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Abstract. We consider a singularly perturbed phase-field model of Caginalp
type which is thermally isolated and whose order parameter φ is subject to
a dynamic boundary condition. More precisely, we indicate by ε a (small)
coefficient multiplying ∂tu in the heat equation, u being the temperature,
and we construct a family of exponential attractors which is robust as ε goes
to 0. This is physically meaningful since the limiting problem is the viscous
Cahn–Hilliard equation for the sole φ with a dynamic boundary condition.
The upper semicontinuity of the global attractor is also analyzed. The paper
extends and revisits some results previously obtained by A. Miranville et al.
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1. Introduction

A well-known mathematical model which describes phase transitions in presence
of temperature variations, but in absence of mechanical stresses, is the phase-field
system (see [7], cf. also [5, 25])

δ∂tφ − Δφ + f1 (φ) − λu = 0 , (1.1)

ε∂tu + λ∂tφ − Δu = 0 , (1.2)

in Ω × (0,+∞), Ω being a bounded domain in R
3 with smooth boundary Γ. The

variable φ(x, t) represents the order parameter (or phase-field), while u(x, t) stands
for the (relative) temperature. The given parameters δ and ε are positive, while the
constant λ represents the latent heat. Moreover, the function f1 is the derivative
of a double-well like potential which accounts for the presence of different phases.
Of course, Δ is the spatial Laplace operator.
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There is a consistent literature on the mathematical analysis of system (1.1)–
(1.2) when φ is subject to homogeneous Neumann (or Dirichlet) boundary condi-
tions. In particular, the associated dissipative dynamical system has been analyzed
in details as well as the convergence to steady states (see, e.g., [1–4,10,12,17,20–
23, 34, 35, 39]). It is also worth observing that system (1.1)–(1.2) can be viewed
as a singular perturbation of the celebrated Cahn–Hilliard equation that accounts
for phase separation dynamics (see, e.g., [28, 29] and references therein). In fact,
if we formally set ε = 0 in equation (1.2), then we can easily deduce the (viscous)
Cahn–Hilliard equation

λ2∂tφ − Δ
(
δ∂tφ − Δφ + f1(φ)

)
= 0 , (1.3)

in Ω× (0,+∞) , which reduces to the classical Cahn–Hilliard equation when δ = 0
(see [6], cf. also [33,36]). More recently, system (1.1)–(1.2) has been endowed with
a dynamic boundary condition for φ which accounts for possible interactions of
the material with the walls (see [19], cf. also [8,9,11,18,26,30,32,38] and references
therein). This condition reads

∂tφ = αΔΓφ − ∂nφ − βφ − f2(φ) , (1.4)

on Γ×(0,+∞). Here α and β are given positive constants, ΔΓ denotes the Laplace–
Beltrami operator on the surface Γ, ∂n stands for the outward normal derivative,
and f2 is a given function satisfying suitable assumptions. The corresponding prob-
lem, with u subject to homogeneous Neumann conditions, has been interpreted and
studied in [19] as a dissipative dynamical system, proving the existence of families
of exponential attractors {Mε} and global attractors {Aε}. The authors have also
shown the uniformity of the former with respect to ε as well as the upper semi-
continuity of the latter as ε goes to 0. Here we want to complete their analysis by
proving the robustness of {Mε}, i.e., we obtain the explicit control of the Haus-
dorff distance between Mε and M0 by a constant times some power of ε. This
result says that the nontransient dynamics of the phase-field system (1.1)–(1.2)
with the dynamic boundary condition (1.4) is close to the one of equation (1.3)
subject to (1.4) (for similar results see, e.g., [26, 27] and references therein). In
addition, we will also give a slight generalization of the upper semicontinuity re-
sult. We recall that the upper (and lower) semicontinuity of the global attractor
for a phase-field system like (1.1)–(1.2) endowed with standard boundary condi-
tions has been already analyzed in [13–16]. However, only in [27] the existence
of a robust family of exponential attractors is established, provided that u and φ
satisfy homogeneous Dirichlet (or Neumann) boundary conditions. We will follow
a similar strategy.

Summing up, we are concerned with the study of the following boundary
value problem:

{
δ∂tφ = Δφ − f1 (φ) + λu + g1 , in Ω × (0,+∞) ,
∂tφ = αΔΓφ − ∂nφ − βφ − f2 (φ) + g2 , on Γ × (0,+∞) ,

(1.5)
{

ε∂tu − Δu = −λ∂tφ , in Ω × (0,+∞) ,
∂nu = 0 , on Γ × (0,+∞) ,

(1.6)
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endowed with the initial conditions

φ|t=0 = φ0 , u|t=0 = u0 . (1.7)

Here g1 and g2 are given external forces. The limiting equations of the above
problem are formally obtained by taking ε = 0. This yields

{
δ∂tφ0 = Δφ0 − f1

(
φ0

)
+ λu0 + g1 , in Ω × (0,+∞) ,

∂tφ0 = αΔΓφ0 − ∂nφ0 − βφ0 − f2

(
φ0

)
+ g2 , on Γ × (0,+∞) ,

(1.8)
{

λ∂tφ0 = Δu0 , in Ω × (0,+∞) ,
∂nu0 = 0 , in Γ × (0,+∞) ,

(1.9)

with initial condition
φ0|t=0 = φ0 . (1.10)

Note that (1.3) can replace the first of (1.8) and (1.9). Moreover, φ0 also
fulfills the boundary condition

∂n

(
δ∂tφ0 − Δφ0 + f1(φ0) − g1

)
= 0 , (1.11)

on Γ × (0,+∞). Therefore, the spatial average of φ0 is conserved.
The paper is organized as follows. In Section 2 we recall some existence results

and several useful estimates proved in [19] (see also [18]) and state the main result,
i.e., the existence of a robust family of exponential attractors. Section 3 is devoted
to the most crucial step, namely, estimates on the difference between the solutions
to problem (1.5)–(1.7) and problem (1.8)–(1.10). This result allows us to prove in
Section 4 the existence of a family of exponential attractors that is robust with
respect to ε. Finally, in Section 5, we slightly extend the result of [19] on the upper
semicontinuity of the global attractors Aε at ε = 0, taking a larger phase-space.

2. Preliminaries and main results

Following [19,26], it is convenient to introduce an additional variable ψ := φ|Γ and
to interpret the dynamic boundary condition (1.5) as an evolution equation on the
boundary Γ. Hence, for any ε ∈ (0, 1], problem (1.5)–(1.7) becomes

Problem Pε. Find (φ, ψ, u) such that
⎧
⎨

⎩

δ∂tφ = Δφ − f1 (φ) + λu + g1 , in Ω × (0,+∞) ,
∂tψ = αΔΓψ − ∂nφ − βψ − f2 (ψ) + g2 , on Γ × (0,+∞) ,
ψ = φ|Γ ,

(2.1)

{
ε∂tu − Δu = −λ∂tφ , in Ω × (0,+∞) ,
∂nu = 0 , on Γ × (0,+∞) ,

(2.2)

with the initial conditions

φ|t=0 = φ0 , ψ|t=0 = ψ0 , u|t=0 = u0 . (2.3)
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Observe that, due to the boundary conditions (2.2) , the enthalpy is con-
served, namely,

Iε := ε
〈
u(t)

〉
+ λ

〈
φ(t)

〉
= ε 〈u0〉 + λ 〈φ0〉 , (2.4)

for any t ≥ 0, where 〈v〉 denotes the spatial average of a function v on Ω.
Let us introduce the Hilbert spaces

Vs := Hs (Ω) × Hs (Γ) × Hs (Ω) ,

for any s ∈ N. The spaces Hs (Ω) and Hs (Γ) are endowed with the norms induced
by their standard inner products and are denoted by ‖ · ‖Hs(Ω) and ‖ · ‖Hs(Γ), if
s > 0, while, if s = 0, by ‖ · ‖2 and ‖ · ‖2,Γ , respectively. In particular, 〈 · , · 〉2
denotes the standard scalar product in L2(Ω). Then (see [19,26]) we introduce the
function space

D
M
ε :=

{
(φ, ψ, u) ∈ V2 : ψ = φ|Γ, (∂nu)|Γ = 0, |Iε| ≤ M

}
, (2.5)

for any given ε ∈ (0, 1] and any fixed M ≥ 0. This space is a complete metric space
endowed with the metric induced by the V2-norm.

We assume that
g1 ∈ L2(Ω) , g2 ∈ L2(Γ) , (2.6)

while, concerning the nonlinear functions fi : R → R, we assume that they belong
to C ′(R) and satisfy the conditions

lim
|y|→+∞

inf f ′
i (y) > 0 , (2.7)

fi (y) y ≥ νiy
2 − ν′

i , (2.8)

for some positive ν1 and some nonnegative ν2, ν
′
1, ν

′
2. In addition, we assume the

local Lipschitz continuity of f ′
i , i = 1, 2.

On account of [19, Lemma 2.1] (see also [27, Lemma 1.3]), the following a
priori estimate can be proven.

Theorem 1. Let assumptions (2.6)–(2.8) be satisfied. Then, every sufficiently
smooth solution (φ (t) , ψ (t) , u (t)) to Pε satisfies the following estimate:

∥
∥(φ (t), ψ (t) , u (t)

)∥∥2

V2
+ ε2 ‖∂tu (t)‖2

2 + ‖∂tφ (t)‖2
2 + ‖∂tψ (t)‖2

2,Γ

+

t+1∫

t

(
‖∂tφ (s)‖2

H1(Ω) + ‖∂tψ (s)‖2
H1(Γ)

)
ds

≤ Q1

(
‖(φ0, ψ0, u0)‖2

V2

)
e−ρt + Q1

(
‖g1‖2

2 + ‖g1‖2
2,Γ

)
, (2.9)

where ρ > 0 and the positive and monotone increasing function Q1 are independent
of ε.

Existence and uniqueness for Pε have also been proved in [19] (see also [18] for
a slightly more general result). Clearly, Theorem 1 entails that the corresponding
semiflow has a bounded absorbing set in V2.
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Theorem 2. Let assumptions (2.6)–(2.8) be satisfied. Then, for every (φ0, ψ0, u0) ∈
D

M
ε , problem Pε has a unique solution (φ(t), ψ(t), u(t)) ∈ C([0,+∞), DM

ε ) which
satisfies estimate (2.9). Consequently, Pε defines a semiflow Sε

t : D
M
ε → D

M
ε

defined by

Sε
t (φ0, ψ0, u0) :=

(
φ(t), ψ(t), u(t)

)
, ∀ t ≥ 0 . (2.10)

Let us now consider the limiting problem P0 which can be formulated as

Problem P0. Find (φ0, ψ0, u0) such that
⎧
⎨

⎩

δ∂tφ0 = Δφ0 − f1

(
φ0

)
+ λu0 + g1 , in Ω × (0,+∞) ,

∂tψ0 = αΔΓψ0 − ∂nφ0 − βψ0 − f2

(
ψ0

)
+ g2 , on Γ × (0,+∞) ,

ψ0 = φ0|Γ ,
(2.11)

{
λ∂tφ0 = Δu0 , in Ω × (0,+∞) ,
∂nu0 = 0 , on Γ × (0,+∞) ,

(2.12)

with the initial conditions

φ0|t=0 = φ0 , ψ0|t=0 = ψ0 . (2.13)

Observe that, from the first equations of (2.11) and (2.12), it follows that
{

−δΔu0 + λ2u0 = −λ
(
Δφ0 − f1(φ0) + g1

)
,

∂nu0 = 0 .
(2.14)

Therefore u0 (t) is uniquely defined by (2.14), provided that φ0 (t) is known. Then,
by standard elliptic estimates, it follows that there exists a nonlinear operator
(see [27])

L ∈ C1
(
H2 (Ω) ,

{
v ∈ H2 (Ω) : ∂nv = 0

})
, (2.15)

such that, for any t ≥ 0 and any φ0 (t) ∈ H2(Ω),

u0(t) = L
(
φ0(t)

)
. (2.16)

Consequently, the solution to P0 exists only for initial data (φ0, ψ0, u0) belonging
to the infinite dimensional submanifold L

M of the phase space V2 defined by

L
M :=

{
(φ0, ψ0, u0) ∈ V2 : ψ0 = φ0|Γ, u0 = L (φ0) ,

∂nu0 = 0, |λ 〈φ0〉| ≤ M
}

. (2.17)

The following theorem is a direct consequence of the results in [19,27].

Theorem 3. Let assumptions (2.6)–(2.8) be satisfied. Then, for every (φ0, ψ0, u0) ∈
L

M , problem P0 has a unique solution (φ0(t), ψ0(t), u0(t)) ∈ C([0,+∞); LM ) which
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satisfies the following estimate:
∥
∥(φ0 (t), ψ0 (t) , u0 (t)

)∥∥2

V2
+ ‖∂tu0 (t)‖2

2 +
∥
∥∂tφ0 (t)

∥
∥2

2
+

∥
∥∂tψ0 (t)

∥
∥2

2,Γ

+

t+1∫

t

(∥
∥(∂tφ0 (s) , ∂tψ0 (s) , ∂tu0 (s)

)∥∥2

V1
+

∥
∥∂2

t u0 (s)
∥
∥2

(H1(Ω))∗

)
ds

≤ Q2

(
‖(φ0, ψ0, u0)‖2

V2

)
e−ρt + Q2

(
‖g1‖2

2 + ‖g1‖2
2,Γ

)
, (2.18)

for some ρ > 0 and some positive and monotone increasing function Q2. Conse-
quently, P0 defines a semiflow S0

t on the manifold L
M by setting

S0
t : L

M → L
M , S0

t (φ0, ψ0, u0) :=
(
φ0(t), ψ0(t), u0(t)

)
. (2.19)

Let us now introduce the projection P : L
M → L̂

M , by setting P (φ0, ψ0, u0) =
(φ0, ψ0), where

L̂
M :=

{
(φ0, ψ0) ∈ H2 (Ω) × H2 (Γ) : ψ0 = φ0|Γ, |λ 〈φ0〉| ≤ M

}
. (2.20)

Then, we define a semiflow Ŝ0
t on the complete metric space L̂

M by setting

Ŝ0
t : L̂

M → L̂
M , Ŝ0

t (φ0, ψ0) :=
(
φ0(t), ψ0(t)

)
, (2.21)

where (φ0(t), ψ0(t)) is the unique solution to (1.3)–(1.4) and (1.11) with ψ0 =
φ0|Γ. This is nothing but the dynamical system associated with the viscous Cahn–
Hilliard equation subject to no-flux and dynamic boundary conditions. It is clear
that PS0

t = Ŝ0
t . On the other hand, S0

t can be obtained from Ŝ0
t by a lifting

of L̂
M to L

M defined through (2.14). It is known that (Ŝ0
t , L̂M ) is a dissipative

dynamical system and possesses an exponential attractor M̂M
0 which is contained

in a bounded subset of H3(Ω) × H3(Γ) (see [27]). Correspondingly, we set

MM
0 :=

{
(φ, ψ, u) ∈ L

M : (φ, ψ) ∈ M̂M
0 , u = L (φ)

}
. (2.22)

We are now ready to state the main result of this paper.

Theorem 4. Let assumptions (2.6)–(2.8) be satisfied. Then, for every fixed M ≥ 0,
there exists a family of compact sets MM

ε ⊂ D
M
ε , where ε ∈ [0, 1] and D

M
0 := L

M ,
with the following properties:

(i) The sets MM
ε are semi-invariant with respect to the semiflows Sε

t associated
with problem Pε, that is,

Sε
t

(
MM

ε

)
⊆ MM

ε , ∀ t ≥ 0 . (2.23)

(ii) The fractal dimension of the sets MM
ε is finite and uniformly bounded with

respect to ε, i.e.,

dimF

(
MM

ε , DM
ε

)
≤ CM < +∞ , (2.24)

where CM is independent of ε.
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(iii) Each MM
ε attracts exponentially any bounded subset of D

M
ε , that is, there ex-

ist a positive constant ρ and a monotonic nonnegative function Q, depending
on M but independent of ε, such that, for every bounded subset B of D

M
ε , we

have
distDM

ε

(
Sε

t B,MM
ε

)
≤ Q

(
‖B‖

DM
ε

)
e−ρt , (2.25)

where distDM
ε

(X,Y ) := supx∈X infy∈Y ‖x − y‖
V2

is the Hausdorff semidis-
tance.

(iv) There exist positive constants K and κ ∈ (0, 1) , depending on M but inde-
pendent of ε, such that

distsymm
DM

ε

(
MM

0 ,MM
ε

)
≤ Kεκ , (2.26)

where distsymm
DM

ε
(X,Y ) := max{distDM

ε
(X,Y ) , distDM

ε
(Y,X)} is the Haus-

dorff distance.

Remark 1. Let us recall that the only novelty here is property (iv) and its proof
since the rest was already proven in [18, Thm. 4.2].

3. Estimates on the difference of solutions

The main goal of this section is to estimate the difference of the solutions to
problems Pε and P0. This is a very crucial step in order to prove property (iv) of
Theorem 4 (cf. next section) and it has an interest on its own.

We argue as in [27] using the boundary layer technique devised in [37]. Thus
we start by computing the first terms of the asymptotic expansions of the solution
(φ (t) , ψ (t) , u (t)) of problem Pε as ε → 0. This is done by introducing the fast
variable τ := t/ε and expanding this solution as follows:

⎧
⎨

⎩

φ (t) = φ0 (t, τ) + εφ1 (t, τ) + · · · ,
ψ (t) = ψ0 (t, τ) + εψ1 (t, τ) + · · · ,
u (t) = u0 (t, τ) + εu1 (t, τ) + · · · ,

(3.1)

where φi(t, τ), ψi(t, τ) and ui(t, τ) are functions (independent of ε) of the form

φi(t, τ) = φi(t)+φ̃i(τ) , ψi(t, τ) = ψi(t)+ψ̃i(τ) , ui(t, τ) = ui(t)+ũi(τ) , (3.2)

with
lim

τ→+∞
φ̃i(τ) = lim

τ→+∞
ψ̃i(τ) = lim

τ→+∞
ũi(τ) = 0 . (3.3)

Inserting expansions (3.1) into equations (2.1)–(2.2), we obtain some equations
for the terms φi(t, τ), ψi(t, τ) and ui(t, τ). Indeed, at order ε−1, it follows from
equation (2.1) that

δ∂τ φ̃0(τ) = 0 , ∂τ ψ̃0(τ) = 0 .

Consequently, by (3.3), we have φ̃0(τ) = 0, ψ̃0(τ) = 0. At order ε, equations (2.1)
yield {

δ∂tφ0(t) = Δφ0(t) − f1

(
φ0(t)

)
+ λu0(t) + g1 ,

∂tψ0(t) = αΔΓψ0(t) − ∂nφ0(t) − βψ0(t) − f2

(
ψ0(t)

)
+ g2 .

(3.4)
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On the other hand, we deduce from equation (2.2) that
{

λ∂tφ0(t) = Δu0(t) ,
∂nu0(t) = 0 ,

(3.5)

and
{

∂τ ũ0(τ) − Δũ0(τ) = −λ∂τ φ̃1(τ) ,
∂nũ0(τ) = 0 ,

(3.6)

with

δ∂τ φ̃1(τ) = λũ0(τ) , ∂τ ψ̃1(τ) = 0 .

Consequently, on account of (3.3), the remaining boundary layer terms are found
from

φ̃1(τ) =
λ

δ

∞∫

τ

ũ0(s)ds , ψ̃1(τ) = 0 . (3.7)

Expanding now the initial data, we have
{

φ1(0) + φ̃1(0) = 0 , φ̃0(0) = 0 , φ0(0) = φ(0) ,

ψ̃0(0) = ψ1(0) = ψ̃1(0) = 0 , ψ0(0) = ψ(0) ,
(3.8)

and

u1(0) + ũ1(0) = 0 , ũ0(0) = u(0) − u0(0) .

Hence, the function (φ0(t), ψ0(t), u0(t)) solves (3.4)–(3.5) with initial data φ0(0) =
φ(0), ψ0(0) = ψ(0), that is,

(
φ0(t), ψ0(t), u0(t)

)
= S0

t

(
φ(0), ψ(0),L

(
φ(0)

))
. (3.9)

Recalling [27], we observe that it suffices to seek for a solution of problem Pε of
the form

⎧
⎨

⎩

φ(t) = φ0(t) + εφ̃(τ) + εφ̂(t) ,

ψ(t) = ψ0(t) + εψ̂(t) ,
u(t) = u0(t) + ũ(τ) + εû(t) ,

(3.10)

where (φ0(t), ψ0(t), u0(t)) is given by (3.9), the boundary layer term ũ(τ) solves
⎧
⎨

⎩

∂τ ũ(τ) − Δũ(τ) + λ2

δ ũ(τ) = 0 ,
∂nũ(τ) = 0 ,
ũ(0) = u(0) − L

(
φ(0)

)
,

(3.11)

and the boundary layer terms φ̃(τ) and ψ̃(τ) are defined by (3.7) (where ũ0(τ),
φ̃1(τ), ψ̃1(τ) are replaced by ũ(τ), φ̃(τ) and ψ̃(τ), respectively). Moreover, the
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boundary layer terms φ̂(t), ψ̂(t) and û(t) satisfy the following problems:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ∂tφ̂(t) = Δφ̂(t) − 1
ε

[
f1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
− f1

(
φ0(t)

)]

+ λû(t) + Δφ̃(τ) ,

∂tψ̂(t) = αΔΓψ̂(t) − ∂nφ̂(t) − βψ̂(t)
− 1

ε

[
f2

(
ψ0(t) + εψ̂(t)

)
− f2(ψ0)

]
− ∂nφ̃(τ) ,

φ̂(0) = −φ̃(0) , ψ̂(0) = 0 ,

(3.12)

and
⎧
⎨

⎩

ε∂tû(t) = Δû(t) + ∂tφ̂(t) − ∂tu0(t) ,
∂nû(t) = 0 ,
û(0) = 0 .

(3.13)

The next lemma provides some estimates on the boundary layer terms ũ(τ)
and φ̃(τ), given by (3.11) and (3.7), respectively. The result is a straightforward
consequence of standard energy estimates.

Lemma 5. The following estimates hold:

‖ũ(τ)‖H2(Ω) + ‖∂τ ũ(τ)‖2 ≤ C‖ũ(0)‖H2(Ω)e
−ρτ , (3.14)

‖φ̃(τ)‖H2(Ω) + ‖∂τ φ̃(τ)‖H2(Ω) ≤ C‖ũ(0)‖H2(Ω)e
−ρτ , (3.15)

where ρ, C > 0 are both independent of ε.

We can now estimate the remainder terms φ̂(t), ψ̂(t) and û(t) in expan-
sion (3.10).

Lemma 6. The following estimate holds:
∥
∥(φ̂(t), ψ̂(t), û(t)

)∥∥2

V2
+ ‖∂tφ̂(t)‖2

2 + ‖∂tψ̂(t)‖2
2,Γ + ε‖∂tû(t)‖2

2 ≤ CeLt , (3.16)

where the positive constants C and L depend on ‖(φ(0), ψ(0), u(0))‖V2 , but are
independent of ε.

Proof. We first note that the functions φ̃(τ), εφ̂(t) and εψ̂(t) are uniformly bounded
with respect to ε in H2(Ω), H2(Ω) and H2(Γ), respectively. This easily follows from
estimates (3.14)–(3.15), (2.9), (2.18). In particular, the initial datum φ̃(0) is uni-
formly bounded in H2(Ω) as ε → 0. Observe preliminarily that all the constants
Ci are independent of ε. Moreover, note that (2.7) entails

f ′
i(y) ≥ −Ki , ∀ y ∈ R , (3.17)

for some Ki > 0, i = 1, 2.

Multiplying the first equation of (3.12) by ∂tφ̂(t), integrating over Ω, and
using the second equation of (3.12), we have

∂t

(
‖∇φ̂(t)‖2

2 + α‖∇Γψ̂(t)‖2
2,Γ + β‖ψ̂(t)‖2

2,Γ

)
+ 2δ‖∂tφ̂(t)‖2

2 + 2‖∂tψ̂(t)‖2
2,Γ

≤ C1

(
‖φ̂(t)‖2

H1(Ω) + ‖ψ̂(t)‖2
2,Γ

)
+ C2

(
‖φ̃(τ)‖2

H2(Ω) + ‖û(t)‖2
2

)
, (3.18)
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where C1 > 0 only depends on Ki and C2 > 0 only depends on ‖φ̃(0)‖H2(Ω).
We now differentiate both equations of (3.12) with respect to t, multiply the first
equation by ∂tφ̂(t) and integrate over Ω to obtain

∂t

(
δ‖∂tφ̂(t)‖2

2 + ‖∂tψ̂(t)‖2
2,Γ

)
+ 2‖∂tφ̂(t)‖2

H1(Ω) + 2‖∂tψ̂(t)‖2
H1(Γ)

− 2λ
〈
∂tû(t), ∂tφ̂(t)

〉
2
≤ 2K1‖∂tφ̂(t)‖2

2 + 2K2‖∂tψ̂(t)‖2
2,Γ

− 2
ε

[〈(
f ′
1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
− f ′

1

(
φ0(t)

))
∂tφ0(t), ∂tφ̂(t)

〉

2

]

− 2
[〈

f ′
1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
∂tφ̃(τ), ∂tφ̂(t)

〉

2

]

− 2
ε

[〈(
f ′
2

(
ψ0(t) + εψ̂(t)

)
− f ′

2(ψ0)
)
∂tψ0(t), ∂tψ̂(t)

〉

2,Γ

]

+ ‖∂tΔφ̃(τ)‖2

(
1 + ‖∂tφ̂(t)‖2

2

)
+ ‖∂t∂nφ̃(τ)‖2,Γ

(
1 + ‖∂tψ̂(t)‖2

2,Γ

)
. (3.19)

Our aim is to estimate all the remaining terms on the right-hand side of (3.19).
Since ∂tφ0(t), ∂tψ0(t) are bounded in L2(Ω) and L2(Γ), respectively, it follows,
with the help of estimates (2.9) and (2.18), that

−2
ε

[〈(
f ′
1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
− f ′

1

(
φ0(t)

))
∂tφ0(t), ∂tφ̂(t)

〉

2

]

≤ C3

〈
1 + |φ̂(t)||∂tφ0(t)|, |∂tφ̂(t)|

〉
2

≤ C4

(
1 + ‖∂tφ̂(t)‖2

2 + ‖φ̂(t)‖2
2

)
+

1
2
‖φ̂(t)‖2

H1(Ω) + ‖∂tφ̂(t)‖2
H1(Ω) , (3.20)

where the constants C3, C4 depend on the norm of the initial data φ(0), ψ(0) and
u(0) in H2. Similarly, we have

2
[〈

f ′
1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
∂tφ̃(τ), ∂tφ̂(t)

〉

2

]

≤ C5‖∂tφ̃(τ)‖H2(Ω)

(
1 + ‖∂tφ̂(t)‖2

2

)
, (3.21)

and

− 2
ε

[〈(
f ′
2

(
ψ0(t) + εψ̂(t)

)
− f ′

2(ψ0)
)
∂tψ0(t), ∂tψ̂(t)

〉

2,Γ

]

≤ C6

(
1 + ‖∂tψ̂(t)‖2

2,Γ + ‖ψ̂(t)‖2
2,Γ

)
+

1
2
‖ψ̂(t)‖2

H1(Γ) + ‖∂tψ̂(t)‖2
H1(Γ) . (3.22)

Multiplying now the first equation of (3.13) by ∂tû(t) and integrating over Ω, we
obtain

∂t

(
‖∇û(t)‖2

2 + 2
〈
∂tu0(t), û(t)

〉
2

)
+ 2ε‖∂tû(t)‖2

2 + 2λ
〈
∂tû(t), ∂tφ̂(t)

〉
2

= 2
〈
∂2

t u0(t), û(t)
〉
2
≤ ‖∂2

t u0(t)‖(H1(Ω))∗
(
1 + ‖û(t)‖2

H1(Ω)

)
. (3.23)
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Then, combining (3.18)–(3.22) and adding the resulting inequality to (3.23), we
get

d

dt
Λ(t) ≤ C7

(
1 + ‖∂2

t u0(t)‖2
(H1(Ω))∗ + ‖∂tφ̃(t/ε)‖H2(Ω) + ‖∂tũ(t/ε)‖2

)
Λ(t) , (3.24)

where we have set

Λ(t) := δ‖∂tφ̂(t)‖2
2 + ‖∂tψ̂(t)‖2

2,Γ + ‖φ̂(t)‖2
H1(Ω) + ‖ψ̂(t)‖2

H1(Γ)

+ ‖∇û(t)‖2
2 + 2

〈
∂tu0(t), û(t)

〉
2

+ K .

The positive constant K will be chosen large enough such that Λ(t) ≥ 0 for any
t ≥ 0, but we still need to estimate the term 〈û(t)〉2. We integrate the first equation
of (3.12) over Ω and, using the second equation, we find

λ
〈
û(t)

〉
=δ

〈
∂tφ̂(t)

〉
+

〈
∂tψ̂(t)

〉
Γ

+ β
〈
ψ̂(t)

〉
Γ

+
1
ε

〈
f1

(
φ0(t) + εφ̃(τ) + εφ̂(t)

)
− f1

(
φ0(t)

)〉

+
1
ε

〈
f2

(
ψ0(t) + εψ̂(t)

)
− f2(ψ0)

〉

Γ
, (3.25)

where 〈v〉Γ stands for the average of v over Γ.

Recalling Theorems 1 and 3 and the fact that the functions φ(t) = φ0(t) +
εφ̃(τ)+ εφ̂(t), ψ(t) = ψ0(t)+ εψ̂(t) and φ0(t), ψ0(t) are uniformly bounded in L∞

with respect to ε, it follows from (3.25) that

λ2
〈
û(t)

〉2 ≤ C8

(
1 + ‖∂tφ̂(t)‖2

2 + ‖∂tψ̂(t)‖2
2,Γ + ‖φ̂(t)‖2

2 + ‖ψ̂(t)‖2
2,Γ

)
. (3.26)

Combining (3.24) with (3.26), choosing K large enough and then applying Gron-
wall’s inequality, taking into account the fact that (see (2.18))

t+1∫

t

(
1 + ‖∂2

t u0(s)‖2
(H1(Ω))∗ + ‖∂tφ̃(s/ε)‖H2(Ω) + ‖∂tũ(s/ε)‖2

)
ds ≤ C9 ,

we find

‖∂tφ̂(t)‖2
2 + ‖∂tψ̂(t)‖2

2,Γ + ‖φ̂(t)‖2
H1(Ω) (3.27)

+ ‖ψ̂(t)‖2
H1(Γ) + ‖û(t)‖2

H1(Ω) ≤ C10e
C11t ,

where the constants C10 and C11 depend on ‖(φ(0), ψ(0), u(0))‖V2 . Finally, esti-
mate (3.16) follows from (3.27) (cf. [18,19] for more details). This finishes the proof
of the lemma. �

On account of the asymptotic expansion (3.10), arguing as in [27], we deduce
from estimates (3.14)–(3.16) that
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Corollary 7. Let (φ, ψ, u) be a solution to Pε and (φ0, ψ0, u0) be a solution to P0

with initial data (φ(0), ψ(0)). Then, there holds

‖φ(t)−φ0(t)‖H2(Ω) + ‖ψ(t) − ψ0(t)‖H2(Γ) + ‖u(t) − u0(t)‖H2(Ω)

+ ‖∂tφ(t) − ∂tφ0(t)‖2 + ‖∂tψ(t) − ∂tψ0(t)‖2,Γ

+ ε‖∂tu(t) − ∂tu0(t)‖2

≤ C
(∥
∥u(0) − L

(
φ(0)

)∥∥
H2(Ω)

e−ρ t
ε + εeLt

)
, (3.28)

where ρ > 0 is a constant depending only on Ω, Γ and the positive constants C, L
depend on ‖(φ(0), ψ(0), u(0))‖V2 , but are independent of ε.

Corollary 8. The following estimates hold:

‖∂tu(t)‖2 ≤ Q(‖(φ(0), ψ(0), u(0))‖V2)

×
[
1 +

1
ε
‖u(0) − L

(
φ(0)

)
‖H2(Ω)e

−ρ t
ε

]
, (3.29)

‖u(t) − L(φ(t))‖H2(Ω) ≤ Q
(∥
∥(φ(0), ψ(0), u(0)

)
‖V2

)

×
[
ε +

∥
∥u(0) − L

(
φ(0)

)∥∥
H2(Ω)

e−ρ t
ε

]
, (3.30)

where ρ > 0 and the positive and monotone increasing function Q are independent
of ε.

We conclude this section with two estimates on the difference of two tra-
jectories of (Sε

t , DM
ε ) that are also necessary for the construction of exponential

attractors in the next section. For the details of the proofs, the reader is referred
to [18, Lemma 4.6] and [19, Lemma 17].

Lemma 9. Let (φi(t), ψi(t), ui(t)) = Sε
t (φ0i, ψ0i, u0i), i = 1, 2. Suppose that they

belong to a bounded absorbing set in V2, of radius R > 0. Then, the following
estimates hold:

‖(φ1 − φ2)(t)‖2
H2(Ω) + ‖(ψ1 − ψ2)(t)‖2

H2(Γ) + ‖(u1 − u2)(t)‖2
H2(Ω)

≤ CeLt
(
‖φ01 − φ02‖2

H2(Ω) + ‖ψ01 − ψ02‖2
H2(Γ) + ‖u01 − u02‖2

H2(Ω)

)
, (3.31)

‖(φ1 − φ2)(t)‖2
H3(Ω) + ‖(ψ1 − ψ2)(t)‖2

H3(Γ) + ‖(u1 − u2)(t)‖2
H3(Ω)

≤ C
t + 1

t
eLt

(
‖φ01 − φ02‖2

H2(Ω) + ‖ψ01

− ψ02‖2
H2(Γ) + ‖u01 − u02‖2

H2(Ω)

)
, (3.32)

for all t > 0, where the constants C, L depend on R, but are independent of ε.

4. Proof of Theorem 4

The proof follows from the application of an abstract result (see [27, Prop.3.2] and
references therein) which is reported below for the reader’s convenience.
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Theorem 10. Let Bε ⊂ Φ, ε ∈ [0, 1], be a family of closed and bounded subsets of
the Banach space Φ and let Σε : Bε → Bε be a family of maps which satisfy the
following properties:
(1) There exists another Banach space Φ1, which is compactly embedded into Φ,

such that, for every bε
1, bε

2 ∈ Bε, the following estimate holds:

‖Σεbε
1 − Σεbε

2‖Φ1 ≤ C‖bε
1 − bε

2‖Φ , (4.1)

where the constant C is independent of ε.
(2) There exist nonlinear “projectors” Πε : Bε → B0 such that, for every bε ∈ Bε,

‖Σε
(k)b

ε − Σ0
(k)Πεb

ε‖Φ ≤ εLk , ∀ k ∈ N , (4.2)

where Σε
(k) denotes the k-th iteration of Σε and the constant L is independent

of ε.

Then, the discrete semiflows Σε
(k) possess a family of exponential attractors Md

ε

which satisfy the discrete versions of (2.23)–(2.26).

In our case, we set Φ = D
M
ε and Φ1 = V3. Note that V3 is compactly

embedded into D
M
ε . Then, recalling (2.9), we define the sets Bε ⊂ D

M
ε , for every

ε ∈ (0, 1], in the following way:

Bε :=
{

(φ0, ψ0, u0) ∈ D
M
ε : ‖(φ0, ψ0, u0)‖2

V2
≤ 2Q1

(
‖g1‖2

2 + ‖g1‖2
2,Γ

)}
. (4.3)

Similarly, on account of (2.18), we set

B0 :=
{

(φ0, ψ0, u0) ∈ L
M : ‖(φ0, ψ0)‖2

H2(Ω)×H2(Γ)

≤ 2Q2

(
‖g1‖2

2 + ‖g1‖2
2,Γ

)}
. (4.4)

These sets are uniform (with respect to ε) bounded absorbing sets for the semi-
flows (2.10) and (2.19) thanks to Theorems 1–2 and Theorem 3, respectively. Thus,
there exists a time T ≥ 1, independent of ε, such that

Sε
T (Bε) ⊆ Bε , ∀ ε ∈ [0, 1] . (4.5)

Setting Σε = Sε
T , we easily realize that these maps satisfy the smoothing prop-

erty (4.1), thanks to estimate (3.32). Besides, following [27], we define the projec-
tions Πε : Bε → B0 by setting

Πε(φ0, ψ0, u0) :=
(
λφ0 + εu0, ψ0,L(λφ0 + εu0)

)
, (4.6)

which are well defined since |λ〈φ0〉+ε〈u0〉| = |Iε(φ0, u0)| ≤ M. Thus, estimate (4.2)
follows from estimate (3.28) and the obvious estimate

∥
∥Πε(φ0, ψ0, u0) −

(
φ0, ψ0,L(φ0)

)∥∥
V2

≤ Cε ,

which holds for every (φ0, ψ0, u0) ∈ Bε, for some C > 0 independent of ε. Hence,
Theorem 10 yields a discrete family of exponential attractors Md

ε for the discrete
semiflows Σε

nT acting on the absorbing sets Bε. We now set

Mε := ∪t∈[T,T+1]S
ε
t Md

ε .
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Then, thanks to (3.28) and (3.30)–(3.32), we can argue as in [27] and deduce
that Mε fulfills assumptions (2.23), (2.25)–(2.26). Finally, property (2.24) follows
from (3.29)–(3.30) (see also [27, Lemma 3.3]) and (3.31)–(3.32).

5. Global attractors revisited

In [19], the authors also establish the existence of the global attractor Aε for
(Sε

t , DM
ε ) and its upper semicontinuity at ε = 0 (see [19, Thm. 4.3]). Here we wish

to improve the latter result, by enlarging the phase space for the temperature u,
according to the approach followed in [18].

Let us set Zq := Hq(Ω) × Hq(Γ) × Hq−1(Ω), for any q ≥ 1. Then, for any
ε ∈ (0, 1], we introduce the set

X
M
ε :=

{
(φ, ψ, u) ∈ H2(Ω) × H2(Γ) × H1(Ω) : ψ = φ|Γ, |Iε| ≤ M

}
, (5.1)

where M ≥ is given. This set is a complete metric space with the metric induced by
the norm in Z2. From [18], we know that the semiflow Sε

t can be defined on X
M
ε . The

existence of a bounded absorbing set has already been proven in [18, Lemma 4.3],
but here we give a slightly different estimate which shows, in particular, the uni-
formity with respect to ε.

Lemma 11. Let assumptions (2.6)–(2.8) be satisfied. Then, for any (φ0, ψ0, u0) ∈
X

M
ε , the trajectory (φ(t), ψ(t), u(t)) = Sε

t (φ0, ψ0, u0) satisfies the estimate
∥
∥(φ(t), ψ(t), u(t)

)∥∥2

Z2
+ ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

+

t+1∫

t

(
‖∂tφ(s)‖2

H1(Ω) + ‖∂tψ(s)‖2
H1(Γ) + ε‖∂tu(s)‖2

2

)
ds

≤ Q
(
‖(φ0, ψ0, u0)‖2

Z2

)
e−ρt + Q

(
‖g1‖2

2 + ‖g2‖2
2,Γ

)
, (5.2)

for some ρ > 0 and some positive increasing function Q which are both independent
of ε.

Proof. We proceed formally (see [18] for details on a rigorous argument). Consider
system (2.1). Then, take the inner product in L2(Ω) of the first equation with ∂tφ(t)
and the inner product in L2(Γ) of the second equation with ∂tψ(t), respectively.
Adding these relations together with the one obtained by taking the inner product
of the first equation of (2.2) with u(t), we deduce that

1
2

d

dt

[
‖∇φ(t)‖2

2 + α‖∇Γψ(t)‖2
2,Γ + β‖ψ(t)‖2

2,Γ + ε‖u(t)‖2
2

]

+
1
2

d

dt

[
2
〈
F1

(
φ(t)

)
, 1

〉

2
+ 2

〈
F2

(
ψ(t)

)
, 1

〉

2,Γ

]

+ ‖∇u(t)‖2
2 + δ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

=
〈
∂tφ(t), g1

〉
2

+
〈
∂tψ(t), g2

〉
2,Γ

, (5.3)
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where Fi(w) =
∫ w

0
fi(y)dy, i = 1, 2. Let us now take the inner product in L2(Ω)

of the first equation and second equation of (3.2) with 2ξφ(t), and 2ξψ(t), re-
spectively, for some ξ > 0 to be fixed below. Combining the resulting relations
with (5.3), we get, for some 0 < κ < ξ,

d

dt
E(t) + κE(t) = Λ1(t) , (5.4)

where

E(t) := ‖∇φ(t)‖2
2 + α‖∇Γψ(t)‖2

2,Γ + β‖ψ(t)‖2
2,Γ

+ 2
〈
F1

(
φ(t)

)
, 1

〉

2
+ 2

〈
F2

(
ψ(t)

)
, 1

〉

2,Γ

+ ε‖u(t)‖2
2 + ξ

[
δ‖φ(t)‖2

2 + ‖ψ(t)‖2
2,Γ

]
+ E0 ,

for some E0 > 0 such that E(t) is nonnegative (cf. (2.7)) and

Λ1(t) := 2κ
〈
F1

(
φ(t)

)
− f1

(
φ(t)

)
φ(t), 1

〉

2

+ 2κ
〈
F2

(
ψ(t)

)
− f2

(
ψ(t)

)
ψ(t), 1

〉

2,Γ

− (2ξ − κ)
(
‖∇φ(t)‖2

2 + α‖∇Γψ(t)‖2
2,Γ + β‖ψ(t)‖2

2,Γ

)

− 2(ξ − κ)
[〈

f1

(
φ(t)

)
, φ(t)

〉

2
+

〈
f2

(
ψ(t)

)
, ψ(t)

〉

2,Γ

]

− 2
(
δ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

)
+

〈
∂tφ(t), g1

〉
2

+
〈
∂tψ(t), g2

〉
2,Γ

− 2‖∇u(t)‖2
2 + 2ξκ

[
δ‖φ(t)‖2

2 + ‖ψ(t)‖2
2,Γ

]

+ κε‖u(t)‖2
2 + 2ξλ

〈
u(t), φ(t)

〉
2

+ κE0 .

Observe now that

2ξλ〈u, φ〉2 = 2ξλ
〈
u − 〈u〉, φ

〉
2

+ 2ξ|Ω|Iε〈u〉 − 2ξε|Ω|〈u〉2 . (5.5)

On the other hand, we know that there exists a positive constant Ĉ such that, for
all v ∈ H1(Ω),

‖v − 〈v〉‖2
2 = ‖v‖2

2 − |Ω|〈v〉2 ≤ Ĉ‖∇v‖2
2 . (5.6)

Let us rewrite Λ1 in the following way:

Λ1(t) := 2κ
[〈

F1

(
φ(t)

)
− f1

(
φ(t)

)
φ(t), 1

〉

2
+

〈
F2

(
ψ(t)

)
− f2

(
ψ(t)

)
ψ(t), 1

〉

2,Γ

]

− (2ξ − κ)
(
‖∇φ(t)‖2

2 + α‖∇Γψ(t)‖2
2,Γ + β‖ψ(t)‖2

2,Γ

)

− 2(ξ − κ)
[〈

f1

(
φ(t)

)
, φ(t)

〉
2

+
〈
f2

(
ψ(t)

)
, ψ(t)

〉
2,Γ

]

− 2ξε|Ω|〈u〉2 +
〈
∂tφ(t), g1

〉
2

+
〈
∂tψ(t), g2

〉
2,Γ

− 2
(
δ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

)
− 2‖∇u(t)‖2

2

+ 2ξ|Ω|Iε〈u〉 + κε‖u(t)‖2
2 − 2κε|Ω|〈u〉2

+ 2ξκ
[
δ‖φ(t)‖2

2 + ‖ψ(t)‖2
2,Γ

]
+ 2ξλ

〈
u − 〈u〉, φ

〉
2
. (5.7)
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Then, recall that, owing to (2.10), we have

C∗|fi(y)|(1 + |y|) ≤ 2fi(y)y + Cfi
,

Fi(y) − fi(y)y ≤ C ′
fi
|y|2 + C ′′

fi
,

for any y ∈ R and i = 1, 2. Here Cfi
, C∗, C ′

fi
and C ′′

fi
are positive, sufficiently large

constants that depend on fi only. Using these inequalities, we infer from (5.7) that

Λ1(t) ≤ −
(
2ξ − κ − κ(C ′

f1
+ C ′

f2
) − 2ξκ

)[
‖φ(t)‖2

H1(Ω) + ‖ψ(t)‖2
H1(Γ)

]

−
(
δ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

)
+ Cδ

(
1 + ‖g1‖2

2 + ‖g2‖2
2,Γ

)

− 2(ξ − κ)
[〈

f1

(
φ(t)

)
, φ(t)

〉

2
+

〈
f2

(
ψ(t)

)
, ψ(t)

〉

2,Γ

]

+ 2ξ|Ω|Iε〈u〉 − 2(ξ − κ)ε|Ω|〈u〉2

− 2(1 − κεĈ)‖∇u(t)‖2
2 + ξ2λ2Ĉ‖φ(t)‖2

2 . (5.8)

Let us now estimate the average 〈u〉. Integrating equations (2.1) over Ω and Γ and
adding the resulting identities, we obtain

d

dt
ε
〈
u(t)

〉
+

λ2

δ

〈
u(t)

〉
=

λ|Γ|
δ|Ω| 〈∂tψ〉Γ +

λβ|Γ|
δ|Ω| 〈ψ〉Γ

+
λ|Γ|
δ|Ω|

〈
f2(ψ)

〉
Γ

+
1
δ

〈
f1(φ)

〉
Ω

. (5.9)

We multiply (5.9) by

ζ :=
2ξδ|Ω|Iε

λ2 − κδε
,

provided that κδε < λ2, and we add the resulting relation to (5.4). Then, we derive
the inequality

d

dt

[
E(t) + ζε

〈
u(t)

〉]
+ κ

[
E(t) + ζε

〈
u(t)

〉]

≤ −
(
2ξ − κ − κ(C

′

f1
+ C ′

f2
) − 2ξκ − ξ2λ2Ĉ

)[
‖φ(t)‖2

H1(Ω) + ‖ψ(t)‖2
H1(Γ)

]

−
(
δ‖∂tφ(t)‖2

2 + ‖∂tψ(t)‖2
2,Γ

)
+ Cδ

(
1 + ‖g1‖2

2 + ‖g2‖2
2,Γ

)

− 2(ξ−κ)
[〈

f1

(
φ(t)

)
, φ(t)

〉

2
+

〈
f2

(
ψ(t)

)
, ψ(t)

〉

2,Γ

]
− 2(ξ − κ)ε|Ω|〈u〉2

− 2(1 − κεĈ)‖∇u(t)‖2
2 +

λ|Γ|
δ|Ω| 〈∂tψ〉Γ +

λβ|Γ|
δ|Ω| 〈ψ〉Γ

+
λ|Γ|
δ|Ω|

〈
f2(ψ)

〉
Γ

+
1
δ

〈
f1(φ)

〉
Ω

. (5.10)
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Due to assumption (2.11), we have that, for any η > 0, there exists Cη > 0 such
that (cf. [27, (4.16)])

∣
∣
∣
〈
f1

(
φ(t)

)〉∣∣
∣ ≤

〈∣∣
∣f1

(
φ(t)

)∣∣
∣
〉
≤ η

〈
f1

(
φ(t)

)
, φ(t)

〉

2
+ Cη , (5.11)

∣
∣
∣
〈
f2

(
ψ(t)

)〉

Γ

∣
∣
∣ ≤

〈∣∣
∣f2

(
ψ(t)

)∣∣
∣
〉

Γ
≤ η

〈
f2

(
ψ(t)

)
, ψ(t)

〉

2,Γ
+ Cη . (5.12)

Thus, thanks to the above inequalities, we deduce that (cf. also [19])
d

dt

[
E(t) + ζε

〈
u(t)

〉
] + κ

[
E(t) + ζε

〈
u(t)

〉]

+ κ′(‖φ(t)‖2
H1(Ω) + ‖ψ(t)‖2

H1(Γ) + δ‖∂tφ(t)‖2
2 + ‖∂tψ(t)‖2

2,Γ + ‖∇u(t)‖2
2

)

≤ C
(
1 + ‖g1‖2

2 + ‖g2‖2
2,Γ

)
, (5.13)

where κ, κ′ and C are positive constants that are independent of ε. On the other
hand, one can easily check that there exists a positive constant C independent of
ε such that, for all t ≥ 0,

Λ2(t) ≤ C
(
E(t) + ζε

〈
u(t)

〉)
, (5.14)

where
Λ2(t) = ‖φ(t)‖2

H1(Ω) + ‖ψ(t)‖2
H1(Γ) + ε‖u(t)‖2

2 .

Applying Gronwall’s inequality to (5.13) and taking (5.14) into account, we obtain

Λ2(t) +

t+1∫

t

(
‖φ(s)‖2

H1(Ω) + ‖ψ(s)‖2
H1(Γ) + δ‖∂tφ(s)‖2

2

)
ds

+

t+1∫

t

(
‖∂tψ(s)‖2

2,Γ + ‖∇u(s)‖2
2

)
ds ≤ C

(
E(0)e−ρt + 1 + ‖g1‖2

2 + ‖g2‖2
2,Γ

)
, (5.15)

for all t ≥ 0, for some ρ > 0 and C > 0 independent of t and ε.
Hence, using (5.15) and arguing as in [18, Lemma 4.3, (4.20)–(4.23)], we

deduce that

‖∂tφ(t)‖2
2 + ‖∂tψ(t)‖2

2,Γ + ‖∇u(t)‖2
2

+

t+1∫

t

(
‖∂tφ(s)‖2

H1(Ω) + ‖∂tψ(s)‖2
H1(Γ) + ε‖∂tu(s)‖2

2

)
ds

≤ Q
(
‖(φ0, ψ0, u0)‖2

XM
ε

)
e−ρt + Q

(
‖g1‖2

2 + ‖g2‖2
2,Γ

)
, (5.16)

and it follows from (2.1) that

λ
〈
u(t)

〉
≤ Q

(
‖(φ0, ψ0, u0)‖2

XM
ε

)
e−ρt + Q

(
‖g1‖2

2 + ‖g2‖2
2,Γ

)
, (5.17)

for some ρ > 0 and some positive increasing function Q, both independent of ε.
Finally, (5.2) is derived from (5.15)–(5.17), arguing as in the final part of the proof
of [18, Lemma 4.3]. �
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The next lemma shows the existence of a compact absorbing set in X
M
ε ,

namely,

Lemma 12. Let assumptions (2.6)–(2.8) be satisfied. There exists a positive mono-
tone nondecreasing function Q (independent of ε) and, for any R0 > 0, there exists
t0 = t0(R0) > 0 such that

∥
∥(φ(t), ψ(t), u(t)

)∥∥
Z3

≤ Q(R0) , ∀ t ≥ t0 , (5.18)

for any (φ0, ψ0, u0) ∈ B(R0) ⊂ X
M
ε , where B(R0) is a ball of radius R0, centered

at 0.

Proof. Following a formal argument (cf. [18, Lemma 4.4]), we differentiate the first
two equations of (2.1) and the first equation of (2.2) with respect to time. Then,
we multiply the resulting equations by ∂2

t φ(t), ∂2
t ψ(t) and ∂tu(t), respectively.

Integrating by parts and adding the resulting relations, we deduce that

1
2

d

dt

[
‖∂tφ(t)‖2

H1(Ω) + ‖∂tψ(t)‖2
H1(Γ) + ε‖∂tu(t)‖2

2

]

+ ‖∂2
t φ(t)‖2

2 + ‖∂2
t ψ(t)‖2

2,Γ + ‖∇∂tu(t)‖2
2

= −
∫

Ω

f ′
1

(
φ(t)

)
∂tφ(t)∂2

t φ(t)dx −
∫

Γ

f ′
2

(
ψ(t)

)
∂tψ(t)∂2

t ψ(t)dS . (5.19)

Using Hölder’s and Young’s inequalities, we get

d

dt

(
‖∂tφ(t)‖2

H1(Ω) + ‖∂tψ(t)‖2
H1(Γ) + ε‖∂tu(t)‖2

2

)

+ ‖∂2
t φ(t)‖2

2 + ‖∂2
t ψ(t)‖2

2,Γ + ‖∇∂tu(t)‖2
2

≤ C
(∥
∥f ′

1

(
φ(t)

)
∂tφ(t)

∥
∥2

2
+

∥
∥f ′

2

(
ψ(t)

)
∂tψ(t)

∥
∥2

2,Γ

)
, (5.20)

for some C > 0 that is independent of ε and of the initial data. On account
of the embedding H2(Ω) ↪→ C(Ω̄), we can find a positive monotone increasing
function Q, independent of ε, such that

d

dt

(
‖∂tφ(t)‖2

H1(Ω) + ‖∂tψ(t)‖2
H1(Γ) + ε‖∂tu(t)‖2

2

)

+ ‖∂2
t φ(t)‖2

2 + ‖∂2
t ψ(t)‖2

2,Γ + ‖∇∂tu(t)‖2
2

≤ Q
(
‖φ(t)‖H2(Ω)

)
‖∂tφ(t)‖2

2 + Q
(
‖ψ(t)‖H2(Γ)

)
‖∂tψ(t)‖2

2,Γ . (5.21)

Recalling (5.2), we can apply the uniform Gronwall lemma to (5.21). This yields

‖∂tφ(t)‖2
H1(Ω) + ‖∂tψ(t)‖2

H1(Γ) + ε‖∂tu(t)‖2
2 ≤ Q(R0) , ∀ t ≥ t0 , (5.22)

where t0 = t0(R0) > 0 is independent of ε. We can now use (5.2) and (5.22) to
derive (5.18), arguing as in the proof of [18, Lemma 4.4]. �

We also recall the continuous dependence estimate (see [18, (3.42)]).
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Lemma 13. Let assumptions (2.6)–(2.8) be satisfied. Consider two trajectories orig-
inating from X

M
ε , namely (φi(t), ψi(t), ui(t)) = Sε

t (ψ0i, φ0i, u0i), i = 1, 2. Then, the
following estimate holds:

‖(φ1 − φ2)(t)‖2
H1(Ω) + ‖(ψ1 − ψ2)(t)‖2

H1(Γ) + ε‖(u1 − u2)(t)‖2
2

≤ CeLt
(
‖φ01 − φ02‖2

H1(Ω) + ‖ψ01 − ψ02‖2
H1(Γ) + ε‖u01 − u02‖2

2

)
, (5.23)

where C and L are independent of ε.

On account of (5.2), (5.18) and (5.23), we deduce (cf. [31]) the

Corollary 14. Let assumptions (2.6)–(2.8) be satisfied. Then, for each ε ∈ (0, 1],
the dynamical system (Sε

t , XM
ε ) has a connected global attractor Aε that is bounded

in Z3.

Remark 2. It is worth noting that, in order to prove the result of Corollary 15,
the nonlinearities fi need only be in C1(R).

We also recall that, owing to Theorem 4, the dynamical system (S0
t , LM ) has

the global connected attractor A0 that is bounded in V3 ⊂ Z3. More precisely,
recalling (2.22), this attractor is defined by

A0 =
{
(φ, ψ, u) ∈ L

M
0 : (φ, ψ) ∈ Â0, u = L(φ)

}
,

where Â0 is the global attractor, bounded in H3(Ω) × H3(Γ), of the dynamical
system (Ŝ0

t , L̂M ) generated by the viscous Cahn–Hilliard equation with dynamic
boundary conditions.

Using estimates (5.2) and (5.22), we can argue as in the proof of [19, Theo-
rem 4.3] to get the

Theorem 15. Let assumptions (2.6)–(2.8) be satisfied. Then, the family {Aε}ε∈[0,1]

is upper semicontinuous at ε = 0, that is,

lim
ε→0+

distXM
ε

(Aε,A0) = 0 ,

where distXM
ε

denotes the Hausdorff semidistance in X
M
ε .
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