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Abstract. In this paper we establish some regularizing and decay rate
estimates for mild solutions of the Debye–Hückel system. We prove that
if the initial data belong to the critical Lebesgue space L

n
2 (Rn), then

the Lq-norm (n
2

≤ q ≤ ∞) of the βth order spatial derivative of mild

solutions are majorized by K1(K2|β|)|β|t− |β|
2 −1+ n

2q for some constants
K1 and K2. These estimates particularly imply that mild solutions are
analytic in the space variable, and provide decay estimates in the time
variable for higher-order derivatives of mild solutions. We also prove that
similar estimates also hold for mild solutions whose initial data belong to

the critical homogeneous Besov space Ḃ
−2+ n

p
p,∞ (Rn) (n

2
< p < n).
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1. Introduction

In this paper we consider the Cauchy problem of the Debye–Hückel system:

∂tv = ∇ · (∇v − v∇φ) in R
n × (0,∞), (1.1)

∂tw = ∇ · (∇w + w∇φ) in R
n × (0,∞), (1.2)

Δφ = v − w in R
n × (0,∞), (1.3)

v(x, 0) = v0(x), w(x, 0) = w0(x) in R
n. (1.4)

Here v = v(x, t) and w = w(x, t) are the scalar functions representing the den-
sities of positive and negative ions, respectively, in an electrolyte, φ = φ(x, t)
is the scalar function representing the electric potential, and v0, w0 are the
initial data of v and w, respectively. Throughout this paper we assume that
n ≥ 2.
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The Debye–Hückel system was formulated by W. Nernst and M. Planck
at the end of the nineteenth century as a basic model for the diffusion of ions in
an electrolytes (cf. [5]). It also arises from mathematical modeling of semicon-
ductors (cf. [6,20]), plasma physics (cf. [7]), chemotaxis (cf. [4]), and etc. We
refer the reader to see [1–3,6,9,11–13,17,18,21,22] and the references therein
for previous works on this system of equations concerning existence of (large)
weak solutions, (small and local) mild solutions, convergence rate estimates to
stationary solutions of time-dependent solutions and other related topics.

The purpose of this paper is to establish regularizing and decay rate esti-
mates for mild solutions of the Debye–Hückel system. Our interest on this
topic is inspired by the series of interesting works of Giga and Sawada [8],
Sawada [19], and Miura and Sawada [15] on the Navier–Stokes equations. In
those works the authors proved the regularizing and decay rate estimates for
mild solutions of the Navier–Stokes equations with initial data belonging to
the usual Lebesgue space Ln(Rn), the homogeneous Sobolev space Ḣ

n
2 −1(Rn)

and the space BMO−1 of derivatives of BMO functions, respectively (see
[14] for definitions of these function spaces). It is worth noticing that these
estimates not only imply that mild solutions are analytic in space variables,
but also give decay rate estimates for the higher-order spatial derivatives of
solutions. For the Debye–Hückel system (1.1)–(1.4), however, to the best of
our knowledge, no similar research was performed before the present work. We
observe that since the system (1.1)–(1.4) is different from the Navier–Stokes
equations, the estimates for this system of equations are variant from those for
the Navier–Stokes equations. The main new difficulty is caused by the term ∇φ
in (1.1)–(1.2), which, by (1.3), is a nonlocal functional of v and w. To overcome
this difficulty, we shall split the estimates for ‖∂β

xv(x)‖Lq and ‖∂β
xw(x)‖Lq into

two cases: the case n
2 ≤ q < n will be treated by using the classical Hardy–

Littlewood–Sobolev inequality and the Calderón–Zygmund theorem, and the
other case n ≤ q ≤ ∞ will be estimated by using the well-known Gagliardo–
Nirenberg inequality.

Before giving our main results, let us first recall the concept of mild solu-
tions of the system (1.1)–(1.4). Note that from (1.3) we have

φ(x, t) = (−Δ)−1(w − v)(x, t) = E ∗ (w − v)(x, t), (1.5)

where E(x) = − 1
2π log |x| if n = 2 and E(x) = 1

4π
− n

2 Γ(n
2 −1)|x|−(n−2) if n ≥ 3

defined for all x ∈ R
n \ {0}. Hence, by the well-known Duhamel principle, the

system (1.1)–(1.4) can be reduced into the following integral equations:

v(t) = etΔv0 −
∫ t

0

e(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))](τ) dτ, (1.6)

w(t) = etΔw0 +
∫ t

0

e(t−τ)Δ∇ · [w∇((−Δ)−1(w − v))](τ) dτ, (1.7)

where etΔ is the convolution operator in S′(Rn) with the heat kernel G(x, t) =
(4πt)− n

2 exp(− |x|2
4t ). A solution of (1.6)–(1.7) will be called a mild solution of

(1.1)–(1.4).
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In what follows, for x = (x1, . . . , xn) ∈ R
n and β = (β1, . . . , βn) ∈ N

n
0 ,

where N0 = N ∪ {0} and N = {1, 2, . . .}, we denote ∂β
x = ∂β1

x1
· · · ∂βn

xn
and

|β| = |β1| + · · · + |βn|. Besides, for two Banach spaces X and Y, the product
space X ×Y will be equipped with the norm ‖(v, w)‖X×Y = ‖v‖X +‖w‖Y . For
simplicity, if X = Y, we simply denote ‖(v, w)‖X×X as ‖(v, w)‖X . By [22], there
exists ε > 0 such that for any (v0, w0) ∈ (L

n
2 (Rn))2 with ‖(v0, w0)‖L

n
2

≤ ε,
the problem (1.1)–(1.4) has a unique mild solution (v, w) in the product space
(Xp)2 for any given p ∈ (n

2 , n), where

Xp=C([0,∞), L
n
2 (Rn))∩{u : u∈C((0,∞), Lp(Rn)) and sup

t>0
t1− n

2p ‖u‖Lp <∞}.

Moreover, by Karch [11], there exists ε > 0 such that for any (v0, w0) ∈
(Ḃ

−2+ n
p

p,∞ (Rn))2 with ‖(v0, w0)‖
Ḃ

−2+ n
p

p,∞
≤ ε, the problem (1.1)–(1.4) has a unique

mild solution (v, w) in the product space (Yp)2, where

Yp =C∗([0, ∞), Ḃ
−2+ n

p
p,∞ (Rn))∩{u : u∈C((0, ∞), Lp(Rn)) and sup

t>0
t
1− n

2p ‖u‖Lp <∞}.

Here the notation C∗([0,∞), Ḃ
−2+ n

p
p,∞ (Rn)) denotes the set of bounded maps

from [0,∞) to Ḃ
−2+ n

p
p,∞ (Rn) which are continuous for t > 0 and weakly

continuous for t = 0. It is easy to see that, equipped with norms
‖v‖Xp

= supt≥0 ‖v‖
L

n
2

+ supt>0 t
1− n

2p ‖v‖Lp and ‖v‖Yp
= supt≥0 ‖v‖

Ḃ
−2+ n

p
p,∞

+

supt>0 t
1− n

2p ‖v‖Lp , respectively, Xp and Yp are Banach spaces.
The main results of this paper are as follows:

Theorem 1.1. Let (v0, w0) ∈ (L
n
2 (Rn))2 be such that ‖(v0, w0)‖L

n
2

≤ ε, where
ε is as above. Let p ∈ (n

2 , n) and (v, w) ∈ (Xp)2 be the solution of (1.1)–(1.4)
mentioned above. There exist constants K1 and K2 depending only on n, p and
ε such that

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K1(K2|β|)|β|t−

|β|
2 −1+ n

2q (1.8)

for all n
2 ≤ q ≤ ∞, t > 0 and β ∈ N

n
0 .

Theorem 1.2. Let p ∈ (n
2 , n), and let (v0, w0) ∈ (Ḃ

−2+ n
p

p,∞ (Rn))2 be such that
‖(v0, w0)‖

Ḃ
−2+ n

p
p,∞

≤ ε, where ε is as above. Let (v, w) ∈ (Yp)2 be the solution

of (1.1)–(1.4) mentioned above. There exist constants K1 and K2 depending
only on n, p and ε such that

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K1(K2|β|)|β|t−

|β|
2 −1+ n

2q (1.9)

for all p ≤ q ≤ ∞, t > 0 and β ∈ N
n
0 .

Remark 1.3. (i) The inequality (1.8) shows that mild solutions of (1.1)–(1.4)
with initial data in (L

n
2 (Rn))2 are spatially analytic, and the Lq-norm (n

2 ≤
q ≤ ∞) of its βth order spatial derivative decay to zero as t → ∞ in a rate of
the form t−

|β|
2 −1+ n

2q . The inequality (1.9) shows that similar results hold for
mild solutions of (1.1)–(1.4) with initial data in (Ḃ

−2+ n
p

p,∞ (Rn))2.
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(ii) As was shown in [22], for large initial data (v0, w0) ∈ (L
n
2 (Rn))2,

there exists T > 0 such that the system (1.1)–(1.4) has a unique local-in-time
mild solution. For a such solution, we have a similar estimate as (1.8), but
with t > 0 replaced by t ∈ (0, T ) and the constants K1 and K2 depending also
on T . A similar remark can be made to Theorem 1.2 for solutions whose initial
data belong to the closure of (S(Rn))2 in (Ḃ

−2+ n
p

p,∞ (Rn))2, where S(Rn) is the
Schwartz space.

The remaining part of this paper is organized as follows. In Section 2, we
state some preliminary results. Section 3 is devoted to presenting the proof of
Theorem 1.1. Section 4 is devoted to presenting the proof of Theorem 1.2.

2. Preliminaries

In this section we collect some preliminary materials for the reader’s conve-
nience. We first recall the definition of the homogeneous Besov space Ḃ−α

p,∞(Rn)
in the version of the heat kernel characterization of this space:

Definition 2.1. (cf. [14]) Let α > 0 and 1 ≤ p ≤ ∞. We define

Ḃ−α
p,∞(Rn)={u ∈ S ′(Rn) : etΔu∈C((0,∞), Lp(Rn)) and sup

t>0
t

α
2 ‖etΔu‖Lp <∞}

with norm

‖u‖Ḃ−α
p,∞ = sup

t>0
t

α
2 ‖etΔu‖Lp .

Here S ′(Rn) represents the dual of the Schwartz space, i.e., the space of
tempered distributions. It is well-known that (Ḃ−α

p,∞(Rn), ‖·‖Ḃ−α
p,∞) is a Banach

space (cf. [14]).
Next we give the regularizing and decay rate estimates for the heat oper-

ator etΔ:

Lemma 2.2. (i) Let 1 ≤ p ≤ q ≤ ∞. Then for any u ∈ Lp(Rn) we have

‖∂β
x e

tΔu‖Lq ≤ C(n)|β| |β|
2 t−

|β|
2 − n

2 ( 1
p − 1

q )‖u‖Lp for all t > 0, β ∈ N
n
0 .

(2.1)

(ii) Let n
2 < p ≤ q ≤ ∞. Then for any u ∈ Ḃ

−2+ n
p

p,∞ (Rn) we have

‖∂β
x e

tΔu‖Lq ≤ C(n)|β| |β|
2 t−

|β|
2 −1+ n

2q ‖u‖
Ḃ

−2+ n
p

p,∞
for all t > 0, β ∈ N

n
0 .

(2.2)

Here C(n) is a constant depending only on n.

Proof. For (i), we refer the reader to see Lemma 2.1 of [8]. To prove (ii)
we observe that since etΔ is the convolution operator with kernel G(x, t) =
(4πt)− n

2 exp(− |x|2
4t ), the Young inequality yields

‖∂xe
tΔu‖Lq ≤ ‖∂xG(x, t)‖L1‖u‖Lq ≤ π− 1

2 t−
1
2 ‖u‖Lq . (2.3)
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On the other hand, it can be easily seen that

∂β
x e

tΔu =
n∏

i=1

(
∂xi

e
t

2|β| Δ
)βi

e
t
2Δu. (2.4)

Hence, using (2.3), (2.4) and Definition 2.1 we get

‖∂β
x etΔu‖Lq ≤

n∏
i=1

‖∂xie
t

2|β| Δ‖βi
L(Lq,Lq)

‖e
t
2Δu‖Lq

≤ C(n)

[
π− 1

2

(
t

2|β|
)− 1

2
]|β| (

t

4

)− n
2

(
1
p

− 1
q

)
‖e

t
4Δu‖Lp

≤ C(n)

[
π− 1

2

(
t

2|β|
)− 1

2
]|β| (

t

4

)− n
2

(
1
p

− 1
q

) (
t

4

)−1+ n
2p

(
t

4

)1− n
2p ‖e

t
4Δu‖Lp

≤ C(n)|β| |β|
2 t

− |β|
2 −1+ n

2q sup
t
4 >0

(
t

4

)1− n
2p ‖e

t
4Δu‖Lp

≤ C(n)|β| |β|
2 t

− |β|
2 −1+ n

2q ‖u‖
Ḃ

−2+ n
p

p,∞
.

Here ‖T‖L(Lp,Lq) denotes the operator norm of the linear operator T :
Lp(Rn) → Lq(Rn). This finishes the proof of Lemma 2.2 (ii). �

The following is the well-known Hardy–Littlewood–Sobolev inequality
(cf. [14]):

Lemma 2.3. For any 1 < p < n, the operator (−Δ)− 1
2 is bounded from Lp(Rn)

to L
np

n−p (Rn), i.e., for any u ∈ Lp(Rn) we have

‖(−Δ)− 1
2u‖

L
np

n−p
≤ C(n, p)‖u‖Lp , (2.5)

where C(n, p) is a constant depending only on n and p.

The following preliminary result is due to C. Kahane (cf. Lemma 2.1 of
[10]):

Lemma 2.4. Let δ > 1
2 . Then there exists a positive constant C depending only

on δ such that
∑
α≤β

(
β

α

)
|α||α|−δ|β − α||β−α|−δ ≤ C(δ)|β||β|−δ for all β ∈ N

n
0 . (2.6)

Here, the notation α ≤ β means that αi ≤ βi for all i = 1, 2, . . . , n, and(
β
α

)
=

∏n
i=1

βi!
αi!(βi−αi)!

. Note that the dependence of C(δ) on δ is merely of the

form
∑∞

j=1 j
−δ− 1

2 .
Finally we recall the following useful lemma, whose proof can be found

in [8]:

Lemma 2.5. Let ψ0 be a measurable and locally bounded function in (0,∞). Let
{ψj}∞

j=1 be a sequence of measurable functions in (0,∞). Assume that α ∈ R

and μ, ν > 0 satisfying μ + ν = 1. Let Bη > 0 be a number depending on
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η ∈ (0, 1), and assume that Bη is nonincreasing with respect to η. Assume that
there is a positive constant σ such that

0 ≤ ψ0(t) ≤ Bηt
−α + σ

∫ t

(1−η)t

(t− τ)−μτ−νψ0(τ) dτ (2.7)

and

0 ≤ ψj+1(t) ≤ Bηt
−α + σ

∫ t

(1−η)t

(t− τ)−μτ−νψj(τ) dτ (2.8)

for all j ≥ 0, t > 0 and η ∈ (0, 1). Let η0 be a unique positive number such that
I(η0) = min{ 1

2σ , I(1)} with I(η) =
∫ 1

1−η
(1 − τ)−μτ−α−ν dτ . Then

ψj(t) ≤ 2Bη0t
−α for all j ≥ 0 and t > 0. (2.9)

Remark 2.6. From the proof of the above lemma (see [8]) we see that in (2.9),
η0 can be replaced with any 0 < η ≤ η0.

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We follow the idea of [8] and
first prove a variant of Theorem 1.1 under some additional regularity assump-
tions. In what follows, we shall use notations Ci(a, b, . . .) and C̃i(a, b, . . .)
to denote various constants which depend only on the indicated parameters
a, b, . . ..

Proposition 3.1. Let the assumptions of Theorem 1.1 be satisfied. Furthermore,
we assume that

(∂β
xv(t), ∂

β
xw(t)) ∈ (C((0,∞), Lq(Rn)))2 (3.1)

for all n
2 ≤ q ≤ ∞ and β ∈ N

n
0 . Then for any δ ∈ ( 1

2 , 1], there exist positive
constants K1 and K2 depending only on n, p, ε and δ such that

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K1(K2|β|)|β|−δt−

|β|
2 −1+ n

2q (3.2)

for all n
2 ≤ q ≤ ∞, t > 0 and β ∈ N

n
0 .

Proof. We deduce by induction on m = |β| and split the proof into two steps.
Step 1. We first prove (3.2) for m = 0. Note that from [22] we know that

for any (v0, w0) ∈ (L
n
2 (Rn))2 with ‖(v0, w0)‖L

n
2

≤ ε, the corresponding mild
solution satisfies ‖(v(t), w(t))‖Xp

≤ Cε for some universal constant C, i.e.,

sup
t≥0

‖(v(t), w(t))‖
L

n
2

+ sup
t>0

t1− n
2p ‖(v(t), w(t))‖Lp ≤ Cε. (3.3)

Hence (3.2) is trivial if either q = n
2 or q = p. Moreover, by interpolation,

(3.2) also immediately follows if q ∈ (n
2 , p). In what follows we consider the

case q ∈ (p,∞]. Let η ∈ (0, 1) be a constant to be specified later. By taking
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Lq-norm of both sides of (1.6) and dividing the time integral into two parts,
we have

‖v(t)‖Lq ≤ ‖etΔv0‖Lq +

(∫ t(1−η)

0

+
∫ t

t(1−η)

)
‖e(t−τ)Δ∇

·[v∇((−Δ)−1(w − v))]‖Lq (τ) dτ
= A1 +A2 +A3. (3.4)

We shall estimate the three terms one by one. For A1, by Lemma 2.2 (i),
we easily see that

A1 ≤ C1(n)t−1+ n
2q ‖v0‖L

n
2

≤ C1(n, ε)t−1+ n
2q . (3.5)

For A2, by Lemma 2.2 (i), Lemma 2.3 and (3.3) we have

A2 =
∫ t(1−η)

0

‖e(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖Lq (τ) dτ

≤ C2(n)
∫ t(1−η)

0

(t− τ)− 1
2 − n

2 ( 2
n + 1

p − 1
n − 1

q )‖v(τ)‖
L

n
2

×‖∇((−Δ)−1(w − v))(τ)‖
L

np
n−p

dτ

≤ C2(n, p)
∫ t(1−η)

0

(t− τ)−1− n
2p + n

2q ‖v(τ)‖
L

n
2
‖(v(τ), w(τ))‖Lp dτ

≤ C2(n, p)ε2
∫ t(1−η)

0

(t− τ)−1− n
2p + n

2q τ−1+ n
2p dτ

≤ C2(n, p, ε)η−2t−1+ n
2q . (3.6)

For A3, by using Lemmas 2.2 (i), 2.3 and (3.3) again we see that

A3 =
∫ t

t(1−η)

‖e(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖Lq (τ) dτ

≤ C3(n)
∫ t

t(1−η)

(t− τ)− 1
2 − n

2 ( 1
q + 1

p − 1
n − 1

q )‖v(τ)‖Lq

×‖∇((−Δ)−1(w − v))(τ)‖
L

np
n−p

dτ

≤ C3(n, p)
∫ t

t(1−η)

(t− τ)− n
2p ‖v(τ)‖Lq‖(v(τ), w(τ))‖Lp dτ

≤ C3(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖v(τ)‖Lq dτ. (3.7)

Combining (3.5)–(3.7) and denoting B̄η = C1(n, ε) + C2(n, p, ε)η−2, we
see that (3.4) yields

‖v(t)‖Lq ≤ B̄ηt
−1+ n

2q + C3(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖v(τ)‖Lq dτ.

(3.8)
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Similarly we can deal with (1.7) to obtain that

‖w(t)‖Lq ≤ B̄ηt
−1+ n

2q + C3(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖w(τ)‖Lq dτ.

(3.9)

From (3.8) and (3.9) we have

‖(v(t), w(t))‖Lq ≤Bηt
−1+n

2q +C4

∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(v(τ), w(τ))‖Lq dτ,

(3.10)

where Bη = 2B̄η and C4 = 2C3(n, p, ε). By applying Lemma 2.5, we get
the desired estimate (3.2) for |β| = m = 0 with K1 = 2Bη0 , where η0 =
η0(n, p, ε) ∈ (0, 1).

Step 2. Next we prove (3.2) for m ≥ 1. Since the arguments for the cases
n
2 ≤ q < n and n ≤ q ≤ ∞ are different, we consider the two different cases
separately.

Case 1: n
2 ≤ q < n. In this case, we first differentiate (1.6) to get

∂β
xv(t) = ∂β

x e
tΔv0 −

∫ t

0

∂β
x e

(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))](τ) dτ.

For η ∈ (0, 1) to be chosen later, we split the time integral into two parts
and get:

‖∂β
xv(t)‖Lq ≤ ‖∂β

x e
tΔv0‖Lq +

(∫ t(1−η)

0

+
∫ t

t(1−η)

)

×‖∂β
x e

(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖Lq (τ) dτ
= B1 +B2 +B3. (3.11)

For B1, by Lemma 2.2 (i) we have

B1 ≤ C5(n)m
m
2 t−

m
2 −1+ n

2q ‖v0‖L
n
2

≤ C5(n, ε)mm−δt−
m
2 −1+ n

2q . (3.12)

Here we used the evident facts that m
m
2 = mm−δ for m = 1, and m

2 ≤
m − δ for m ≥ 2 and δ ∈ (1

2 , 1]. For B2, using Lemmas 2.2 (i), 2.3 and (3.3),
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we have

B2 =
∫ t(1−η)

0

‖∂β
x e

(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖Lq (τ) dτ

≤ C6(n, p)
∫ t(1−η)

0

‖e t−τ
2 Δ∇‖L(Lq,Lq)

‖∂β
x e

t−τ
2 Δ‖L(L

np
n+p ,Lq)

‖v(τ)‖
L

n
2
‖(v(τ), w(τ))‖Lp dτ

≤ C6(n, p)m
m
2

∫ t(1−η)

0

(
t− τ

2

)− m
2 −1− n

2p + n
2q

‖v(τ)‖
L

n
2
‖(v(τ), w(τ))‖Lp dτ

≤ C6(n, p)ε2m
m
2

∫ t(1−η)

0

(
t− τ

2
)− m

2 −1− n
2p + n

2q τ−1+ n
2p dτ

≤ C6(n, p, ε)(2m)
m
2 η− m

2 − 3
2 t−

m
2 −1+ n

2q . (3.13)

For B3, by using the Leibniz rule we have

B3 =

∫ t

t(1−η)
‖∂

β
x e

(t−τ)Δ∇ · [v∇((−Δ)
−1

(w − v))]‖Lq (τ) dτ

≤
∫ t

t(1−η)
‖e

t−τ

2
Δ∇‖L(Lq,Lq)‖e

t−τ

2
Δ

∂
β
x [v∇((−Δ)

−1
(w − v))]‖Lq (τ) dτ

≤ C7(n)

∫ t

t(1−η)

(
t − τ

2

)− 1
2 ‖e

t−τ

2
Δ

∂
β
x [v∇((−Δ)

−1
(w − v))]‖Lq (τ) dτ

≤ C7(n)

∫ t

t(1−η)

(
t − τ

2

)− 1
2 ‖e

t−τ

2
Δ

[(∂
β
x v)∇((−Δ)

−1
(w − v))]‖Lq (τ) dτ

+C7(n)

∫ t

t(1−η)

(
t − τ

2

)− 1
2

∥∥∥∥∥∥e
t−τ

2
Δ

⎡
⎣ ∑

0<γ<β

(
β

γ

) (
∂

γ
x v

) (
∂

β−γ
x ∇

(
(−Δ)

−1
(w − v)

))⎤⎦
∥∥∥∥∥∥

Lq

(τ) dτ

+C7(n)

∫ t

t(1−η)

(
t − τ

2

)− 1
2 ‖e

t−τ

2
Δ

[v∂
β
x (∇((−Δ)

−1
(w − v)))]‖Lq (τ) dτ

= B31 + B32 + B33. (3.14)

Here, the notation γ < β means that γ ≤ β and |γ| < |β|. For B31,
Lemma 2.2 (i) implies that

B31 ≤ C8(n, p)
∫ t

t(1−η)

(
t− τ

2

)− 1
2−n

2 ( 1
q+

1
p − 1

n−1
q )

‖∂β
xv(τ)‖Lq‖(v(τ), w(τ))‖Lp dτ

≤ C8(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖∂β
xv(τ)‖Lq dτ. (3.15)
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For B32, by the induction assumption and Lemma 2.4 we get

B32 ≤ C9(n, p)
∫ t

t(1−η)

(
t− τ

2

)− n
2p ∑

0<γ<β

(
β

γ

)
‖∂γ

xv(τ)‖Lq

×‖ (
∂β−γ

x v(τ), ∂β−γ
x w(τ)

) ‖Lp dτ

≤ C9(n, p)
∫ t

t(1−η)

(
t− τ

2

)− n
2p

⎛
⎝ ∑

0<γ<β

(
β

γ

)
K1(K2|γ|)|γ|−δτ− |γ|

2 −1+ n
2q

×K1(K2|β − γ|)|β−γ|−δτ− |β−γ|
2 −1+ n

2p

⎞
⎠ dτ

≤ C9(n, p)K2
1K

m−2δ
2

⎛
⎝ ∑

0<γ<β

(
β

γ

)
|γ||γ|−δ|β − γ||β−γ|−δ

⎞
⎠

×
∫ t

t(1−η)

(t− τ)− n
2p τ− m

2 −2+ n
2q + n

2p dτ

≤ C9(n, p, δ)K2
1K

m−2δ
2 mm−δI(η)t−

m
2 −1+ n

2q , (3.16)

where I(η) =
∫ 1

1−η
(1 − τ)− n

2p τ− m
2 −2+ n

2q + n
2p dτ . For B33, using Lemma 2.2 (i)

again, the Calderón–Zygmund theorem, the result of Step 1 and the induction
assumption, we obtain

B33 ≤C10(n, p)
∫ t

t(1−η)

(
t− τ

2

)− n
2p

‖v(τ)‖
L

nq
n−q

‖∂β
x (∇((−Δ)−1(w − v)))‖Lp dτ

≤ C10(n, p)
∫ t

t(1−η)

(
t− τ

2

)− n
2p

‖v(τ)‖
L

nq
n−q

‖(∂β−1
x v(τ), ∂β−1

x w(τ))‖Lp dτ

≤ C10(n, p, δ)K2
1K

m−2δ
2 mm−δI(η)t−

m
2 −1+ n

2q . (3.17)

Combining estimates (3.12)–(3.17) and denoting

B̄η = C5(n, ε)mm−δ + C6(n, p, ε)(2m)
m
2 η− m

2 − 3
2

+C11(n, p, δ)K2
1K

m−2δ
2 mm−δI(η),

where C11(n, p, δ) = C9(n, p, δ) + C10(n, p, δ), we see that

‖∂β
xv(t)‖Lq ≤ B̄ηt

− m
2 −1+ n

2q

+C8(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ.

(3.18)
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The estimate for ∂β
xw(t) is similar, so that

‖∂β
xw(t)‖Lq ≤ B̄ηt

− m
2 −1+ n

2q

+C8(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ.

(3.19)

From (3.18) and (3.19) we obtain

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ Bηt

− m
2 −1+ n

2q

+C12

∫ t

t(1−η)

(t−τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ.

(3.20)

Here Bη = 2B̄η and C12 = 2C8(n, p, ε). Hence, by Lemma 2.5 and
Remark 2.6, there exists ηm0 such that for any 0 < ηm ≤ ηm0 ,

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ 2Bηm

t−
m
2 −1+ n

2q for all t > 0.

Let ηm = 1
m . Since I(ηm) is strictly monotone decreasing in m and

I(ηm) → 0 as m → ∞, we can choose m0 sufficiently large such that
I( 1

m ) ≤ 1
2C12

for all m ≥ m0. Hence, we obtain

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ 2B 1

m
t−

m
2 −1+ n

2q for all t > 0 and |β| = m. (3.21)

By (3.21), we can choose K1 and K2 sufficiently large such that (3.2)
holds for all β satisfying |β| ≤ m0. Hence, to get the desired assertion it suf-
fices to prove that it is possible to choose K1 and K2 sufficiently large such
that also 2B 1

m
≤ K1(K2m)m−δ for all m > m0. For this purpose we note that

it is clear that

I

(
1
m

)
=

∫ 1

1− 1
m

(1 − τ)− n
2p τ− m

2 −2+ n
2q + n

2p dτ ≤ 2
√
e ≤ 4 for all m ≥ 1,

so that we can calculate 2B 1
m

as follows:

2B 1
m

≤ 4[C5 + C62
m
2 mδ+ 3

2 + 4C11K
2
1K

m−2δ
2 ]mm−δ.

Note that there exists a constant C13 > 2 such that 2
m
2 mδ+ 3

2 ≤ 2m−δmδ+ 3
2 ≤

Cm−δ
13 . Hence,

2B 1
m

≤ 4[C5 + C6C
m−δ
13 + 4C11K

2
1K

m−2δ
2 ]mm−δ

≤ 4[(C5 + C6)Cm−δ
13 + 4C11K

2
1K

m−2δ
2 ]mm−δ.

Now if we choose

K1 := 8(C5 + C6) and K2 := max{C13, 32C11K1},
then we obtain (3.2) immediately. This concludes the case n

2 ≤ q < n.
Case 2: n ≤ q ≤ ∞. For any p ∈ (n

2 , n) and n ≤ q ≤ ∞, by using the
Gagliardo–Nirenberg inequality (cf. [16]) we have

‖∂β
xv(t)‖Lq ≤ C(n, p)‖∂β

xv(t)‖θ

L
n
2
‖∂2

x∂
β
xv(t)‖1−θ

Lp , (3.22)
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where θ is the unique number in (0, 1) determined by the following equation:

−n

q
= −2θ +

(
2 − n

p

)
(1 − θ),

namely,

θ =

{
2pq+np−nq

(4p−n)q if n ≤ q < ∞,
2p−n
4p−n if q = ∞.

(3.23)

Now from (3.22), (3.23) and the result of Case 1 we see that

‖∂β
xv(t)‖Lq ≤ C(n, p)(K−1

1 (K2|β|)−|β|t
|β|
2 ‖∂β

xv(t)‖L
n
2
)θ

×(K−1
1 (K2(|β| + 2))−|β|+2t

|β|+2
2 +1− n

2p ‖∂β
x∂

2
xv(t)‖Lp)1−θ

×K1(K2|β|)|β|θ(K2(|β| + 2))(|β|+2)(1−θ)t−
|β|
2 θ−( |β|+2

2 +1− n
2p )(1−θ)

≤ C(n, p)K1(K2(|β| + 2))|β|+2t−
|β|
2 −1+ n

2q . (3.24)

It is clear that there exists a constant C14 ≥ 2 such that |β|2 ≤ C
|β|
14 , so

that

(K2(|β| + 2))|β|+2 = K2
2 |β|2

(
1 +

2
|β|

)|β|+2

(K2|β|)|β| ≤ 9e2K2
2 (C14K2|β|)|β|.

Hence, we can choose K1 and K2 sufficiently large such that (3.2) holds for all
n
2 ≤ q ≤ ∞. This completes the proof of Proposition 3.1. �

Having proved Proposition 3.1, we see that Theorem 1.1 immediately fol-
lows if we prove that the mild solution (v, w) of (1.1)–(1.4) always satisfies the
regularity assumption (3.1). In what follows we prove that this is indeed the
case.

Proposition 3.2. Let (v0, w0) ∈ (L
n
2 (Rn))2 be such that ‖(v0, w0)‖L

n
2

≤ ε,
where ε is as before. Then the unique mild solution (v, w) of (1.1)–(1.4) sat-
isfies (3.3) and

sup
t>0

t
|β|
2 +1− n

2q ‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K̃1(K̃2|β|)|β|−δ (3.25)

for all n
2 ≤ q ≤ ∞, t > 0 and β ∈ N

n
0 , where K̃1 and K̃2 are constants

depending only on n, p, ε and δ.

Proof. Recall that the mild solution (v(t), w(t)) ∈ (Xp)2 (for any given p ∈
(n

2 , n)) is obtained by using the following Picard iteration procedure:⎧⎨
⎩

(
v0(t), w0(t)

)
=

(
etΔv0, e

tΔw0

)
,

vj+1(t) = etΔv0 − ∫ t

0
e(t−τ)Δ∇ · [vj∇ (

(−Δ)−1
(
wj − vi

))]
(τ) dτ,

wj+1(t) = etΔw0 +
∫ t

0
e(t−τ)Δ∇ · [wj∇ (

(−Δ)−1
(
wj − vj

))]
(τ) dτ.

As was shown in [22], ‖(vj(t), wj(t))‖Xp
is uniformly bounded, i.e., there

exists a universal constant C such that for all t > 0,

sup
j≥0

sup
t≥0

‖(vj(t), wj(t))‖
L

n
2

+ sup
j≥0

sup
t>0

t1− n
2p ‖(vj(t), wj(t))‖Lp ≤ Cε,
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and, furthermore, {(vj(t), wj(t))}∞
j=0 is a Cauchy sequence in (Xp)2. The solu-

tion (v(t), w(t)) is then obtained by taking the limit:

(v(t), w(t)) = lim
j→∞

(vj(t), wj(t)) in Lp(Rn) for all t > 0.

To prove (3.24), we fix β ∈ N
n
0 and set hj(t) = ‖(∂β

xv
j(t), ∂β

xw
j(t))‖Lq . Then

we can argue in the same way as in the proof of Proposition 3.1 to conclude
that

hj+1(t) ≤ B̂ηt
− |β|

2 −1+ n
2q + C

∫ t

t(1−η)
(t − τ)

− n
2q τ

−1+ n
2q hj(τ) dτ for all j ≥ 0 and t > 0,

where C is a constant depending only on n, p and ε, and B̂η is similar to Bη.
Hence, by applying Lemma 2.5, there exist K̃1 and K̃2 depending only on
n, p, ε and δ such that

t
|β|
2 +1− n

2q ‖(∂β
xv

j(t), ∂β
xw

j(t))‖Lq ≤K̃1(K̃2|β|)|β|−δ for all j≥0 and t > 0.
(3.26)

This yields the fact that there exist (f(t), g(t)) ∈ (Lq(Rn))2 and we obtain
a subsequence {(∂β

xv
jk(t), ∂β

xw
jk(t))} such that

lim
j→∞

(∂β
xv

jk(t), ∂β
xw

jk(t)) = (f(t), g(t)) weakly in (Lq(Rn))2 for all t > 0.

(3.27)

By uniqueness of the limit, we see that (∂β
xv(t), ∂

β
xw(t)) = (f(t), g(t)).

Besides, from (3.26) and (3.27) it is obvious that

t
|β|
2 +1− n

2q ‖(f(t), g(t))‖Lq ≤ K̃1(K̃2|β|)|β|−δ for all t > 0.

Hence, we have

t
|β|
2 +1− n

2q ‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K̃1(K̃2|β|)|β|−δ for all t > 0,

i.e., (3.25) holds. This completes the proof of Proposition 3.2. �
Proof of Theorem 1.1. This follows immediately from Propositions 3.1 and 3.2.

�

4. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. Similarly as in the proof of
Theorem 1.1, this will be fulfilled by establishment of two propositions.

Proposition 4.1. Let the assumptions of Theorem 1.2 be satisfied. Furthermore,
we assume that

(∂β
xv(t), ∂

β
xw(t)) ∈ (C((0,∞), Lq(Rn)))2 (4.1)

for all p ≤ q ≤ ∞ and β ∈ N
n
0 . Then for any δ ∈ ( 1

2 , 1], there exist positive
constants K1 and K2 depending only on n, p, ε and δ such that

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K1(K2|β|)|β|−δt−

|β|
2 −1+ n

2q (4.2)

for all p ≤ q ≤ ∞, t > 0 and β ∈ N
n
0 .
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Proof. We prove this proposition by induction on m = |β|.
Step 1. We first assume that m = 0. By [11], for any (v0, w0) ∈

(Ḃ
−2+ n

p
p,∞ (Rn))2 such that ‖(v0, w0)‖

Ḃ
−2+ n

p
p,∞

≤ ε, the corresponding mild solu-

tion (v(t), w(t)) ∈ (Yp)2 satisfies ‖(v(t), w(t))‖Yp
≤ Cε for some universal

constant C, i.e.,

sup
t≥0

‖(v(t), w(t))‖
Ḃ

−2+ n
p

p,∞
+ sup

t>0
t1− n

2p ‖(v(t), w(t))‖Lp ≤ Cε. (4.3)

This implies that (4.2) holds for q = p. Hence, by interpolation, it suffices
to prove that (4.2) also holds for q = ∞. Let η ∈ (0, 1) be a constant to be
specified later. We rewrite (3.4) for q = ∞ as follows:

‖v(t)‖L∞ ≤ ‖etΔv0‖L∞ +

(∫ t(1−η)

0

+
∫ t

t(1−η)

)

×
∥∥∥e(t−τ)Δ∇ · [v∇ (

(−Δ)−1(w − v)
)]∥∥∥

L∞
(τ) dτ

= E1 + E2 + E3. (4.4)

For E1, by applying Lemma 2.2 (ii) we get

E1 ≤ C̃1(n)t−1‖v0‖
Ḃ

−2+ n
p

p,∞
≤ C̃1(n, ε)t−1. (4.5)

For E2, using Lemmas 2.2 (i), 2.3 and (4.3) we have

E2 =
∫ t(1−η)

0

‖e(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖L∞(τ) dτ

≤ C̃2(n, p)
∫ t(1−η)

0

(t− τ)− n
p ‖v(τ)‖Lp‖(v(τ), w(τ))‖Lp dτ

≤ C̃2(n, p)ε2
∫ t(1−η)

0

(t− τ)− n
p τ−2+ n

p dτ

≤ C̃2(n, p, ε)η−2t−1. (4.6)

For E3, using Lemmas 2.2 (i), 2.3 and (4.3) again we get

E3 =
∫ t

t(1−η)

‖e(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖L∞(τ) dτ

≤ C̃3(n, p)
∫ t

t(1−η)

(t− τ)− n
2p ‖v(τ)‖L∞‖(v(τ), w(τ))‖Lp dτ

≤ C̃3(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖v(τ)‖L∞ dτ. (4.7)

Combining (4.5)–(4.7), and denoting B̃η = C̃1(n, ε) + C̃2(n, p, ε)η−2, we
have

‖v(t)‖L∞ ≤ B̃ηt
−1 + C̃3(n, p, ε)

∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖v(τ)‖L∞ dτ.

(4.8)
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The estimate for w(t) is similar. Hence,

‖(v(t), w(t))‖L∞ ≤ Bηt
−1 + C̃4

∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(v(τ), w(τ))‖L∞ dτ,

(4.9)

where Bη = 2B̃η and C̃4 = 2C̃3(n, p, ε). Now from (4.9) and Lemma 2.5 we see
that (4.2) holds with K1 = 2Bη0 for m = 0 and some η0 = η0(n, p, ε) ∈ (0, 1).

Step 2. Next we assume that m ≥ 1 and proceed to prove that (4.2) holds
for |β| = m, provided it holds for all β ∈ N

n
0 such that |β| ≤ m − 1. We only

need to consider the case p ≤ q < n, because if this case is proved then the rest
case n ≤ q ≤ ∞ can be proved similarly as in the corresponding case treated
in Sect. 3. For this purpose, by taking the Lq-norm of ∂β

xv, we see that for
some η ∈ (0, 1) to be specified later, we have

‖∂β
xv(t)‖Lq ≤ ‖∂β

x e
tΔv0‖Lq +

(∫ t(1−η)

0

+
∫ t

t(1−η)

)

×‖∂β
x e

(t−τ)Δ∇ · [v∇((−Δ)−1(w − v))]‖Lq (τ) dτ
= F1 + F2 + F3. (4.10)

For F1, using Lemma 2.2 (ii), it can be easily estimated that

F1 ≤ C̃5(n)m
m
2 t−

m
2 −1+ n

2q ‖v0‖
Ḃ

−2+ n
p

p,∞
≤ C̃5(n, ε)mm−δt−

m
2 −1+ n

2q . (4.11)

For F2, similar to the derivation of (3.13), we get

F2 ≤ C̃6(n, p, ε)(2m)
m
2 η− m

2 − 3
2 t−

m
2 −1+ n

2q . (4.12)

For F3, similar as we have done for B3, we can obtain that

F3 ≤ C̃7(n, p, δ)K2
1K

m−2δ
2 mm−δI(η)t−

m
2 −1+ n

2q

+C̃8(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ,

(4.13)

where I(η) =
∫ 1

1−η
(1 − τ)− n

2p τ− m
2 −2+ n

2p + n
2q dτ . Combining estimates (4.11)–

(4.13) and denoting B̃η by

B̃η = C̃5(n, ε)mm−δ+C̃6(n, p, ε)(2m)
m
2 η− m

2 −3
2 +C̃7(n, p, δ)K2

1K
m−2δ
2 mm−δI(η),

(4.10) implies that

‖∂β
xv(t)‖Lq ≤ B̃ηt

− m
2 −1+ n

2q

+C̃8(n, p, ε)
∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ.

(4.14)
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It can be done analogously for ∂β
xw(t). Hence,

‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ Bηt

− m
2 −1+ n

2q

+C̃9

∫ t

t(1−η)

(t− τ)− n
2p τ−1+ n

2p ‖(∂β
xv(τ), ∂

β
xw(τ))‖Lq dτ.

(4.15)

Here Bη = 2B̃η and C̃9 = 2C̃8(n, p, ε). Having obtained (4.15), we can
now follow a similar argument as that in the proof of Proposition 3.1 to get
the desired assertion. We omit it here. This proves Proposition 4.1. �

Proposition 4.2. Let p ∈ (n
2 , n). Assume that (v0, w0) ∈ (Ḃ

−2+ n
p

p,∞ (Rn))2 be such
that ‖(v0, w0)‖

Ḃ
−2+ n

p
p,∞

≤ ε, where ε is as before. Then the unique mild solution

(v, w) of (1.1)–(1.4) satisfies (4.3) and

sup
t>0

t
|β|
2 +1− n

2q ‖(∂β
xv(t), ∂

β
xw(t))‖Lq ≤ K̃1(K̃2|β|)|β|−δ (4.16)

for all p ≤ q ≤ ∞, t > 0 and β ∈ N
n
0 , where K̃1 and K̃2 are constants depending

only on n, p, ε and δ.

Proof. The prove is essentially the same with that of Proposition 3.2, so we
omit it. �

Proof of Theorem 1.2. This is an immediate consequence of Propositions 4.1
and 4.2. �
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