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Abstract. In this paper, some improved regularity criteria for the 3D mag-
neto-micropolar fluid equations are established in Morrey—Campanato
spaces. It is proved that if the velocity field satisfies

we LT (O,T; Mp,%(u@)) with 7 € (0,1) oru € C (O,T; Mp,%(u@))
or the gradient field of velocity satisfies

Vue L7r (O,T; MPV%(R?’)) with 7 € (0,2),
then the solution remains smooth on [0,7]. By the embedding Lt -
M,
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.3, we see that our result is an improvement of (Yuan in Acta Math-

1. Introduction

This paper concerns about the regularity of weak solutions and blow-up cri-
teria of smooth solutions to the magneto-micropolar fluid equations in three
dimensions:

du+ (u-V)u—(u+x)Au—b-Vb+V (p+b*) = xV xw =0,

Oyw — YAw — kVdiv w + 2kw + u - Vw — xV X u = 0,
Ob—vAb+u-Vb—0b-Vu =0, (1.1)
Vu=V-b=0,

u(x,0) = up(x), b(x,0) =bo(x), w(x,0)=wy(x),



182 S. Gala NoDEA

where u = (uq(z,t),uz(x, t),us(x,t)) denotes the velocity of The fluids at a
point z € R3¢t € [0,T), w = (w1 (,t), wa(x,t),w3(z, 1)), b = (by(z,t),b2(z,1),
bs(z,t)) and p = p(x,t) denote, respectively, the micro-rotational velocity, the
magnetic field and the hydrostatic pressure. ug, wg and by are the prescribed
initial data for the velocity and angular velocity and magnetic field with
properties div ugp = 0 and div by = 0. g is the kinematic viscosity, x is the
vortex viscosity, x and ~ are spin viscosities, and % is the magnetic Reynold.
If the magnetic field b = 0, (1.1) reduces to the micropolar fluid system.
Theory of micropolar fluids was first proposed by Eringen [4] in 1966, which
enables us to consider some physical phenomena that cannot be treated by
the classical Navier—Stokes equations for the viscous incompressible fluids, for
example, the motion of animal blood, liquid crystals and dilute aqueous poly-
mer solutions etc. The existences of weak and strong solutions were treated
by Galdi and Rionero [7], and Yamaguchi [23], respectively. If, further, the
vortex viscosity x = 0, the velocity u does not depend on the micro-rotation
field w, and the first equation reduces to the classical Navier—Stokes equa-
tion which has been greatly analyzed, see, for example, the classical books
by Ladyzhenskaya [13], Lions [15] or Lemarié-Rieusset [14]. If we ignore the
micro-rotation of particles, it reduces to the viscous incompressible magneto-
hydrodynamic equations, which has also been studied extensively [1-3,9,20].
It is worthy to note that He and Xin [9], Zhou [25,26] proved the regularity
criteria of weak solutions to the magneto-hydrodynamic equations, which only
need the velocity u or its gradient Vu or the vorticity V x w or p and b or Vp
and b to satisfy some conditions. Later, He and Wang [8] extended the results
by Marcinkiewcz spaces, see [9]. For the generalized viscous MHD equations,
Zhou [27], recently, also obtained some results on regularity criteria. These all
indicate that the velocity field u plays a more dominate role than the mag-
netic field b does on the regularity of solutions to the magneto-hydrodynamic
equations.

The magneto-micropolar fluid system (1.1) was studied by Galdi and
Rionero in [7]. Rojas-Medar [18] studied it and established the local in time
existence and uniqueness of strong solutions by the spectral Galerkin method.
Ortega-Torres and Rojas-Medar [17] proved global in time existence of strong
solution for small initial data. Rojas-Medar and Boldrini [19] proved the exis-
tence of weak solutions by the Galerkin method, and in 2D case, also proved
the uniqueness of the weak solutions. Recently, Ferreira and Villamizar-Roa
[5] considered the existence and stability of solutions to the micropolar flu-
ids in exterior domains. Villamizar-Roa and Rodriguez-Bellido [22] studied
the micropolar system in a bounded domain using the semigroup approach in
LP, showing the global existence of strong solutions for small data and the
asymptotic behavior and stability of the solutions.

The regularity criteria of weak solutions to the system (1.1) play an
important role to understanding the physical essence of the micropolar fluid
motion. As it is demonstrated in reference [8,9], we also prove that to secure
the regularity of weak solutions to (1.1), one only needs to impose conditions
on the velocity field of the fluids. This also demonstrates that in the regularity
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of weak solutions the micro-rotational velocity w of particles and the magnetic
field b play a less important role than the velocity u does, and the regularity
of weak solutions to (1.1) is dominated by the velocity u of the fluids.
Recently, regularity criteria were established in [24] on the velocity field
in terms of L space. In order to understand the regular solutions of the mag-
neto-micropolar fluid equations from the point of view of homogeneity, we
will consider problem (1.1) in homogeneous spaces. The typical homogeneous
spaces are the Lebesgue spaces LP (O7T; L (R3)) and LP (R?’) whose degree

is — (% + %) (as done in [24]).

The purpose of this paper is to improve and extend some known regu-
larity criterion of weak solution for the magneto-micropolar fluid equations in
the Morrey—Campanato space M% 3 (see Definition in Sect. 2). It is a natural
way to extend the space widely and improve the previous results.

2. Morrey—Campanato spaces

We recall the definition and some properties of the space that we are going to
use. These spaces play an important role in studying the regularity of solutions
to partial differential equations (see e.g. [12,14] and references therein).

Definition 2.1. For 1 < p < ¢ < 400, the Morrey—Campanato space ./\./lp,q is
defined by:

' 3) . — sup supR3/9-3
My ={Fe Ll (B) 5111, = sup swpR5 |, ) <00,

a z€R3

(2.1)
where B(z, R) denotes the closed ball in R? with center  and radius R.

It is easy to check the following:

1FOI, A>0.

1
LT 115,
Hence, for any f (z,t) defined for both spatial and time variables,

AN = ((o,T);MZ’%(R3)> =l = ((O,T);M2’%(R3)>7
for any A > 0 with fy (z,t) = \f (/\x, )\Qt). Here, the point is that if (u,w,b)
solves the magneo-micropolar fluid equations, then so does (uy,wy,by) for all
A > 0. This is so called scaling dimension zero property.

We shall assume the following classical results [10,21]:

a. Forl<p<yp/, p<q<+ooand for all function f so that f € Mp,qﬂLoo:

171 <A 1A
Mp’,q% N L= Mp,q ’
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b. Forpq,p’,q’sothatl—l— §17%+%§ JE€ pq»ge/\/lp ¢~ Then
: 1 1 1 1 1
fg S Mp//7q// Wlth + — —_— —
p P p q

1
P’

¢ ¢
c. For1 < p< 3, we have

VAS 0, IMOlgy, = 17l
d. For 1 <p < g < oo, we have the inclusion relation
L= Mgy C M.

Additionally, for 2 < p < % and 0 < r < %,
inclusion relations:

L (R®) c L*™ (R®) C Mp,% (R%),

we have the following

where L denotes the usual Lorentz (weak LP) space. The first inclusion is
well known. The second relation

L™ (R%) M, s (R?)

is shown as follows.

) 53 P ’ 3 00 (T3
1, , < sl ([1rwrar)” (ret> @)

- 51 oy ’
(s%p|E| [E FW)l y>

(supRHx eR?: |f(y)lP > R}|Ig>;

R>0

1%

=supR|{z e R : |f(y)| > RH%
R>0

ST

Since this space /\/l 3 is wider than L7 the above regularity criterion
is an improvement of Yuan s result and hence our regularity criterion covers
the recent result given by Yuan [24].

Definition 2.2 (The predual 274 [14]). Let 1 < ¢ < p/ < co. We define the
following homogeneous space 2P as the subspace of LY (RS) of functions f,
which can be decomposed into an atomic series

F=Y"
keN

where the functions (gi),, C L%, (R®) and satisfy the following inequalities
for the diameter d; of the support of g : di, <1 and

1
Zd HngLp’ < 0.

keN
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Z7"4" is a Banach space when it is equipped with the norm:

L_L
P

I £1l 2070 _1nf{Zd ) llgkll;»r such that f = ng}’

keN keN

where the infimum is taken over all possible decompositions of f into an atomic
series.

Notice that
L < 270 L1,

We begin with the following lemma which is essentially due to Lemarié
-Rieusset [14].

Lemma 2.1. For ¢ < p’ <p”, we have
zr'ad - zp'd

Proof. This is a well-known consequence of Holder and Minkowski inequalities
and the following one
_ %)

e

el < (€a2)F ) gl
For the proof of Theorems 3.1 and 3.2, we state the following lemma.

Lemma 2.2. Let 1 < ¢’ < p’ < oo. Then if we take p and q such that i—i—% =1,
%Jr%:l, we have

(Mp’q>* _ 2fp/,q/‘
Proof. The result is due to [14]; but we give here a detailed proof for the
reader’s convenience. We first remark that as LP. C 2P and thus

Comp

(200 < P

loc*®
all decomposition

v > ok

keN

/ fhdz| <

Assume f € zr' 4 and take h € /\/l , then we have for

S s

keN Y B(zk,dk)

<367 g 2 (/B( d)|h|pdx>
Tk,AF

keN

=

L_L
Py /

< 1Rl gpa Zd 1gwll Lo -
keN

Passing to the inf, we obtain

/fhdx

<Al oo 11l 2o -
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This shows that
Mpvq c <Zp/7q/>*

To prove the other inclusion take f € (2P4)* < LP . There exists

loc*
Cy > 0 such that Vf € 2¢7
|<fv h>| <Ch ”f”ZP’ﬂ’
Only remains to prove that f € Mp7q. For z € R3 and R > 0 we let

f h|h“p B(z,R) € Lcomp
It follows that

<fJ”“:/L(RJ h) dy < Cu i)

<, RG%) (/ [P dy )
B(z,R)

RS(%-%)/ WPdy| <G
B(:L’R

and hence h € /\./lpyq. The proof is finished. O

R R e

1
P’

We infer that

1
7/

The following lemma plays an essential role for the proof of our theorems.

Lemma 2.3 ([14]). Pointwise multiplication is a bounded bilinear operator from

L? (R?) x H (R?) to zr'd (R3) for1<¢ <p' <2 and % =1- %, that is,
- T

there exists C > 0 such that for any u € L? (R3) andv € H (]RS) ,

[wv]l zo0r < C llull L2 gsy 10 (2.2)

H(R3)

For the proof, we refer the reader to Lemarié-Rieusset [14].

3. Regularity theorem

In this section we give the regularity criterion by velocity to the Leray type
weak solution of the magneto-micropolar fluid equations (1.1). Before turn-
ing our attention to regularity issues, we start with some prerequisites for our
main result. Let

Cos, (R?) = {p € (C5° (R?)) : div o =0} C (C5° (R?)).
The subspace

2 (R*) = O, ()1 = {u e L2 (R?) : div u = 0}
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obtained as the closure of C§%, with respect to L? -norm |.[| .. H7 denotes
the closure of C§S, with respect to the norm

= lull e+ | @ =27, for >0,
We can now define a notion of weak solution for (1.1) (see e.g. [24]).

Definition 3.1 (weak solutions). Let (uo,by) € LZ (R?), wy € L? (R®) and
T > 0. A measurable function (u,w,b) on R3 x (0,T) is called a weak solution
of (1.1) on (0,T) if

(u,b) € L= ((0,T); L3) N L* ((0,T); Hy),
and
we L>®((0,7);L*) N L*((0,T); H');

b. For every (¢,¢) € H' ((0,T);H}) and v € H' ((0,T); H') with ¢(T) =
o(T) =4(T) =0,

/0 (= (1,0:6) + (.Y, 6) + (s + x) (Vui, V) } dr
T
- / (b, &) + X (V % w, 8)} = {up, 6(0) .
/ {—(w,0:9) +v(Vw, Vo) + k (V.w,V.p) } dT

+ / (2% (@, 0) + (.Y, 0) — X (V x 1, 9)} dr = — (wp, 9(0))
and
/O (= (b, 00 + (Wb, ) + v (Vb, V) — (b.Vu, )} dr = — (bo, (0))

Our aim results are to show a new regularity criterion for each of the
problems to (1.1).

Theorem 3.1. Let (uo,bo) € H, (R?) and wo € H (R®). Assume that
(u,b) € C (( ), (R )) mC(( )i H, (R3)>
. wec <(0,T) i (R3)) ne ((o,T);ff (R3)> -

is a smooth solution to (1.1). If the solution wu satisfies one of the following
conditions:

(1)
_2 . 3 3
we Lir ((O,T)§Mp,§ (R )) for 0<r<1 and 2<p< g
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: 3
we C((0.7): Mps (BY))  for 2<p<,
then the solution (u,w,b) can be extended smootly beyond t =T

In the reference [19], Rojas-Medar and Boldrini proved the global exis-
tence of weak solutions to the Egs. 1.1 of the magneto-micropolar fluid motion
by the Galerkin method. The weak solutions also satisfy the strong energy
inequality

t
), (), ()12 + 20 / IV u(s)|2 ds
t t t
12+ / V()| ds + 20 / IVb(s)|22 ds + 26 / IVu(s)]2 ds

+2X/ ()17 ds < [luo (€) ,wo (€) ,bo ()7 3.1)

forall0<e<t<T.

—

. 1
Theorem 3.2. Let (ug,bg) € H (R3) and wy € H (R3). Assume that

(u,b) € C <(O,T) iy (RS)) nc ((O,T) L (R3)>
and
weC ((O,T) s (R3)) nc ((O,T);H2 (R3)> :

is a smooth solution to (1.1). If the solution u satisfies the following condition

T 2
/ IVu(r)| 77
0

3
Py

3
dr <oo for 0<r<2 and 2<p< —,
r

then the solution(u,w,b) can be extended smootly beyond t =T.

Remark 3.1. Our results improve the results in [24] when p = ¢ and hence

M, », = LP. However, it seems to be difficult to prove Theorems 3.1 and 3.2
for p = 2. Because in the case p = 2, we have a lack information corresponding
0 (2.2). There are other difficulties for p = 2.

4. Proofs
We deal with Theorem 3.1 first.

Proof. By differentiating Eqgs. 1.1 with respect to x;, we take the scalar product
with 0y, u, Op,w, d,,b respectively and integrate over R3. We get after suitable
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integration by parts
1d

2
2dt ||(3x¢u»axiwa axib)”]ﬂ

+Z<u+x o

+ 8|V 0z,0l 72 + 2x110s,0] 72
< {Op, u.Vu, Oy, u)| + |(0r, 0.V, Oy, u)| + [(Oy, u. Vb, Oy, )|
+1(03,6.Vu, 0y, b)| + [0, u.Vw, Og,w)| + 2x |V X Oy, u, Oy, w)|

6
S
k=1
for ¢ € (0,T), where we used

<v X 8Iiu76$iw> = <v X awiw7a£viu>a
(b.V8,,b.,0p,u) + (b.Vy,u,0p,b) = 0

b

XTiTyj

2
L2

+u‘a2

5 2
sz‘
il L2

2
L2

u
TiTj

and
(u.V 0y, u., Oy, u) = (u.VOy,b, Dy, b) = 0.
The first term A; is dominated by the Holder and Young inequalities such that

A = ‘/ u.Vu.aigudx
R3

< [PPuvully, Il ,

r

< [1D%] I, w IVully

< [[D%ull 2wl IVl IVl
2 =
<[l (s 1o
< g D%l + Ol Il
where we used the following inequality for 0 < r . <1

~ 2r | ~12r | ~2—2 1-—
IIwHT'IIIETwIILz(/ €17 @™ @] Tdf) lwllz=" Vel -

Similarly, we can estimate As as

Ay = ’ / u.Vb.97: b
R3

IN

HDQbeHZ 5 Ml

Pop

D25 + ol L1902

p.3
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In the same way, for Az, A4 and As, it also can be dominated as

A Ay < ZND2|2, + O a7 (Vb2
3 4_E|| ||Lz+ r||U||M §|| 72

P,

and

_2
45 < G| D%+ Crllull 192

3l

The last term Ag can be dealt with a similar manner. By the Holder and Young
inequalities we have

Ao < 2NV x Bl 7 + 2|Vl 72

From the above inequalities and summing over ¢ with 1 < i < 3, we have

d 1
= 1(Vu, Vw, VB)||75 + <2u + 2x> HD2uH2LQ
+ HDQwHiz +v ||D2b||iz + 2k || Vdiv w||iz

_2
< Crllull " (Vv Vw, Vb)|[7: (4.1)

Due to Gronwall’ s inequality, it follows from (4.1) that

s [(Tu(t), Ve (t), Vb(1)) [

P,

t 2
< ||V, Ve, Vho| 2, exp (c/ lus) %7 ds). (4.2)
0 :

as 0 <r <L
For r = 1, we follow the proof of Zhou—Gala [28] (see also [11,16]). To this

end, we need the following fact: for v € C ((0, T); Mps (R?’)) and arbitrary
positive € > 0, there exists a decomposition
U = U1 + Uz

such that for all T' > 0,

sup lua(t, )| < K(€).

flua | o\ Se
uec (1M, 2(7)) (6,2)€ (0,T) xR

One can simply choose

~ Ju(z,t)  for |u(t,x)| < K,
uz(w,t) = {0 for |u(t,x)| > K,
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where K is sufficiently large. We first estimate Aj:
A < / lu| |D?u| |Vu| dx
< |[D*uvull, , llwallgy, , + 1Dl o luz-Vull e
< [|D%] (Hul\l s, IVl + K () Va2
[D?ul| 2 (e[| D*ul| . + K(€) [[Vull2)
X102l + K () [Vul

IN

IN

Similarly, for Ay, A3 and A4, we obtain
Ag, A, As < 1 [ D8][7, + K (€) | VBI1Z:
and
45 < ¢ | D%, + K91Vl
5 > 6 L2 L2
Combining the above estimates and summing up ¢, it follows
d 1 2
7 1(Vu, Vw, Vb)||3, + <2u + 2x> | D?ul|,»
+ HDQWHiQ +v ||D2b||i2 + 2k || Vdiv w||2Lg
K(6)[[(Vu, Ve, V)| 7 -
Hence, by using Gronwall’ s inequality, we have

sup[[(Vu(t), Ve (t), V(b)) IIz= < Vo, Vo, Vo2 exp (CK()T).

This completes the proof of Theorem 3.1. g
Proof of Theorem 3.2.

Proof. Similarly as in the proof of Theorem 3.1, we differentiate the equa-
tions (1.1) with respect to x;, then multiply the resulting equations by 0,,u,
Oy, w, Ox,; b respectively, we obtain after suitable integration by parts

2
L2

”(amqu 0z,w, Oz, b) ”L2

+Z(u+x )2

+1 (V.05 72 + 2x 1|0, w72
< {0z, u.Vu, By, u)| + [(0y;0.Vb, Oy, u)| + |(Oz,u. Vb, 0y, b)|
+1(03,6.Vu, 0y, b)| + [0, u.Vw, Og,w)| + 2x |V X Oy, u, Oy, w)|

6
- ZBk
k=1

2dt

2

2
u‘
L2

w‘
L2

+7‘62 -I—I/‘aib

TiTj

d

ZTiTj
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for t € (0,7). Then Young’ s inequality implies that

By = Oy, 0.V Uu.0y, udx

R3
< |[DuDull, , , [IVull
Po3—r P

3

10

< |[Dullpz [Vull i, [IDull;
Py

< 1 Dulls [Vull g, D%l IDull"

3
E~

E 2
(ID%alf7.)" <|Vu ol

X | D2ul[}, + Co [ Vul

2—r

2
||Du||"22>

2
[1Dull2 -

IA
NIV

IN

2—1r
M
p3

Similarly, for By — Bj;, we have

v 27112 == 2
B27B3aB4 S E ||D b||L2 + C’f‘ ||vu||j\/t HDbHL2

p.3

and

2
By < g D%l e + oIVl IDIs.

‘r

Combining the above estimates and summing over ¢ with 1 <14 < 3, we obtain

d 1 2
17,9090 + (20 30 ) D%
+ HD2wH2L2 +v HD2bH2L2 + 2k || Vdiv wHi?
< O, IVulZ7 (Y, Vo, V0) 2. (43)

Due to Gronwall’ s inequality, it follows from (4.3) that

sup [|(Vu(t), Vw(t), Vb(t))|[7-
0<t<T
t 2
< IV, s, Vi3 exp (c [ Ivuts,; ds). (4.4)
0 p,%

By the standard arguments of continuation of local solutions, we conclude
that the solutions (u(z,t),w(z,t),b(x,t)) can be extendted to (0,7”) for some
T' > T, provided that Vu satisfies

T 2
/ IVu(r)||*~" dr < oo forall 0<r<2.
0 . (B)

This completes the proof of Theorem 3.2. g

Remark 4.1. But this method fails if p = 2. To avoid the difficulty, we have to
modify the definition of the critical Morrey—Campanato space M, z. For the
details, the reader is referred to [6].



Vol. 17 (2010) Regularity criteria for the 3D 193

Acknowledgments

The author would like to thank the referee for his careful reading of the work
and his many helpful suggestions.Thanks are also due to Professor Yong Zhou
for his useful comments and encouragement.

References

[1] Caflish, R.E., Klapper, I., Steel, G.: Remarks on singularities, dimension
and energy dissipation for ideal hydrodynamics and MHD. Comm. Math.
Phys. 184, 443-455 (1997)

[2] Cannone, M., Miao, C.X., Prioux, N., Yuan, B.Q.: The Cauchy Problem for
the Magneto-hydrodynamic System. Self-similar Solutions of Nonlinear PDE,
vol. 74, pp. 59-93. Banach Center Publications, Institute of Mathematics, Pol-
ish Academy of Sciences, Warszawa (2006)

[3] Duvant, G., Lions, J.L.: Inéquations en thermoélasticite et magnetohydrodyna-
mique. Arch. Ration. Mech. Anal. 46, 241-279 (1972)

[4] Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1-18 (1996)

[5] Ferreira, L.C.F., Villamizar-Roa, E.J.: On the existence and stability of solutions
for the micropolar fluids in exterior domains. Math. Meth. Appl. Sci. 30, 1185~
1208 (2007)

[6] Gala, S., Yuan, B.: Remarks on the regularity of weak solutions to magneto-
micropolar fluid equations (2009)

[7] Galdi, G.P., Rionero, S.: A note on the existence and uniqueness of solutions of
the micropolar fluid equations. Internat. J. Eng. Sci. 15, 105-108 (1997)

[8] He, C., Wang, Y.: On the regularity criteria for weak solutions to the magneto-
hydrodynamic equations. J. Differ. Equ. 238, 1-17 (2007)

[9] He, C., Xin, Z.P.: On the regularity of weak solutions to the magnetohydrody-
namic equations. J. Differ. Eq. 213, 235-254 (2005)

[10] Kato, T.: Strong LP solutions of the Navier—Stokes equations in Morrey
spaces. Bol. Soc. Bras. Mat. 22, 127-155 (1992)

[11] Kozono, H.: Weak solutions of the Navier—Stokes equations with test functions
in the weak-L" space. Tohoku Math. J. 53, 55-79 (2001)

[12] Kozono, H., Yamazaki, M.: Semilinear Heat equations and the Navier—Stokes
equation with distributions in new function spaces as initial data. Comm. P. D.
E. 19, 959-1014 (1994)

[13] Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible
Flows. Gordon and Breach, New York (1969)

[14] Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Prob-
lem. Chapman & Hall/CRC, London (2002)



194 S. Gala NoDEA

[15] Lions, P.L.: Mathematical Topics in Fluid Mechanics. Oxford University Press
Inc., New York (1996)

[16] Lions, P.L., Masmoudi, N.: Uniqueness of mild solutions of the Navier—Stokes
system in L. Comm. P. D. E. 26, 2211-2226 (2001)

[17] Ortega-Torres, E.E., Rojas-Medar, M.A.: Magneto-micropolar fluid motion:
global existence of strong solutions. Abstr. Appl. Anal. 4, 109-125 (1999)

[18] Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness
of strong solutions. Math. Nachr. 188, 301-319 (1997)

[19] Rojas-Medar, M.A., Boldrini, J.L.: Magneto-micropolar fluid motion: existence
of weak solutions. Rev. Mat. Complut. 11, 443-460 (1998)

[20] Sermange, M., Temam, R.: Some mathematical questions related to the MHD
equations. Comm. Pure Appl. Math. 36, 635-664 (1983)

[21] Taylor, M.E.: Analysis on Morrey spaces and applications to Navier—Stokes and
other evolution equations. Comm. P. D. E. 17, 1407-1456 (1992)

[22] Villamizar-Roa, E.J., Rodriguez-Bellido, M.A.: Global existence and exponen-
tial stability for the micropolar fluid system. Z. Angew. Math. Phys. 59, 790—
809 (2008)

[23] Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system
in a bounded domain. Math. Meth. Appl. Sci. 28, 1507-1526 (2005)

[24] Yuan, B.Q.: Regularity of weak solutions to magneto-micropolar fluid equations.
Acta Math. Sci. (in press)

[25] Zhou, Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin-
uous Dyn. Syst. 12, 881-886 (2005)

[26] Zhou, Y.: Regularity criteria for the 3D MHD equations in terms of the pres-
sure. Intl. J. Non-Linear Mech. 41, 1174-1180 (2006)

[27] Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann.
Inst. H. Poincaré Anal. Non Linéaire 24, 491-505 (2007)

[28] Zhou, Y., Gala, S.: Regularity criteria for the solutions to the 3D MHD equations
in the multiplier space. ZAMP (in press)

S. Gala

Department of Mathematics, University of Mostaganem,
Box 227, Mostaganem 27000, Algeria

e-mail: sadek.gala@gmail.com

Received: 01 March 2009.
Accepted: 30 October 2009.



	Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey--Campanato space
	Abstract
	1. Introduction
	2. Morrey--Campanato spaces
	3. Regularity theorem
	4. Proofs
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


