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Local existence and uniqueness in the largest
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Abstract. We show the existence and uniqueness of solutions (either local
or global for small data) for an equation arising in different aspects of
surface growth. Following the work of Koch and Tataru we consider spaces
critical with respect to scaling and we prove our results in the largest pos-
sible critical space such that weak solutions are defined, which turns out to
be a Besov space. Similarly to 3D-Navier Stokes, the uniqueness of global
weak solutions remains unfortunately open, unless the initial conditions
are sufficiently small.
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1. Introduction

The analysis of mathematical models for the study of surface growth has
attracted a lot of attention in recent years, one can see for example the reviews
in [1,11] and numerous recent publications [7,9,19,20,23-25].

In this article we consider a model arising in the growth of amorphous
surfaces which is described by the following partial differential equation,

8ih+ A%h + A[VA[? = 0. (1.1)

on the whole R? or with periodic boundary conditions. The function h(t,-)
models a height profile at time ¢ > 0, so d = 1 and d = 2 are the physically
relevant dimensions. In view of this and of Proposition 2.2 we will restrict
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the analysis to the case d < 3 throughout this paper (although most of the
computation holds without restrictions on the dimension).

Equation (1.1), which is sometimes referred to as a conservative version
of the Kuramoto-Sivashinsky equation, arises also in several other models
for surface growth. The two-dimensional version was suggested in [23-25]
as a phenomenological model for the growth of an amorphous surface
(ZrgsAlz 5Cugr 5) and more recently as a model in surface erosion using ion-
beam sputtering [7,19,20]. The one-dimensional equation appeared as a model
for the boundaries of terraces in the epitaxy of Silicon [9].

For simplicity of presentation we consider the rescaled version (1.1) with
a-dimensional length-scales. Furthermore, we have ignored lower order terms
like the Kuramoto-Sivashinsky term —|Vh|? or a linear instability given by
+Ah. These terms can easily be incorporated in the result.

In the physical literature equation (1.1) is usually subject to space—time
white noise, which we also have neglected for simplicity of presentation. Indeed,
using the standard method of looking at the difference between h and the
stochastic convolution, the stochastic PDE can be transformed into a random
PDE. If the stochastic convolution is sufficiently regular, then for each instance
of chance the path-wise solvability for the stochastic PDE is completely anal-
ogous to the results presented here and one only needs to consider additional
lower order terms. This will be done with more details later in Sect. 5.

A crucial open problem for equation (1.1) is the fact that the uniqueness
of global solutions is not known. We remark that numerical experiments do
not report any problems of blow up, see Hoppe and Nash [13,14], or the pre-
viously stated physics literature. Numerical experiments from Blomker, Gugg
and Raible [4] furthermore indicate a fast convergence of spectral Galerkin
methods for averaged surface roughness for the stochastic PDE.

The existence of global weak solutions in dimension d = 1 on bounded
domains has been studied in [4] (see also the references therein), based on
spectral Galerkin methods. The crucial estimates are energy-type inequali-
ties which allow for uniform bounds on the L?-norm. The method has been
significantly extended by Blomker, Flandoli and Romito [2] in order to verify
the existence of a solution that defines a Markov process. Winkler and Stein
[27] used Rothe’s method to verify the existence of a global weak solution, this
result has been recently extended by Winkler [30] to the two-dimensional case,
using energy type estimates for [ el da.

The authors have showed in [5] the uniqueness of local solutions with
initial values in the critical Hilbert space H'/? in the one dimensional case.
Local uniqueness of continuous solutions in W14 for the stochastic PDE in
dimension d = 1,2 can be found in [3]. The existence and uniqueness of a
regularized problem with a cut-off in the nonlinearity in dimension d = 2 has
been studied in Hoppe, Linz and Litvinov [12].

In this paper, following the technique introduced in the remarkable paper
by Koch and Tataru [15] on the Navier—Stokes equations, we study existence
and uniqueness of solutions with initial data in the largest possible critical
space where weak solutions make sense. This space contains all previous spaces
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where analogous results were proved. Let us remark that the same method has
been applied to other fourth order problems [16,29].

Our main motivation to study (1.1) in the largest possible space actually
comes from the stochastically perturbed equation, where, due to noise, solu-
tions are not regular enough. For instance, in dimension d = 2, for space—time
white noise, due to the nonlinearity neither the uniqueness nor the existence
of global solutions are known yet.

Our main results first show that the largest critical space introduced by
Koch and Tataru is in our setting and at least for dimension d < 3 equivalent to
the homogeneous Besov space Bgfo (R%). This space is much simpler to work
with, and this simplifies our result on existence and uniqueness in that space,
which classically holds for small data or for short times (see Theorem 4.3).
Moreover, all such solutions are smooth in the space variable (Theorem 6.1).

The paper is organized as follows. In Sect. 2 we discuss the space of
initial conditions according to the ideas of [15] and we show that, in the phys-
ically relevant case of small dimension, it coincides with the homogeneous
Besov space B%>®(R%). Some admissible initial conditions and examples are
discussed in Sect. 3. Based on Banach’s fixed-point iteration scheme, Sect. 4
provides the existence and uniqueness results. Section 5 contains some details
on the extension of such results to the stochastically forced case. We close the
paper with Sect. 6, where we show smoothness of solutions.

2. Function spaces

Recall first the following result, an easy consequence of Poincaré’s inequality,
which ensures that all integrals in (2.1) are well defined.

Lemma 2.1. If u is a distribution on R® such that Vu € L2 _([0,00) x R%),
then u € L% ([0,00) x RY) and thus u € L% ([0,00), HL .(R?)).

loc loc

A weak solution for (1.1) with initial condition hg € LL (R?) is any distri-

loc

bution h on R? with locally square integrable gradient Vh € L2 ([0, 00) x R%)

loc
such that for every smooth and compactly supported function ¢ € C°([0, 00) X

RY),

o0 8¢ o0 9
/O /R n(t,2) 50 (1,2) d:cdt—/o /R h(t, 2)A26(t, 2) da dt +
—/ / |Vh(t, 2)|*A¢(t, ) de dt = — ho(z)p(0,z) dx.  (2.1)
0 R4 R4

Lemma 2.1 ensures that all terms in the formula above are well defined. More-
over, the solution is only defined up to constants. As the equation is translation
invariant (in space) and invariant with respect to the scaling

h(t,z) — h(\*t, \x), (2.2)
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we consider the scaling-aware invariant version of the L120c space for the
gradient Vh, defined by the following norm.

1 B
(17l x0 = sup 7/ / |Vh|2dydt
z€R4, R>0 Rd+2 0 Br(z)

This definition follows the ideas of [15]. Our aim in this section is to prove a
simpler representation of the bi-caloric extension in this space.

Define therefore the linear space X of functions such that the following
quantity is finite,

1
2

Kl = sup{t |V k()] }-
t>0
A local in time version of this space can be defined for any R > 0 by

k]l s == sup (£7]|VE(t)]0)-
t<R*

for functions & : [0, R*] x R? — R.. Note that we always identify functions that
differ only by a constant. This is motivated by the fact that the equation is
mass-conservative, if the total mass [ hdz is finite.

In order to track the corresponding spaces for initial values, let A = A2,
Consider the Green’s function G : [0,00) x R? — R associated to the operator
A, where G(t, z) has the Fourier transform (with respect to the space variable)
G(t,¢) = e~tlé1" . By scaling we obtain

G(t,x) =t~ *g(xt=*), where g(z) = G(1,z).

The function ¢ is in the Schwartz class since g(§) = el (see [16] for decay
properties in the x variable).

Define the semigroup e~*4 by the convolution e™*4 k = G(t, -) x k, which
is also denoted as the bi-caloric extension of k.

Denote by B the homogeneous Besov space ngx’(Rd)7 and note that an
equivalent norm on B is given by

Ikl == e~ k|l

(see for instance [17] for a characterization of Besov spaces in terms of heat
kernels. Here we use the bi-Laplace operator A, which changes the scaling of
time). Define similarly the local version Bp.

In contrast to the case of Navier—Stokes in dimension three [15], here
for low dimension the problem is easier, since their space coincides with B,
as shown by the proposition stated below. This proposition is the only reason
why we restrict to dimension d < 3, as we rely for simplicity on the simpler
structure of B.

Proposition 2.2. Assume d < 3. Then ek € X° if and only if k € B and the
norm in B is equivalent to the norm defined by the bi-caloric extension in X°.
This means, that there are constants c1,co > 0 such that

allkls < llekllxo < c2llkls - (2:3)
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Proof. We start by proving (2.3). The inequality on the right holds in any
dimension d > 1 since it is straightforward to check that there is ¢ > 0 such
that || - ||x0 < ¢|| - || x. For the inequality on the left, we need to show that for
EeB’zecRYt>0,

iV (e k) ()| =t

V[ Gltr = )k(s)dy| < el

By scaling and translations invariance, it is sufficient to show the statement
for t =1 and x = 0. Since

1
efA :/ ef(lfs)A efsA dS,
0

it follows by the Cauchy—Schwartz inequality that

Vet o)< Y

nezd

<> (/ ) Z/Bng(y(l—S)‘i)Qdydsf

nezd

(// (e 54 k)( )|2dyds)
< cllklls ( st g(ysifdyds) ,
nezd Bn

where B,, are the balls of centre 2d~/?n and radius 1 (so that their union
covers R?). By a change of variables,

I, ::/ / g(ys™ 4 dyds-/ %/ 2 dz ds.
0 s—1/4B,

First, |I,,] < C for all n € Z%, as d < 3 and g € L?(R?). Note that d < 3 is
necessary, as for 0 € B,, we have fs*l/‘*Bﬂ g(z)?dz 1 |93 for s | 0.

For the convergence of the series consider for s € (0,1) and 0 ¢ B,
(i.e. 2|n| > V/d) that

/ g(2)dz < / l9(2)| dz - sup{lg(z)] : | € s/1B,)
s—1/4pB, R4

< Csup{lg(2)] : |2| > 2[n|d” /2 — 1},

1 d 1
/ (1 5)4 / g(y(1 — )" 1)V (e k) (y) dy ds
0 B

n

M\m.

which can be bounded by a summable term, since g is in the Schwartz class. [

3. Examples

The Besov space B is well understood, it contains for example the space BM O
of functions of bounded mean oscillations. In view of Theorem 4.3 we wish to
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discuss for which initial conditions it is possible to find R such that the initial
condition is small in the Bg norm. To this aim define

Z={k:RY—=R:|k|s, —0as R |0}

We will later see in Theorem 4.3 that functions in Z correspond to initial
conditions where it is possible to solve the Eq. (1.1) locally for a small time
interval.

In this section we give a few general examples (see the lemma below,
which also extends a result proved in dimension d = 1 in [5]) of subspaces
of Z. Then we show that L°>°(R%), although it is contained in B, is not con-
tained in Z. Hence the method of proof presented here fails to provide local
uniqueness of solutions for initial conditions in L>(RY) with large norm. In
the last part of the section we discuss our main example, which in particular
shows, at least in space dimension 4, non-uniqueness of the mild formulation.

Lemma 3.1. The following statements hold,

o ifk:R% — R is bounded and uniformly continuous, then k € Z,
o ifk: Rfl — R has bounded gradient on R%, then k € Z,
o if k € HY?(RY), then k € Z,where the homogeneous space is defined by

(denoting by ¥ the Fourier transform of k)
AR RY = {5 RY R [l = [ RO de < o
Proof. For the first result fix ¢ > 0. By uniform continuity there is § > 0 such

that |k(z) — k(y)| < € for all z,y € RY with |z — y| < 6. Since the integral of
Vg is zero,

t5|V(e " k) (z)] <

/til 1>6 Vg(2)(k(x — 2t%) — k(z)) d2

" /ti|z|<5 Vg(2)(h(x — 2t%) — k(z)) dz

< 2|kl / IVe()ldz + Vel me,
t4|z|>6

hence limsupp_,q ||k|l8, < €]|Vg||r1 and as € | 0, the claim follows.

The second claim follows easily from the bound ti|V(e ' k)(x)| <
1
ta gl [[VE] Lo

Let us now turn to the third result. If t > 0 and 2 € R?, by using the
properties of Fourier transform and convolution,

t5|V(e k) (z)] = prs

Rd

<th /R JElTRE)] eI e

/ (Vg)((x —y)t™ 4)E(§)ei§'y dydf‘
Rd
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Given a > 0, split the integral in the last line of formula above in two pieces,
corresponding to the domains of integration {|¢{| < a} and {|¢| > a} respec-
tively. We can now easily bound the terms using Cauchy—Schwarz inequality
and change of variables.

In conclusion we obtain

2

[Ellsr < caR||k| gasz + ¢ (/

[€1za

€41k (&) dg)

So we see that limsupg_,q ||k|| 5, is bounded by a quantity which converges to
0asal oo. O

Example 3.2. There are functions in L>°(R?) not belonging to Z. Since the
Green’s function tensorizes, it is enough to find a counterezample in dimension
d = 1. Define k(z) = 1[_1 1j(), then it is easy to see that

Il > 100) =3 (77 ) | — 9(0) > 0.

where we have chosen x = —1 and t = R and used g(x) — 0 as © — oo.

On the other hand, the space Z contains unbounded functions, which
are not in B. Define for o > 0, ko(x) = |z|*. Now it is easy to see that
1678, (e ko)lloo = t58s(e " ka)lloo. Hence ||kalls, — 0 for R — 0 but
1Kol = o0

We turn to the main example of the section. Consider first the case d = 1,
then k(x) = log |z| is (formally) a stationary solution for problem (1.1) (see [5]).
Similarly, there are other examples such as log(sin(x)) or log(cosh(x)), for
instance. Nevertheless, in dimension d = 1 these functions k are neither a
weak nor a mild solution, as Vk is not locally square summable. Here we show
that k € B but k € Z. Indeed, consider first, by a change of variables

%‘ e k), |—‘/ z)log|t™ 4x—z|dz

where we used that the integral over ¢’ is zero. Now 7 = t—ix yields

sup{tﬂ(@m e k) (x)|} = sup {‘/ z)log |z — 2| d= } = 10 e Ko
ze€R

Thus || k|| is finite, but || k||g,, is independent of R and does not converge to 0.

This example becomes more interesting if one turns to higher dimension.
Let k(z) = aqlog(|z]) for € R?, where oy € R is a suitable constant that
will be specified later. As before k € B, but k ¢ Z.

The function k is not even formally a weak solution for d = 2 and all
aq # 0. But as the weak derivative Vk € L2 _ in dimension d > 3, it is
straightforward to check that both the weak formulation (2.1) and the mild
formulation are satisfied with ooy = 2 — d.

A special case is dimension d = 4, where k is a weak solution for any
ag € R. But in that case the B-norm of k can be made arbitrarily small with
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ag — 0, and thus by Theorems 4.3 and 6.1 there is also a smooth mild solution
starting at k.

In conclusion this example shows the non-uniqueness and lack of smooth-
ness of mild solutions, at least in dimension 4. Nevertheless there is no
contradiction with Theorem 4.3, since k ¢ X if considered as a function of
time.

4. The fixed point argument
Define the map

¥ (h, k)(t) = /Ot A(e= 94T h(s) - Vk(s)) ds

and set
F(h)(t) = e A hy — ¥ (h, h)(t). (4.1)

We will use the following concept of a mild solution, which is given as a solution
of the variation of constants formula in (4.2).

Definition 4.1. We say that h € X solves (1.1) with initial condition hg € B,
if for all t >0

h(t) = e " hg — ¥ (b, h)(t). (4.2)
We call h € Xg a local solution, if (4.2) holds only for t € [0, RY].

The following Lemma is crucial for the proof of uniqueness and existence.
It verifies that the nonlinear part is locally Lipschitz continuous.

Lemma 4.2. The map ¥ is bi-linear continuous from X x X to X and from
Xgr x X to Xg, for all R > 0.

Proof. The bilinearity is obvious. For the boundedness let + € R and ¢ > 0,
then

VY (h, k) (t, z)| =

t
/ VAG(t — s,z — y)Vh(s,y)Vk(s,y) dyds
o JRe

/Ot(t_;+ [R [(VAg) <%> Vh(s,y)Vk(s,y)dyds
< ”“”’“”’“/otmg/m wao) (522 )| e
1

t
< |Ih|lx|lk 1(Rd —F=d
< Welle el | sy

_ 11
<5 (3,1 ) Il s
= cat ™ |hl| x|k,

where B is the Beta function. The corresponding inequality for the local space
Xg proceeds similarly. O
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Using the previous Lemma, we can now state and prove our main result.
The first part states global existence of unique solutions, while the second part
is about local existence of solutions. Let us point out, that the theorem holds
in any dimension, but for dimension d > 4, the space B might not be the
largest possible one.

Theorem 4.3. Fiz 0 < § < 1/4cq, where c4 is the constant defined in the proof
of Lemma 4.2.

If ||hollg < 6, then there exists a unique (global) solution in X of (1.1)
with initial condition hg.

Moreover, if ||holl, < 0, then there is a unique local solution in Xg of
(1.1) on [0, R*] with initial condition hq.

Finally, if hg is periodic and small in B for some R > 0 (or it is small
in B), then the solution is also periodic.

In particular, ||ho||g, < J is true for a suitable value of R for all hy € Z.

Proof. We prove the first statement by a fixed point iteration argument.
Choose K > 0 such that

1 1
—(1—/1—4e0) < K < —.
2¢cy 2¢y
Define

Hy=0, H,=FH,) =e“hy—¥(H,, H,), (4.3)

then ||Hi|lx < 0 and it is easy to check by induction (and by the choice of
0 and K) that ||H,|x < K for all n. Then

||Hn+1 - Hn”X = ||4//(HnaHn) - a//(Hn—th—l)”X < 264KHH7L - Hn—l”X

and so (H,)nen is convergent in X' to a fixed point of Z.

The same proof works for local spaces, since both constants ¢; and ¢4 do
not depend on R. Finally, if hg is periodic, the statement of periodicity follows
by translation invariance and uniqueness. O

Remark 4.4. (Forward self-similar solutions) The theorem above allows to
show the existence of self-similar solutions, namely solutions invariant under
the scaling (2.2). Indeed, assume to have hy € B (or in a local space) such that
ho(Az) = ho(z) for all A > 0, then it is easy to verify that H; is invariant under
the scaling (2.2) and that #'(h, h) is also invariant if so is h. In conclusion the
whole sequence (H,)nen defined in (4.3) is invariant, as well as its limit.

Given a (forward) self-similar solution h, one can write h(t,x) =
(xz/tH/4), where 1 (x) = h(1,x) solves the equation

1
A2 4 A|Vp|2 — 12 Vv =0

Due to the scaling property, the only admissible initial conditions are the
0-homogeneous functions, namely ho(Az) = ho(z) for all A > 0. The simplest
case corresponds to d = 1, where the only 0-homogeneous functions are those
constant on (—o0,0) and on (0,00) (possibly with different values on the two
half-lines). For any such function ho, ||holls; = |ho(1) — ho(—=1)] |9l Lo
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Backward self-similar solutions might provide examples of solutions with
blow-up. Due to the scaling of the problem, the quantity blowing up is related
to the derivative of the solution. We do not know if backward self-similar solu-
tions exist (notice that backward self-similar solutions do not exist for the
Navier—Stokes equations, see [21]).

5. The stochastic problem

In this section we give a short outline of the proof of local existence for the
stochastic PDE, without many details on probability theory. For details we
refer to [6,8,18]. Consider

Bih+ A2h + A|VA|2 = 8, W | (5.1)

where 0;W is the generalized derivative of a Hilbert-space value Wiener
process. Define the corresponding Ornstein—Uhlenbeck process for ¢ > 0 as
the following Ito-integral

Z(t) = /0 t e~ (=94 g, (5.2)

Note that Z solves 0;Z + A%2Z = ;W with Z(0) = 0. The mild solution of
(5.1) is analogous to Definition 4.1 given by a solution of

h(t) = e " hog — ¥ (h, h)(t) + Z(t)

Now the main problem in this setting is to determine the regularity of Z, which
can be read in terms of the covariance of the driving noise. Once we know this,
we can solve the equation using again Banach’s fixed point argument.

This is a standard extension to Theorem 4.3 which can be carried on for
instance in the case of bounded intervals (i.e. d = 1) with periodic bound-
ary conditions and space—time white noise. In fact in this case the stochastic
convolution Z and its derivative 9,7 are continuous in both space and time
(this can be verified using the methods in [8], see for example [22]) and almost
surely || Z||x, — 0 for R — 0. Hence the equation can be uniquely solved in
Xg, for a random R > 0.

An interesting question appears in the case of periodic boundary condi-
tions and d = 2, since for space—time white noise the convolution Z just fails
to be differentiable in space (Z will be differentiable if we consider slightly
more regular noise). In this case one can consider the new unknown v = h— 7,
solution to the following random PDE;,

O + A% + A|Vo|? = —AIVZ|]? —2A|Vu-VZ2, 0(0) =hy. (5.3)

The new variable v is expected to be more regular than h, since the above
equation contains only some additional lower order terms that do not change
the proofs, once Z is sufficiently regular. Nevertheless, using renormalisation
techniques it is in some cases possible to define A|[VZ|? for Gaussian fields
that are not differentiable (this is the subject of a work in progress).

For stochastic PDEs on unbounded domains one can use the formulation
of Walsh [28], although one has to consider that for space-time white noise
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both the stochastic convolution Z(t, z) and its derivative VZ(t, x) (if it exists)
are unbounded for |z| — oo.

6. Smoothness of solutions

Following the same methods of [10], we show that solutions in X' (or Xr) are
smooth. Define for m > 1,

m+1
IFll¢m = sup q 75 > D%
t>

|a]=m+1
and denote by || - ||xp,m the corresponding local version, where for a =
(a1,...,aq) we used D = 031 -+ 0poa and la| =01 + -+ aq.

Let X™ be the space

X" ={k:R*>R: |k|xm = omax [|kllx,; < oo},

and denote by X7’ the corresponding local version. For simplicity of nota-
tions we understand that || - ||x,0 = || - ||+ and for R = oo that X = X™.
The main theorem of this section is the following result on smoothness in space.
Smoothness in time then follows from the PDE by a standard bootstrapping
argument.

Theorem 6.1. Let h be a solution of (1.1) in Xg, with 0 < R < oco. Then
h(t) € C°(RY) for all t € (0, R).

Proof. If the initial condition is small enough in Bp, the statement follows
from Proposition 6.3 below. In the general case we notice that if h € X'g, then
Vh(t) is bounded for all ¢ € (0, R), therefore h(t) € Z, by Lemma 3.1. The
conclusion then follows again from Proposition 6.3. 0

Remark 6.2. A more careful estimate of the constants appearing in the results
that follow (for instance the constants K, in Lemma 6.6) would show that
the solutions are analytic in space. We point out that Koch and Lamm [16]
have a shorter and more elegant proof of analyticity (in a different context).
An advantage of the method used here is to provide the behaviour at ¢ = 0 of
solutions through the spaces X™ and Xj'.

In order to complete the proof of the above theorem, we need the follow-
ing proposition, which also gives a better estimate of the solution near ¢t = 0
if the initial condition is small enough.

Proposition 6.3. There exists 6 > 0 such that if ||ho||g < 0, then the solution
to (1.1) granted by Theorem 4.3 is in X™ for all m > 1.

If R > 0 and ||ho||lg, < 0, then the solution to (1.1) granted by Theo-
rem 4.3 is in X7 for all m > 1.

We start by giving a slight generalization of (2.3).
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Lemma 6.4. Let 0 < R < oo and k € Bg, then for every m > 0,

m—+1

af,— mtl m
sup § 475 37 D B, o < emlm 4 1) Vgl sy [l
= |a]=m—+1

(6.1)

Proof. Since for |a] = m+1,
d .
D(em k) = [J@z ek,
i=1
it is sufficient to show that the operator d,, e~*4 maps L>(R?) into itself with
operator norm [0y, e~ || L _p < t71/4||Vg]| 11 (ra). This is immediate since
by a change of variables,

LY

1 — T —
onte @ =1 | [ @) (5L ) K o] < 190l

Finally, #({a: |a| =m + 1}) = (Zir{i) < cem?. O

Lemma 6.5. There is c5 > 0 such that form > 1,0 < R < oo and h,k € X3,

m+3

17/ (hy k)| e < csm(m+ 1) 72 Vgl 7 may lgllws.s ety [ Bll e 1Kl
+esllhllan Ikl a, . + csllhllxn . 1Bl 2q

m—1
m
D D 4 [T (6.2
J=1

Proof. Fix m > 1,0 < R < oo,t < Rand h,k € X7'. Consider a value
€ € (0, 1) which will be specified later, and let |a| = m+1. Since |a| > 1, there
is i < d such that «; > 1. So assume without loss of generality that a; > 1
and let o/ = a — (1,0,...,0).

DY (h, k)(t) = /t DA(e==)A(Vh(s)VEk(s))) ds

_ /t(le) DA(e==5)A(Vh(s)Vk(s))) ds
0

t
+ / DA A (Vh(s)Vk(s)) ds
t(l—e)
-0+0.
For the term Q) we use the factorization introduced in the previous lemma and
we proceed as in the proof of Lemma 4.2,

) t(1—e) .
m+3 m 1 _m+3
|O[<(m+1) 4 IIVgllLlllaxlAgHLlthllelkllxR/O s 2(t—s5)" 7 ds
m+3

m+1 4 _m+1 m
<W—e( ) £ |74 190 gl [l

€
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For the second term we use Leibniz formula,

—(t=5)A( B o'—p
Q=) ( )/(1 E)awlAe (DPVh) (D ~PVE)ds

Bs<a’

and, as in the proof of Lemma 4.2,

o ¢ 1
@< 3 ()10 gl o Wl [ s
BZ;’ g ' o T Jia—e 8™ (E— 8)d
fet _m41 o
< Wt 4 IlAg”Ll Z 3 Hh’”XR,Mﬂ||k||XR,7n7\,6‘\
(1—e) p<a’
If we set € = W the term 4e'/4(1 — €)= ("+2/4(m 4 d)¢ is uniformly

bounded in m (we recall that the number of multi-indices « such that || =
m + 1 is bounded by (m + d)?) and so by summing up over « the estimates
for @ and Q) together show the lemma. O

As in the proof of Theorem 4.3, define Hy = 0 and
Hyy1(t) = e " ho — ¥ (H,, Hy)(t).

Lemma 6.6. There is 6’ > 0 such that if 0 < R < 0o and ||ho||g, < 0, then for
every m > 0 there is K., > 0 such that

HHnHXmm < K.

Proof. If ||ho||B,, is small enough, the proof of Theorem 4.3 shows that there
is Ky such that ||H,||x, < Ko. By possibly taking ||ho||g, smaller, we can
assume that A\ = 2¢5Ky < 1, where ¢5 is given in Lemma 6.5. We prove
the statement by induction: the case m = 0 has been already proved. Set
am = csmd(m + 1)mF3/2||Vg||™ ||g|lws. [this is the coefficient appearing
in the first line of formula (6.2)] and b, = cm(m + 1)mTV/4|Vg||7 [this
appears in formula (6.1)], then by Lemmas 6.4 and 6.5,

||Hn+1||XR,m < HHlHXR,m + ||V(Hn7Hn)‘|XR,m
< b, Ko+ ang + 205K0||Hn||XR,m
m—1

resm® 3 (Ml

m—1
< |\ Ko+ anKg +esm® > (7KK | + M Haullxgm,
j=1
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so that by recurrence and again Lemma 6.4,

[ Hnt1ll205,m

m—1
< b'rnKO"'ang""CSmd (7)Kij—j (1+ +>‘n71>+)‘n”H1”XR7m
j=1

3
L

1
< — meO + CLng + C5md (m)KJKm—J + meOa

“1-A ; J
7j=1

and the last line in the formula above provides K,,. ]

Proof of Proposition 6.3. Theorem 4.3 ensures that if || ho||5,, is small enough,
then there is A = 2¢4 Ky < 1 (where the number K is given by previous
lemma) such that ||Hy+1 — Hyllxp < cA™. We prove by induction that there
are numbers C,, > 0 and u € (0,1) such that

||Hn+1 - Hn”XR,m S Cm,ufny m Z 07

if ||ho||s is small enough. Let A = 2¢5Ky (where ¢5 has been introduced in
Lemma 6.5), assume A < 1 and let A < u < 1. We have already verified that
the inductive claim is true for m = 0. Assume the claim is true for 0,...,m—1,
then by Lemma 6.5 and the inductive assumption,

[Hpt1 — Hullxgm
S ||7/(Hna Hn - Hn—l)”XR,m + HAV(Hn - Hn—lv Hn—l)”XR,m

<lam ([ Hnllag + 1 Hpall g ) +c5 (Hp || 2, m 4 1Hp—1 | 25, m)] [ Hn — Hy—1l| x5
+C5(HHnHXR + ||Hn71||XR)||Hn - anlnXR’m

m—1
d
+esm® > (T (1 Halln,g + 1 Ha1llan, )| Hn = Hyo1 | 2nm—
j=1

<M Hpn = Ho 1l agm + K™Y,

where we have set a,, = csm?(m+1)(m+3)/2||Vg|™ ||g||ws. [the coefficient in
the first line of (6.2)], K,,, = 2Co(am Ko+ c5sKp) + 2csm? Z;":_ll (?)Kij_j,
and the constants K; are given by the previous lemma. By recurrence (notice

that p > X), it is easy to see that for every n,
11 = Hol e SN = Ho | g ym+ Ko (A7 A" 24 oo 4 ")
1 ~
< (AKm + Km> w",
w—A

which concludes the induction. In conclusion, the sequence (H,,)n,en converges
in all spaces X3'. 0
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