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Abstract. We consider the following Gierer-Meinhardt system in R:

A A+ A —0, ze(-1,1),
DH' —H+A>=0, ze€(-1,1),

’ ’

A(-1)=A'(1)=H (-1)=H (1) =0,

where € > 0 is a small parameter and D > 0 is a constant independent of e.

A cluster is a combination of several spikes concentrating at the same
point. In this paper, we rigorously show the existence of symmetric and
asymmetric multiple clusters. This result is new for systems and seems not
to occur for single equations. We reduce the problem to the computation
of two matrices which depend on the coefficient D as well as the number of
different clusters and the number of spikes within each cluster.

2000 Mathematics Subject Classification: Primary 92C15, 35K57; Secondary
35J60.
Key words: Multiple clusters, singular perturbation, turing instability.



788 J. Wei and M. Winter NoDEA

1 Introduction

Since the work of Turing [21] in 1952, many models have been derived and inves-
tigated to explore the so-called Turing instability [21]. One of the most famous
models in biological pattern formation is the Gierer-Meinhardt system [10], [15],
[16], which in one dimension can be stated as follows:
Ay=ENA-A+ 4., ze(-1,1),t>0,
THy=DAH - H+ 4., ze(-1,1),t>0, (1.1)
A'(£,t) = H (£,t) =0,

where (p, g, r, s) satisfy

qr

LG De-D

< 400, 1<p< oo,

and where e<<1, 0<D<oo, 7T2>0,

D and 7 are constants which are independent of e.

In this paper, we consider the steady-state problem of (1.1) and further assume
that (p,q,7,s) = (2,1,2,0). Namely we consider the following elliptic system

A~ A+ A —0, ze(-1,1),
DH' —H+ A2=0, ze(-1,1), (12)
A(xz)>0,H(z) >0, xze€(-1,1), ’

’ ’ ’ ’

A(-1)=AQ)=H (-1)=H (1) =0.

We remark that our results for (1.2) can be easily generalized to more general
(p,q,r,s) cases. The main difficulty in studying (1.2) is that there is no variational
structure. On the other hand, (1.2) represents a typical activator-inhibitor in
biological pattern formation.

Problem (1.2) has been studied by numerous authors. Let us mention several
important existence results on multiple spike (also called multiple peak) solutions
which are related to our present paper.

1) (Existence of symmetric N—peaked steady-state Solutions)
I. Takagi [20] first established the existence of N-peaked steady-state solu-
tions with peaks centered at

2j — 1
N )

x;= -1+ j=1,...,N,

for e << 1, % << 1.
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Such solutions are symmetric and they are obtained from a single spike by
reflection. We call them symmetric N—peaked solutions since all the peaks have
the same heights. Takagi’s proof is based on symmetry and the implicit function
theorem.

2) (Existence of asymmetric N—peaked solutions)

By using matched asymptotic analysis, M. Ward and the first author in
[22] showed by asymptotic expansions that for D < Dy, where Dy is given
explicitly, problem (1.2) has asymmetric N —peaked steady-state solutions. Such
asymmetric solutions are generated by two types of peaks — called type A and
type B, respectively. Type A and type B peaks have different heights. They can
be arranged in any given order

ABAABBB... ABBBA...B

to form an N—peaked solution. The existence of such solutions is surprising. It
shows that the solution structure of (1.2) is much more complicated than one
would first expect. The stability of such asymmetric N —peaked solutions is also
studied in [22], through a formal approach. The stability issue of symmetric and
asymmetric N-peaked solutions is addressed in [13] and [22].

We remark that asymmetric patterns can also be obtained for the Gierer-
Meinhardt system on the real line by a dynamical systems approach, see [7].

In [26], we gave a rigorous and unified theoretic foundation for the existence
and stability of general N—peaked (symmetric or asymmetric) solutions. In par-
ticular, the results of [13] and [22] were rigorously established. Moreover, it was
shown that if the IV peaks are separated, then they are generated by peaks of
type A and type B, respectively. This implies that there are only two kinds of
N-peaked patterns: the symmetric N—peaked solutions constructed in [20] and
the asymmetric N —peaked patterns constructed in [22].

3) (Existence of a single cluster on the real line)

Doelman, Kaper and H. van der Ploeg, [7], and independently Chen, del
Pino and M. Kowalczyk [2] considered the Gierer-Meinhardt system on the real
line. They constructed multiple-spike solutions concentrating at a single point on
the real line. It turns out that the distance between neighbouring spikes is of the
order O(elog %) We call such solution a single cluster. In other words, a cluster
is a collection of multiple spikes concentrating at a single point.

Similar results in R? were obtained in [3]. There the geometry of the spike
locations can be very complex.

The existence of a single cluster or multiple clusters in a higher dimensional
bounded domain has been proved in [12], [4] for a singularly perturbed Neumann
problem. It is proved that given nondegenerate local minimum points of the mean
curvature of the boundary there exist (multiple) clusters concentrating at these
point(s). In [14] for the nonlinear Schrodinger equation an analogous result is
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proved for (nondegenerate local) maximum points of the potential. To obtain
multiple clusters for single equations, we must either have nontrivial geometry of
the domain or nontrivial critical points of the potential.

The results in this paper imply that a reaction diffusion system can generate
multiple clusters even when the domain is trivial and in the absence of a potential.
Moreover, we will show that there are both symmetric and asymmetric multiple
clusters. The locations of these clusters are determined by three ingredients: the
number of clusters, the number of spikes within each cluster, and the order of
clusters.

Before we state our main results in Section 2, we introduce some notation.
Let L2(—1,1) and H?(—1,1) be the usual Lebesgue and Sobolev spaces. With the
variable w we denote the unique solution of the following problem:

1"

w —w+w?>=0, y€ER,
w >0, w(0)=max,ecrw(y), (1.3)
w(y) — 0 as |y| — oo.

In fact, it is easy to see that w(y) can be written explicitly:

w(y) = gsech2 (g) . (1.4)

Let
I:=(-1,1). (1.5)

For z € (—1,1), let Gp(x, z) be the Green function given by

DG'p(z,2) — Gp(z,2) +8.(x) =0, z€(-1,1),
/ ; (1.6)
Gp(—1.2) = Gp(L,2) = 0.
We can calculate explicitly
b~ cosh[f(1 + h[o(1—2)], —1<z<z,
G (. 2) = | @) cosh[f(1 + z)] cosh[f(1 — z)] x <z (L)
SR cosh[f(1 — z)] cosh[f(1 + 2)], z <z <1,
where
§=D"1/2 (1.8)
We decompose Gp(z, z) into a singular part and a regular part:
Gp(2,2) = Kp(le - 2I) — Hp(a,2), (1.9)
where
Kp(|z - 2]) = ——=e¢ V51" (1.10)

2v/D
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is the singular part of Gp(x, z) and Hp is the regular part Hp of Gp. Note that
Hp is C*° in both x and z. Moreover,

1 0
T 9y/D sinh(26)

We use the notation e.s.t to denote an exponentially small term of order the
O(e=?¢) for some d > 0 in the corresponding norm. By C we denote a generic
constant which may change from line to line.

This paper has the following structure: In Section 2 we introduce our three
main hypotheses, (H1)—(H3) and state our two main results, Theorem 2.1 and
Theorem 2.2. In Section 3, we provide some preliminary results. In Sections 4-6,
we construct suitable approximate solutions and give some calulcations for them,
namely about the space dependence of the heights (Section 5) and the error terms
(Section 6). In Sections 7-9, we prove the existence of multiple-clustered solutions:
In Section 7, we use the Liapunov-Schmidt method to reduce the existence of
solutions to (1.2) to a finite dimensional problem; in Section 8 we solve this finite-
dimensional problem and complete the proof of Theorem 2.2. In Section 9, we
prove Theorem 2.1.

Hp(z,x) cosh[f(1 + z)] cosh[f(1 — x)]. (1.11)

2 Main Results: Existence of Symmetric and
Asymmetric Multiple Clusters

Let =1 <a2f <--- <) <--- <} <1be N points in (—1,1) and let w be the
unique solution of (1.3).

We introduce several matrices for later use: For x = (z1,...,2x) € (=1,1)V,
let

Gp(x) = (Gp(zi,z;)). (2.1)
Recall that
Gp(zi,x;) = Kp(|zi — x;]) — Hp(wi, 7;).

Let us denote 8%1_ as V,. When i # j, we can define V., G(x;, x;) in the classical

way. When i = j, Kp(|lz; — z;]) = Kp(0) = —2\}5 is a constant and we define
1 d
Ve, Gp(xi, ;) == 3 4z . Hp(z,x).

Similarly, we define

d o e
V.. Ve Gp(as,z;) = ~2dele=s.ggle=s Hp(e,2), if i=], (2.2)
R " Va,Vae,Gp(xi,x;), if i#j.
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Now the derivatives of the matrix Gp are defined as follows:
VGp(x) = (Va,Gp (i, 75)), (2.3)
V?Gp(x) = (Va, Ve, Gp(zs,25)).
By definition, it is easy to compute that
2 3
Gp = sinIf(QH)(aij)’ VGp = Sini(QH)(bij)’ V3Gp = sinlgl(ze)(cij)’
where
cosh(6(1 + x;)) cosh(0(1 — x;)), if i < j;
i = { cosh(0(1 — z;)) cosh(0(1 + z;)), if @ > 7, (25)
sinh(6(1 + z;)) cosh(6(1 — z;)), if i < j;
bij =} 3 sinh(20z;), if i = j; (2.6)
—sinh(6(1 — z;)) cosh(6(1 + z;)), if i > j,
and
—sinh(6(1 + z;)) sinh(8(1 — x;)), if i < j;
¢ij = cosh(20z;), if i=j; (2.7)
—sinh(6(1 — z;)) sinh(8(1 + z;)), if i > j.
We now have our first assumption:
(H1) There exists a solution (£7,... &%) of the following equation

N
> Gp(ah,,29)n;(€)* =&, m=1,... N (2.8)
j=1

Next we introduce the following matrix

bij = GD(Q?O xo)nj(ég), B= (b”) (29)

1%

Our second assumption is the following:

(H2) Tt holds that

1
5 #0(B), (2.10)

where o(B) is the set of eigenvalues of 5.

Remark 2.1 Since the matrix B is of the form GpD, where Gp is symmetric and
D is a diagonal matrix, it is easy to see that the eigenvalues of B are real.
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By the assumption (H2) and the implicit function theorem, for x =

(21,...,zy) near xo = (29,...,2%), there exists a unique solution &(x)

(£1(x), ... ,én(x)) for the following equation

N
ZGD({L‘i,l‘j)njéjQ :éi, 1= 1,... 7ZV. (2.11)
j=1

Set

H(x) = (&(x)3;), (2.12)
N = (TLZCSU) (213)
We define the following vector field:
F(x) = (F1(x),...,Fn(x)),
where
N A,
Fi(x) = Va,Gp(wi, x)né} (2.14)

=1

= —V,, Hp(xi, z:)n:€2 + vaiGD(mi,ml)nlff, i=1,...,N.
1#£i

Set
M(x) = (V, Fy(x)). (2.15)

Our final assumption concerns the vector field F(x).
(H3) We assume that at x° = (29,... ,2%):

F(x") =0, (2.16)

det (M(x")) # 0. (2.17)

Let us now calculate M(x%): Therefore we first compute the derivatives
of £. Tt is easy to see that £(x) is C* in x and from (2.8) we can calculate:

N N
széi = QZ GD(xi,fL"l)nzfAszjéz + vaj(GD(xi, z))niét.
=1 =1
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For i # j, we have
~ N ~ ~ A,
V& =2 Z Gp(xi, 21)m&Va, & + Vo, (Gp(xi, ;) )n; &
1=1

For ¢ = j, we have

0

oz, (Gp (i, 21)) &}

N N
Vali =2 Gplwi,z)ué Ve &+
=1

=1

N N
=23 Gplwi,z)m&Vae,& + Vo, (Gp(s, 2)nilf + Y Vo, (Gplas,0))méf,

=1 =1

since 3 dixiGD(xi,xi) = V., Gp(z;, x;).

Note that
(Va,Gp(wi,25)) = (VGp)".
Therefore, if we denote
VE = (Vo) (2.18)
then we have
VE(x) = (id — 2GpN'H) H(VGp) ' NH? + (VGp)EN'H?), (2.19)

where id is the identity matrix and F is the matrix whose elements are all equal
to 1.
We can compute M (x?) by using (2.19) and definition (2.2):

M(x°) = V2GpN'H? (2.20)

+2VGpNH(id — 2GpN'H) H[(VGp) ' NH? + (VGp)ENH?.

Our first result is about the existence of symmetric multiple cluster solution
which generalizes the results of 1. Takagi [20].

Theorem 2.1 (Ezistence of symmetric multiple clusters)
Let N and n be two positive integers and

2j — 1

0 _
r;=—-1+ N

j=1,...,N.
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Then, for e << 1, problem (1.2) has a solution with N equidistant clusters
which concentrate at x9,...,2% and each of which consists of n spikes. More
precisely, it can be said that

j=1k=1
He(xsk)'\“gegv ]: ) vak_]-v , N, 222)
5 29, j=1,...,Nk=1,...,n, 2.23)
where
-1
&= (e/ w?(z) dz> (2.24)
R
Furthermore,
xs, — s = elog1 - elog[é—o(s —1)(n+1—3s)]+o(e) (2.25)
7,8 J,s—1 € 2D )
7=1, ,N, s=2, ,n, and
. 2tanh &
0= N 2.26
o= (2:26)

Remark 2.2 If n = 1, this recovers the results of [20]. Theorem 2.1 also gener-
alizes the results of [2] and [7] to a bounded interval.

Our next result concerns the existence of asymmetric multiple clusters.

Theorem 2.2 (Ezxistence of asymmetric multiple clusters)

Let N,nq, ... ,ny be N 4+ 1 positive integers.

Assume that for (z9,...,2%) € (=1, 1) with 29 < 29 < ... < 2% assump-
tions (H1), (H2) and (HS3) are satisfied. Let (£9,...,€%) be given by (H1). Then
for e << 1, problem (1.2) has a solution with N clusters which concentrate at

x§,..., 2%, or more precisely:

N nj _ g€
Ac(z) ~ > Y elw (W) , (2.27)

j=1k=1
H(z5,) ~ &€, j=1,...,N k=1,... n, (2.28)
x;)kﬂxg, j=1...,N,k=1,... nj, (2.29)
1 €0
€ € _ J
x5 — a5, = elog P elog @(8 —1)(n; +1—s)| +o(e), (2.30)
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Remark 2.3 Equation (2.30) expresses the fact that we have two different
scalings in the spike locations: the distance between the centers of clusters which
is of the order O(1) and the distance between spikes within each cluster which is

of the order O(elog 1).

Let us now comment on how to check assumptions (H1)-(H3).

It is difficult to check (H1) directly. Instead, we note that 951 is a tridiagonal

matrix. (See [13] and [22].) More precisely, we calculate

7 P 0 o0
Bi vz P

Gy' = (g)=2vD| T
By B O

0 - . 0 fBn-1 9w
where

~v1 = coth(f + 02) + tanh(6y),
’Yj = Coth(ﬂj,l —+ GJ) =+ COth(gj + 9j+1)a j = 27 e ,N — 1,
YN = COth(GN_l + 91\/) + tanh(HN),

ﬁj:—CSCh(ej +9]‘+1), j=1...,N—-1
and 6; is given by
0; =10 (ﬂcjo — xo-fl) .

(Recall that 6 was defined in (1.8).)
Note that

9ij = 2\/5(53‘7151'(%1) +7j0i5 + Bidii+1))-

Verifying (2.8) amounts to checking the following identity
N
j=1

which is an easy exercise.

(2.31)

(2.32)

(2.33)
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Condition (2.16) prescribes the locations xo = (29, ... ,2%;) of the clusters.
Condition (2.17) is a nondegeneracy condition. Combining (2.8) and (2.16), we
see that at xg we must solve the following ODE:

DR (z) + h(z) + S0, ni(€0)%6,0 =0, —l<z <1,
ha9)=¢9, j=1,...,N,
W (294) + B (29-) =0, j=1,... N,

’

K (=1)=h'(1) = 0.
The derivation of (2.34) is similar to Section 7 of [26]. From (2.34), we obtain

(2.34)

the following: Given a set of positive integers (n1,... ,ny), we can compute the
locations of xg = (29,...,2%) explicitly. Then we can compute the matrices B
and M.

To verify (H2) and (H3), we need to know the eigenvalues of B and M.
In the same way as for the matrix Gp, one can show that B~! is a tridiagonal
matrix. Even with this piece of information, it is almost impossible to obtain
an explicit formula for the eigenvalues. Numerical software for solving eigenvalue
problems of large matrices is indispensable. Numerical computations do suggest
that assumptions (H2) and (H3) are always satisfied for D small.
The main idea in proving Theorem 2.2 consists of the following steps: We
first rewrite (1.2) as a single nonlocal equation:
1" A2
S[A]l=A —A+ — =0,
[A]l =€ T
where H = T[A] satisfies
DH' —H+A?>=0, H(-1)=H (1)=0.

Step 1: We choose good approximate solutions.

N nj
T — Ty k .
Awavx:ZZ§€§j,kw<])v ]:1,...,N,k:1,...,7’l]\77

j=1k=1 €
where §; 1, and x; , will have to be chosen carefully. More precisely, we first choose
x; ) such that

11 <T12<...<ZTip <T21<...<T2p, <...<ZN1<...<ZTNny>

1 0
xj7l—xj7l_1welog€—elog[ﬁ?(l—l)(nj—i—l—l)],j:l,Q,...,n,l:Z,...,nj,
nj
kzlf%k M
= 0 3 .
i —xj| <ne’t, j=1,...,N,

where 1 > 0 is a suitably chosen small constant.
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Next we choose &; 1, so that they will solve a system of algebraic equations.

This is done in Section 4.
Step 2: The error terms.

We then compute the space dependence of the heights, 7 [we x| (x; i + €y) —
T [wex)(xj) and the error term Sfwe x]. This is done in Section 5 and Section 6,
respectively.
Step 3: The Liapunov-Schmidt reduction method.

By using the Liapunov-Schmidt reduction method we solve the following
equation

p—=dxr =0, j=1,...,N, k=1,...,n;,

where o, = a; (%) are some scalar functions depending on x.
This is done in Section 7.

Step 4: The reduced problem.
Finally, we solve the following reduced problem:

a;p(x)=0, j=1,...,N, k=1,...,n;.

This is done in Section 8.

A natural question is the following: Are all N—cluster solutions generated
by two types of clusters as is the case for spikes? We believe that this should be
true but the proof may be complicated and is left to a future study.

3 Some preliminaries

In this section, we consider a system of nonlocal linear operators. We first recall
from [26]:

Theorem 3.1 Consider the following nonlocal differential operator

Lo=6 o+ 26— 712002 — ag (3.1)

wa2

If v # 1, then
Ker(L) = span{w'}.

Next, we consider the following system of nonlocal operators

LY :=AD — D+ 2wd
-2 (waC‘I)dy) (waQ dy)flwz, (3.2)
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where
P11
¢17n1
o= € (H*(R))™,
ON,1
¢)N,nN
n=(ny,ng,...,nN), 0| =n1+ns+...+nny;

C= (Cj,k;m,s)a Cj kym,s = GD(zjaxm)gm
for jym=1,... ,Nk=1,... ,nj,s=1,... N,

Remark 3.1 The matrix C is the product of a symmetric matrix and a diagonal
matrix. It therefore has only real eigenvalues.

Lemma 3.2 Suppose that (H2) holds. Then

1
5 ¢ o(C). (3.3)
Proof. Let n = (M1, ,Mn1s--- sNN1s--- IN,ny) b€ an eigenvector of C with

eigenvalue A\. Then we have

§ Cj ksm,sTlm,s = )‘nj,k-

m,s

This can be rewritten as

> Go(@s, wm)em Y s = Mijk- (3-4)

Summing over k, we obtain
> Go(@), zm)niém Y mik =AY k-
m k k

So "4 mjk is an eigenvector of B. Thus, by (H2), either A # % or >, njx = 0
for j =1,...,N. In the latter case, we then have from (3.4) that An;; = 0 and
hence A = 0. In any case, we obtain \ # % O

Assumption (H2) and Lemma 3.2 imply that
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(H2’) Tt holds that

& o(C). (3.5)
For later use, we set
Lou:=1u —u+ 2wu, (3.6)

where u € H%(R).
The conjugate operator of L under the scalar product in L?(R) is

L'V =0 — U + 200

—2cT (/Rw2\11dy> </Rw2dy>1w, (3.7)

P11

where

;)Zjl,nl
: € (H*(R))™.
YN

U
We obtain the following
Lemma 3.3 Assume that assumption (H2) holds. Then

Ker(L) = Xo ® Xo @ - ® Xo, (3.8)
where

Xo = span{w/(y)}

and

Ker(L*) =Xo® X @ -+ ® Xo. (3.9)
Here the number of factors is |n|.
Proof. Let us first prove (3.8). Suppose

Ld =0.
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Let us diagonalize C such that
Picp = J,

where P is an orthogonal matrix and by Remark 3.1 J has diagonal form, i.e.,

g1 0
02
J =
0 O’|n|
with suitable real numbers o;, j=1,2,...,|n|.
Defining
® =Pd
we have
~ 11 ~ ~ -1 ~
O — &+ 2wd -2 (/ wzdy> /wJ<I>dyw2 =0. (3.10)
R R
For I =1,2,...,|n| we consider the I-th equation of system (3.10):
&) — &+ 2w,

-1
—20 (/ w2> / wd, dyw? = 0. (3.11)
R R

By Theorem 3.1, (3.11) tells us that

P, € Xo. (3.12)
(since by assumption (H2’) we know that o; # 1/2).
Continuing in the same way for [ =1,... , N, we have
d e Xo,l=1,...,|n]. (3.13)

(3.8) is thus proved.

To prove (3.9), we proceed similarly for L*.

Using o(C) = o(CT), the I-th equation of the diagonalized system is as
follows:

\i’;, — \i/l + 2w‘i/l

-1
-2 (/ wdy) O'l/ W dyw = 0. (3.14)
R R
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Multiplying (3.14) by w and integrating over the real line, we obtain

(1-— 20;)/ w?W, dy = 0,
R

which implies that

/ W, dy =0,
R
since 20; # 1.
Thus all the nonlocal terms vanish and we have
Lo¥; =0, I=1,...,|n] (3.15)
This implies that ¥; € X, for [ =1,... ,|n]. d

As a consequence of Lemma 3.3, we have

Lemma 3.4 The operator
L:(H*R)™ — (L*(R)™
1s invertible if it is restricted as follows
L:(Xo@®-®Xo)" n(HAR)™ - (Xo@ -+ ® Xo)" N (L*R))".
Moreover, L™ is bounded.

Proof. This follows from the Fredholm Alternatives Theorem and Lemma 3.3. O

4 Computations I: The approximate solutions

Let -1 <2f <.+ < x? < ---2% < 1 be N points satisfying the assumptions
(H1) — (H3). Let

x0=(29,...,2%). (4.1)

In this section, we now construct an approximate solution to (1.2) with
N clusters concentrating at these prescribed N points. As we shall see, these
approximate solutions are to be valid in O(e3/4).

Let —1 < @11 < -+ < Ty < Toq < or < Topy < on < TNg < o0 <
TNy < 1 be such that

F0
elog% — elog[%(l —D(n;+1-0]—ne<xj;—a;11 (4.2)
3

0
gelog%—elog[ﬁ(l—1)(nj+1—l)}+776, j=1,...,N,1=2,... ny,
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and

nj
POEIN
=1

%

- az? < e, (4.3)

where > 0 is a small number which will be chosen in Section 7. The reason why
we assume (4.2) will become clear in Section 8.

We use ®,, to denote the set of all x = (1,1, ... , T1nys- -« TNy s TN y)
satisfying (4.2) and (4.3). We further denote

x0 = (x?,l,... ,x?ﬁm,... ,x?vwl,... ’:I;?V,nN) (4.4)

and we set

®(] = {KO} (45)
To simplify our notation, for x € €, we set

wn() =w (225 ) o ). (46)

where x is a smooth cut-off function which satisfies the following conditions:

xr — :17]‘7]C

]

1
x(z) =1, for |z| < X x(z) =0, for |z| > Z, x € Cy°(R), (4.7)
and
1 1
6 = TOEIOg E

From (4.2), using that w(y) ~ e~ ¥l as |y| — oo, we derive that

1 e.s.t., if j#m,
/ W) pwm s dr =4 O(3), if j=m, |k—s|>2, (4.8)
- O(e?), ifj=mk—s=1,

w <50j,l l’j,l—l)
€
€ o .
= Ef?[(lf D(n; +1-0]+0me),j=1,... ,N,1=2,...,nj, (4.9)

where 1 > 0 is a small number.
For x € Q,,

N mny
Wex(r) =&Y Y & rwik(z), (4.10)

j=1k=1
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where & is defined in (2.24) and the numbers §; > 0 will be chosen at the end of
this section. By rescaling A = £ A4, H = ¢.H, we obtain that (1.2) is equivalent
to the following system for the rescaled functions A, H:

9 4 ~ A2 o .

A —A+45 =0 in (-11),

DH' —H+¢A2=0 in (—1,1),

A(z) >0,H(z) >0 in (—1,1),

’

A =A0)=H(-1)=H(@1)=0.

(4.11)

From now on, we shall work with (4.11) and drop the hats. We first rewrite

(4.11) as a single equation with a nonlocal term.
For a function A € H%(—1,1), we define 7[A] to be the solution of

(4.12)

’

{ D(T[A) = T[A 4+ &Ag =0, ~1<z <1,
(T1A]) (-1) = (T[A)'(1) = 0.

It is easy to see that the solution 7 [A] is unique and positive. Then (4.11)
becomes

1" A2 ’ ’
2 _ — —-1) = =
SlAli=@a — s 2op =0, A0 AN =AM =0 (11

Let A = w, x, where X € ®,,. We are now going to choose ; j.
Let us first compute

Tm,s = 7 [We x| (Tm,s)- (4.14)

From (4.12), we have

1
Tm,s = fe/ Gp(Tm s, 2)w?l (2) dz + e.s.t.
1 =

1 Nm
= 56/ Gp(Tm,s, 2) Z g?n,kw?n,k(z) + me,kgm,lwm,k(z)wm,l(z) dz
-1 k=1 k#l

1
+ §e / GD (xm,s; Z)
-1

Z fokwfk(z) + Z{mkfj’lw%k(z)wj’l(z) dz + e.s.t.

j#m | k=1 k#l
zfl—|—12+e.s.t., (415)

where I7 and I> are defined by the last equality.
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The integral I, is easy to compute:

12 = ge Z 2532‘,]@ |:GD(xm,saxj,k)6/Rw2<y) dy + O<62>:|

Jj#Fm k=1
+EY Y {gj 3T / G (Tm.sr 2)wj 1 (2)w; 1 (2) dz + 0(62)}
JjF#m k#l
= &€ /Rz wQ(y) dy Z Z sz‘,kGD(xm,S’ Tjk) + O(e)| » (4.16)

j#m k=1

using the estimate (4.8).
For I, we have

Nm

—&3 8 [ Gonn e

+£6 Zf’m kfml/GD Tm,sy Z )w’rn k( )wml( )d (417)
k#l

Let us now compute

2
/GD(xme)wg%k(z)dZ:/GD(xm,s,z) (w <Z_fm’f)> dz.
I I

If k # s, we have

[ Gplema s = Golomnsns) (¢ [ wlay+0). (019

I

If K = s, we have
/ GD (Im,37 Z)wgn,s(z> dz

| /{2\}6 AP — s )} w}, o (2) dz

~ 575~ e (¢ [ w)ar+ o)
=Gl an) (¢ [ way+ o). (4.19)

In conclusion, we have

/IGD(xm’S,z)wfn,k(z) dz = Gp(Tm,ss Tm,k) (e/sz(y) dy+0(62)> . (4.20)
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Next, for k # [,

J otz =0 (¢ [ ) @

by (4.8).
Combining (4.20) and (4.21), we have

h=te [ W)y [ﬁf &\ Gpltmetms) 0] . (422)
k=1
Substituting (4.16) and (4.22) into (4.15), we conclude that
T[wes)(@m,s) = Tmys = D &m,s&i kG (@m,s,258) + O(e). (4.23)
gk
We now choose &; 1 such that
Em,s = Zﬁm,sfj,kGD(xm,s,xj,k)- (4.24)

Jik

To see that (4.24) has a unique solution, we note that in the limit e — 0 (4.24)
becomes

N n;
0 -y <z< ;w) G(a0,.a0). (1.25)
j=1 \k=1

By (H1), (4.25) has a solution with &), . = £),. By (H2), Lemma 3.2, and the
implicit function theorem, (4.24) has a solution. From (4.23) and (4.24), for this
solution it follows that

Ts = Em.s + O(e). (4.26)

This concludes the construction of our approximate solutions.

5 Computations II: The space dependence
of the heights

In this section, we compute the space dependence of the heights which is given by
the difference 7 [wex](x) — T [we x|(2m,s) for x € Q,, and |z — 24, 5] < 6. This is
an important step in determining the spike and cluster locations. To simplify our
notation, we let

H.x =Twex)- (5.1)
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Let x = x,, s + €y. Similar to Section 4, we calculate
Hs,;(zm,s + Ey) - Heyz(xmqs)
= §e / [GD(fEm,s + ey, Z) - GD(xm,sa Z)]
I
X D wh 1 (2) + D kb iwm i (2)wma(2) | dz
k=1 k£l

+ 56 / [GD(‘Tm,S + ey, Z) - GD(:Cm,s, Z)]

I
nj
< A YN C w2+ DY Gabiawin(2)wsi(2) | dz
j#m k=1 Jj#m k#l
=J1 + Jo, (52)

where J; and J; are defined by the last equality.
We first calculate Js:

Jo = fe /I [GD(xm,s + €y, Z) - GD(xm,Sa Z)}

< YN C () + DD Gabiawik(2)wii(2) | dz

j#EmM k=1 j#m k#l

3 / (Voo .G (Emss2) + Olely)] ey

< AN C () + DD Gabiawik(2)w;i(2) | dz

j#EmM k=1 j#m k#l
= > €4V, .Go(@msik) + Olelyl) | ey (5.3)
j#m k=1

by (4.8). For Jy, we have

Ji = fe/I [GD(xm,s + ey, Z) - GD(xm,sa Z)}

x Z fgm,kwfn,k(z) + Z Em e€m 1 Wm e (2)wim i (2) | dz
k=1 k£l

)

= 56 Z f'rzn,k / [GD (x’ﬂhs + €y, Z) - GD (x7n,s7 Z)] w72n k(z) dz
k=1 1
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FE D it [ (G0 me + €0.2) = Gl 2)] Wi a(z) d

k£l I
=& Z fzn,k / [GD (z,2) =Gp (xm,sa Z)] wvgn,k dz + O(€2y2) (5.4)
k=1 I

by (4.8). Note that

/1 (Gp(z,2) — Gp(Tm s, 2)] W <Z_fm’“> dz

:/I {2\}5 (67\zfz|/\/5 _ e*|1m,s*2|/\/ﬁ) — (Hp(z,2) — HD(xmvs,Z))]

< ? (Zﬂmk) 0z
€
_ 1 / (e—\x—zl/\/ﬁ _ e—\xm,s—zu\/ﬁ) w? (2 - xm,k> @
2vD Jr €

Vo Hlemaons) (0 [ w¥2)d2) + O62) (55)

Let 2 =z, 1 + €2. If k = s, we have

L/ (eflmle/\/B _ 6*|m7n,sfz|/\/5> w2 <Z_xm,k> ds
2vD Jr c

_ 2\}56/1% (e—ew—zv@_e—ewﬁ) w? (2) d (1 + O(ely]))
= e |e [ e == 2wt () as o)
- Nlﬁe [€Tu(y) +O(*?)] (5.6)
where
Tow) = [ (12~ Iy - 2w dz (5.7

is an even function. If k # s, then

1 Z—x
- —le—2/VD _ ~ltm—zl/VDY 2 (2T Tmk ) 4
e e w z
2V D /I( ) ( € )

__°€ N, —@m ik te(y—2)/VD _ —|w,,,,,s—mm,k—ez|/\/ﬁ) 2 (5) ds
— e ’ e w z y4
2\/5/3( ()
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[ |51 - +ely-2))
- — (|Tms — Tk — €2| — |Tms — T ely—z
2\/5 = \/5 m, 1,k 1,8 m,k Yy
O(|xm,s - xm,kﬁ)] w2 (2) dz
- 1(_”3"%5_3377177“)6 +O<e21021> /w2( )d (5.8)
2VD | VD \ [ — 2l ) )|

Combining (5.3), (5.6), and (5.8), we have

He,g(xm,s + €y) - He,;(xm s)

€ Tm,s — Tm,k
= To(lyDém &, (-) Y
2vD [w?(y)dy Z |Tm,s — T |

k;és

nm,
=D & Ven Hp(@m s T )y

k=1
N n;
+ZZM D(@m.ssmik) ey + 3> €yl (5.9)
j#EmM k=1 j=1k=1

6 Computations III: The error terms

In this section, we compute the error terms.
Recall from (4.12) that

2

) //7
SclA]i= e’ - A+ 2o

where 7[A4] is defined by (4.12). We now compute the error term

N nj
ol =8 |33 e
j=1k=1
N nj N nj
= €A Z §i Wik | — Z §i kWi k
j=1k=1 =1 k=1
2
N ny
(Z &) kW; k)
4 j=1k=1
Hex
N n; 2 N n
. Zj:l (EkJ:1 fj,kw]‘7k> + e.s.t. J
a H =D Ewwik
€x
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6o &) %)

Jj=1 \k=1
+ Z Z 5] kgj
J=1 k#l
N n;j
_ Z Zﬁ‘ (e — Tjk) + (Tjp — Hex) w2
- J,k H 7.k
j=1 \Jj=1 %
(6.2)
j=1 k#l
y (4.9), (4.26) and (5.9), this implies that
I8clwead 212y = O). (63)

The estimates derived in this section provide an important step that will
make our approach work in the rest of the paper.

7 The Liapunov-Schmidt Reduction Method

In this section, we use the Liapunov-Schmidt reduction method to solve the
problem

nj

N ny
DD &rwit o ZZﬁjkdU)jk (7.1)

j=1k=1 j=1k=1

for real constants ;) and a function v € H?*(—%,1) which is small in the
corresponding norm, where ¢; j is given by (4.24), w;x is defined by (4.6), and
X=(11, - s &lngr-- EN, -+, TNy ) € Qn.
To this end, we need to study the linearized operator
Ley : HY(I.) — L*(I.)
defined by
249 A? /
(T [A]),
TIA]  (T[A])?

Lex =S.[Alp =9 — ¢+ ——

where A = E;\Ll Sl € rwin, Ie = (=1,1), and for a given ¢ € L*(I) we

€ e
introduce T [A]¢ as the unique solution of

{ D(T [Alp) — (T [A]p) +26.Ap =0, -1 <z <1, 72)

/ ’ ’

(T'[A]¢) (=1) = (T'[A]9) (1) = .
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We define the approximate kernel and co-kernel, respectively, as follows:

dw;jg | .
Kex := span {d;g =1,...,N, k=1,... ,n]} c H*(I,),

dzx

d .
Cex = span { Wikls 1, N k=1,... ,nj} c L3(I.).

Recall the definition of the following system of linear operators from (3.2):

L®:=Ad -+ 2w

o foenn) ([a)

b1

where

;Zsl,nl
: € (H*(R)™.
ON,1

¢N,nN
By Lemma 3.4, we know that
L:(Xo@-- @ Xo)" N(H*(R)™ = (Xo@ - @ Xo)* N (L*(R)™

is invertible with a bounded inverse.
1

We also introduce the projection Wéz cL2(1) — C:« and study the operator

Lex = mh o Lex. By letting € — 0, we will show that L. : K, — Chis

invertible with a bounded inverse provided e is small enough. For this we will use
the fact that the operator L is the limit of the operator L. x as e — 0.
This statement is contained in the following proposition.

Proposition 7.1 There exist positive constants €, n, \ such that for all e € (0, €),
X € ®y,, we have

[Lex®llz2(a) = Alollm2 .- (7.3)
Furthermore, the map
. 0Lex: ’Cizﬁce{é

18 surjective.
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Proof of Proposition 7.1: This proof follows the method of Liapunov-Schmidt
reduction which was also used in [1], [11], [12], [9], [18], [19], and [26].

Suppose that (7.3) is false. Then there exist sequences {e}, {x*}, {¢*} with
er — 0, xF e ®n, such that

HLek,zkfﬁka([%) — 0, as k — oo, (7.4)
1My =1, k=1,2,....

We define ¢c jr, j =1,2,... ,N,I=1,... ,n; and ¢ 541 as follows:

be,ji(x) = ge(T)X (x_;]l> , wel, (7.6)

Peni41(z) = de(w) = D beju(w), wel.
7l

At first (after rescaling) ¢.; are only defined on I.. However, by a standard
result they can be extended to R such that their norm in H?(R) is still bounded
by a constant independent of € and x* for e small enough. In the following,
we will study this extension. For simplicity, we keep the same notation for the
extension. Since for j = 1,2,... ,N,l =1,... ,n; each sequence {¢¥} := {¢¢, i}
(k=1,2,...) is bounded in H? (R), it has a weak limit in H? (R), and therefore
also a strong limit in L? (R) and L{° (R).

loc
o11
(bl,nl
Call these limits ¢;. Then ® = solves the system
ON1
¢N,7LN
L® =0.

By Lemma 3.3, ® € Ker(L) = X @--- @ Xg. Since ¢* € Kjk o
we get ® € Ker(L)+. Together, these two statements give ® = 0.

By elliptic estimates, we get |d¢, j.illm2(ry — 0 as k — oo for j =1,2,...,
NJ = 1,... s g

Furthermore, ¢¢ jn|+1 — @n|+1 in H?(R), where @ n41 satisfies

by taking k — oo

qus|n|+1 - ¢|n|+1 =0 inR.

Therefore, we conclude that ¢, = 0 and H¢‘kn‘+1||H2(R) — 0as k — oo.
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This contradicts ||¢¥|| a1, = 1. To complete the proof of Proposition 7.1,
we just need to show that the operator which is conjugate to L. x (denoted by
L} ) is injective from ICGL’5 to Céé. Note that L7 ¢ = e x o L , with

. 24 , A2
Lih=€EAp—o+ T;f] — T [A]a CTTAE

The proof for L¢ , follows along the same line as the proof for L, x and is therefore
omitted. a
Now we are in a position to solve the equation

776%5 0 Sc(wex +¢) =0. (7.7)
Since Lex|x .+, is invertible (call the inverse L) we can rewrite this as
¢ = _(Le_,; o 7T6J:§ o SE(we,z)) - (Le_é © Wé; © Ne,§(¢)) = Me,§(¢)7 (7.8)
where

Nex(9) = Se(Wex + ) — Se(Wex) — S.(wex)d (7.9)

and the operator M, x is defined by (7.8) for ¢ € H?(I.). We are going to show
that the operator M, x is a contraction on

Bey = {0 € H*(I)||0]l m2(1.) < 1o}

if ro and e are small enough. We have by (6.3) and Proposition 7.1

IMesx(@)lrr2(ry < A7 (I © Nex()ll 2202,

<A HC(e(ro)ro + €),

where A > 0 is independent of 79 > 0, € > 0 and ¢(rg) — 0 as rg — 0. Similarly,
we show

HMe,z((b) - Me,§(¢/)||H2(IF)

<AL C(e(ro)ro)|d — & [l a1

where ¢(rg) — 0 as 7o — 0. If we choose 19 = € for @ < 1 and e small enough,

then M, x is a contraction on B, ,,. The existence of a fixed point ¢, x now follows

from the standard contraction mapping principle and ¢, x is a solution of (7.8).
We have thus proved
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Lemma 7.2 There exist€ > 0 n > 0 such that for every pair of ,x with0 < € <€
and X € ®,, there is a unique ¢cx € Ké‘i satisfying Se(Wex + Pex) € Cex-
Furthermore, we have the estimate

|fexllm2(ry < Ce?, (7.10)

where a < 1.

Remark 7.3 By one more iteration, it can actually be shown that

Pexllmz(r.) < Ce. (7.11)

8 The reduced problem

In this section, we solve the reduced problem. This complete the proof of our
main existence result given by Theorem 2.2.

By Lemma 7.2, for every x € ®,, there exists a unique solution ¢, x € lCéx
such that a

Se[wex + Pex] = Ve x € Cex- (8.1)
Our idea is to find X® = (2] 1, .. , 27 ;1,5 -+, TX 15+ -+ > Ty ) € Uy AT
0 0 0 0 0
X = ($1,1>"' yLlmgs s s TN 15+ 7$N’nN) € Qo
such that also
Se[we xe + Pexe] L Cexe (8.2)

and therefore Sc[we xc + @e x<] = 0.
(Recall that ®¢ contains only one point.)
To this end, we let

We,m,s(z) =€t ISe [we,§ + (ZSS,K] d/{E7 dx,

WE(K) = (Wﬁ,l,l(g)) M 7W€,N,’nN (K)) : ®r] - Rll’l‘.

Then W,(x) is a map which is continuous in x and our problem is reduced
to finding a zero of the vector field W (x).
We note that

dw
71 € €,X €,X e d
€ /IS[“’L‘L‘?#J s
1 / 9 AW, s
=€ . Selwe x| + Sc[wex](dex) + O(HQSEKHH?(IS)) dr dx

dw
| m,s
=€ /ISE[wE,K] T dx + O(e)
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since
/ dw
-1 m,s
€ ISe[we,z](ﬁbe x) da d
i 7" 2'[1} U}2 dw .
—1 2 €,X €,X ! m,s
= e,x  Pex + €,X T e,x]|Pe,x ~d
]| e e T T sl )1 T
! 1 w? dw
:e_l/ P=raa—— We x ex_;lz’/wex €,x m,de
| Tlwed ~ g P ™ (T el e)| gy
1l T [we x|&j.k -
w2 dw
_ T/ < e x m,s
T g T sl

= O(™|gexllrrz(r.ye)

= O(Se[we’z}Lz(Ig)) = O(e).

Thus it remains to compute

1 dw, _
E/,Sﬁ[wé’i] I dx = ¢ 5. (8.3)

Let = xy, s + €y. By (5.9), we have
d m,Ss
/S We x| s /S wexw'(y) dy + O(e),

where

For clarity, we set

w:%s(y) =w'(y) since x =z, s + €y.

We calculate by (5.9) and (6.2)

1
Cm,s = 7/ Se[we,i]w/(y) dy

€ JRr
N nj

1 & — He,

Ly [ S g
j=1k=1 R &x
N

+1ZZ£]]€§]I/M wy,, dy + O(e)

j=1 k#l Hex
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MNm
_ 1 Z Emk — Hex ’
- z €m7k H wm,k:wm,s dy
R €,X
k=1 =

1 W, kWm,1
+ - Z £m7k£m,l %w;n,s dy + 0(6)
€ kel R €x

_ 1 gm,s — Haz 2 rd
- 7§m75 H wm,swm,s Yy
€ R €X

1 gmk - He X 92 /
- . ; X d
+ 6 ZE ,kL He}é Wi, kW, s AY

k+#s
1 Wi W
+ - Z gm,kgm,l Mw:n s dy + O(é)
€4 r Hex ’
£l
=E1+ E> + Ej3

where F1, F», and E3 are defined by the last equality.
By (5.9), we have

N

2D |Tm,s — Tk

1 Ty — Tk
E, = Z M&%k - Zﬁvzn,kvwm,sH(xm,s@m,k)
k=1

k+#s

nj 1
+ Z Zgjz,kvwm,sGD(mm,mxjvk)‘| § /}\%wS(y) dy7

j#Em k=1

Ey = Z fzn,kO(e)7

k+#s

/!
w w w
o T 4y + 009
R 6X

&
Il
o

7AxY
3
ol

7axY
3

I
|
Iy
2
o
T
g
E
8
&
o
U
<
_l’_
S
=

= % > &k /R w? (y)w’ <y 4 T — Tmok ; xmk) dy + O(e)

o 1 Tm,s — Tm,k Tm,s — Tm,k
== E gm,kw
€ €

‘zm,s - xm,k|

NoDEA

(8.4)



Vol. 14, 2007 Symmetric and asymmetric multiple clusters 817

In summary, we obtain the following vector field

1 —1
Cm,s (3/ w3(y) dy)
R
1 dw
_ d S m,s
€ (3/ y) / dxmé
1 2 <xm,s - xmk>> Tm,s — Tm,k
S (5556200 — s '
ot <2D € € |$m,s — Tm,k

+ Z Z & iVan .G (Tm,s: T k)

j#mM k=1

Nm,

- Z f?n,kvzm,sH(xmm xm’k‘) + O(e)

_ Z ( 1 52 15 w (xm,s - JHn,k)) Tm,s — Tm,k
= SHSmk T TSm,k
Pt 2D>™ € € |1'm,s — Tm,k

+ Z Vo, Gp(Tm, 150563

j#m
= Vo H (m, &)1 + O(¥4). (8.7)
Note that when x = x° = (29 1,... .20, ..., a1, .., 2%, ) € ®o we have
Z 1 2 ( ) lg k(XO)U} xgz,s - x?n,k x?n,s - ‘rgn,k
k(X)) = —Em k(X
= 2D 5™ e € |20, s — 20, 1

Z|£mk — &l | =0

since

1 012 1 0 ’:Z:/(r)rl s — Tm,k CE?n,s - ‘r(v)n,k
3 5pEn)* = —Gw - Py O(e)
kits m,k
1 0

— S5 €25 = 1= )
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€ ¢0 2
= — — 2541

0 _ .0
w (%2%1> = 0 (nn — 1) + O(e?),

2D

_ € 0 . 2
= S5 — 1)+ 0(e).

Furthermore,

Z V;v‘fnGD('rgwx(j))n]é? - Vz‘,)nH(xgn7x9n)nm£72n = 0(63/4)
i#m
by assumption (H3).
Let

1 1 Tm,s — Tm,k Tm,s — Tm,k
Fins(x) = Z <2D§72nk - ng’hkw ( E ))

|xm,s - xm,k|

ks
+ Z VIMGD(mm,J;j)njg? — Vme(a:m,xm)nm@Qn. (8.8)
J#m
Then we have
Wejk = Fujn(x) +O(e¥/?) (8.9)
and
We jk(x%) = O(/). (8.10)

We need the following lemma.
Lemma 8.1 Let

Fn(x) = Z VszD(xmvl'j)njfgz' - meH(xm,xm)nmf,zn
J#m

and Fy p, s(x) be given by (8.8).
Suppose that

det(V ., F;(x°)) # 0. (8.11)
Then

dEt(vmj,kFl,m,s(Ko)) 7& 0. (8'12)
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Proof. We denote
(Vi Fy(x%)) = (myg)-

Note that m;; is the (¢, j)-th element of the matrix M defined by (2.15).
Then, by definition, it is easy to see that

2D

x?n,s _x9n,k 2
w| ———= | =0(€e), |s — k| > 2,
€

o mi, iti# g,
vzj’tFl’Z’s - { CO(i)ait + my;, ifi = Js

a0 — a0
m,s m,s—1 € .0
w| ——— | = —=& [(s—=1)(nm+1—3s)]+o(e), s=2,... ,np,

where ¢g(i) = 251% > 0 and ai, is the (s,t)-th element of the following (n; x n;)

matrix

aj; ajy 0 o 0

i i i
Qg1 Qg A3

Al=(al) = - 0 e e ], (8.13)

ni(n;—1) a:hnl
where
agl = (nl - 1),&32 = _(ni - 1))
ags1y = —(s = D(n; +1—s),
ais = _(ni +1- 25)7

ai(sﬂ) =s(n; —$),s=2,...,n; — 1,
a;l(nb—l) = _(nl - 1)7 a‘;iun,i = ’n‘i - 1
Observe that
Zait = Z(—l)sait =0 (8.14)
t=1 s=1

and zero is a simple eigenvalue of A*. (See [2].)
Suppose that we have

N n;
SN Ve Fijmis=0, j=1,...,Nt=1,..n,

i=1 s=1
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This implies

N n;
0= szwj,tFlﬂ‘,snis Zmzj Z"]zs"’ZCo Zastnls.

i=1 s=1
By (8.14)
n;g N n; nj
= Z ane+zco Z(Z‘%t)ﬁzs
- =1 nsl 1 s=1 \t=1
=Z w&)m

=1
By assumption (8.11),

ni
Z Ni,s = 0.
s=1

Hence, we have

iaimi,s =0, inm =0. (8.15)
s=1 s=1

This implies that
it =0
by (8.14) and since zero is a simple eigenvalue of A*. This proves (8.12). a
By Lemma 8.1, at x°, we have Fy(x°) = O(e/*) and
det(Vyo Fy (x")) # 0.
Therefore we may write W, as

W, (x) = Fi(x) + O(e¥/1)

= VEF (x%)(x —x% + O(Jx — x°%) + O(¢¥/*).

By Lemma 8.1 and Brouwer’s fixed point theorem it follows that for e <<'1
there exists a x° € ®,, such that W.(x) = 0.
Thus we have proved the following proposition.

0

Proposition 8.2 For e sufficiently small there exist points X with x¢ — x° such

that We(x¢) = 0.

Finally, we prove Theorem 2.2.

Proof of Theorem 2.2: By Proposition 8.2, there exists x* — x° such that
We(x%) = 0. In other words, Sc[we xe + e xc] = 0. Let Ae = Ec(we xe + Pexe ), He =
€T [we xe + Ge x<]- By the Maximum Principle, A, > 0, H, > 0. Moreover (AE,H )
satisfies all the properties of Theorem 2.2.
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9 Proof of Theorem 2.1

In this section, we show how Theorem 2.1 can be proved easily without any
assumption on D. In fact, by reflection, we may assume that N = 1. We may
further assume that A(—z) = A(z), H(—xz) = H(xz). There are two cases to be
considered: n is even or n is odd. We choose 21 < 9 < ... < x, to be such that

&
2D

1
elog—elogl (l—l)(n—i—l—l)]—neﬁxl—xl_l
€

1 F0
gelogg—elog [;lD(l—l)(n—&-l—l) + ne (9.1)

and

> x;=0 (9.2)

Thus we have (n — 1) independent variables from (x1, ... ,2,). On the other
hand, the matrix A° with n; = n has exactly (n — 1) nonzero eigenvalues and one
zero eigenvalue. So if we proceed as in Section 8, we have nondegeneracy. Similar
arguments as in Section 8 give the conclusion of Theorem 2.1.
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