u̇) − f(s)D(s)

]
ds. (9)

2. (Construction) There exists a locally bounded function g on [0, T ] such
that for any t0 ∈]0, T [ and any smooth curve û :]t0−δ, t0+δ[→ V0 satis-
fying û(t0) = u(t0) there exists a ûε :]t0−δ, t0+δ[→ V such that ûε(t0) =
uε(t0) and

lim sup
ε→0

Rε

( ˙̂uε(t0)
)

≤ R0

( ˙̂u(t0)
)

+ g(t0)D(t0), (10a)

lim inf
ε→0

− d
dt

Eε(ûε)|t=t0 ≥ − d
dt

E0(û)|t=t0 − g(t0)D(t0). (10b)

The energy excess D should be interpreted as a small perturbation. It
is shown in [33] that D ≡ 0 holds using Gronwall ’s lemma. However, in the
proof of the convergence result in Theorem 3.5 we show that one can actually
take f = g = 0. While the first condition in (9) asks for a liminf estimate for
the (integrated) dissipation potential Rε the second condition in (10) can be
interpreted as a liminf estimate for the dual dissipation potential along the
derivative of the energy functionals. Indeed, adding (10a) to (10b) we arrive
at the following

lim inf
ε→0

R∗
ε(−DEε(uε)) ≥ lim inf

ε→0

[
−

〈
DEε(uε), ˙̂uε

〉
− Rε

( ˙̂uε

)]

≥ −
〈
DE0(u), ˙̂u

〉
− R0

( ˙̂u
)

− 2gD.
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Taking the supremum over all ˙̂u yields the limit dual dissipation potential
Rdyn(−DE0(u)) at the lefthand side.

Let us point out that the limit system considered in [33] is finite dimen-
sional. Therefore, we have to adapt the results for our purpose. In particular,
we have to show that the Gâteaux derivative of the limit energy functional is
well-defined in H.

The main result for E0 = Etang,Econst and Enodiff and R0 = Rdyn reads as
follows:

Theorem 3.5. (Convergence of gradient flow for βE > −1 and αR = 1) Let uε

be a family of solutions of the energy balance (EBε) converging as in (3)–(7) to
a limit u. If D(0) = 0, i.e., uε is well prepared initially, then D ≡ 0 on [0, T ]
and u is the solution of the gradient flow for E0 and Rdyn, i.e., it holds that

E0(u(t)) +
∫ t

0

[
Rdyn(u̇) + R∗

dyn

(
− DE0(u)

)]
ds ≤ E0(u(0)). (11)

Proof. The weak convergence DEε(uε) ⇀ ξ = (DEb(u),Ξ) in L2(0, T ;H∗)
implies that DE0(u) ∈ L2(0, T ;H∗

0), where H0 = V0
H

. Indeed, multiplying
with a fixed û ∈ L2(0, T ;V0 ∩ V) leads to the convergence

∫ T

0

〈DEε(uε), û〉dt →
∫ T

0

〈DE0(u), û〉dt =
∫ T

0

〈ξ, û〉dt.

Here we used the continuity properties of the associated Nemytskii opera-
tors u �→ W ′

b(u) and U �→ W ′
s(U), respectively (see [31]). The density of V0 ∩V

in H0 yields now DE0(u) ∈ L2(0, T ;H∗
0).

We see that û ∈ L2(0, T ;V0 ∩ V) satisfies the conditions (10a) and (10b):
We easily check that

∫ t

0
Rε(û)ds →

∫ t

0
Rdyn(û)ds holds and conclude that

lim inf
ε→0

∫ t

0

R∗
ε(−DEε(uε))ds ≥ lim inf

ε→0

∫ t

0

[
−

〈
DEε(uε), û

〉
− Rε(û)

]
ds

=
∫ t

0

[
−

〈
DE0(u), û

〉
− Rdyn(û)

]
ds.

Taking the supremum over all û ∈ L2(0, T ;H0) we arrive at the liminf
estimate for the dual dissipation along DEε(uε).

The Mosco convergence of the energy functionals and Remark 3.4 lead
together with the liminf estimate for Rε to the lower energy estimate

E0(u(t)) +
∫ t

0

Rdyn(u̇) + R∗
dyn(−DE0(u))ds ≤ E0(u(0)),

which is actually an equality due to the chain rule for t �→ E0(u(t)) and the
characterization of the Legendre transform. �

The derivation of the corresponding energy balance for R0 = Rslow is
remarkably easier and follows by the same arguments as in the proof of The-
orem 3.5 with û = 0.
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Theorem 3.6. (Convergence of gradient flow for βE > −1 and αR > 1) Let uε

be a family of solutions of the energy balance (EBε) converging as in (3)–(7)
to a limit u. If D(0) = 0 then D ≡ 0 on [0, T ] and u is the solution of the
gradient flow for E0 and Rslow, i.e., it holds that

Eb(u(t)) +
∫ t

0

Rb(u̇) + R∗
b(−DEb(u))ds = Eb(u(0)),

where Eb and Rb denote the bulk part of the limit energy and dissipation poten-
tial, such that E0(u) = Eb,0(u) + Es,0(U) and Rslow(u̇) = Rb(u̇).

Remark 3.7. The well preparedness of the initial conditions uε(0) can be trans-
lated into asking that Eε(uε(0)) → E0(u(0)), i.e., the initial energies converge.

3.2. Passing to the limit in the variational inequality (EVIε)
In order to derive limit systems for the case R0 = Rfast we turn to the evolu-
tion variational inequality (EVIε) which is an equivalent formulation in case of
λ-convex energy functionals. It reads (integrated over time)∫ T

0

[Eε(uε) + 〈Gεu̇ε,uε−ũ〉] dt ≤
∫ T

0

[Eε(ũ) − Λε(uε−ũ)] dt (12)

for all ũ ∈ L2(0, T ;V). Note that we consider here the time-integrated ver-
sion of (EVIε). This is due to the fact that we have no estimates for the time
derivative of the surface variable U . Hence, we cannot argue with pointwise in
time convergence of the solution.

However, working with the integrated inequality bears problems since the
Γ-convergence of the time-integrated functionals is in general not trivial. We
refer to [32,38] for the following result.

Proposition 3.8. Let Fε denote a sequence of weakly lower semicontinuous func-
tionals on a reflexive and separable Banach space X satisfying the liminf esti-
mate for the weak convergence in X . Moreover, let wε ⇀ w (weakly-* if p = ∞)
in Lp(0, T ;X ). Then, it holds that∫ T

0

F0(w(t))dt ≤ lim inf
ε→0

∫ T

0

Fε(wε(t))dt.

The main result for the case R0 = Rfast reads as follows

Theorem 3.9. (Convergence of gradient flow for βE > −1 and αR < 1) Let uε

be a family of solutions of the evolution variational inequality (12) converging
as in (3)–(7) to the limit u. Then, u is the solution of the following evolution
variational inequality for E0 and Rfast∫ T

0

E0(u)dt +
∫ T

0

∫
Ω

τbu̇(u−ũ)dxdt ≤
∫ T

0

[E0(ũ) − Λ(u−ũ)] dt (13)

for all ũ ∈ L2(0, T ;V0), where Λ(u) =
∫
Ω

λb
2 |u|2 dx +

∫
Σ

λs
2 |U |2 dμ.

Proof. Let ũ = (ũ, Ũ) ∈ L2(0, T ;V0∩V). It is easy to check that
∫ T

0
Eε(ũ)dt →∫ T

0
E0(ũ)dt. Moreover, from the estimates in Lemma 3.1 we infer that u̇ε ⇀ u̇

in L2([0, T ]×Ω) and ε1−αRU̇ε → 0 in L2([0, T ]×Σ). Hence, we have that
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∫ T

0

〈Gεu̇ε,uε−ũ〉dt =
∫ T

0

∫
Ω

τbu̇ε(uε−ũ)dxdt

+
∫ T

0

∫
Σ

τsε
1−αRU̇ε(Uε−Ũ)

Jε

ε
dμdt

→
∫ T

0

∫
Ω

τbu̇(u−ũ)dxdt.

Thus, applying liminf to (12) and using Proposition 3.8 we obtain (13).
�

4. Discussion of the limit models

In this section we show that the limit models obtained in Sect. 3 can be
reduced to a real bulk–surface evolutionary system in Ω. The main observa-
tion is that for a pair (u,U) in Vtang,Vconst or Wnodiff we can characterize U
by a function defined only on the boundary Γ = ∂Ω. More precisely, these
spaces are isomorph to the spaces Vtang, Vconst and Wnodiff given by (Table 1)

Vtang :=
{
(u,U) ∈ H1(Ω)×H1(Γ) : u|Γ = U

}
,

Vconst :=
{
(u,U) ∈ H1(Ω)×R

NΓ : u|Γi
= U i, i = 1, . . . , NΓ

}
,

Wnodiff :=
{
(u,U) ∈ H1(Ω)×L2(Γ) : u|Γ = U

}
where NΓ ∈ N is the number of connected components Γi ⊂ Γ. We denote by
Htang, Hconst and Hnodiff the closures of the spaces above with respect to the
L2-norm, such that

Htang = Hnodiff = L2(Ω) × L2(Γ) and Hconst = L2(Ω) × R
NΓ .

With these characterizations the energy functionals Etang and Enodiff can
be reduced by integration over the variable θ ∈]0, 1[ while for Econst we inte-
grate over y as well. The reduced energy functionals, denoted Etang, Econst and
Enodiff are then given by

Etang(u,U) := Eb(u) +
∫

Γ

[
As

2
|∇ΓU |2 + Ws(U)

]
dΓ,

Econst(u,U) := Eb(u) + |Γ|
NΓ∑
i=1

Ws(U i),

Table 1. Boundary conditions of the limit system for the
different parameter regimes of αR and βE with all constants
set to 1

αR < 1 αR = 1 αR > 1
|βE| < 1 ∂u

∂ν + U = 0 U̇ + ∂u
∂ν + U = 0 u|Γ = uD ∈ H1/2(∂Ω)

βE = 1 ∂u
∂ν + W ′

s(U) = ΔΓU U̇+∂u
∂ν +W ′

s(U) = ΔΓU u|Γ = uD ∈ H1(∂Ω)

βE > 1
[

∂u
∂ν

]
i
+ W ′

s(U
i) = 0 U̇ i+

[
∂u
∂ν

]
i
+Ws(U i) = 0 u|Γ = const on Γ
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Enodiff(u,U) := Eb(u) +
ωs

2
‖U‖2

L2(Γ),

where in each case Eb(u) =
∫
Ω
[Ab

2 |∇u|2 + Wb(u)]dx denotes the bulk energy.
Starting with the case αR = 1 we see that the limit energy balance in

(11) can be written in terms of E0 ∈ {Etang, Econst, Enodiff} and the dissipa-
tion potential Rdyn. Here, in slight abuse of notation, Rdyn is for each of the
energy functionals Etang, Econst and Enodiff defined on the spaces Htang, Hconst

and Hnodiff and obtained as before via integration with respect to the variable
θ or (y, θ), respectively. Thus, the reduced energy balance reads

E0(u(t), U(t)) +
∫ t

0

Rdyn(u̇, U̇) + R∗
dyn(−DE0(u,U))ds = E0(u(0), U(0)).

To highlight the structure of the limit systems we now write down the
corresponding force balance equation written in terms of the reduced energy
and dissipation functional. It consists of two equations for the bulk and the
surface variable u and U = u|Γ, respectively. Using the chain rule and the
Fenchel equivalences we obtain(

τbu̇ + DuE0(u,U)
τsU̇ + DUE0(u,U)

)
= 0.

For each of the energy functionals the first equation is formally equivalent
to the well-known Allen–Cahn equation in [0, T ] × Ω

τb∂tu − AbΔu + W ′
b(u) = 0. (ACbulk)

This equation is coupled to the boundary evolution of u|Γ = U , which
for the energy functional Etang (limit case for βE = 1) is described by

τs∂tU − AsΔΓU + Ab
∂u
∂ν + W ′

s(U) = 0. (14)

Hence, we obtain the surface Allen–Cahn equation with a contribution
given by the conormal derivative of the bulk variable u. The system (ACbulk)
and (14) was studied in [37].

In the limit case for βE > 1 the limit energy functional is given by Econst

and we obtain a simpler boundary condition, which consists of a system of
ordinary differential equations for each of the connected components Γi of the
boundary Γ, namely

τs∂tU
i + Ab

[
∂u
∂ν

]
i
+ W ′

s(U
i) = 0, (15)

where [g]i := 1
|Γi|

∫
Γi

gdΓ denotes the mean value of g : Γi → R over Γi ⊂ Γ.
Finally, for E0 = Enodiff (−1 < βE < 1) the boundary condition reads

τs∂tU + Ab
∂u
∂ν + ωsU = 0. (16)

This boundary condition can be found as a special case in [27].
In the case αR > 1 (R0 = Rslow) we obtain the bulk Allen–Cahn equation

(ACbulk) and have no evolution on the boundary, i.e. U̇ = 0. Which means
that the boundary values are fixed by the initial conditions. Since we assumed
in the convergence analysis that the initial energies converge, the initial val-
ues (u(0), U(0)) have to lie in the spaces Vtang, Vconst and Vnodiff for βE = 1,
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βE > 1 and −1 < βE < 1, respectively. In particular, in the first case we
have u|Γ = u|Γ(0) ∈ H1(Γ), while in the second case the boundary values
are constant (on each connected component) and in the last case we have
u|Γ = u(0)|Γ ∈ H

1
2 (Γ).

At last we discuss the fast evolution case αR < 1 (R0 = Rfast). Choosing
ũ = u−hw, h > 0 in the limit evolution variational inequality (13) and letting
h → 0 we obtain the system(

τbu̇ + DuE0(u,U)
DUE0(u,U)

)
= 0.

Hence, for βE = 1 the limit energy functional is given by Etang and we
deduce that the bulk equation (ACbulk) is in this case coupled to the nonlinear
elliptic surface equation

−AsΔΓU + Ab
∂u
∂ν + W ′

s(U) = 0. (17)

While for E0 = Econst (βE > 1) we have the following nonlinear equation
for each connected component of the boundary Γ

Ab

[
∂u
∂ν

]
i
+ W ′

s(U
i) = 0. (18)

In the last case −1 < βE < 1 and therefore E0 = Enodiff we obtain the
usual Robin boundary condition

Ab
∂u
∂ν + ωsU = 0. (19)

Figure 2 shows details of numerical simulations of equation (ACbulk) in
a (polygonal approximation of a) circular domain using continuous piecewise

Figure 2. Detail of two solutions of Eq. (ACbulk) near
boundary with dynamic boundary condition (14) (top) and
Neumann boundary condition (bottom) for subsequent times
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affine finite elements in the bulk and on the surface (see, e.g. [14]). In particu-
lar, the behavior of two solutions of (ACbulk) near the boundary Γ is depicted
for subsequent times in case of the dynamical boundary condition (14) and
the Neumann boundary ∂u

∂ν = 0. Here, both solutions are starting from the
same initial condition. The potential in the bulk is given by the double-well
potential Wb(u) = kb

4 (1−u2)2 with kb > 0 while for the dynamic boundary
condition we additionally have the quadratic potential Ws(U) = ks

2 (1−U)2 on
Γ with ks > 0. The dynamic boundary condition models a strong interaction
between the wall and the mixture components described by the order parame-
ter u (resp., U). In particular, due to the potential Ws and the surface diffusion
we have an accumulation of the phase U = 1 at the boundary Γ, which can be
clearly seen in the pictures.
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(2005)

[32] Salvadori, A.: On the M-convergence for integral functionals on Lp
X . Atti Sem.

Mat. Fis. Univ. Modena 33, 137–154 (1984)

[33] Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications
to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)
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