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Università Federico II
Via Cintia, Monte S. Angelo

80126 Napoli, Italy
e-mail: m.berti@unina.it

Philippe BOLLE
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1 Introduction

The aim of this paper is to prove the bifurcation of “large” Cantor families of
small amplitude periodic solutions for wave equations like{

utt − uxx + f(x, u) = 0
u(t, 0) = u(t, π) = 0 (1.1)

where the nonlinearity f vanishes at u = 0, f is just Ck with respect to u, for
some k large enough, and H1 with respect to x. The frequencies of these periodic
solutions form a set of asymptotically full measure.
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If f(x, 0) = 0 then (u, ut) = (0, 0) is an elliptic equilibrium of the infinite
dimensional Hamiltonian system associated to (1.1).

Bifurcation of small amplitude periodic and quasi-periodic solutions of (1.1)
has been first proved, for analytic nonlinearities, by Kuksin [14] and Wayne [22]
via KAM theory. Further extensions of the KAM techniques have been developed
e.g. in [16], [8] [15], and, more recently, in [11], [23].

In the early nineties Craig-Wayne [10] introduced the Lyapunov-Schmidt
reduction method to find periodic solutions of nonlinear wave equations in the
case of periodic boundary conditions, solving the small divisor problem present
in the range equation via an analytic Nash-Moser type technique, see also [9].
Subsequently Bourgain [5]-[6]-[7] developed this method to find also quasi-periodic
solutions (in Gevrey class).

Another approach to overcome the small divisor problem for finding analytic
periodic solutions of (1.1) has been proposed by Gentile-Matropietro-Procesi [13]
via the Lindsted series power expansion method.

We underline that in all these papers the nonlinearity f is required to be
analytic in both (x, u), fact which is exploited in the structure and in the estimates
of the corresponding recursive schemes. In [20], adapting the method of [10], Su
proved existence of periodic solutions of (1.1) which are Sobolev functions in both
(t, x) for the specific nonlinearity f = −m2u+ g(x)u3 where g(x) belongs to some
Sobolev space (and is even). Since such an f is analytic with respect to u, one
could expect existence of periodic solutions analytic in time.

Actually, in [4], for nonlinearities analytic with respect to u but just H1 with
respect to x, existence of periodic solutions of (1.1) which are analytic in time and
valued in H3(0, π) ∩ H1

0 (0, π) was proved.
On the other hand, for nonlinearities f just of class Ck with respect to u one

could expect existence of periodic solutions which are differentiable up to some
finite order in time, and no more. However the iterative Nash-Moser scheme of
[4] (and [10]) has to be deeply modified. This is done in this paper.

Let us explain the main difficulties. In [10]–[4] analyticity plays an impor-
tant role at several stages. However, as in any Nash-Moser scheme, the most
delicate step is the inversion of the linearized operators obtained at each itera-
tion. The method developed in [10] is based on the Frölich-Spencer estimates
[12] and exploits analyticity in the exponentially fast decay off-the diagonal of the
coefficients of the matrices representing the linear operators.

On the other hand, the new method in [4] dealt with nonlinearities only H1

with respect to x and, what is more important, it did not use analyticity with
respect to time for the inversion of the linearized operators.

Once this key property of invertibility is obtained in Sobolev spaces, a
Nirenberg - Moser type interpolation estimate for the inverse operator in high
Sobolev norms is needed (see property (P5) proved in section 5). In particular,
(4.9) is necessary for the convergence of the iterative scheme, see remark 4.2.

Next, also other steps of the Nash-Moser iteration scheme of [10]–[4] have
to be modified. In doing this we adapt ideas of [17], [18], [19]. We describe the
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main changes, which are based on functional inequalities and a-priori estimates,
in section 4, see remarks 4.1, 4.3, 4.4.

In order to focus the attention on the main issue -namely the solution of the
range equation via a differentiable Nash-Moser iteration scheme- we consider the
completely resonant nonlinear wave equations of [4], without making any attempt
to deal with nonlinearities which would require to solve differently the bifurcation
equation.

Finally we mention that, for zero measure sets of frequencies, existence of
periodic solutions of wave equations can be proved just using a standard implicit
function theorem, see [1], [2], [3].

1.1 Main result

We first introduce, for any integer k ≥ 1, the set of nonlinearities

Fk :=
{

f ∈ C([0, π] × R,R) : u �→ f(·, u) is in Ck(R, H1(0, π))
}

.

Since H1(0, π) is continuously embedded in C([0, π],R), if f ∈ Fk then ∂l
uf ∈

C([0, π] × R,R), ∀0 ≤ l ≤ k.

Remark 1.1 If ∂l
uf(x, u), ∂x∂l

uf(x, u) exist and are continuous for all 0 ≤ l ≤
k, then f belongs to Fk. These assumptions are not necessarily satisfied by
nonlinearities like f(x, u) = ap(x)up, p ∈ N, where ap ∈ H1(0, π), which, however,
belong to Fk, ∀k.

Remark 1.2 Since we look for small amplitude solutions, we could more gen-
erally consider nonlinearities f : [0, π] × (−ρ, ρ) → R defined locally in some
neighborhood (−ρ, ρ) of u = 0. However we prefer to avoid technicalities in the
definition of Fk.

Normalizing the period to 2π, we look for solutions of{
ω2utt − uxx + f(x, u) = 0
u(t, 0) = u(t, π) = 0 (1.2)

where the nonlinearity f ∈ Fk satisfies, for some p ∈ N, 2 ≤ p ≤ k,

(H)p f(x, u) = ap(x)up + r(x, u) with ap ∈ H1(0, π) and
r(x, 0) = (∂ur)(x, 0) = . . . = (∂p

ur)(x, 0) = 0.

We look for solutions of (1.2) in the Sobolev space

Hs :=
{

u =
∑

l∈Z exp (ilt) ul(x)
∣∣∣ ul ∈ H1

0 ((0, π),R), ul = u−l ∀l ∈ Z,

‖u‖2
s :=

∑
l∈Z(l2s + 1)‖ul‖2

H1 < +∞
}

= Hs
even(T, H1

0 (0, π))

of even 2π-periodic in time functions with values in H1
0 (0, π).
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We fix for the sequel the constant s > 1/2 so that Hs is a multiplicative
Banach algebra

‖u1 u2‖s ≤ C(s)‖u1‖s‖u2‖s , ∀u1, u2 ∈ Hs ,

and

‖u‖L∞(T,H1
0 (0,π)) ≤ C(s)‖u‖s , ∀u ∈ Hs . (1.3)

After the rescaling u → δu, δ > 0, equation (1.2) takes the form{
ω2utt − uxx + δp−1g(δ, x, u) = 0
u(t, 0) = u(t, π) = 0 (1.4)

where

g(δ, x, u) :=
f(x, δu)

δp
= ap(x)up +

r(x, δu)
δp

.

To find solutions of (1.4) we implement the Lyapunov-Schmidt reduction
according to the orthogonal decomposition

Hs = (V ∩ Hs) ⊕ (W ∩ Hs)

where

W :=
{

w =
∑
l∈Z

exp(ilt) wl(x) ∈ H0 |
∫ π

0
wl(x) sin(lx) dx = 0, ∀l ∈ Z

}
,

and
V :=

{
v =

∑
l≥1

2 cos(lt)ul sin(lx)
∣∣∣ ul ∈ R ,

∑
l≥1

l2|ul|2 < +∞
}

is the space of the solutions of vtt − vxx = 0 that belong to H1
0 (T× (0, π),R) and

are even in time.
Projecting (1.4), setting u = v + w, v ∈ V , w ∈ W , and imposing the

“frequency-amplitude” relation

ω2 − 1
2

= s∗ε , ε := δp−1 , (1.5)

with s∗ = ±1 to be chosen later (see (1.8)), yields{ −∆v = s∗ΠV g(δ, x, v + w) (Q)
Lωw = ε ΠW g(δ, x, v + w) (P ) (1.6)

where
∆v := vxx + vtt, Lω := −ω2∂2

t + ∂2
x

and ΠV , ΠW denote the projectors respectively on V and W .
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For δ = 0 the (Q)-equation reduces to

−∆v = s∗ΠV (ap(x)vp) . (1.7)

We assume for simplicity that

ΠV (ap(x)vp) �≡ 0,

which is equivalent to

∃v ∈ V such that
∫

Ω
ap(x)vp+1 �= 0 , with Ω := T × (0, π) .

Taking

s∗ :=

{
1 if ∃ v ∈ V such that

∫
Ω ap(x)vp+1 > 0

−1 if ∃ v ∈ V such that
∫
Ω ap(x)vp+1 < 0

(1.8)

equation (1.7) possesses at least one solution v̄ ∈ V (in fact infinitely many) which
can be seen (cfr. [4]) as a critical point of “mountain pass” type for the functional

Φ0(v) :=
∫

Ω

|∇v|2
2

− s∗ap(x)
vp+1

p + 1
dt dx .

We assume the following nondegeneracy condition (of KAM type) which can be
verified on several examples, see [4].

(ND) There exists a nondegenerate solution v̄ ∈ V \{0} of equation (1.7), namely
h = 0 is the unique solution of the linearized equation

−∆h = s∗ΠV (p ap(x)v̄p−1h) , h ∈ V.

We can state our main existence result.

Theorem 1.1 Let f(x, u) satisfy assumptions (H)p with p ≥ 2 and (ND). Fix
s > 1/2. There is k := k(s, p) ∈ N such that if f ∈ Fk, there exists δ0 > 0, a
Cantor like set C ⊂ [0, δ0) of asymptotically full measure, i.e. satisfying

lim
η→0+

meas(C ∩ (0, η))
η

= 1 ,

and a C1-curve [0, δ0) � δ → u(δ) ∈ Hs such that:

• (i) ‖u(δ) − δv̄‖s = O(δ2)

• (ii) ∀ δ ∈ C, u(δ) is a 2π-periodic solution of (1.2), with ω = ω(δ) given by
(1.5).
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As a consequence, ∀δ ∈ C, ũ(δ)(t, x) := u(δ)(ω(δ)t, x) is a 2π/ω(δ)-periodic solu-
tion of (1.1).

The order k of differentiability of the nonlinearity f ∈ Fk has to satisfy

k ≥ max{p + 3, s + β + 3} (1.9)

where β > 0 is defined in (4.27), see also the comments after (4.28). The function
u(δ) defines a C1 Whitney extension of the family of periodic solutions of (1.2)
constructed in the above theorem, see [4].

Remark 1.3 The condition k ≥ max{p + 3, s + 3} is assumed for the regularity
of the composition operator g(δ, x, u) in Lemma 2.6, and k ≥ s + β + 3 is used for
the convergence of the Nash-Moser scheme, see remark 4.3.

The main changes to be introduced to prove Theorem 1.1 with respect to the
method of [4], regard the solution of the range equation through a differentiable
Nash-Moser iterative scheme. This is done in sections 4 and 5, see remarks 4.1,
4.2, 4.3, 4.4.

On the other hand, we follow [4] to overcome the problem posed by an infi-
nite dimensional bifurcation (Q)-equation performing a further finite dimensional
Lyapunov-Schmidt reduction. Let us introduce the decomposition

V = V1 ⊕ V2

where  V1 :=
{

v ∈ V | v =
∑N̄

l=1 cos(lt)ul sin(lx)
}

V2 :=
{

v ∈ V | v =
∑

l>N̄ cos(lt)ul sin(lx)
}

,
(1.10)

and N̄ is defined in Lemma 3.1. Setting v := v1 + v2, v1 ∈ V1, v2 ∈ V2, system
(1.6) is equivalent to

−∆v1 = s∗ΠV1g(δ, x, v1 + v2 + w) (Q1)
−∆v2 = s∗ΠV2g(δ, x, v1 + v2 + w) (Q2)
Lωw = εΠW g(δ, x, v1 + v2 + w) (P )

where ΠVi (i = 1, 2) denote the projectors on Vi.
As in [4] we solve first the (Q2) equation. This requires minor modifications

for Lemma 3.1 and the new Lemma 3.2 below. Finally, we can solve the (Q1)
equation exactly as in [4].

2 Preliminaries on composition operators

We first recall some interpolation estimates and smoothness results for the com-
position operators, which we shall often use in the sequel.
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The positive constants C(s), C(s′) can assume different values from line to
line.

Lemma 2.1 (Moser-Nirenberg) Let s′ ≥ 0 and s > 1/2. ∀u1, u2 ∈ Hs′ ∩ Hs,
we have

‖u1u2‖s′ ≤ C(s′)
(
‖u1‖L∞(T,H1(0,π))‖u2‖s′ + ‖u1‖s′‖u2‖L∞(T,H1(0,π))

)
(2.1)

≤ C(s′)
(
‖u1‖s‖u2‖s′ + ‖u1‖s′‖u2‖s

)
. (2.2)

Proof. For the proof of (2.1) when s′ ∈ N see e.g. [21, Proposition 3.7]. The same
estimates work also for maps valued in H1

0 (0, π), because H1
0 (0, π) is an algebra.

Next (2.2) follows by (1.3) since s > 1/2. �

Lemma 2.2 (Logarithmic convexity) Let 0 ≤ α ≤ a ≤ b ≤ β with a + b
= α + β. Then ∀u1, u2 ∈ Hβ

‖u1‖a‖u2‖b ≤ λ‖u1‖α‖u2‖β + (1 − λ)‖u2‖α‖u1‖β with λ :=
β − a

β − α
. (2.3)

In particular

‖u‖a‖u‖b ≤ ‖u‖α‖u‖β , ∀u ∈ Hβ . (2.4)

Proof. By the convexity of the map σ �→ log ‖u‖σ (see e.g. [18] chapter 1),{ ‖u1‖a ≤ ‖u1‖λ
α‖u2‖1−λ

β with a := λα + (1 − λ)β
‖u2‖b ≤ ‖u2‖1−λ

α ‖u2‖λ
β with b := (1 − λ)α + λβ .

Then (2.3) follows by Young inequality. �

Lemma 2.3 Let f ∈ F1. Then the composition operator y(x) �→ f(x, y(x)) is in
C(H1(0, π), H1(0, π)) and satisfies, with the notation M := ‖y‖L∞(0,π),

‖f(x, y(x))‖H1 ≤ C
(

max
u∈[−M,M ]

‖f(·, u)‖H1 + max
u∈[−M,M ]

‖∂uf(·, u)‖H1‖y‖H1

)
.

(2.5)

Proof. Let y(x) ∈ H1(0, π), M = ‖y‖L∞ , z(x) = f(x, y(x)). We shall use for
convenience the notations

A(f, M) := max
u∈[−M,M ]

‖f(·, u)‖H1 , B(f, M) := max
u∈[−M,M ]

‖∂uf(·, u)‖H1 .

A(f, M) and B(f, M) are finite because f ∈ F1 and so u �→ ‖f(·, u)‖H1 and
u �→ ‖∂uf(·, u)‖H1 are continuous.
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First, f being continuous, it is clear that we have z ∈ L∞(0, π) ⊂ L2(0, π)
and

‖z‖L2 ≤ C‖z‖L∞ ≤ C max
u∈[−M,M ]

‖f(·, u)‖L∞ ≤ CA(f, M) . (2.6)

In the case when f is smooth (say C2), it is clear as well that we have z ∈ H1(0, π)
and

z′(x) = ∂uf(x, y(x))y′(x) + ∂xf(x, y(x)) = a(x) + b(x) + c(x) (2.7)

with

a(x) := ∂uf(x, y(x))y′(x), b(x) := ∂xf(x, 0),

c(x) :=
∫ y(x)

0
∂x∂uf(x, u) du .

(2.8)

Using that ∂uf is continuous, we obtain, as in (2.6),

‖a‖L2 + ‖b‖L2 ≤ ‖∂uf(x, y(x))‖L∞‖y′‖L2 + ‖∂xf(·, 0)‖L2

≤ CB(f, M)‖y′‖L2 + A(f, M). (2.9)

Moreover

‖c‖2
L2 ≤ 2M

∫ π

0

( ∫ M

−M

|∂x∂uf(x, u)|2 du
)

dx

by the Cauchy-Schwarz inequality and because |y(x)| ≤ M, ∀x ∈ (0, π). Hence,
by Fubini theorem,

‖c‖2
L2 ≤ 2M

∫ M

−M

( ∫ π

0
|∂x∂uf(x, u)|2 dx

)
du

≤ 2M

∫ M

−M

‖∂uf(·, u)‖2
H1 du ≤ 4M2B(f, M) . (2.10)

(2.5) is a consequence of (2.6)–(2.10) and the fact that M ≤ C‖y‖H1 .
If we remove the smoothness assumption on f and assume only f ∈ F1, we

can consider some regularizing sequence of smooth maps (fN ) such that
A(fN −f, M)+B(fN −f, M) → 0 as N → ∞ and introduce zN (x) := fN (x, y(x)).
It is clear that ‖zN − z‖L∞ → 0. Writing (2.7) for zN (x) and passing to the limit
with the help of (2.9)–(2.10), we obtain that (2.7) is still true for z (note in par-
ticular that the last integral in (2.8) is well defined for almost all x ∈ (0, π)), and
that z ∈ H1(0, π) satisfies (2.5).

Finally, (2.7), the properties of f and ∂uf , the embedding H1(0, π)
⊂ C([0, π]) and the Lebesgue convergence theorem imply the continuity of the
map y(x) �→ f(x, y(x)) from H1(0, π) to H1(0, π). �
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Lemma 2.4 Let f ∈ Fp+1 satisfy (H)p for some p ≥ 0. Then the composition
operator

y(x) �→ g(δ, x, y(x)) = δ−pf(x, δy(x))

maps H1(0, π) into H1(0, π) and satisfies

‖g(δ, x, y(x))‖H1 ≤ C(‖y‖H1) . (2.11)

Moreover the map (δ, y) �→ g(δ, x, y(x)) is in C([0, δ0) × H1(0, π), H1(0, π)).

Proof. Since f satisfies (H)p we have by the Taylor formula,

g(δ, x, u) = up

∫ 1

0
(∂p

uf)(x, δsu)
(1 − s)p−1

(p − 1)!
ds .

Then, applying Lemma 2.3 with ∂p
uf ∈ F1, and since H1(0, π) is an algebra,

∀y ∈ H1(0, π),

g(δ, x, y(x)) = (y(x))p

∫ 1

0
(∂p

uf)(x, δsy(x))
(1 − s)p−1

(p − 1)!
ds ∈ H1(0, π)

and (2.11) holds.
Moreover, still by Lemma 2.3, the map (δ, y, s) �→ (∂p

uf)(x, δsy(x)) is in
C([0, δ0) × H1(0, π) × [0, 1], H1(0, π)). Hence, since y(x) �→ (y(x))p belongs to
C∞(H1(0, π), H1(0, π)), also the map (δ, y) �→ g(δ, x, y(x)) belongs to C([0, δ0)
× H1(0, π), H1(0, π)). �

Lemma 2.5 (Composition operator) Let f ∈ Fk satisfy (H)p for some p ≥ 0
and k ≥ p + 1. Then the composition operator

u(t, x) �→ g(δ, x, u(t, x)) = δ−pf(x, δu)

maps Hs′ ∩ Hs into Hs′
for any 0 ≤ s′ ≤ k − 1, and satisfies

‖g(δ, x, u)‖s′ ≤ C(s′, ‖u‖s)(1 + ‖u‖s′) . (2.12)

Moreover the map (δ, u) �→ g(δ, x, u) is in C([0, δ0) × (Hs′ ∩ Hs), Hs′
).

Proof. We prove the lemma when s′ = l is an integer (for s′ /∈ N it could be
proved using Fourier dyadic decomposition). We show, by iteration, that for
l ∈ N, l ≤ k − 1,

‖g(δ, x, u)‖l ≤ C(l, ‖u‖s)(1 + ‖u‖l) , ∀u ∈ H l ∩ Hs

and that if un → u in Hs ∩ H l and δn → δ, then g(δn, x, un) → g(δ, x, u) in H l.
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For l = 0, applying Lemma 2.4,

‖g(δ, x, u)‖0 ≤ C max
t∈T

‖g(δ, x, u(t, ·))‖H1(0,π) ≤ C(max
t∈T

‖u(t, ·)‖H1(0,π))

(1.3)
≤ C(‖u‖s) .

Moreover, if un → u in Hs and δn → δ then maxt∈T ‖un(t, ·)−u(t, ·)‖H1(0,π) → 0.
Hence, by the continuity property in Lemma 2.4 and the compactness of T,
maxt∈T ‖g(δn, x, un(t, ·)) − g(δ, x, u(t, ·))‖H1(0,π) → 0 , whence g(δn, x, un) →
g(δ, x, u) in H0.

Now assume that the above property holds up to order l, with l + 1 ≤ k − 1. We
have

‖g(δ, x, u)‖l+1 ≤ ‖g(δ, x, u)‖0 + ‖∂t g(δ, x, u)‖l = ‖g(δ, x, u)‖0 + ‖∂ug(δ, x, u)∂tu‖l,

where ∂ug(δ, x, u) = δ−(p−1)∂uf(x, δu), ∂uf ∈ Fk−1 and ∂uf satisfies (H)max(0,p−1).
As a consequence, since k − 1 ≥ max(p, l + 1), by the induction assumption, we
have

‖∂ug(δ, x, u)‖l ≤ C(l, ‖u‖s)(1 + ‖u‖l) , ∀u ∈ H l ∩ Hs (2.13)

and, by Lemma 2.4,

‖∂ug(δ, x, u)‖L∞(T;H1(0,π)) ≤ C(‖u‖s) . (2.14)

For l = 0, we get

‖g(δ, x, u)‖1 ≤ C(‖u‖s) + ‖∂ug(δ, x, u)‖L∞(T;H1(0,π))‖u‖1 ≤ C(‖u‖s)(1 + ‖u‖1).

For l ≥ 1, applying (2.1), (2.14), (1.3), for any s̃ ∈ (1/2, min(1, s)), (2.13),

‖g(δ, x, u)‖l+1 ≤ C(‖u‖s) + C(l)
(
‖∂ug(δ, x, u)‖L∞(T;H1(0,π))‖∂tu‖l

+ ‖∂ug(δ, x, u)‖l‖∂tu‖L∞(T;H1(0,π))

)
≤ C(l, ‖u‖s)(1 + ‖u‖l+1) + C(l)‖∂ug(δ, x, u)‖l‖∂tu‖s̃

≤ C(l, ‖u‖s)(1 + ‖u‖l+1 + ‖u‖l‖u‖s̃+1) . (2.15)

Now, by the interpolation inequality (2.4), since max(l + 1, s̃) ≥ max(l, s̃ + 1),

‖u‖l‖u‖s̃+1 ≤ ‖u‖l+1‖u‖s̃ ≤ ‖u‖l+1‖u‖s ,

and, by (2.15), we get (2.12) for s′ = l + 1. The continuity property is obtained
in the same way. �
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Lemma 2.6 (Regularity) Let f ∈ Fk satisfy (H)p for some p ≥ 0 and k ≥ p+3.
Then, provided 0 ≤ s′ ≤ k − 3, the map

G :
{

[0, δ0) × (Hs ∩ Hs′
) → Hs′

(δ, u) �→ g(δ, x, u)

is C1, and D2
uG exists everywhere and is continuous in [0, δ0) × (Hs ∩ Hs′

).
Moreover

DuG(δ, u)[h] = ∂ug(δ, x, u)h , D2
uG(δ, u)[h, h] = (∂2

ug)(δ, x, u)h2 , ∀h ∈ Hs∩Hs′
,

and { ‖∂ug(δ, x, u)‖s′ ≤ C(s′, ‖u‖s)(1 + ‖u‖s′)
‖∂2

ug(δ, x, u)‖s′ ≤ C(s′, ‖u‖s)(1 + ‖u‖s′) .
(2.16)

Proof. First of all,

∂ug(δ, x, u) = δ−(p−1)(∂uf)(x, δu) , ∂2
ug(δ, x, u) = δ−(p−2)(∂2

uf)(x, δu)

where ∂uf ∈ Fk−1 satisfies (H)max(0,p−1) and ∂2
uf ∈ Fk−2 satisfies (H)max(0,p−2).

Applying Lemma 2.5 to the composition operators induced by ∂uf , ∂2
uf , we get

the bounds (2.16).
To prove that G is differentiable with respect to u, write

‖g(δ, x, u + h) − g(δ, x, u) − ∂ug(δ, x, u)h‖s′ =

∥∥∥h

∫ 1

0
(∂ug(δ, x, u + σh) − ∂ug(δ, x, u)) dσ

∥∥∥
s′

≤

C(s′)‖h‖max(s,s′) max
σ∈[0,1]

∥∥∥∂ug(δ, x, u + σh) − ∂ug(δ, x, u)
∥∥∥

max(s,s′)
= o(‖h‖max(s,s′))

by the continuity property of u �→ ∂ug(δ, x, u) derived from Lemma 2.5. Hence
DuG(δ, u)[h] = ∂ug(δ, x, u)h, ∀h ∈ Hs∩Hs′

, and (δ, u) �→ DuG(δ, u) is continuous,
still by Lemma 2.5. Similarly G is twice differentiable in u and D2

uG is continuous.
At last, to prove that G is differentiable with respect to δ, write

∂δg(δ, x, u) = δ−(p+1)f̃(x, δu) where f̃(x, u) := u∂uf(x, u) − pf(x, u) .

We have f̃ ∈ Fk−1 and f̃ satisfies (H)p+1. Since k ≥ max{p+3, s′ +3} we deduce
that G is differentiable with respect to δ, with continuous derivative, again by
Lemma 2.5. �
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3 Solution of the (Q2)-equation

By a direct bootstrap argument the solution v̄ ∈ V of the zero order bifurcation
equation (1.7) satisfies v̄ ∈ V ∩C∞(Ω). In particular there exists R > 0 such that

‖v̄‖s < R .

For the sequel R > 0 is a fixed constant.
We look for a solution of

v2 = s∗(−∆)−1ΠV2g(δ, x, v1 + v2 + w) . (3.1)

We recall that V2 is defined in (1.10). In what follows, B(r; E) will denote the
open ball of center 0 and radius r in the normed vectorspace E.

Lemma 3.1 (Solution of the (Q2)-equation) There exists N̄ := N̄(R) ∈ N+,
δ0 > 0 such that:

a) ∀‖v1‖s ≤ 2R, ∀‖w‖s ≤ 1, ∀δ ∈ (0, δ0), there exists a unique v2
= v2(δ, v1, w) ∈ V2∩Hs+2 with ‖v2(δ, v1, w)‖s ≤ 1 which solves the (Q2)-equation.

b) v2(·, ·, ·) ∈ C1
(
[0, δ0) ×B(2R; V1) ×B(1; W ∩Hs), V2 ∩Hs+2

)
and D2

wv2

exists everywhere, is continuous and bounded in [0, δ0)×B(2R; V1)×B(1; W ∩Hs).

Proof. The proof is as in Lemma 2.1 of [4], using Lemma 2.5. b) is a consequence
of Lemma 2.6. �

For the differentiable Nash-Moser scheme that we shall use to solve the range
equation we have to prove that ‖v2(δ, v1, w)‖s′ depends in a linear way on ‖w‖s′ .
We shall need also estimates on the differentials (up to order 2) of v2 with respect
to w, ∀s ≤ s′ ≤ k − 3. This requires to improve lemma 2.1-d) of [4].

Lemma 3.2 Suppose w ∈ W ∩ Hs′ ∩ Hs, 0 ≤ s′ ≤ k − 3 and ‖w‖s ≤ 1. Then
v2(δ, v1, w) ∈ V2 ∩ Hs′+2 and, ∀δ ∈ (0, δ0), ∀‖v1‖s ≤ 2R,

‖v2(δ, v1, w)‖s′+2 ≤ K
(
1 + ‖w‖s′

)
‖Dwv2(δ, v1, w)[h]‖s′+2 ≤ K

[
(1 + ‖w‖s′)‖h‖s + ‖h‖s′

]
‖D2

wv2(δ, v1, w)[h, h]‖s′+2 ≤ K
[
(1 + ‖w‖s′)‖h‖2

s + ‖h‖s‖h‖s′
] (3.2)

for some K := K(s′) > 0. Moreover, for s′ = 0, we have

‖Dwv2(δ, v1, w)[h]‖2 ≤ K‖h‖0 . (3.3)

Proof. By a bootstrap argument like in lemma 4.1-d) of [4], using the regularizing
properties of (−∆)−1, v2(w) := v2(δ, v1, w) ∈ V ∩ Hs′+2. Next, since v2(w) solves
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(3.1), we get

‖v2(w)‖s′+2 =
∥∥∥(−∆)−1ΠV2g(δ, x, v1 + v2(w) + w)

∥∥∥
s′+2

≤
∥∥∥ΠV2g(δ, x, v1 + v2(w) + w)

∥∥∥
s′

(2.12)
≤ C(s′, ‖v1 + v2(w) + w‖s)

(
1 + ‖v1 + v2(w) + w‖s′

)
≤ K0(s′, R, ‖w‖s)

(
1 + ‖v1‖s′ + ‖w‖s′ + ‖v2(w)‖s′

)
≤ K(s′, R)

(
1 + 2RN̄s′−s + ‖w‖s′ + ‖v2(w)‖s′

)
.

Iterating still n times the above estimate, where n is the smallest integer such that
s′ − 2n ≤ s, we finally obtain the first bound in (3.2) (we recall that N̄ depends
only on R and f).

The two other bounds of (3.2) can be proved in the same way by the expres-
sions

Dwv2(w)[h] = (−∆)−1ΠV2∂ug(δ, x, v1 + v2 + w)
(
h + Dwv2(w)[h]

)
(3.4)

and

D2
wv2(w)[h, h] = (−∆)−1ΠV2

(
∂2

ug(δ, x, v1 + v2 + w)(h + Dwv2(w)[h])2

+ ∂ug(δ, x, v1 + v2 + w)D2
wv2(w)[h, h]

)
.

At last, by (3.4) and the regularizing property of (−∆)−1,

‖Dwv2(w)[h]‖2 ≤ C‖∂ug(δ, x, v1 + v2 + w)‖s

∥∥∥h + Dwv2(w)[h]
∥∥∥

0
.

By (2.16), ‖∂ug(δ, x, v1 + v2 + w)‖s ≤ C, ∀‖v1‖s ≤ 2R, ‖v2‖s ≤ 1, ‖w‖s ≤ 1.
Finally, using (4.6) because Dwv2(w)[h] ∈ V2,

‖Dwv2(w)[h]‖2 ≤ C
(
‖h‖0 +

1
N̄2

∥∥∥Dwv2(w)[h]
∥∥∥

2

)
which implies (3.3), provided that N̄ has been chosen large enough. �

4 Solution of the (P )-equation

We have to solve the (P )-equation with v2 = v2(δ, v1, w), namely

Lωw = εΠW Γ(δ, v1, w) (4.1)
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where

Γ(δ, v1, w) := g(δ, x, v1 + w + v2(δ, v1, w)). (4.2)

The solution w(δ, v1) of the (P )-equation (4.1) is obtained by means of a
Nash-Moser Implicit Function Theorem for (δ, v1) belonging to a Cantor-like set
of parameters.

We consider the orthogonal splitting

W = W (Nn) ⊕ W (Nn)⊥

where
W (Nn) =

{
w ∈ W

∣∣∣ w =
∑

|l|≤Nn

exp (ilt) wl(x)
}

,

W (Nn)⊥ =
{

w ∈ W
∣∣∣ w =

∑
|l|>Nn

exp (ilt) wl(x)
}

,

with1

Nn := [eλχn

] , (4.3)

λ = lnN0 and χ > 1. We denote by

PNn
: W → W (Nn) and P⊥

Nn
: W → W (Nn)⊥

the orthogonal projectors onto W (Nn) and W (Nn)⊥.

Remark 4.1 One major difference with respect to the analytic case is making
the sequence of finite dimensional truncations Nn increase super-exponentially
fast like in (4.3) (in [10]–[4] we had Nn = N02n). This is useful to prove the
smallness of the remainder rn defined in (4.14), see remark 4.3.

The convergence of the recursive scheme is based on properties (P1)-(P2)-
(P3)-(P4)-(P5) below.

• (P1) (Regularity) Γ is in C1((0, δ0) × B(2R; V1) × B(1; W ∩ Hs); Hs).
Moreover D2

wΓ exists everywhere, is continous and bounded on [0, δ0)
× B(2R; V1) × B(1; W ∩ Hs).

(P1) is a consequence of the regularity of the composition operator induced
by g(δ, x, u) on Hs (see Lemma 2.6), and the regularity of the map v2(·, ·, ·) of
Lemma 3.1.

1The symbol [a] denotes the integer part of a ∈ R.



Vol. 15, 2008 Ck periodic solutions of wave equations 261

• (P2) (Tame) For all ‖v1‖s ≤ 2R, ‖w‖s ≤ 1, ∀s ≤ s′ ≤ k − 1,

‖Γ(δ, v1, w)‖s′ ≤ C(s′)(1 + ‖w‖s′) .

(P2) is a consequence of (2.12) and (3.2) (where we need only s′ ≤ k − 1 in the
first bound).

• (P3) (Taylor Tame) For all ‖v1‖s ≤ 2R, ‖w‖s ≤ 1, ∀s ≤ s′ ≤ k − 3,∥∥∥Γ(δ, v1, w + h) − Γ(δ, v1, w) − DwΓ(δ, v1, w)[h]
∥∥∥

s′

≤ C(s′)
(
‖w‖s′‖h‖2

s + ‖h‖s‖h‖s′
)

for all h ∈ Hs′
. In particular, for s′ = s,∥∥∥Γ(δ, v1, w + h) − Γ(δ, v1, w) − DwΓ(δ, v1, w)[h]

∥∥∥
s

≤ C‖h‖2
s . (4.4)

Since

D2
wΓ(δ, v1, w)[h, h] = (∂2

ug)(δ, x, v1 + w + v2(δ, v1, w))
(
h + Dwv2(δ, v1, w)[h]

)2

+ (∂ug)(δ, x, v1 + w + v2(δ, v1, w))D2
wv2(δ, v1, w)[h, h],

(P3) can be derived from the bound on ‖D2
wΓ(δ, v1, w)[h, h]‖s′ provided by (2.16),

(3.2) and (2.2).

• (P4) (Smoothing) ∀N ∈ N,

‖PNu‖s+r ≤ Nr‖u‖s , ∀u ∈ Hs (4.5)

‖P⊥
N u‖s ≤ N−r‖u‖s+r , ∀u ∈ Hs+r . (4.6)

The next property (P5) is an invertibility property of the linearized operator

LN (δ, v1, w)[h] := Lωh − εPNΠW DwΓ(δ, v1, w)[h] , ∀h ∈ W (N) .

Definition 4.1 (Melnikov Non-resonance conditions) We define

∆γ,τ
N (v1, w) :=

{
δ ∈ [0, δ0)

∣∣∣ |ωl − j| ≥ γ
(l+j)τ ,

∣∣∣ωl − j − εM(δ,v1,w)
2j

∣∣∣ ≥ γ
(l+j)τ

∀l ∈ N, j ≥ 1, l �= j, 1
3|ε| < l, l ≤ N, j ≤ 2N

}
for some constant 0 < γ < 1, 1 < τ < 2, where

M(δ, v1, w) :=
1

|Ω|
∫

Ω
∂ug

(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
dtdx , (4.7)

Ω := T × (0, π) and ω, ε are related to δ in (1.5).

The next property is proved in section 5.
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• (P5) (Invertibility of LN) Fix 1 < τ < 2, 0 < γ < 1. Suppose

‖w‖s+σ ≤ 1 where σ :=
τ(τ − 1)

2 − τ
. (4.8)

There exists δ0 := δ0(γ, τ, R, f) > 0 such that,

∀‖v1‖s ≤ 2R , ∀δ ∈ ∆γ,τ
N (v1, w) ∩ [0, δ0) ,

LN (δ, v1, w) is invertible and L−1
N (δ, v1, w) : W (N) → W (N) satisfies ∀s′ ≥ s∥∥∥L−1

N (δ, v1, w)[h]
∥∥∥

s′
≤ K(s′)

Nτ−1

γ

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
(4.9)

for some positive constant K(s′). In particular, by (4.9) and (4.8),∥∥∥L−1
N (δ, v1, w)[h]

∥∥∥
s

≤ K

γ
Nτ−1‖h‖s . (4.10)

Note that, under assumption (4.8), we have already established in [4] the
invertibility of LN (in [4] analyticity was not used at this step). The new problem
here is to prove the interpolation type estimate (4.9) in high Sobolev norms.

Remark 4.2 The importance of (4.9) is that the big norm ‖w‖s′+σ will be com-
pensated by the small norm ‖h‖s along the Nash-Moser iteration. This is sufficient
to imply convergence. It is used in Lemma 4.2.

4.1 The Nash-Moser scheme

We define inductively the sequence {wn}n≥0.

Proposition 4.1 (Induction) Let A0 := {(δ, v1) | δ ∈ [0, δ0), ‖v1‖s ≤ 2R}. Nn

being defined in (4.3), ∃ ε0 := ε0(γ, τ, s, R, f) > 0, such that for δp−1
0 < ε0, there

exists a sequence wn := wn(δ, v1) ∈ W (Nn) of solutions of the equation

(P − Nn) Lωwn − εPNnΠW Γ(δ, v1, wn) = 0 ,

defined inductively for (δ, v1) ∈ An ⊆ An−1 ⊆ . . . ⊆ A1 ⊆ A0 where

An :=
{

(δ, v1) ∈ An−1 | δ ∈ ∆γ,τ
Nn

(v1, wn−1)
}

⊆ An−1 ,

satisfying

‖wn‖s+σ ≤ 1 where σ :=
τ(τ − 1)

2 − τ
, (4.11)

wn =
∑n

i=0 hi with hi ∈ W (Ni) such that

‖h0‖s ≤ |ε|K0 , ‖hi‖s ≤ K̄|ε|γ−1N−σ−1
i ∀1 ≤ i ≤ n (4.12)

for some constants K0 , K̄ > 0.
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Proof. In the proof K, K ′ denote absolute constants depending on f , R, γ, τ , s,
s′ at most. We shall possibly indicate only the dependence on the index s′ ≥ s.

First step: initialization. Let N0 := [eλ] be given. If

|ω − 1|N0 ≤ |ω − 1|eλ ≤ 1
2

then Lω|W (N0) is invertible and ‖L−1
ω h‖s ≤ 2‖h‖s, ∀h ∈ W (N0). This is straight-

forward, noticing that the eigenvalues ω2l2 − j2 (0 ≤ l ≤ N0, j ≥ 1, j �= l) of
Lω|W (N0) satisfy

|ω2l2 − j2| = |ωl − j|(ωl + j) ≥
(
|l − j| − |ω − 1|N0

)
(ωl + j) ≥

(
1 − 1

2

)
.

By the Contraction Mapping Theorem, using Property (P1), there exist ε1 > 0,
K0 > 0, such that, ∀‖v1‖s ≤ 2R, ∀|ε| < min{ε1, e

−λ/4}, the equation

(P − N0) Lωw0 − εPN0ΠW Γ(δ, v1, w0) = 0

has a unique solution w0(δ, v1) satisfying ‖w0(δ, v1)‖s ≤ K0|ε|.
Second step: iteration. Suppose we have already defined a solution wn ∈
W (Nn) of equation (P − Nn) satisfying the properties stated in the proposition.
We want to find a solution

wn+1 = wn + hn+1, hn+1 ∈ W (Nn+1)

of the equation

(P − Nn+1) Lωwn+1 − εPNn+1ΠW Γ(δ, v1, wn+1) = 0 .

Develop

Lω(wn + h) − εPNn+1ΠW Γ(δ, v1, wn + h)
= Lωwn − εPNn+1ΠW Γ(δ, v1, wn) + Lωh

−εPNn+1ΠW DwΓ(δ, v1, wn)[h] + Rn(h)
= rn + LNn+1(δ, v1, wn)[h] + Rn(h)

(4.13)

where, since wn solves equation (P − Nn), rn ∈ W (Nn)⊥,
rn := Lωwn − εPNn+1ΠW Γ(δ, v1, wn) = −εP⊥

Nn
PNn+1ΠW Γ(δ, v1, wn)

Rn(h) := −εPNn+1ΠW

(
Γ(δ, v1, wn + h) − Γ(δ, v1, wn) − DwΓ(δ, v1, wn)[h]

)
.

(4.14)

Inversion of LNn+1(δ, v1, wn). By property (P5), LNn+1(δ, v1, wn) is invertible
because (4.11) holds, and for (δ, v1) restricted to the set of parameters

An+1 :=
{

(δ, v1) ∈ An | δ ∈ ∆γ,τ
Nn+1

(v1, wn)
}

⊆ An .
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The inverse operator satisfies, by (4.10),∥∥∥LNn+1(δ, v1, wn)−1h
∥∥∥

s
≤ K

γ
Nτ−1

n+1‖h‖s , ∀h ∈ W (Nn+1) . (4.15)

By (4.13), solving equation (P − Nn+1) means finding a solution h ∈ W (Nn+1) of

h = −LNn+1(δ, v1, wn)−1
(
rn + Rn(h)

)
,

namely a fixed point of the map

Gn+1 : W (Nn+1) → W (Nn+1) , Gn+1(h) := −LNn+1(δ, v1, wn)−1
(
rn + Rn(h)

)
.

Lemma 4.1 (Contraction) Given β > 0 (to be specified later), we set

Bn := 1 + ‖wn‖s+β .

There exists K1 := K1(β) > 0 such that Gn+1 is contraction in the ball

Bn+1(s) :=
{

h ∈ W (Nn+1) | ‖h‖s ≤ ρn+1 := 2
|ε|
γ

K1N
τ−1
n+1N−β

n Bn

}
provided

K1
|ε|
γ

Nτ−1
n+1ρn+1 = 2K2

1
|ε|2
γ2 N

2(τ−1)
n+1 N−β

n Bn ≤ 1
2

. (4.16)

Proof. By (4.15)∥∥∥Gn+1(h)
∥∥∥

s
=

∥∥∥LNn+1(δ, v1, wn)−1
(
rn + Rn(h)

)∥∥∥
s

≤ K

γ
Nτ−1

n+1

(
‖rn‖s + ‖Rn(h)‖s

)
≤ K ′

γ
Nτ−1

n+1

(
|ε|N−β

n ‖PNn+1ΠW Γ(wn)‖s+β + |ε| ‖h‖2
s

)
(4.17)

using the smoothing estimate (P4) since rn ∈ W (Nn)⊥, and (4.4). Here, for brevity,
Γ(wn) := Γ(δ, v1, wn).

Now, the tame estimate (P2) entails

‖PNn+1ΠW Γ(wn)‖s+β ≤ K̄(β)(1 + ‖wn‖s+β) = K̄(β)Bn (4.18)

because ‖wn‖s ≤ 1 by (4.11). By (4.17) and (4.18) we get∥∥∥Gn+1(h)
∥∥∥

s
≤ |ε|

γ
K1N

τ−1
n+1

(
N−β

n Bn + ‖h‖2
s

)
(4.19)
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for some K1 := K1(β) > 0. If ‖h‖s ≤ ρn+1 then∥∥∥Gn+1(h)
∥∥∥

s
≤ |ε|

γ
K1N

τ−1
n+1N−β

n Bn +
|ε|
γ

K1N
τ−1
n+1 ρ2

n+1

and therefore Gn+1 maps Bn+1(s) into Bn+1(s) if

|ε|
γ

K1N
τ−1
n+1N−β

n Bn +
|ε|
γ

K1 Nτ−1
n+1 ρ2

n+1 ≤ ρn+1 .

By the definition of ρn+1, the previous condition holds, if (4.16) is verified.
The condition to prove that Gn+1 is a contraction is similar. �

Remark 4.3 By (4.17)–(4.18) the term rn is estimated like ‖rn‖s ≤ K|ε|N−β
n Bn.

In the next Lemma 4.3 we obtain an a priori-estimate on the growth of the Bn

independently of β, implying the super-exponential smallness of ‖rn‖s for β large
enough, see (4.27). Here the tame estimates are deeply exploited.

In [10]–[4] the smallness of rn was proved exploiting analyticity.

Now the main task is to estimate the growth of the Bn i.e. to control the
divergence of the high norms ‖wn‖s+β of the approximate solutions wn.

Lemma 4.2 There exists K2 := K2(β) > 0 such that, if

K2
|ε|
γ

Nτ−1
n ρn = 2K2K1

ε2

γ2 N2(τ−1)
n N−β

n−1Bn−1 ≤ 1
2

(4.20)

and |ε|2K2γ
−1 ≤ 1, then

Bn ≤ (1 + Nτ−1+σ
n )Bn−1 . (4.21)

Proof. We have

Bn := 1 + ‖wn‖s+β ≤ 1 + ‖wn−1‖s+β + ‖hn‖s+β = Bn−1 + ‖hn‖s+β . (4.22)

Now we use the estimate for the inverse LNn(δ, v1, wn−1)−1 in high Sobolev norm
given in property (P5).

Since hn = −LNn
(δ, v1, wn−1)−1(rn−1 + Rn−1(hn)), we obtain

‖hn‖s+β

(P5)
≤ K(β)

Nτ−1
n

γ

(
‖rn−1‖s+β + ‖Rn−1(hn)‖s+β

+‖wn−1‖s+β+σ(‖rn−1‖s + ‖Rn−1(hn)‖s)
)

(P4)
≤ K ′(β)

Nτ−1
n

γ

(
‖rn−1‖s+β + |ε|‖Qn−1(hn)‖s+β

)
+K ′(β)

Nτ−1+σ
n

γ
‖wn−1‖s+β

(
‖rn−1‖s + |ε|‖Qn−1(hn)‖s

)
(4.23)
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because wn−1 ∈ W (Nn−1), and having defined

Qn−1(h) := Γ(δ, v1, wn−1 + h) − Γ(δ, v1, wn−1) − DwΓ(δ, v1, wn−1)[h] .

Now we use the tame estimate

‖rn−1‖s+β = |ε|‖P⊥
Nn−1

PNnΠW Γ(wn−1)‖s+β ≤ K(β)|ε|‖Γ(wn−1)‖s+β

(P2)
≤ |ε|K ′(β)(1 + ‖wn−1‖s+β) = |ε|K ′(β)Bn−1 (4.24)

and the Taylor tame estimate (P3)

‖Qn−1(hn)‖s+β ≤ K(β)
(
‖wn−1‖s+β‖hn‖2

s + ‖hn‖s‖hn‖s+β

)
≤ K(β)

(
Bn−1ρ

2
n + ρn‖hn‖s+β

)
(4.25)

because ‖hn‖s ≤ ρn.
We insert in (4.23) the estimates (4.24), (4.25), ‖rn−1‖s ≤ |ε|C and

‖Qn−1(hn)‖s ≤ C, to obtain

‖hn‖s+β ≤ K2
|ε|
γ

Nτ−1+σ
n Bn−1 +

(
K2

|ε|
γ

Nτ−1
n ρn

)
‖hn‖s+β

for some positive K2 := K2(β). By (4.20)

‖hn‖s+β ≤ K2
|ε|
γ

Nτ−1+σ
n Bn−1 +

1
2
‖hn‖s+β

whence

‖hn‖s+β ≤ 2K2
|ε|
γ

Nτ−1+σ
n Bn−1 ≤ Nτ−1+σ

n Bn−1 (4.26)

for 2K2|ε|γ−1 ≤ 1. By (4.22) and (4.26) we get (4.21). �

The recurrence inequality (4.21) is very important because it proves a bound
for the divergence of the Bn independent of β, provided that δ (or ε) is smaller
than some positive constant which depends on β.

Lemma 4.3 (Bound of Bn) There exists C = C(χ, λ, τ, σ) > 0 such that Bn ≤
CB0N

χ
χ−1 (τ−1+σ)
n .

Proof. Set for brevity α := τ − 1 + σ. Iterating (4.21) and using Nn ≤ eλχn

<
Nn + 1 < 2Nn we get

Bn ≤ B0Πn
i=1(1 + Nα

i ) ≤ B0Πn
i=1(1 + eαλχi

) = B0Πn
i=1(e

−αλχi

+ 1)eαλχ χn−1
χ−1

≤ C ′B0e
αλ χn+1

χ−1 ≤ CB0N
χ

χ−1 α
n ,

where C = 2
χ

χ−1 αC ′ = 2
χ

χ−1 αΠ+∞
i=1 (e−αλχi

+ 1) is finite and independent of n. �
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There remains to check condition (4.16). We choose

β := χ(τ + σ) +
χ

χ − 1
(τ − 1 + σ) where σ :=

τ(τ − 1)
2 − τ

. (4.27)

Lemma 4.4 For εγ−1 small enough (independently of n) condition (4.16) hold.

Proof. By Lemma 4.3, condition (4.16) to have the contraction holds if

cn := 2K2
1

ε2

γ2 N
2(τ−1)
n+1 N−β

n CB0N
χ

χ−1 (τ−1+σ)
n ≤ 1

2
.

Now, since Nn+1 ≤ eλχn+1 ≤ (Nn + 1)χ, and by the definition of β in (4.27),

cn ≤ 2K2
1

ε2

γ2 CB0(Nn + 1)2χ(τ−1)N
−β+ χ

χ−1 (τ−1+σ)
n

= 2K2
1

ε2

γ2 CB0(1 + N−1
n )2χ(τ−1)Nχ(τ−2−σ)

n

≤ K̄
ε2

γ2

since τ < 2 and σ > 0. Condition (4.16), holds for εγ−1 > 0 small enough. �

Next we check that estimate (4.12) holds for hn+1. By the estimates for
ρn+1 in Lemma 4.1, for Bn in Lemma 4.3, and by the definition of β in (4.27),

‖hn+1‖s ≤ 2|ε|γ−1K1N
τ−1
n+1N−β

n Bn

≤ 2|ε|γ−1K1N
τ−1
n+1CB0N

−χ(τ+σ)
n

≤ 2|ε|γ−1K1CB0N
−(1+σ)
n+1 2χ(τ+σ) ≤ K̄|ε|γ−1N

−(σ+1)
n+1 ,

for some K̄ > 0. We used that Nχ
n ≥ Nn+1(1 + N−1

n )−χ ≥ Nn+12−χ.
To complete the inductive argument and the proof of Proposition 4.1, we

have still to verify that (4.20) holds when n is replaced by n+1 and that condition
(4.11) holds for wn+1.

Condition (4.20) (at rank n + 1) is exactly of the same type as condition
(4.16) and it holds true in the same way, for εγ−1 > 0 small enough.

Finally condition (4.11) at rank n + 1 holds true because, by the induction
hypothesis

‖wn+1‖s+σ ≤
n+1∑
i=0

‖hi‖s+σ

(P4)
≤

n+1∑
i=0

Nσ
i ‖hi‖s

(4.12)
≤

n+1∑
i=0

K̄
|ε|
γ

Nσ
i N−σ−1

i

≤ K̄
|ε|
γ

+∞∑
i=0

N−1
i ≤ 1

for εγ−1 small enough, independently on n. �
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Remark 4.4 We have never used χ < 2 as it is customary in several Nash-Moser
theorems, whence the convergence of this Nash-Moser scheme is arbitrarily fast!
This is due to the fact that, for semilinear f , the very strong Taylor tame estimate
(P3) holds. It is used in Lemma 4.2.

Now, choosing χ > 1, we can optimize the choice of β which reflects on the
regularity assumptions on the nonlinearity f ∈ Fk, see (1.9). For each τ ∈ (1, 2)
the minimal value of β defined in (4.27) is

β̄(τ) = min
χ>1

(
χ(τ + σ) +

χ

χ − 1
(τ − 1 + σ)

)
=

(√
τ + σ +

√
τ + σ − 1

)2
.

The function τ �→ τ + σ = τ + τ(τ−1)
2−τ is increasing for τ ∈ (1, 2), as well as the

function τ �→ β̄(τ). For τ → 1,

β̄(τ) → inf
τ∈(1,2)

β̄(τ) = 1 . (4.28)

Hence we can take for instance β = 2 for τ close to 1. Note that for τ = 1 the
existence of periodic solutions can be achieved using just the classical implicit
function theorem and not the Nash-Moser one, see [2], [3].

By the regularity property (P1) we can prove as in section 3.2 of [4] the
existence of a C1 Whitney extension w(δ, v1) for all (δ, v1) ∈ (0, δ0) × B(2R; V1).

Finally, once the (P )-equation has been solved, the part concerning the
solution of the (Q1)-equation and the measure estimate for the Cantor set remains
the same as in section 5 of [4]. We had just used that the path of solutions of the
bifurcation equation is C1, see Proposition 3.2 in [4]. The conclusions of Theorem
1.1 follow like in [4].

5 Analysis of the linearized problem: proof
of (P5)

Recalling (4.2), the operator LN (δ, v1, w) can be written as

LN (δ, v1, w)[h]
:= Lωh − εPNΠW DwΓ(δ, v1, w)[h]

= Lωh − εPNΠW

(
∂ug(δ, x, v1 + w + v2(δ, v1, w))

(
h + Dwv2(δ, v1, w)[h]

))
= Lωh − εPNΠW

(
a(t, x) h

)
− εPNΠW

(
a(t, x) Dwv2(δ, v1, w)[h]

)
where, for brevity,

a(t, x) := ∂ug(δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)) .

We decompose
LN (δ, v1, w) = D − M1 − M2
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where 
Dh := Lωh − εPNΠW (a0(x) h)
M1h := εPNΠW (ā(t, x) h)
M2h := εPNΠW (a(t, x) Dwv2[h])

and

ā(t, x) := a(t, x) − a0(x) , a0(x) :=
1
2π

∫ 2π

0
a(t, x) dt .

We deduce from (2.16) and (3.2) that, ∀‖v1‖s ≤ 2R, ∀‖w‖s+σ ≤ 1, ∀δ ∈ [0, δ0)

‖a‖s′ =
∥∥∥(∂ug)(δ, x, v1 + w + v2(δ, v1, w))

∥∥∥
s′

≤ C(s′)(1 + ‖w‖s′) . (5.1)

In particular,

‖a‖s ≤ ‖a‖s+σ ≤ C . (5.2)

5.1 Inversion of D

∀h ∈ W (N), the kth time Fourier coefficient of Dh is

(Dh)k = (ω2k2 + ∂2
x)hk − επk(a0(x)hk) ≡ Dkhk

where Dk : D(Dk) ⊂ Fk → Fk is the operator

Dkh = ω2k2h + ∂2
xh − επk(a0(x) h)

with

Fk :=
{

f ∈ H1
0 ((0, π);R) |

∫ π

0
f(x) sin(kx) dx = 0

}
= 〈sin(kx)〉⊥,

πk : H1
0 ((0, π);R) → Fk being the L2-orthogonal projector.

Lemma 5.1 (Diagonalization of D) There exists a Hilbert basis of W (N) con-
sisting of eigenvectors {cos(kt)vk,j}k,j of D with eigenvalues {ω2k2 − λk,j} veri-
fying

λk,j = λk,j(δ, v1, w) = j2 + εM(δ, v1, w) + O
(ε‖a0‖H1

j

)
where M(δ, v1, w) is defined in (4.7).

Proof. Lemma 4.1 of [4]. �

If all the eigenvalues of D are different from zero we can define

|D|−1/2h :=
∑

|k|≤N

exp (ikt)|Dk|−1/2hk , ∀h =
∑

|k|≤N

exp (ikt)hk ∈ W (N)

where |Dk|−1/2 : Fk → Fk is the diagonal operator defined by

|Dk|−1/2vk,j :=
vk,j√|ω2k2 − λk,j |

, ∀j ≥ 1, j �= |k| .
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Lemma 5.2 If δ ∈ ∆γ,τ
N (v1, w) then ∀0 < k ≤ N ,

αk := min
j 	=|k|

|ω2k2 − λk,j | ≥ cγ

|k|τ−1 > 0 , α0 ≥ 1
2

,

and ∥∥∥|Dk|−1/2u
∥∥∥

H1
≤ 2√

αk
‖u‖H1 . (5.3)

Proof. Lemma 4.3 and 4.2 of [4]. �

Lemma 5.3 (Estimate of |D|−1/2) Let δ ∈ ∆γ,τ
N (v1, w). ∀s′ ≥ 0∥∥∥|D|−1/2h

∥∥∥
s′

≤ C√
γ

‖h‖s′+ τ−1
2

, ∀h ∈ W (N) (5.4)

whence, by (4.5),∥∥∥|D|−1/2h
∥∥∥

s′
≤ C

N
τ−1
2√
γ

‖h‖s′ , ∀h ∈ W (N). (5.5)

Proof. Corollary 4.2 of [4]. �

5.2 Inversion of LN

Write

LN = D − M1 − M2 = |D|1/2U
(
I − U−1R1 − U−1R2

)
|D|1/2

where

U := |D|−1/2D|D|−1/2 and Ri := |D|−1/2Mi|D|−1/2, i = 1, 2 .

Lemma 5.4 U is invertible and ∀s′ ≥ s,∥∥∥U−1h
∥∥∥

s′
= ‖h‖s′

(
1 + O(ε‖a0‖H1)

)
∀ h ∈ W (N). (5.6)

Proof. Lemma 4.4 of [4]. �

Lemma 5.5 (Analysis of the Small Divisors) Let δ ∈ ∆γ,τ
N (v1, w). There

exists C > 0 such that, ∀l �= k,

1
αkαl

≤ C
|k − l|2σ

γ2|ε|τ−1 , σ :=
τ(τ − 1)

2 − τ
. (5.7)

Proof. Lemma 4.5 of [4]. �
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In Lemma 4.8 of [4] we had shown that the operator R1 acts somehow
as a multiplication operator for a function with higher regularity, with σ more
derivatives. It is therefore natural to expect also a Moser type estimate for R1
like (2.2). This is the content of the next lemma.

Lemma 5.6 (Bound of R1) ∀s′ ≥ s∥∥∥R1h
∥∥∥

s′
≤ K1γ

−1|ε| 3−τ
2

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
, ∀h ∈ W (N) (5.8)

for some constant K1 := K1(s′) > 0.

Proof. For h ∈ W (N),

R1h =
∑

|k|≤N

(R1h)k exp(ikt) = ε |D|−1/2PNΠW

(
ā(t, x) |D|−1/2h

)
with

(R1h)k = ε |Dk|−1/2πk

(
ā |D|−1/2h

)
k

= ε |Dk|−1/2πk

[ ∑
|l|≤N

āk−l|Dl|−1/2hl

]
.

Set Am := ‖ām(x)‖H1 . From (5.9), (5.3) and (5.7), using that A0 = 0,∥∥∥(R1h)k

∥∥∥
H1

≤|ε|C
∑

|l|≤N,l 	=k

Ak−l√
αk

√
αl

‖hl‖H1

(5.7)
≤ C ′

γ
|ε| 3−τ

2

∑
|l|≤N

Ak−l|k−l|σ‖hl‖H1

whence∥∥∥R1h
∥∥∥2

s′
=

∑
|k|≤N

(k2s′
+ 1)‖(R1h)k‖2

H1 ≤ C2

γ2 |ε|3−τ
∑

|k|≤N

(k2s′
+ 1)s2

k

=
C2

γ2 |ε|3−τ‖s̃‖2
s′ (5.9)

where we have set

s̃(t) :=
∑

|k|≤N

sk exp(ikt) with sk :=
∑

|l|≤N

Ak−l|k − l|σ‖hl‖H1 , s−k = sk .

It turns out that s̃ = PN (ãc̃) where ã(t) :=
∑

l∈Z |l|σAl exp(ilt) and c̃(t) :=∑
|l|≤N ‖hl‖H1 exp(ilt). Therefore, by (5.9) and since s, s′ > 1/2, applying the

estimates on the product of Lemma 2.1,∥∥∥R1h
∥∥∥

s′
≤ Cγ−1|ε| 3−τ

2 ‖ãc̃‖s′

≤ C(s′)γ−1|ε| 3−τ
2

(
‖ã‖s‖c̃‖s′ + ‖ã‖s′‖c̃‖s

)
≤ C(s′)γ−1|ε| 3−τ

2

(
‖a‖s+σ‖h‖s′ + ‖a‖s′+σ‖h‖s

)
since ‖ã‖s′ ≤ ‖a‖s′+σ and ‖c̃‖s′ = ‖h‖s′ , ∀s′. By (5.1) and (5.2) we deduce
(5.8). �
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Remark 5.1 The loss of σ derivatives in the previous Lemma is due to the small
divisors estimate (5.7) which is absorbed by the polynomial decay of the coeffi-
cients Am.

Lemma 5.7 (Bound of R2) ∀s′ ≥ s∥∥∥R2h
∥∥∥

s′
≤ K2

|ε|
γ

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
, ∀h ∈ W (N) (5.10)

for some K2 := K2(s′) > 0.

Proof. Fix some s̃ ∈ (1/2, min(1, s)). Recalling that

R2h := ε |D|−1/2PNΠW

(
a(t, x) Dwv2

[
|D|−1/2h

])
we have ∥∥∥R2h

∥∥∥
s′

(5.4)
≤ C

|ε|√
γ

∥∥∥PNΠW

(
a Dwv2

[
|D|−1/2h

])∥∥∥
s′+ τ−1

2

≤ C
|ε|√
γ

∥∥∥a Dwv2

[
|D|−1/2h

]∥∥∥
s′+ τ−1

2

(2.2)
≤ C

|ε|√
γ

(
‖a‖s′+ τ−1

2

∥∥∥Dwv2

[
|D|−1/2h

]∥∥∥
s̃

+‖a‖s̃

∥∥∥Dwv2

[
|D|−1/2h

]∥∥∥
s′+ τ−1

2

)
. (5.11)

By (3.3) and since (τ − 1)/2 < σ, s̃ ≤ 2,

‖a‖s′+ τ−1
2

∥∥∥Dwv2

[
|D|−1/2h

]∥∥∥
s̃

≤ C‖a‖s′+σ

∥∥∥|D|−1/2h
∥∥∥

0

≤ C(s′ + σ)√
γ

(1 + ‖w‖s′+σ)‖h‖s (5.12)

by (5.1), (5.4) and because (τ − 1)/2 < 1/2 < s. We then distinguish two cases.
1st case : s′ + (τ − 1)/2 ≤ 2. Then, by (5.2), (3.3) and the inequality s̃ ≤ s,

‖a‖s̃

∥∥∥Dwv2

[
|D|−1/2h

]∥∥∥
s′+ τ−1

2

≤ C
∥∥∥|D|−1/2h

∥∥∥
0

(5.4)
≤ C√

γ
‖h‖ τ−1

2
≤ C√

γ
‖h‖s′ .

(5.13)

2nd case : s′ + (τ − 1)/2 > 2. In particular, s′ > 3/2 > s̃ + 1/2. By (5.2) and
(3.2), which is still valid when s is replaced with s̃,
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‖a‖s̃

∥∥∥Dwv2

[
|D|−1/2h

]∥∥∥
s′+ τ−1

2

≤ C
(
1 + ‖w‖s′+ τ−1

2 −2

)∥∥∥|D|−1/2h
∥∥∥

s̃

+ C
∥∥∥|D|−1/2h

∥∥∥
s′+ τ−1

2 −2

(5.4)
≤ C√

γ

(
(1 + ‖w‖s′−1/2)‖h‖s̃+1/2 + ‖h‖s′+τ−3

)
(2.3)
≤ C√

γ

(
‖w‖s′‖h‖s̃ + ‖h‖s′

)
(5.14)

using τ − 3 ≤ 0, s̃ + 1/2 ≤ s′ and ‖w‖s̃ ≤ ‖w‖s+σ ≤ 1 as assumed in (4.8).
Estimate (5.10) is a consequence of (5.11), (5.12), and (5.13) or (5.14). �

Next define
R := U−1R1 + U−1R2 .

Lemma 5.8 ∀p ∈ N, ∀s′ ≥ s,∥∥∥Rph
∥∥∥

s′
≤

(
K3|ε| 1

2 γ−1
)p(

‖h‖s′ + p‖w‖s′+σ‖h‖s

)
, ∀h ∈ W (N) (5.15)

where K3 = 4(K1(s′) + K2(s′)).

Proof. By induction. Statement (5.15) is true for p = 1 because, by Lemma 5.4,
5.6 and 5.7, for ε small enough, ∀s′ ≥ s, τ ∈ (1, 2),

‖Rh‖s′ ≤ ‖U−1R1h‖s′ + ‖U−1R2h‖s′ ≤ K ′ |ε|1/2

γ

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
(5.16)

with K ′ := 2(K1(s′) + K2(s′)).
Next, suppose (5.15) holds for p. We want to prove it for p+1. By induction

‖Rp+1h‖s′ =
∥∥∥Rp(Rh)

∥∥∥
s′

(5.15)
≤

(
K3γ

−1|ε| 1
2

)p(
‖Rh‖s′ + p‖w‖s′+σ‖Rh‖s

)
(5.16)
≤

(
K3γ

−1|ε| 1
2

)p(
K ′γ−1|ε| 1

2

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
(4.8)
+ p‖w‖s′+σ 2K ′γ−1|ε| 1

2 ‖h‖s

)
= Kp

3

(
γ−1|ε| 1

2

)p+1
K ′

(
‖h‖s′ + (1 + 2p)‖w‖s′+σ‖h‖s

)
≤ Kp

3

(
γ−1|ε| 1

2

)p+1
2K ′

(
‖h‖s′ + (1 + p)‖w‖s′+σ‖h‖s

)
=

(
K3γ

−1|ε| 1
2

)p+1(
‖h‖s′ + (1 + p)‖w‖s′+σ‖h‖s

)
because K3 = 2K ′. This proves the statement. �
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Finally we consider the Neumann-power series for the inverse(
I − R

)−1
= I +

∑
p≥1

Rp .

Lemma 5.9 (Neumann series) There is µ(s′) > 0 such that ∀s′ ≥ s, ∀|ε| 1
2 γ−1 ≤

µ(s′), ∥∥∥(I − R)−1h
∥∥∥

s′
≤ 2

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
. (5.17)

Proof. Using (5.15)

‖(I − R)−1h‖s′ ≤ ‖h‖s′ +
∑
p≥1

‖Rph‖s′

≤ ‖h‖s′ +
∑
p≥1

(
K3γ

−1|ε| 1
2

)p(
‖h‖s′ + p‖w‖s′+σ‖h‖s

)
≤ 2‖h‖s′ + 2‖w‖s′+σ‖h‖s,

taking K3|ε| 1
2 γ−1 small enough. �

Proof of property (P5) completed. We have

L−1
N = |D|−1/2

(
I − R

)−1
U−1|D|−1/2

whence

‖L−1
N h‖s′

(5.5)
≤ C

N
τ−1
2√
γ

∥∥∥(I − R)−1U−1|D|−1/2h
∥∥∥

s′

(5.17)
≤ C

N
τ−1
2√
γ

(
‖U−1|D|−1/2h‖s′ + ‖w‖s′+σ‖U−1|D|−1/2h‖s

)
(5.6)
≤ C

N
τ−1
2√
γ

(
‖|D|−1/2h‖s′ + ‖w‖s′+σ‖|D|−1/2h‖s

)
(5.5)
≤ C

Nτ−1

γ

(
‖h‖s′ + ‖w‖s′+σ‖h‖s

)
,

completing the proof of property (P5).
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