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1. Introduction

Stochastic partial differential equations driven by jump processes gain atten-
tion quiet recently due to its important applications in Mathematical Physics
(see [4,29]) and also in Biomathematics (see [32]). Detailed literature on this
subject can be found in the books by Applebaum [5], Ikeda and Watanabe [15],
and Peszat and Zabczyk [26] (and references therein). In the last few years sev-
eral interesting results have been established. To name a few, de Acosta [1,2]
first studied the large deviations for Lévy processes on Banach spaces and large
deviations for solutions of stochastic differential equations driven by Poisson
measures; Albeverio et al. [3] proved the existence and uniqueness for solutions
of parabolic SPDEs driven by Poisson random measures; absolute continuity
of the law of the solutions of parabolic SPDEs driven by Poisson random
measures was proved by Fournier [11] using techniques from Malliavin calcu-
lus; Hausenblas [13], Mandrekar and Rüdiger [20] and Rüdiger [28] extensively
studied the existence and uniqueness of stochastic integral equations driven by
Lévy noise and compensated Poisson random measures on separable Banach
spaces; Mueller [24] proved the short time existence for the solutions (which is
a minimal solution) of stochastic heat equation with non-negative Lévy noise;
Röckner and Zhang [27] established the existence and uniqueness results for
solutions of stochastic evolution equations driven by Lévy noise and obtained
the large deviation principles for the additive Lévy noise case; Zhao and Chao
[33] established the global existence and uniqueness of the strong solution for
2D Navier–Stokes equations on the torus perturbed by a Lévy process.
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This work deals with an infinite dimensional shell model, a mathematical
turbulence model that received increasing attention in recent years. Appar-
ently there are only a few rigorous works on infinite dimensional shell model,
namely [6,9] one in the deterministic case and the other in the stochastic case
with additive noise respectively. In both of these works a variational semigroup
formulation has been introduced. In [21] the existence and uniqueness of the
strong solutions of the stochastic shell model of turbulence perturbed by mul-
tiplicative noise have been proved. The authors have also established a large
deviation principle for the solution of the shell model. Our present work deals
with a more general stochastic model, with Lévy noise: the proofs of existence
and uniqueness of strong solutions are considerably more difficult in this case.

In this paper, in the framework of Gelfand triple V ⊂ H ∼= H ′ ⊂ V ′ (see
Sect. 3 for precise definitions), we consider the following abstract form of the
GOY model of turbulence with Lévy noise:

du + [νAu + B(u, u)] dt = f(t) dt +
√

εσ(t, u) dW (t) + ε

∫
Z

g(u, z)Ñ(dt, dz)

u(0) = u0,

The operators A and B are defined in Sect. 3. W (t) is an H-valued Wiener
process with positive symmetric trace class covariance operator Q. Ñ(dt, dz) =
N(dt, dz) − dtλ(dz) is a compensated Poisson random measure (cPrm), where
N(dt, dz) denotes the Poisson counting measure associated to Poisson point
process p(t) on Z and λ(dz) is a σ-finite measure on (Z,B(Z)).

The main result of the paper is the following theorem. The spaces
V, V ′,H,H0, LQ(H0;H), H2

λ([0, T ] × Z;H),D([0, T ];H) which appear in the
statement of this theorem are defined in Sect. 2.

Theorem 1.1. (Main Theorem) Let us consider the above stochastic GOY
model of turbulence driven by Lévy processes with the initial condition u0(x).
Let u0 be F0 measurable and E|u0|2 < ∞. Let f ∈ L2(0, T ;V ′). Assume that
σ and g satisfy the following hypotheses of joint continuity, Lipschitz condition
and linear growth:
(i) The function σ ∈ C([0, T ] × V ;LQ(H0;H)), and g ∈ H

2
λ([0, T ] × Z;H).

(ii) For all t ∈ (0, T ), there exists a positive constant K such that for all
u ∈ H,

|σ(t, u)|2LQ
+
∫

Z

|g(u, z)|2Hλ(dz) ≤ K(1 + |u|2).

(iii) For all t ∈ (0, T ), there exists a positive constant L such that for all
u, v ∈ H,

|σ(t, u) − σ(t, v)|2LQ
+
∫

Z

|g(u, z) − g(v, z)|2Hλ(dz) ≤ L|u − v|2.

Then there exist a unique adapted process u(t, x, ω) with regularity

u ∈ L2(Ω;L2(0, T ;V ) ∩ D(0, T ;H))

satisfying the above stochastic GOY model in the weak sense.
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The construction of the paper is as follows. In the next Section, we give
definitions, basic properties and Itô’s formula for the Lévy noise. In Sect. 3,
we describe the functional setting and formulate the abstract stochastic shell
model (namely GOY model) when the noise coefficients are small. In Sect. 4,
we prove certain a-priori energy estimates with exponential weight. These esti-
mates together with the local monotonicity property of the sum of the linear
and non linear operators play a fundamental role to prove the existence and
uniqueness of the strong solution. The main result of this paper as given in
the above theorem has been proved in Sect. 4.

2. Preliminaries

In this section definitions and basic properties of Hilbert space valued Wiener
processes and Lévy processes have been presented. Most of the materials in
this section have been borrowed from the books by Da Prato and Zabczyk [10],
Applebaum [5], and Peszat and Zabczyk [26]. Interested readers may look into
these books for extensive study on the subject.

Definition 2.1. Let H be a Hilbert space. A stochastic process
{
W (t)

}
0≤t≤T

is said to be an H-valued Ft-adapted Wiener process with covariance operator
Q if
(i) For each non-zero h ∈ H, |Q1/2h|−1(W (t), h) is a standard one-

dimensional Wiener process,
(ii) For any h ∈ H, (W (t), h) is a martingale adapted to Ft.

If W is a an H-valued Wiener process with covariance operator Q with
Tr Q < ∞, then W is a Gaussian process on H and

E(W (t)) = 0, Cov (W (t)) = tQ, t ≥ 0.

Let H0 = Q1/2H. Then H0 is a Hilbert space equipped with the inner product
(·, ·)0,

(u, v)0 =
(
Q−1/2u,Q−1/2v

)
, ∀u, v ∈ H0,

where Q−1/2 is the pseudo-inverse of Q1/2. Since Q is a trace class operator,
the imbedding of H0 in H is Hilbert–Schmidt.

Let LQ denote the space of linear operators S such that SQ1/2 is a
Hilbert-Schmidt operator from H to H. Define the norm on the space LQ by
|S|2LQ

= Tr(SQS∗).

Definition 2.2. Let I = [a, b] be an interval in R
+. A mapping g : I → R

d

is said to be càdlàg if, for all t ∈ [a, b], g has a left limit at t and g is right
continuous at t, i.e.,
(i) for all sequences (tn, n ∈ N) in (a, b) with each tn < t and limn→∞tn = t

we have that limn→∞g(tn) exists;
(ii) for all sequences (tn, n ∈ N) in (a, b) with each tn ≥ t and limn→∞tn = t

we have that limn→∞g(tn) = g(t);
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(iii) for the end-points we stipulate that g is right continuous at a and has
left limit at b.

Definition 2.3. Let (Ω,F ,Ft, P ) be a filtered probability space, and E be a
Banach space. A process (Xt)t≥0 with state space (E,B(E)) is called a Lévy
process if
(i) (Xt)t≥0 is adapted to (Ft)t≥0,
(ii) X0 = 0 a.s.,
(iii) (Xt)t≥0 has increments of the past, i.e. Xt − Xs is independent of Fs if

0 ≤ s < t,
(iv) (Xt)t≥0 is stochastically continuous, i.e. ∀ε > 0, lims→t P (|Xs − Xt| >

ε) = 0,
(v) (Xt)t≥0 is càdlàg,
(vi) (Xt)t≥0 has stationary increments, i.e. Xt−Xs has the same distribution

as Xt−s, 0 ≤ s < t.

The jump of Xt at t ≥ 0 is given by �Xt = Xt−Xt−. Let Z ∈ B(R+×E).
We define

N(t, Z) = N(t, Z, ω) =
∑

s:0<s≤t

χ
Z
(�Xs).

In other words, N(t, Z) is the number of jumps of size �Xs ∈ Z which
occur before or at time t. N(t, Z) is called the Poisson random measure (or
jump measure) of (Xt)t≥0. The differential form of this measure is written as
N(dt, dz)(ω).

We call Ñ(dt, dz) = N(dt, dz) − dtλ(dz) a compensated Poisson random
measure (cPrm), where dtλ(dz) is known as compensator of the Lévy pro-
cess (Xt)t≥0. Here dt denotes the Lesbegue measure on B(R+), and λ(dz) is a
σ-finite measure on (Z,B(Z)).

Lemma 2.4. If X = (Xt)t≥0 is a Lévy process, then Xt is infinitely divisible
for each t ≥ 0

For proof see Proposition 1.3.1 of [5].

Lemma 2.5. If X = (Xt)t≥0 is a Lévy process, then

φXt
(u) = etη(u),

for each u ∈ R
d, t ≥ 0, where η is the Lévy symbol of X1.

For proof see Theorem 1.3.3 of [5].

Lemma 2.6. If X = (Xt)t≥0 is stochastically continuous, then the map t →
φXt

(u) is continuous for each u ∈ R
d.

For proof see Lemma 1.3.2 of [5].

Lemma 2.7. If X = (Xt)t≥0 is a stochastic process and there exists a sequence
of Lévy processes (Xn, n ∈ N) with each Xn = (Xnt

, t ≥ 0) such that Xnt

converges in probability to Xt for each t ≥ 0 and

lim
n→∞ lim sup

t→0
P (|Xnt

− Xt| > a) = 0,
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for all a > 0, then X is a Lévy process.

For proof see Theorem 1.3.7 of [5].

Example 2.8. (Brownian motion) A (standard) Brownian motion in R
d is a

Lévy process B = (Bt)t≥0 for which
(B1) Bt ∼ N(0, tI) for each t ≥ 0,
(B2) B has continuous sample paths.
It follows immediately from (B1) that if B is a standard Brownian motion
then its characterestic function is given by

φBt
(u) = exp

(
−1

2
t|u|2

)

for each u ∈ R
d, t ≥ 0.

Example 2.9. (The Poisson Process)The Poisson process of intensity λ > 0 is
a Lévy process N taking values in N ∪ {0} wherein each N(t) ∼ π(λt), so that
we have

P (N(t) = n) =
(λt)n

n!
e−λt

for each n = 0, 1, 2, . . .
The compensated Poisson Process Ñ = (Ñ(t), t ≥ 0) where each Ñ(t) =

N(t) − λt. Note that E(Ñ(t)) = 0. and E(Ñ(t)2) = λt for each t ≥ 0.

Lemma 2.10. Let Z be bounded below, then N(t, Z) < ∞ (a.s) for all t ≥ 0.

For proof see Lemma 2.3.4 of [5].

Lemma 2.11. (i) If Z is bounded below, then (N(t, Z), t ≥ 0) is a Poisson
process with intensity λ(Z).

(ii) If Z1, . . . , Zm ∈ B(Rd − {0}) are disjoint and bounded below and if
s1, . . . , sm ∈ R

+ are distinct, then the random variables N(s1, Z1), . . . ,
N(sm, Am) are independent.

For proof see Theorem 2.3.5 of [5].

Lemma 2.12. Every Lévy process is a semimartingale.

For proof see Proposition 2.7.1 of [5].

Definition 2.13. (Poisson integration) Let N be the Poisson measure associ-
ated to a Lévy process X = (Xt)t≥0. Let g be a measurable function from R

d

into R
d and let Z be bounded below; then for each t > 0, ω ∈ Ω, we may

define the Poisson integral of g as random finite sum by∫
Z

g(z)N(t, dz)(ω) =
∑
z∈Z

g(z)N(t, {z})(ω)

Note that each
∫

Z
g(z)N(t, dz) is an R

d valued random variable and gives rise
to a càdlàg stochastic process as we vary t.
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Now, since N(t, {x}) �= 0 ⇔ ΔXu = x for at least one 0 ≤ u ≤ t, we have∫
Z

g(z)N(t, dz) =
∑

0≤u≤t

g(ΔXu)χZ(ΔXu). (2.1)

Lemma 2.14. (The Lévy–Itô decomposition) If X = (Xt)t≥0 is a Lévy process,
then there exists b ∈ R

d, a Brownian motion BA with covariance matrix A and
an independent Poisson random measure N on R

+ × (Rd − {0}) such that, for
each t ≥ 0,

Xt = bt + BA(t) +
∫

|z|<1

zÑ(t, dz) +
∫

|z|≥1

zN(t, dz).

For proof see Theorem 2.4.16 of [5].

Definition 2.15. Let E and F be separable Banach spaces. Let Ft := B(R+ ×
E) ⊗ Ft be the product σ-algebra generated by the semi-ring B(R+ × E) × Ft

of the product sets Z × F, Z ∈ B(R+ × E), F ∈ Ft (where Ft is the filtration
of the additive process (Xt)t≥0). Let T > 0, and

H(Z) =
{

g : R
+ × Z × Ω → F, such that g is FT /B(F )

measurable and g(t, z, ω) is Ft-adapted ∀z ∈ Z,∀t ∈ (0, T ]
}

Let p ≥ 1,

H
p
λ([0, T ] × Z;F ) =

{
g ∈ H(Z) :

∫ T

0

∫
Z

E[‖g(t, z, ω)‖p
F ]λ(dz) dt < ∞

}

Let H be a vector with components (H1,H2, . . . , Hd) taking values in
H

2
λ([0, T ] × Z;E); then we may construct an R

d-valued process A = (A(t), t ≥
0) with components (A1, A2, . . . , Ad) where each

Ai(T ) =
∫ T

0

∫
|z|≤1

Hi(t, z)Ñ(dt, dz).

The construction of A extends to the case where H is no longer lies in
H

2
λ([0, T ] × Z;E) but satisfies

P

(∫ T

0

∫
E

|H(t, z)|λ(dz) dt < ∞
)

= 1.

In this case A is still a local martingale. It is an L1-martingale if∫ T

0

∫
E

E(|H(t, z)|)λ(dz) dt < ∞.

Let us introduce the compound Poisson process P = (Pt, t ≥ 0), where each
P (t) =

∫
Z

zN(t, dz). Let K be a predictable mapping; then, generalizing equa-
tion (1.1), we define∫ T

0

∫
Z

K(t, z)N(dt, dz) =
∑

0≤u≤t

K(u,ΔPu)χZ(ΔPu) (2.2)
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as a random finite sum.
In particular, if H satisfies the square-integrability (or integrability) con-

dition given above we may then define, for each 1 ≤ i ≤ d,∫ T

0

∫
Z

Hi(t, z)Ñ(dt, dz) =
∫ T

0

∫
Z

Hi(t, z)N(dt, dz) −
∫ T

0

∫
Z

Hi(t, z)λ(dz) dt.

Definition 2.16. An R
d-valued stochastic process Y = (Yt)t≥0 is a Lévy-type

stochastic integral if it can be written in the following form, for each 1 ≤ i ≤ d,
t ≥ 0, 1 ≤ i ≤ d, 1 ≤ j ≤ m, t ≥ 0, we have |Gi|1/2, F i

j ∈ L2[0, T ],Hi ∈
H

2
λ([0, T ] × Z;E) and K is predictable:

Y i(t) = Y i(0) +
∫ t

0

Gi(s) ds +
∫ t

0

F i
j (s) dBj(s) +

∫ t

0

∫
|z|<1

Hi(s, z)Ñ(ds, dz)

+
∫ t

0

∫
|z|≥1

Ki(s, z)N(ds, dz) (2.3)

Here B is an m-dimensional standard Brownian motion and N is an indepen-
dent Poisson random measure on R

+ × (Rd − {0}) with compensator Ñ and
intensity measure λ, which is a Lévy measure.

We often simplify complicated expressions by employing the notation of
stochastic differentials to represent Lévy-type stochastic integrals. We then
write (2.3) as

dY (t) = G(t) dt + F (t) dB(t) + H(t, z)Ñ(dt, dz) + K(t, z)N(dt, dz).

When we want particularly to emphasize the domain of integration with
respect to z, we will use the equivalent notation

dY (t) = G(t) dt + F (t) dB(t) +
∫

|z|<1

H(t, z)Ñ(dt, dx)

+
∫

|z|≥1

K(t, z)N(dt, dz).

Clearly Y is a semi martingale.
Let Y be a general Lévy-type stochastic process with stochastic differen-

tial

dY i(t) = Gi(t)dt + F i
j (t) dBj(t) +

∫
|z|<1

Hi(t, z)Ñ(dt, dz)

+
∫

|z|≥1

Ki(t, z)N(dt, dz). (2.4)

where, for each 1 ≤ i ≤ d, 1 ≤ j ≤ m, t ≥ 0, |Gi|1/2, F i
j ∈ L2[0, T ] and

Hi ∈ H
2
λ([0, T ] × Z;E). Let

dYc(t) = Gi(t) dt + F i
j (t) dBj(t),

and the discontinuous part of Y

dYd(t) =
∫

|z|<1

Hi(t, z)Ñ(dt, dz) +
∫

|z|≥1

Ki(t, z)N(dt, dz),
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so that for each t ≥ 0

Y (t) = Y (0) + Yc(t) + Yd(t).

Assumption 2.17. For all t > 0,

sup
0≤s≤t

sup
0<|z|<1

|H(s, z)| < ∞ a.s

Lemma 2.18. (Itô’s theorem 1) If Y = (Yt)t≥0 is a Lévy-type stochastic inte-
gral of the form (2.4), then, for each f ∈ C2(Rd), t ≥ 0, with probability 1 we
have

f(Y (t)) − f(Y (0))

=
∫ t

0

∂if(Y (s−)) dY i
c (s) +

1
2

∫ t

0

∂i∂jf(Y (s−)) d[Y i
c , Y j

c ](s)

+
∫ t

0

∫
|z|≥1

[f(Y (s−) + K(s, z)) − f(Y (s−))] N(ds, dz)

+
∫ t

0

∫
|z|<1

[f(Y (s−) + H(s, z)) − f(Y (s−))] Ñ(ds, dz)

+
∫ t

0

∫
|z|<1

[f(Y (s−) + H(s, z)) − f(Y (s−))

−Hi(s, z)∂if(Y (s−))
]
λ(dz) ds. (2.5)

For proof see Theorem 4.4.7 of [5].

Definition 2.19. Let M be a Brownian integral with the drift of the form

M i(t) =
∫ t

0

F i
j (s)dBj(s) +

∫ t

0

Gi(s) ds,

where each F i
j , (G

i)1/2 ∈ L2[0, T ] for all t ≥ 0, 1 ≤ i ≤ d, 1 ≤ j ≤ m.
For each 1 ≤ i ≤ j, the quadratic variation process, denoted as

([M i,M j ](t), t ≥ 0), is defined by

[M i,M j ](t) =
m∑

k=1

∫ t

0

F i
k(s)F j

k (s) ds.

Lemma 2.20. (Burkholder’s Inequality) Let M = (M(t), t ≥ 0) be a (real-val-
ued) Brownian integral of the form

M(t) =
∫ t

0

F j(s) dBj(s),

where each F j ∈ L2[0, T ], 1 ≤ j ≤ d, t ≥ 0. Let

[M,M ](t) =
m∑

j=1

∫ t

0

Fj(s)2 ds,

for each t ≥ 0. Then M is a square-integrable martingale. Let E([M,M ](t)p/2)
< ∞, then for any p ≥ 2 there exists a C(p) > 0 such that, for each t ≥ 0,
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E (|M(t)|p) ≤ C(p)E
(
[M,M ](t)p/2

)
.

For proof see Theorem 4.4.21 of [5].

Lemma 2.21. (Burkholder–Davis–Gundy Inequality) For every p ≥ 1, there is
a constant Cp ∈ (0,∞) such that for any real-valued square integrable càdlàg
martingale M with M0 = 0, and for any T ≥ 0,

C−1
p E[M,M ]p/2

T ≤ E sup
0≤t≤T

|Mt|p ≤ CpE[M,M ]p/2
T .

For proof see Theorem 3.50 of [26]

Definition 2.22. Let g : R
+ × Z × Ω → F be given. A sequence {gn}n∈N of

FT /B(F ) measurable functions is Lp- approximating g on (0, T ]×Z ×Ω w.r.t.
λ ⊗ P, if gn is λ ⊗ P-a.s. converging to g, when n → ∞, and

lim
n→∞

∫ T

0

∫
Z

E [‖gn(t, z, ω) − g(t, z, ω)‖p] dλ = 0,

i.e., ‖gn − g‖ converges to zero in Lp((0, T ] × Z × Ω, λ ⊗ P), when n → ∞.

Definition 2.23. Let p ≥ 1, T > 0. We say that g is strong p-integrable on
(0, T ] × Z,Z ∈ B(E), if there exists a sequence {gn}n∈N ∈ Σ(E) of simple
functions, such that gn is Lp-approximating g on (0, T ]×Z×Ω w.r.t. λ⊗P, and
for any such sequence the limit of the natural integrals of gn w.r.t. Ñ(dt, dz)
exists in Lp(Ω,F , P ) for n → ∞, i.e.,∫ T

0

∫
Z

g(t, z, ω)Ñ(dt, dz)(ω) =
p

lim
n→∞

∫ T

0

∫
Z

gn(t, z, ω)Ñ(dt, dz)(ω) (2.6)

exists. Moreover, the limit (2.6) does not depend on the sequence {gn}n∈N ∈
Σ(E), which is Lp-approximating g on (0, T ]×Z ×Ω w.r.t. λ ⊗P . We call the
limit in (2.6) the strong p-integral of g w.r.t. Ñ(dt, dz) on (0, T ] × Z.

Lemma 2.24. Let p ≥ 1. Let g be strong p -integrable on (0, T ] × Z,Z ∈ B(E).
Then the strong p-integral

∫ t

0

∫
Z

g(s, z, ω)Ñ(ds, dz)(ω), t ∈ [0, T ], is an Ft-
martingale with mean zero.

For proof see Theorem 4.10 of [28].

Lemma 2.25. Let f ∈ L1([0, T ], E); then f is strong 1-integrable w.r.t Ñ(dt, dz)
on (0, T ] × Z, for any 0 < t ≤ T , Z ∈ B(E). Moreover

E

[∥∥∥∥
∫ t

0

∫
Z

f(s, z, ω)Ñ(ds, dz)
∥∥∥∥
]

≤ 2
∫ t

0

∫
Z

E [‖f(s, z, ω)‖] λ(dz) ds

For proof see Theorem 4.12 of [28].

Lemma 2.26. Suppose that (F,B(F )) = (H,B(H)) is a separable Hilbert space.
Let g ∈ H

2
λ(E), then g is strong 2-integrable w.r.t. Ñ(dt, dz) on (0, T ] × Z, for

any 0 < t ≤ T, Z ∈ B(E). Moreover

E

[∥∥∥∥
∫ t

0

∫
Z

g(s, z, ω)Ñ(ds, dz)(ω)
∥∥∥∥

2
]

=
∫ t

0

∫
Z

E
[‖g(s, z, ω‖2

]
λ(ds) dz (2.7)
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For proof see Theorem 4.14 of [28].

Lemma 2.27. Let 1 < p ≤ 2 and let E be a separable Banach space. Assume
that g ∈ H

p
λ((0,∞)×Z;E). Then there exists a constant C = Cp(E)22−p only

depending on E and p such that for 0 < q ≤ p

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

∫
Z

g(s, z, ω)Ñ(ds, dz)
∣∣∣∣
q

≤ CE

(∫ T

0

∫
Z

|g(t, z, ω)|pλ(dz) dt

)q/p

.

For proof see Corollary C.2 of [8] and Proposition 2.4 of [14].

3. The stochastic GOY model of turbulence

The GOY model (Gledger–Ohkitani–Yamada) [25] is a particular case of so
called “Shell model” (see [12]). This model is the Navier–Stokes equation writ-
ten in the Fourier space where the interaction between different modes is pre-
served between nearest modes. To be precise, the GOY model describes a
one-dimensional cascade of energies among an infinite sequence of complex
velocities, {un(t)}, on a one dimensional sequence of wave numbers

kn = k02n, k0 > 0, n = 1, 2, . . .

where the discrete index n is referred to as the “shell index”. The equations
of motion of the GOY model of turbulence have the form

dun

dt
+ νk2

nun + i
(
aknu�

n+1u
�
n+2 + bkn−1u

�
n−1u

�
n+1

+ ckn−2u
�
n−1u

�
n−2

)
= fn, for n = 1, 2, . . . , (3.1)

along with the boundary conditions

u−1 = u0 = 0. (3.2)

Here u�
n denotes the complex conjugate of un, ν > 0 is the kinematic viscosity

and fn is the Fourier component of the forcing. a, b and c are real parameters
such that energy conservation condition a + b + c = 0 holds (see [16,25]).

3.1. Functional setting

Let H be a real Hilbert space such that

H :=

{
u = (u1, u2, . . .) ∈ C

∞ :
∞∑

n=1

|un|2 < ∞
}

.

For every u, v ∈ H, the scalar product (·, ·) and norm | · | are defined on H as

(u, v)H = Re

∞∑
n=1

unv�
n, |u| =

( ∞∑
n=1

|un|2
)1/2

.

Let us now define the space

V :=

{
u ∈ H :

∞∑
n=1

k2
n|un|2 < ∞

}
,
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which is a Hilbert space equipped with the norm

‖u‖ =

( ∞∑
n=1

k2
n|un|2

)1/2

.

The linear operator A : D(A) → H is a positive definite, self adjoint linear
operator defined by

Au = ((Au)1, (Au)2, . . .), where (Au)n = k2
nun, ∀u ∈ D(A). (3.3)

The domain of A, D(A) ⊂ H, is a Hilbert space equipped with the norm

‖u‖D(A) = |Au| =

( ∞∑
n=1

k4
n|un|2

)1/2

, ∀u ∈ D(A).

Since the operator A is positive definite, we can define the power A1/2,

A1/2u = (k1u1, k2u2, . . .), ∀u = (u1, u2, . . .).

Furthermore, we define the space

D(A1/2) =

{
u = (u1, u2, . . .) :

∞∑
n=1

k2
n|un|2 < ∞

}

which is a Hilbert space equipped with the scalar product

(u, v)D(A1/2) = (A1/2u,A1/2v), ∀u, v ∈ D(A1/2),

and the norm

‖u‖D(A1/2) =

( ∞∑
n=1

k2
n|un|2

)1/2

.

Note that V = D(A1/2). We consider V ′ = D(A−1/2) as the dual space of V .
Then the following inclusion holds

V ⊂ H = H ′ ⊂ V ′.

We will now introduce the sequence spaces analogue to Sobolev functional
spaces. For 1 ≤ p < ∞ and s ∈ R

Ws,p :=

⎧⎨
⎩u = (u1, u2, . . .) : ‖As/2u‖p =

( ∞∑
n=1

(ks
n|un|)p

)1/p

< ∞
⎫⎬
⎭,

and for p = ∞

Ws,∞ :=
{

u = (u1, u2, . . .) : ‖As/2u‖∞ = sup
1≤n<∞

(ks
n|un|) < ∞

}
,

where for u ∈ Ws,p the norm is defined as

‖u‖Ws,p = ‖As/2u‖p.

Here ‖ · ‖ denotes the usual norm in the lp sequence space. It is clear from the
above definitions that W 1,2 = V = D(A1/2).
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Remark 3.1. For the shell model we can reasonably assume that the complex
velocities un are such that |un| < 1 for almost all n. Then

‖u‖4
l4 =

∞∑
n=1

|un|4 ≤
( ∞∑

n=1

|un|2
)2

= |u|4,

which leads to H ⊂ l4.

We now state a Lemma which is useful in this work. We omit the proof
since it is quite simple.

Lemma 3.2. For any smooth function u ∈ H, the following holds:

‖u‖4
l4 ≤ C|u|2 ‖u‖2. (3.4)

3.2. Properties of the linear and nonlinear operators

We define the bilinear operator B(·, ·) : V × H → H as

B(u, v) = (B1(u, v), B2(u, v), . . .),

where

Bn(u, v) = ikn

(
1
4
u�

n+1v
�
n−1 − 1

2
(u�

n+1v
�
n+2 + u�

n+2v
�
n+1) +

1
8
u�

n−1v
�
n−2

)
.

In other words, if {en}∞
n=1 be a orthonormal basis of H, i.e. all the entries of

en are zero except at the place n it is equal to 1, then

B(u, v)= i

∞∑
n=1

kn

(
1
4
u�

n+1v
�
n−1− 1

2
(u�

n+1v
�
n+2+u�

n+2v
�
n+1)+

1
8
u�

n−1v
�
n−2

)
en.

(3.5)

The following lemma says that B(u, v) makes sense as an element of H,
whenever u ∈ V and v ∈ H or u ∈ H and v ∈ V . It also says that B(u, v)
makes sense as an element of V ′. Here we state the following lemma which has
been proved in Constantin, Levant and Titi [9] for the Sabra shell model, but
one can also prove the similar estimates for the GOY model (see [6]).

Lemma 3.3. (i) There exist constants C1 > 0, C2 > 0,

|B(u, v)| ≤ C1‖u‖|v|, ∀u ∈ V, v ∈ H, (3.6)

and

|B(u, v)| ≤ C2|u|‖v‖, ∀u ∈ H, v ∈ V. (3.7)

(ii) B : H ×H → V ′ is a bounded bilinear operator and for a constant C3 > 0

‖B(u, v)‖V ′ ≤ C3|u||v|, ∀u, v ∈ H. (3.8)

(iii) B : H × D(A) → V is a bounded bilinear operator and for a constant
C4 > 0

‖B(u, v)‖V ≤ C4|u||Av|, ∀u ∈ H, v ∈ D(A). (3.9)

(iv) For every u ∈ V and v ∈ H

(B(u, v), v) = 0. (3.10)
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We now present one more important property of the nonlinear operator B
in the following lemma which will play important role in the later part of this
section. The proof is straightforward and uses the bilinearity property of B.

Lemma 3.4. If w = u − v, then

B(u, u) − B(v, v) = B(v, w) + B(w, v) + B(w,w).

With above functional setting and following the classical treatment of the
Navier–Stokes equation, one can write the stochastic GOY model of turbulence
(3.1) with the Lévy forcing as the following,

du + [νAu + B(u, u)] dt = f(t) dt +
√

εσ(t, u) dW (t) + ε

∫
Z

g(u, z)Ñ(dt, dz)

(3.11)
u(0) = u0, (3.12)

where u ∈ H, the operators A and B are defined through (3.3) and (3.5) respec-
tively, f = (f1, f2, . . .), σ(t, u) = (σ1(t, u1), σ2(t, u2), . . .). Here (W (t)t≥0) is a
H-valued Wiener process with trace class covariance, and the space LQ has
been defined in Sect. 1. Here g(u, z) is a measurable mapping from H ×Z into
H and let D([0, T ],H) be the space of all càdlàg paths from [0, T ] into H.

Assume that σ and g satisfy the following hypotheses of joint continuity,
Lipschitz condition and linear growth:

Hypothesis 3.5. The main hypothesis is the following,
H.1. The function σ ∈ C([0, T ] × V ;LQ(H0;H)), and g ∈ H

2
λ([0, T ] × Z;H).

H.2. For all t ∈ (0, T ), there exists a positive constant K such that for all
u ∈ H,

|σ(t, u)|2LQ
+
∫

Z

|g(u, z)|2Hλ(dz) ≤ K(1 + |u|2).

H.3. For all t ∈ (0, T ), there exists a positive constant L such that for all
u, v ∈ H,

|σ(t, u) − σ(t, v)|2LQ
+
∫

Z

|g(u, z) − g(v, z)|2Hλ(dz) ≤ L|u − v|2.
The following lemma shows that sum of the linear and nonlinear operator

is locally monotone in the l4-ball.

Lemma 3.6. For a given r > 0, let us denote by Br the closed l4-ball in V :

Br =
{

v ∈ V ; ‖v‖l4 ≤ r
}
.

Define the nonlinear operator F on V by F (u) := −νAu − B(u, u). Then for
0 < ε < ν

2L , where L is the positive constant that appears in the condition
(H.3), the pair (F,

√
εσ + ε

∫
Z

g(., z)λ(dz)) is monotone in Br, i.e. for any
u ∈ V and v ∈ Br

(F (u)−F (v), w)− r4

ν3
|w|2

+ε

[
|σ(t, u)−σ(t, v)|2LQ

+
∫

Z

|g(u, z)−g(v, z)|2λ(dz)
]
≤0 (3.13)
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where w = u − v.

Proof. First note that,

ν(Aw,w) = ν‖w‖2.

Next using the Lemma 3.4 and Eq. (3.10) from Lemma 3.3, we have

(B(u, u) − B(v, v), w) = (B(v, w) + B(w, v) + B(w,w), w) = (B(w, v), w).

Now using the definition of the operator B and Eq. (3.4) from Lemma 3.2, we
get for C > 0,

|(B(w, v), w)| =

∣∣∣∣∣
∞∑

n=1

ikn

[
1
4
v�

n−1w
�
n+1w

�
n − 1

2
(w�

n+1v
�
n+2 + w�

n+2v
�
n+1)w

�
n+

+
1
8
w�

n−1v
�
n−2w

�
n

]∣∣∣∣
≤ C‖v‖l4‖w‖l4‖w‖
≤ ‖v‖l4 |w|1/2‖w‖3/2

≤ ν

2
‖w‖2 +

27
32ν3

|w|2‖v‖4
l4 .

Since v ∈ Br, the above relation yields

−(B(w, v), w) ≤ ν

2
‖w‖2 +

r4

ν3
|w|2.

Hence by the definition of the operator F ,

(F (u) − F (v), w) ≤ −ν

2
‖w‖2 +

r4

ν3
|w|2. (3.14)

We have

(F (u) − F (v), w) +
ν

2
‖w‖2 − r4

ν3
|w|2 ≤ 0.

But V ⊂ H ⇒ ν
2 |w|2 ≤ ν

2‖w‖2. We get,

(F (u) − F (v), w) +
ν

2
|w|2 − r4

ν3
|w|2 ≤ 0.

Using condition (H.3) one can deduce that,

(F (u)−F (v), w)− r4

ν3
|w|2+

ν

2L
[|σ(t, u)−σ(t, v)|2LQ

+
∫

Z

|g(u, z)−g(v, z)|2λ(dz)] ≤ 0

Now choose 0 < ε < ν
2L so that we get,

(F (u)−F (v), w)− r4

ν3
|w|2

+ε

[
|σ(t, u)−σ(t, v)|2LQ

+
∫

Z

|g(u, z)−g(v, z)|2λ(dz)
]
≤0

�
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4. Energy estimates and existence result

Let Hn := span {e1, e2, . . . , en} where {ej} is any fixed orthonormal basis
in H with each ej ∈ D(A). Let Pn denote the orthogonal projection of H
to Hn. Define un = Pnu, not to cause any confusion in notation with ear-
lier un. Let Wn = PnW . Let σn = Pnσ and

∫
Z

gn(un,ε(t−), z)Ñ(dt, dz) =
Pn

∫
Z

g(u(t−), z)Ñ(dt, dz), where gn = Png. Define un,ε as the solution of the
following stochastic differential equation in the variational form such that for
each v ∈ Hn,

d(un,ε(t), v) = (F (un,ε(t)), v) dt + (f(t), v) dt +
√

ε(σn(t, un,ε(t)) dWn(t), v)

+ε

∫
Z

(gn(un,ε(t−), z), v) Ñ(dt, dz), (4.1)

with un,ε(0) = Pnu(0).

Theorem 4.1. Under the above mathematical setting let f be in L2([0, T ],H),
u(0) be F0 measurable, σ ∈ C([0, T ] × V ;LQ(H0;H)), g ∈ H

2
λ([0, T ] × Z;H)

and E|u(0)|2 < ∞. Let un,ε denote the unique strong solution of the stochastic
differential equation (4.1) in D([0, T ],Hn). Then with K as in condition (H.2),
the following estimates hold:

For all ε, and 0 ≤ t ≤ T ,

E|un,ε(t)|2 + ν

∫ t

0

E‖un,ε(s)‖2 ds

≤ (1 + εKTeεKT
)(

E|u(0)|2 +
1
ν

∫ t

0

‖f(s)‖2
V ′ ds + εKT

)
, (4.2)

and for all ε > 0,

E

[
sup

0≤t≤T
|un,ε(t)|2+2ν

∫ T

0

‖un,ε(t)‖2 dt

]
≤C

(
E|u(0)|2,

∫ T

0

‖f(t)‖2
V ′ dt, ν, T

)
.

(4.3)

Proof. Applying Itô’s lemma to the function |un,ε(t)|2 and using the properties
of the operators A and B, we notice that,

d|un,ε(t)|2 + 2ν‖un,ε(t)‖2 dt

= 2(f(t), un,ε(t))dt + ε Tr(σn(t, un,ε(t))Qσn(t, un,ε(t))) dt

+2
√

ε(σn(t, un,ε(t)), un,ε(t)) dWn(t) + ε

∫
Z

|gn(un,ε(s−), z)|2N(ds, dz)

+2ε

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)

Using the inequality

2ab ≤ δa2 +
1
δ
b2
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on 2(f(t), un,ε(t)), we obtain

d|un,ε(t)|2 + 2ν‖un,ε(t)‖2 dt ≤ (ν‖un,ε(t)‖2 +
1
ν

‖f(t)‖2
V ′) dt

+ε|σn(t, un,ε(t))|2 dt

+ε

∫
Z

|gn(un,ε(s−), z)|2N(ds, dz)

+2
√

ε(σn(t, un,ε(t)), un,ε(t)) dWn(t)

+2ε

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz).

Define

τN = inf
{

t : |un,ε(t)|2 +
∫ t

0

‖un,ε(s)‖2 ds > N

}
.

Then integrating one can deduce

|un,ε(t ∧ τN )|2 + ν

∫ t∧τN

0

‖un,ε(s)‖2 ds

≤ |u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds +

∫ t∧τN

0

ε|σn(s, un,ε(s))|2 ds

+
∫ t∧τN

0

ε

∫
Z

|gn(un,ε(s−), z)|2N(ds, dz)

+2
√

ε

∫ t∧τN

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)

+2
∫ t∧τN

0

ε

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz). (4.4)

Hence we can write this as

|un,ε(t ∧ τN )|2 + ν

∫ t∧τN

0

‖un,ε(s)‖2 ds

≤ |u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds +

∫ t∧τN

0

ε|σn(s, un,ε(s))|2 ds

+
∫ t∧τN

0

ε

∫
Z

|gn(un,ε(s−), z)|2λ(dz) ds

+2
√

ε

∫ t∧τN

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)

+
∫ t∧τN

0

ε

∫
Z

|gn(un,ε(s−), z)|2Ñ(ds, dz)

+2
∫ t∧τN

0

ε

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz). (4.5)

Using Hölder’s inequality, one can note that if gn is strong 2-integrable w.r.t
Ñ(dt, dz), |gn|2 is strong 1-integrable w.r.t Ñ(dt, dz). Hence taking expecta-
tion on both sides of (4.5), using the Lemma 2.25 on |gn|2, and using the fact
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that the stochastic integrals appeared in

2
√

ε

∫ t∧τN

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)

and

2
∫ t∧τN

0

ε

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)

are martingales, and having zero averages, we get

E

[
|un,ε(t ∧ τN )|2 + ν

∫ t∧τN

0

‖un,ε(s)‖2 ds

]

≤ E|u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds

+
∫ t∧τN

0

E
[
ε|σn(s, un,ε(s))|2] ds

+
∫ t∧τN

0

E

[
ε

∫
Z

|gn(un,ε(s), z)|2λ(dz)
]

ds.

Then we use the hypothesis (H.2) to obtain

E

[
|un,ε(t ∧ τN )|2 + ν

∫ t∧τN

0

‖un,ε(s)‖2 ds

]

≤E|u(0)|2+
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds+εK

∫ t∧τN

0

E
(
1+|un,ε(s)|2) ds.

So finally we obtain

E

[
|un,ε(t ∧ τN )|2 + ν

∫ t∧τN

0

‖un,ε(s)‖2 ds

]

≤ E|u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds + εKT + εK

∫ t∧τN

0

E
(|un,ε(s)|2) ds.

In particular

E
[|un,ε(t ∧ τN )|2]

≤ E|u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds + εKT + εK

∫ t∧τN

0

E
(|un,ε(s)|2) ds.

Applying Gronwall’s Inequality, we obtain

E
[|un,ε(t ∧ τN )|2] ≤ eεKT

[
E|u(0)|2 +

1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ ds + εKT

]
.

So we get

E
[|un,ε(t ∧ τN )|2]+ ν

∫ t∧τN

0

E‖un,ε(s)‖2 ds

≤ (1 + εKTeεKT
)(

E|u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ds + εKT

)
.

Taking the limit as N → ∞ we have the result (4.2).
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To prove (4.3), we proceed in the similar way as above, but we take
supremum upto time T ∧ τN before taking the expectation in equation (4.4),

E

[
sup

0≤t≤T∧τN

|un,ε(t)|2 + ν

∫ T∧τN

0

‖un,ε(t)‖2 dt

]

≤ E|u(0)|2 +
1
ν

∫ T∧τN

0

‖f(t)‖2
V ′ dt + εKT + εKE

∫ T∧τN

0

sup
0≤s≤t

|un,ε(s)|2 dt

+2
√

εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)
∣∣∣∣
]

+2εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)
∣∣∣∣
]

. (4.6)

Applying Burkholder–Davis–Gundy inequality, condition (H.2) and Young’s
inequality to the term

2
√

εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)
∣∣∣∣
]

we get,

2
√

εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

(σn(s, un,ε(s)), un,ε(s)) dWn(s)
∣∣∣∣
]

≤ 2
√

2εE

[∫ T∧τN

0

|σ(s, un,ε(s))|2|un,ε(s)|2 ds

]1/2

≤ 2
√

2εKE

⎡
⎣
(∫ T∧τN

0

(
1 + |un,ε(t)|2) |un,ε(t)|2 dt

)1/2
⎤
⎦

≤ 2
√

2εKE

⎡
⎣ sup

0≤t≤T∧τN

|un,ε(t)|
(∫ T∧τN

0

(
1 + |un,ε(t)|2) dt

)1/2
⎤
⎦

[
Young’s inequality ab ≤ ηa2 + C(η)b2 (η > 0)

for C(η) =
1
4η

, by taking η =
1

8
√

2εK
,C(η) = 2

√
2εK

]

≤ 1
4

E

(
sup

0≤t≤T∧τN

|un,ε(t)|2
)

+ 8εKE

∫ T∧τN

0

|un,ε(t)|2 dt + 8εKT

≤ 1
4

E

(
sup

0≤t≤T∧τN

|un,ε(t)|2
)

+8εKE

∫ T∧τN

0

sup
0≤s≤t

|un,ε(s)|2 dt+8εKT.

(4.7)
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Now again by applying Burkholder–Davis–Gundy inequality in the form given
in Lemma 2.27, condition (H.2) and Young’s inequality to the term

2εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)
∣∣∣∣
]

we get,

2εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)
∣∣∣∣
]

≤ 2
√

2εE

[∫ T∧τN

0

∫
Z

|(un,ε(s), gn(un,ε(s), z))|2 λ(dz) ds

]1/2

≤ 2
√

2εE

[∫ T∧τN

0

∫
Z

|un,ε(s)|2|gn(un,ε(s), z)|2λ(dz) ds

]1/2

≤ 2
√

2εE

⎡
⎣ sup

0≤t≤T∧τN

|un,ε(t)|
(∫ T∧τN

0

∫
Z

|gn(un,ε(s), z)|2λ(dz) ds

)1/2
⎤
⎦

≤ 2
√

2εE

⎡
⎣ sup

0≤t≤T∧τN

|un,ε(t)|
(∫ T∧τN

0

K(1 + |un,ε(s)|2) ds

)1/2
⎤
⎦

[
Young’s inequality ab ≤ ηa2 + C(η)b2 (η > 0)

for C(η) =
1
4η

, by taking η =
1

8
√

2ε
, C(η) = 2

√
2ε

]

2εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

∫
Z

(un,ε(s−), gn(un,ε(s−), z)) Ñ(ds, dz)
∣∣∣∣
]

≤ 1
4

E

[
sup

0≤t≤T∧τN

|un,ε(t)|2
]

+ 8ε2KE

∫ T∧τN

0

|un,ε(t)|2 dt + 8ε2KT

≤ 1
4

E

[
sup

0≤t≤T∧τN

|un,ε(t)|2
]
+8ε2KE

∫ T∧τN

0

sup
0≤s≤t

|un,ε(s)|2 dt + 8ε2KT.

(4.8)

Replace (4.7) and (4.8) in (4.6),

E

[
sup

0≤t≤T∧τN

|un,ε(t)|2
]

+ 2ν

∫ T∧τN

0

E‖un,ε(t)‖2 dt

≤ 2E|u(0)|2 +
2
ν

∫ T∧τN

0

‖f(t)‖2
V ′ dt + 2εKT (9 + 8ε)

+2εK(9 + 8ε)E
∫ T∧τN

0

sup
0≤s≤t

|un,ε(s)|2 dt. (4.9)
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Note T ∧ τN → T a.s. as N → ∞. Thus taking the limit in the above estimate
(4.9) as N → ∞, one can get for all ε

E

[
sup

0≤t≤T
|un,ε(t)|2

]
+ 2ν

∫ T

0

E‖un,ε(t)‖2 dt

≤ 2E|u(0)|2 +
2
ν

∫ T

0

‖f(t)‖2
V ′ dt + 2εKT (9 + 8ε)

+2εK(9 + 8ε)E
∫ T

0

sup
0≤s≤t

|un,ε(s)|2 dt. (4.10)

In particular

E

[
sup

0≤t≤T
|un,ε(t)|2

]
≤ 2E|u(0)|2 +

2
ν

∫ T

0

‖f(t)‖2
V ′ dt + 2εKT (9 + 8ε)

+2εK(9 + 8ε)E
∫ T

0

sup
0≤s≤t

|un,ε(s)|2 dt. (4.11)

Now by applying Gronwall’s Inequality, we obtain

E

[
sup

0≤t≤T
|un,ε(t)|2

]

≤e2εKT (9+8ε)

[
2E|u(0)|2+

2
ν

∫ T

0

‖f(t)‖2
V ′ dt+2εKT (9 + 8ε)

]
. (4.12)

Now using by (4.12) in (4.10) one can deduce that

E

[
sup

0≤t≤T
|un,ε(t)|2

]
+ 2ν

∫ T

0

E‖un,ε(t)‖2 dt

≤
(
1 + 2εKT (9 + 8ε)e2εKT (9+8ε)

)

×
(

2E|u(0)|2 +
2
ν

∫ T

0

‖f(t)‖2
V ′ dt + 2εKT (9 + 8ε)

)
. (4.13)

Hence, we obtain

E

[
sup

0≤t≤T
|un,ε(t)|2

]
+ 2ν

∫ T

0

E‖un,ε(t)‖2 dt

≤ C

(
E|u(0)|2,

∫ T

0

‖f(t)‖2
V ′ dt, ν, T

)
.

�

Theorem 4.2. Let f be in L2([0, T ],H), u(0) be F0 measurable, σ ∈ C([0, T ]×
V ;LQ(H0;H)), g ∈ H

2
λ([0, T ] × Z;H) and E|u(0)|2 < ∞. Let un,ε denote

the unique strong solution of the stochastic differential equation (4.1) in
D([0, T ],Hn). Then with K as in condition (H.2), the following estimates hold:
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For any δ > 0,

E|un,ε(t)|2e−δt + 2ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤(1+εKTeεKT
)(

E|u(0)|2+
1
δ

∫ T

0

|f(t)|2e−δt dt +
εK

δ

)
, (4.14)

and for any δ > 0,

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+ 4ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤ C

(
E|u(0)|2,

∫ T

0

|f(t)|2e−δt dt, δ, T

)
. (4.15)

Proof. In order prove this theorem we use the same method as in the previous
theorem and also use the same stopping time argument.

We consider the function e−δt|un,ε(t)|2 for δ > 0 and apply the Itô Lemma
to get,

d
[|un,ε(t)|2e−δt

]
+ 2ν‖un,ε(t)‖2e−δt dt + δ|un,ε(t)|2e−δt dt

= [2(f(t), un,ε(t)) + ε Tr(σn(t, un,ε(t))Qσn(t, un,ε(t)))] e−δt dt

+2
√

ε(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)

+e−δtε

∫
Z

|gn(un,ε(t−), z)|2N(dt, dz)

+2e−δt

∫
Z

ε (un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz). (4.16)

Note that

2(f(t), un,ε(t)) ≤ δ|un,ε(t)|2 +
1
δ
|f(t)|2.

So from the above relation we get

d
[|un,ε(t)|2e−δt

]
+ 2ν‖un,ε(t)‖2e−δt dt

≤ 1
δ
|f(t)|2e−δt dt + ε Tr(σn(t, un,ε(t))Qσn(t, un,ε(t)))e−δt dt

+2
√

ε(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)

+e−δt

∫
Z

ε|gn(un,ε(t−), z)|2N(dt, dz)

+2e−δt

∫
Z

ε (un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz). (4.17)

Hence upon writing (4.16) in the integral form, then taking expectation and
proceeding as in the previous stopping time given in the proof of Theorem 4.1
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one can get

E|un,ε(t)|2e−δt + 2νE

∫ T

0

‖un,ε(t)‖2e−δt dt

≤ E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δt dt + E

∫ T

0

ε|σn(t, un,ε(t))|2e−δt dt

+E

∫ T

0

e−δt

∫
Z

ε|gn(un,ε(t), z)|2λ(dz) dt.

Since the terms

2
√

ε

∫ T

0

(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)

and

2
∫ T

0

e−δtε

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz)

are martingales and having zero averages. Now applying (H.2) one can obtain

E|un,ε(t)|2e−δt + 2νE

∫ T

0

‖un,ε(t)‖2e−δt dt

≤E|u(0)|2+
1
δ

∫ T

0

|f(t)|2e−δt dt+
εK

δ
+εK

∫ T

0

E|un,ε(t)|2e−δt dt. (4.18)

In particular

E|un,ε(t)|2e−δt

≤ E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δt dt +
εK

δ
+ εK

∫ T

0

E|un,ε(t)|2e−δt dt.

Applying Gronwall’s Inequality we get,

E|un,ε(t)|2e−δt ≤ eεKT

[
E|u(0)|2 +

1
δ

∫ T

0

|f(t)|2e−δt dt +
εK

δ

]
.

By using above relation in (4.18) one can deduce that

E|un,ε(t)|2e−δt + 2ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤ (1 + εKTeεKT
)(

E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δt dt +
εK

δ

)
. (4.19)

This proves (4.14).
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Now for getting (4.15) we proceed as above and taking supremum before
taking the expectaion, in (4.17)

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+ 2ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤ E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δt dt + E sup
0≤s≤T

∫ s

0

ε|σn(t, un,ε(t)|2e−δt dt

+2
√

εE sup
0≤s≤T

∫ s

0

(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)

+E sup
0≤s≤T

∫ s

0

e−δt

∫
Z

ε|gn(un,ε(t−), z)|2λ(dz) dt

+2E sup
0≤s≤T

∫ s

0

e−δt

∫
Z

ε (un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz)

≤ E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δt dt + εKE

[∫ T

0

sup
0≤s≤t

|un,ε(s)|2e−δt dt

]
+

εK

δ

+2
√

εE sup
0≤s≤T

∣∣∣∣
∫ s

0

(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)
∣∣∣∣

+2εE sup
0≤s≤T

∣∣∣∣
∫ s

0

e−δt

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz)
∣∣∣∣ . (4.20)

Next we consider

2
√

εE

[
sup

0≤s≤T

∣∣∣∣
∫ s

0

(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)
∣∣∣∣
]

and applying Burkholder–Davis–Gundy Inequality, Young’s Inequality and
condition (H.2), we get

2
√

εE

[
sup

0≤s≤T

∣∣∣∣
∫ s

0

(σn(t, un,ε(t)), un,ε(t))e−δt dWn(t)
∣∣∣∣
]

≤ 2
√

2εE

[∫ T

0

|σn(t, un,ε(t)|2|un,ε(t)|2e−2δt dt

]1/2

≤ 2
√

2εKE

[∫ T

0

(
1 + |un,ε(t)|2) |un,ε(t)|2e−2δt dt

]1/2

≤ 2
√

2εKE

⎡
⎣
(

sup
0≤t≤T

|un,ε(t)|e−δt/2

)(∫ T

0

(
1 + |un,ε(t)|2) e−δt dt

)1/2
⎤
⎦

≤ 1
4

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+ 8εKE

∫ T

0

|un,ε(t)|2e−δt dt +
8εK

δ

≤ 1
4

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+8εKE

∫ T

0

sup
0≤s≤t

|un,ε(s)|2e−δt dt+
8εK

δ
.

(4.21)
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Now again applying Burkholder–Davis–Gundy Inequality in the form given in
Lemma 2.27, Young’s Inequality and (H.2) to the term

2εE

[
sup

0≤s≤T

∣∣∣∣
∫ s

0

e−δt

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz)
∣∣∣∣
]

we get,

2εE

[
sup

0≤s≤T

∣∣∣∣
∫ s

0

e−δt

∫
Z

(un,ε(t), gn(un,ε(t−), z)) Ñ(dt, dz)
∣∣∣∣
]

≤ 2
√

2εE

(∫ T

0

∫
Z

∣∣(un,ε(t), gn(un,ε(t), z)) e−δt
∣∣2 λ(dz)dt

)1/2

≤ 2
√

2εE

(∫ T

0

∫
Z

|gn(un,ε(t), z)|2|un,ε(t)|2e−2δtλ(dz) dt

)1/2

≤ 2
√

2εE

(∫ T

0

K
(
1 + |un,ε(t)|2) |un,ε(t)|2e−2δtλ(dz) dt

)1/2

≤ 2
√

2εE

⎡
⎣
(

sup
0≤t≤T

|un,ε(t)|e−δt/2

)(∫ T

0

K
(
1 + |un,ε(t)|2) e−δt dt

)1/2
⎤
⎦

≤ 1
4

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+8ε2KE

∫ T

0

sup
0≤s≤t

|un,ε(s)|2e−δt dt+
8ε2K

δ
.

(4.22)

By applying (4.21) and (4.22) in (4.20) one can deduce that

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+ 4ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤ 2E|u(0)|2 +
2
δ

∫ T

0

|f(t)|2e−δt dt +
2εK(9 + 8ε)

δ

+2εK(9 + 8ε)E
∫ T

0

sup
0≤s≤t

|un,ε(s)|2e−δt dt. (4.23)

From the above expression one can write,

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
≤ 2E|u(0)|2 +

2
δ

∫ T

0

|f(t)|2e−δt dt

+
2εK(9 + 8ε)

δ

+2εK(9 + 8ε)E
∫ T

0

sup
0≤s≤t

|un,ε(s)|2e−δt dt.
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Applying Gronwall’s Inequality

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]

≤e2εKT (9+8ε)

[
2E|u(0)|2+

2
δ

∫ T

0

|f(t)|2e−δt dt+
2εK(9+8ε)

δ

]
. (4.24)

Using (4.24) in (4.23) we get

E

[
sup

0≤t≤T
|un,ε(t)|2e−δt

]
+ 4ν

∫ T

0

E‖un,ε(t)‖2e−δt dt

≤
(
1 + 2εKT (9 + 8ε)e2εKT (9+8ε)

)

×
(

2E|u(0)|2 +
2
δ

∫ T

0

|f(t)|2e−δt dt +
2εK(9 + 8ε)

δ

)
. (4.25)

By using the above we get the required result (4.15) �

Definition 4.3. (Strong Solution) A strong solution uε is defined on a
given probability space (Ω,F ,Ft, P ) as a L2(Ω; L∞(0, T ;H) ∩ L2(0, T ;V ) ∩
D(0, T ;H)) valued adapted process which satisfies the stochastic GOY
model

duε + [νAuε + B(uε, uε)] dt = f(t) dt +
√

εσ(t, uε) dW (t)

+ε

∫
Z

g(uε, z)Ñ(dt, dz) (4.26)

uε(0) = u0,

in the weak sense and also the energy inequalities in Theorems 4.1 and
4.2.

Theorem 4.4. Let u(0) be F0 measurable and E|u0|2 < ∞. Let f ∈
L2(0, T ;V ′). We also assume that 0 < ε < ν

C and the diffusion coefficient
satisfies the conditions (H.1)-(H.3). Then there exists unique adapted process
uε(t, x, w) with the regularity

uε ∈ L2(Ω;D(0, T ;H) ∩ L2(0, T ;V ))

satisfying the stochastic GOY model (4.26) and the a priori bounds in Theo-
rems 4.1 and 4.2.
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Proof. Part I (Existence)
Using the a priori estimate in the Theorems 4.1 and 4.2, it follows from

the Banach–Alaoglu theorem that along a subsequence, the Galerkin approx-
imations {un,ε} have the following limits:

un,ε −→ uε weak star in L2(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V )),
F (un,ε) −→ F ε

0 weakly in L2(Ω; L2(0, T ;V ′)),
σn(·, un,ε) −→ Sε weakly in L2(Ω; L2(0, T ; LQ))

gn(un,ε, ·) −→ Gε weakly in H
2
λ([0, T ] × Z;H). (4.27)

The assertion of the second statement holds since F (un,ε) is bounded in
L2(Ω; L2(0, T ;V ′)). Likewise since diffusion coefficient has the linear growth
property and un,ε is bounded in L2(0, T ;V ) uniformly in n, the last two state-
ments hold. Then uε has the Itô differential

duε(t) = F ε
0 (t) dt +

√
εSε(t) dW (t) + ε

∫
Z

Gε(t)Ñ(dt, dz)

weakly in L2(Ω; L2(0, T ;V ′)).

Let us set,

r(t) :=
2
ν3

∫ t

0

‖vε(s)‖4
L4 ds, (4.28)

where vε(t, x, ω) is any adapted process in L∞(Ω × (0, T );H). Here we sup-
press the dependence of ε in the notation of r to make it easier to read. Then
applying the Itô Lemma to the function 2e−r(t)|un,ε(t)|2, one obtains

d
[
e−r(t)|un,ε(t)|2

]
= e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+εe−r(t)|σn(t, un,ε(t))|2LQ
dt

+2
√

εe−r(t) (σn(t, un,ε(t)), un,ε(t)) dW (t)

+e−r(t)ε

∫
Z

|gn(un,ε(t−), z)|2 N(dt, dz)

+2e−r(t)ε

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz).

Integrating between 0 ≤ t ≤ T and taking expectation,

E

[
e−r(T )|un,ε(T )|2 − |un,ε(0)|2

]

= E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

]

+E

∫ T

0

e−r(t)ε|σn(t, un,ε(t))|2LQ
dt

+2
√

εE

∫ T

0

e−r(t) (σn(t, un,ε(t)), un,ε(t)) dW (t)
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+Eε

∫ T

0

e−r(t)

∫
Z

|gn(un,ε(t), z)|2 λ(dz) dt

+2E

∫ T

0

e−r(t)ε

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz).

But the terms

2
√

ε

∫ T

0

e−r(t) (σn(t, un,ε(t)), un,ε(t)) dW (t)

and

2
∫ T

0

e−r(t)ε

∫
Z

(un,ε(t−), gn(un,ε(t−), z)) Ñ(dt, dz)

are martingales and having zero averages. Hence we get

E

[
e−r(T )|un,ε(T )|2 − |un,ε(0)|2

]

= E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

]

+E

∫ T

0

e−r(t)ε|σn(t, un,ε(t))|2LQ
dt

+E

∫ T

0

e−r(t)ε

∫
Z

|gn(un,ε(t), z)|2 λ(dz) dt

Then by the lower semi-continuity property of the weak convergence,

lim inf
n

E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+

∫ T

0

e−r(t)ε|σn(t, un,ε(t))|2LQ
dt +

∫ T

0

e−r(t)ε

∫
Z

|gn(un,ε(t), z)|2 λ(dz) dt

]

= lim inf
n

E

[
e−r(T )|un,ε(T )|2 − |un,ε(0)|2

]

≥ E

[
e−r(T )|uε(T )|2 − |uε(0)|2

]

= E

[∫ T

0

e−r(t) (2F ε
0 (t) − ṙ(t)uε(t), uε(t)) dt + ε

∫ T

0

e−r(t)|Sε|2LQ
dt

+

∫ T

0

e−r(t)ε

∫
Z

|Gε|2λ(dz) dt

]

Hence we get

lim inf
n

E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+

∫ T

0

e−r(t)ε|σn(t, un,ε(t))|2LQ
dt +

∫ T

0

e−r(t)ε

∫
Z

|gn(un,ε(t), z)|2 λ(dz) dt

]
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≥ E

[∫ T

0

e−r(t) (2F ε
0 (t) − ṙ(t)uε(t), uε(t)) dt + ε

∫ T

0

e−r(t)|Sε|2LQ
dt

+

∫ T

0

e−r(t)ε

∫
Z

|Gε|2λ(dz) dt

]
. (4.29)

Now by monotonicity property from Lemma 3.6,

2E

[∫ T

0

e−r(t) (F (un,ε(t)) − F (vε(t)), un,ε(t) − vε(t)) dt

]

−E

[∫ T

0

e−r(t)ṙ(t)|un,ε(t) − vε(t)|2 dt

]

+E

[∫ T

0

e−r(t)ε|σn(t, un,ε(t)) − σn(t, vε(t))|2LQ
dt

]

+E

[∫ T

0

e−r(t)

∫
Z

ε|gn(un,ε(t), z) − gn(vε(t), z)|2λ(dz) dt

]

≤ 0.

Rearranging the terms,

E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+
∫ T

0

e−r(t)ε|σn(t, un,ε(t))|2LQ
dt+

∫ T

0

e−r(t)

∫
Z

ε|gn(un,ε(t), z)|2λ(dz) dt

]

≤ E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)(2un,ε(t) − vε(t)), vε(t)) dt

]

+E

[∫ T

0

e−r(t) (2F (vε(t)), un,ε(t) − vε(t)) dt

]

+εE

[∫ T

0

e−r(t) (2σn(t, un,ε(t)) − σn(t, vε(t)), σn(t, vε(t)))LQ
dt

]

+εE

[∫ T

0

e−r(t)

∫
Z

(2gn(un,ε(t), z) − gn(vε(t), z), gn(vε(t), z)) λ(dz) dt

]
.

Taking limit in n, using the result from (4.29), we get

E

[∫ T

0

e−r(t) (2F ε
0 (t) − ṙ(t)uε(t), uε(t)) dt + ε

∫ T

0

e−r(t)|Sε|2LQ
dt

+
∫ T

0

e−r(t)

∫
Z

ε|Gε|2λ(dz)dt

]

≤ E

[∫ T

0

e−r(t) (2F ε
0 (t) − ṙ(t)(2uε(t) − vε(t)), vε(t)) dt

]
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+E

[∫ T

0

e−r(t) (2F (vε(t)), uε(t) − vε(t)) dt

]

+εE

[∫ T

0

e−r(t) (2Sε(t) − σ(t, vε(t)), σ(t, vε(t)))LQ
dt

]

+εE

[∫ T

0

e−r(t)

∫
Z

(2Gε(t) − g(vε(t), z), g(vε(t), z)) λ(dz) dt

]
.

Rearranging the terms, we obtain

E

[∫ T

0

e−r(t) (2F ε
0 (t) − 2F (vε(t)), uε(t) − vε(t)) dt

]

+E

[∫ T

0

e−r(t)ṙ(t)|uε(t) − vε(t)|2 dt

]

+εE

[∫ T

0

e−r(t)‖S(t) − σ(t, vε(t))‖2
LQ

dt

]

+εE

[∫ T

0

e−r(t)

∫
Z

‖G(t) − g(vε(t), z)‖2λ(dz)dt

]

≤ 0.

Notice that for vε = uε, S(t) = σ(t, uε(t)) and G(t) = g(uε(t), z). Take vε =
uε − μwε with μ > 0 and wε is an adapted process in L2(Ω;D(0, T ;H) ∩
L2(0, T ;V )). Then,

μE

[∫ T

0

e−r(t) (2F ε
0 (t) − 2F (uε − μwε)(t), wε(t)) dt

+μ

∫ T

0

e−r(t)ṙ(t)|wε(t)|2 dt

]
≤ 0.

Dividing by μ on both sides of the inequality above and letting μ go to 0, one
obtains

E

[∫ T

0

e−r(t) (F ε
0 (t) − F (uε(t)), wε(t)) dt

]
≤ 0.

Since wε is arbitrary, we conclude that F ε
0 (t) = F (uε(t)). Thus the existence

of the strong solution of the stochastic GOY model (4.26) has been proved.
Part II (Uniqueness)

If vε ∈ L2(Ω;D(0, T ;H) ∩ L2(0, T ;V )) be another solution of the
Eq. (4.26) then wε = uε − vε solves the stochastic differential equation in
L2(Ω; L2(0, T ;V ′)),

dwε(t) = (F (uε(t)) − F (vε(t)))dt +
√

ε(σ(t, uε(t)) − σ(t, vε(t))) dW (t)

+
∫

Z

[g(uε(t−), z) − g(vε(t−), z)]Ñ(dt, dz). (4.30)
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We denote σd = σ(t, uε(t)) − σ(t, vε(t)) and gd = g(uε(t−), z) − g(vε(t−), z).
We now apply Itô Lemma to the function 2e−r(t)|wε(t)|2, we get

d
[
e−r(t)|wε(t)|2

]
=
[
−e−r(t)ṙ(t)|wε(t)|2+2e−r(t) (F (uε(t)) − F (vε(t)), wε(t))

+ εe−r(t) Tr(σdQσd)
]
dt + 2

√
εe−r(t)(σd, w

ε(t)) dW (t)

+e−r(t)ε

∫
Z

|gd|2N(dt, dz)+2e−r(t)ε

∫
Z

(wε(t), gd)Ñ(dt, dz).

Now using the local monotonicity of the sum of the linear and nonlinear
operators A and B, e.g. Eq. (3.14),we obtain

d
[
e−r(t)|wε(t)|2

]
+ ν‖wε(t)‖2e−r(t) dt

≤ εe−r(t)|σd|2dt + 2
√

εe−r(t)(σd, w
ε(t)) dW (t)

+e−r(t)

∫
Z

ε|gd|2N(dt, dz) + 2e−r(t)ε

∫
Z

(wε(t), gd) Ñ(dt, dz).

Now integrating from 0 ≤ t ≤ T and taking the expectation on both sides and
noting that ε < ν

L . Also using the fact that

2
√

ε

∫ T

0

e−r(t)(σd, w
ε(t)) dW (t)

and

2
∫ T

0

e−r(t)ε

∫
Z

(wε(t), gd) Ñ(dt, dz)

are martingales having zero averages, we get

E

[
e−r(t)|wε(t)|2

]
+ νE

∫ T

0

e−r(t)‖wε(t)‖2 dt

≤ E|w(0)|2 + E

∫ T

0

e−r(t)ε|σd|2 dt + E

∫ T

0

e−r(t)

∫
Z

ε|gd|2λ(dz) dt

Using condition (H.3), one can deduce that

E

[
e−r(t)|wε(t)|2

]
+ (ν − εL)

∫ T

0

e−r(t)‖wε(t)‖2 dt ≤ E|w(0)|2

Sine ε < ν
L , we obtain P-a.s.

E

[
e−r(t)|wε(t)|2

]
≤ E|w(0)|2,

which assures the uniqueness of the strong solution. �

Corollary 4.5. The existence and uniqueness of the strong solution of the sto-
chastic GOY model

duε + [νAuε + B(uε, uε)] dt = f(t) dt +
√

εσ(t, uε) dW (t)

+
∫

Z

g(uε, z)Ñ(dt, dz)

uε(0) = u0,
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can be proved similarly for the adapted process uε(t, x, ω) with the regularity

uε ∈ L2(Ω;D(0, T ;H) ∩ L2(0, T ;V ))

under the hypotheses
A.1. The function σ ∈ C([0, T ] × V ;LQ(H0;H)), and g ∈ H

2
λ([0, T ] × Z;H).

A.2. For all t ∈ (0, T ), there exists a positive constant K such that for all
u ∈ H,

ε|σ(t, u)|2LQ
+
∫

Z

|g(u, z)|2Hλ(dz) ≤ K(1 + ‖u‖2).

A.3. For all t ∈ (0, T ), there exists a positive constant L such that for all
u, v ∈ H,

ε|σ(t, u) − σ(t, v)|2LQ
+
∫

Z

|g(u, z) − g(v, z)|2Hλ(dz) ≤ L‖u − v‖2.

Corollary 4.6. Sabra shell model of turbulence is the other well accepted model
in the literature, and the fundamental difference with the GOY model lies in
the number of complex conjugation operators used in the nonlinear terms which
are responsible for differences in the phase symmetries of the two models, and
as a consequence, Sabra shell model exhibits shorter-ranged correlations than
the GOY model (see [19]). The equations of motion of the stochastic Sabra
shell model have the following form

dun

dt
+ νk2

nun + i
(
akn+1un+2u

�
n+1 + bknun+1u

�
n−1

− ckn−1un−1un−2) = fn, for n = 1, 2, . . . ,

along with the boundary conditions

u−1 = u0 = 0.

One can deduce from the above equation in the continuous setting with Lévy
noise as

duε + [νAuε + B(uε, uε)] dt = f(t) dt +
√

εσ(t, uε) dW (t)

+ε

∫
Z

g(uε, z)Ñ(dt, dz)

uε(0) = u0,

Under the Hypothesis 3.5, and under the same functional setting, the existence
and uniqueness of the strong solution can be established in L2(Ω;D(0, T ;H) ∩
L2(0, T ;V )).
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linéaries(1). Isr. J. Math. 11(1), 95–129 (1972)
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