
c© Birkhäuser Verlag, Basel, 2007
NoDEA
Nonlinear differ. equ. appl. 14 (2007) 739—751
1021–9722/07/060739–13
DOI 10.1007/s00030-007-5057-5

On very weak solutions of degenerate p-harmonic
equations

Flavia GIANNETTI
Antonia PASSARELLI DI NAPOLI

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
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1 Introduction

In this paper we present estimates for nonlinear differential equations in which
the ellipticity bounds degenerate.

We consider the following equation

div A(x, Du) = 0 in Ω ⊂ IRn (1)

for a mapping u : Ω → IRm, where Ω is a bounded open subset of IRn. Following
the lead of the familiar p-harmonic operator we suppose that A : Ω × IRn×m →
IRn×m satisfies the following assumptions, for almost every x ∈ Ω, all ξ, η ∈ IRn×m

and all λ ∈ IR

|A(x, ξ) − A(x, η)| ≤ a(x)|ξ − η|(|ξ| + |η|)p−2, (2)
〈A(x, ξ) − A(x, η), ξ − η〉 ≥ b(x)|ξ − η|2(|ξ| + |η|)p−2 (3)

A(x, λξ) = |λ|p−2λA(x, ξ). (4)
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where 2 ≤ p ≤ n, 0 < b(x) ≤ a(x) < ∞. The above three conditions imply the
so-called distortion inequality

1
p
|ξ|p +

p − 1
p

|A(x, ξ)| p
p−1 ≤ K(x)〈A(x, ξ), ξ〉 . (5)

The factor K = K(x) ≥ 1 depends on a(x) and b(x) and is called distortion
function for Equation (1).

In what follows K(x) belongs to the exponential class Exp(Ω), defined via
the Orlicz function P (t) = et − 1. Precisely, we assume that∫

Ω
eβK(x)dx < +∞ (6)

for some β > 0.
Note that Equation (1) is the Euler - Lagrange equation of the variational

integral

E [u] =
∫

Ω
〈A(x, Du), Du〉dx (7)

The natural setting for solutions of (1) pertains to the “finite energy” solutions,
namely to the functions for which E [u] is finite. A simple use of Hölder inequality
in Orlicz spaces implies that the gradient of a finite energy solution of the equation
(1) lies in the Orlicz-Zygmund space Lp log−1 Lloc(Ω, IRn×m), which is contained
in Lq(Ω, IRn×m) for every q < p.

Recall that Lp logα Lloc(Ω), 1 ≤ p < +∞, α ∈ IR, is the Orlicz space defined
via the function P (t) = tp logα(e + t), i.e. the space of all measurable functions f
on Ω such that ∫

Ω
|f |p logα

(
e +

|f |
||f ||p

)
dx < +∞

A solution u of Equation (1) verifies the following integral identity∫
Ω
〈A(x, Du), DΦ〉dx = 0

for all Φ ∈ C∞
0 (Ω; IRm). It is worth pointing out that such identity remains valid

also for functions not having “finite energy”. This leads us to consider the so-called
very weak solutions introduced by Iwaniec and Sbordone in [11].

Definition 1.1 A mapping u ∈ W 1,q(Ω; IRm), for q < p, is a very weak solution
of Equation (1) if ∫

Ω
〈A(x, Du), DΦ〉dx = 0

for all Φ ∈ C∞
0 (Ω; IRm).
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After [11], many papers have been devoted to the study of the regularity of
such solutions (see for example [3], [7], [13] ). All the previous results concern the
case K(x) ∈ L∞ and show that very weak solutions are actually “finite energy”
solutions provided the degree of the integrability of the gradient is not too far
from the natural one.

As far as we are aware there have been no results concerning regularity of
very weak solutions in the case K(x) not bounded.

Here we fill this gap. Obviously, we have to confine ourselves to the study of
mappings whose gradient is in a Zygmund class not too far from the natural one,
i.e. the space Lp log−1 Lloc(Ω; IRn×m).

Theorem 1.2 Let u be a very weak solution of (1) and assume that the distortion
K(x) satisfies the assumption in (6) for a fixed β > 0. There exists α = c1(n)β > 0
such that if

Du ∈ Lp log−α−1 Lloc(Ω; IRn×m)

then u is a finite energy solution .

The techniques developed in previous papers do not seem to work here.
Our new approach interplays between familiar results and classical tools such
as Whitney cubes, maximal functions and an isoperimetric type inequality. In
general, unfortunately, it is not possible to use test functions whose gradient is
proportional to the gradient of the solution neither in treating very weak solutions
nor in degenerate equations. In order to construct suitable test functions, we will
need to adapt a well known technique due to Lewis ([12]), and later developed in
[1], [3], [13], to the case of degenerate equations.

Recently, regularity properties of “finite energy” solutions have been inves-
tigated in [2], [9], [14], showing that the scale of improved degree of regularity is
logarithmic.

Finally, it is worth pointing out that in the limit case p = n our results
give the same higher integrability property for the Jacobian of mappings with
exponentially integrable distortion, recently proved in [5].

2 Preliminary results

This section is devoted to some results useful in the sequel. Let g ∈ L1(IRn) and
define the Hardy-Littlewood maximal function of g as

Mg(x) = sup
{∫

Q

|g| : x ∈ Q ⊂ IRn

}

where Q is a cube with edges parallel to the coordinate axes. The following
proposition holds:
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Proposition 2.1 Let g ∈ L1(IRn). For all but countable number of parameters
t > 0, we have∫

|g|≥t

|g|dx ≤ Ct|{x ∈ IRn : Mg(x) > t}| ≤ C

∫
|g|> t

2

|g(x)|dx (8)

The proof, based on Vitali’s lemma and on the Calderon-Zygmund decomposition,
is well known (see for example [16], [17]). Let us denote by χg≤t the characteristic
function of the level set {x ∈ U : g(x) ≤ t} and recall the following elementary
fact from measure theory.

Lemma 2.2 Let gk : U → IR be measurable functions converging to g almost
everywhere. Then for each regular value t of the limit function g, we have

χgk≤t(x) → χg≤t(x) a.e. x ∈ U (9)

Next Lemma reminds us Whitney’s decomposition

Lemma 2.3 Let F be a non-empty closed set in IRn . There exists a disjoint
collection of dyadic cubes {Q1, Q2, . . . } such that

IRn \ F =
∞⋃

i=1

Qi

and

diamQi ≤ dist(Qi,F) ≤ 4 diamQi .

Observe that, by triangle inequality, it is possible to get that 7nQi intersects F
for i = 1, . . . , n. Moreover, for Q∗

i = 5
4Qi for all i = 1, . . . , n the following results

hold ([16])

Proposition 2.4 If Q∗
i and Q∗

k intersect, then

1
4
diamQi ≤ diamQk ≤ 4diamQi

Proposition 2.5 For each fixed Q∗
i , there are at most 41n cubes in the set

{Q∗
1, Q

∗
2, . . . } which intersect Q∗

i .

3 An Isoperimetric type Inequality

Our starting point is the following isoperimetric type inequality proved in [8] under
more general assumptions.
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Proposition 3.1 Let E be a curl free matrix field in Lq(Ω, IRn×m) and B a
divergence free matrix field in Lq∗

(Ω, IRn×m) where 1 < q, q∗ < ∞ satisfy 1
q + 1

q∗ =
1 + 1

n . Suppose that H = |E|q + |B|s, 1
q + 1

s = n
n−1 , is such that

lim inf
t→∞ t

1
n

∫
H>t

H(x) dx = 0 (10)

Then ∣∣∣∣
∫

Q

〈B, E〉 dx

∣∣∣∣ ≤ C(n)
(∫

∂Q

H dHn−1
) n

n−1

, (11)

In the sequel we shall need to control the boundary integrals by the volume inte-
grals. The next Lemma, which can be found in [6], is crucial to this aim.

Lemma 3.2 Let us give a Whitney’s decomposition Ω =
⋃∞

i=1 Qi and f a function
in C∞

0 (Ω). There exist concentric cubes Qi ⊂ �i ⊂ Q∗
i ⊂ 7nQi such that(∫

∂�i

|f | dHn−1
) n

n−1

≤ C(n) |Qi|
(∫

7nQi

|f | dx

) n
n−1

(12)

for all i = 1, 2, . . .

Finally we recall the following version of the Sobolev-Poincaré inequality
(see [11]).

Lemma 3.3 For each matrix field A ∈ L1
loc(Ω; IRn×m) with divA(x) ∈ Lr(IRn),

1 < r < ∞, there exists a divergence free matrix field Ao ∈ L1
loc(Ω; IRn×m) such

that (∫
B

|A(x) − Ao| nr
n−r dx

)n−r
nr

≤ C(n, r)
(∫

B

|divA(x)|rdx

) 1
r

(13)

for every ball B strictly contained in Ω.

4 The Main Estimate

This section is devoted to the following crucial estimate. The idea of the proof
comes from [6], Theorem 9.1.

Theorem 4.1 Let E be a curl free matrix field in Lq(Ω, IRn×m) and B a diver-
gence free matrix field in Ls(Ω, IRn×m), 1

s + 1
q = n

n−1 , with compact support. For
all but countable number of parameters t > 0 we have∣∣∣∣

∫
MH≤2t

〈B, E〉 dx

∣∣∣∣ ≤ C(n) t
n

n−1
∣∣{x ∈ IRn : MH > 2t

}∣∣
≤ C(n) t

1
n−1

∫
H>t

H(x) dx (14)

where H = |B|s + |E|q.
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Proof. We need only to prove the first of the two inequalities in (14); the second,
and the restriction on t, being a consequence of the maximal inequality stated in
Proposition 2.1. We first prove it for smooth matrix fields and then we proceed
by an approximation argument.
First Step: E, B in C∞

0 (Ω; IRn×m).
By a simple use of Divergence Theorem we have the following identity∫

F
〈B, E〉 dx = −

∫
IRn\F

〈B, E〉 dx (15)

where F is a closed subset of IRn. Choose F to be the level set of MH, namely

F = {x ∈ IRn : MH(x) ≤ 2t}

and consider Whitney’s decomposition of IRn \ F into dyadic cubes

IRn \ F =
∞⋃

i=1

Qi,

(see Lemma 2.3 and the subsequent Propositions 2.4 and 2.5). Using Lemma 3.2
we find concentric cubes Qi ⊂ �i ⊂ Q∗

i ⊂ 7nQi, for which

(∫
∂�i

H

) n
n−1

≤ 4 C(n) |Qi| t n
n−1 (16)

This latter bound is due to the fact that the expanded cubes 7n Qi intersect F .
Although the cubes �i, i = 1, 2, . . . may overlap slightly, there can exist at most
N = 41n of such cubes having nonempty intersection. This is why we have the
following finite expansion∫

IRn\F

〈B, E〉 dx =
∑
1≤i1

∫
�i1

〈B, E〉 dx −
∑

1≤i1<i2

∫
�i1i2

〈B, E〉 dx

+
∑

1≤i1<i2<i3

∫
�i1i2i3

〈B, E〉 dx

− − − − − − − − − −
(−1)N+1

∑
1≤i1<···<iN

∫
�i1...iN

〈B, E〉 dx (17)

where �i1...iN
stands for the rectangle �i1 ∩ · · · ∩�iN

. Now, applying Proposition
3.1 and using (16) we get∣∣∣∣∣

∫
�i1,...,ik

〈B, E〉
∣∣∣∣∣ ≤ C(n) t

n
n−1 (|Qi1 | + · · · + |Qik

|) (18)
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for all 1 ≤ k ≤ 41n. The constant C(n) may vary from line to line, but only
depends on n. Obviously, this estimate plays no role if the rectangle �i1,...,ik

=
�i1 ∩ · · · ∩ �ik

is empty. Substituting (18) into (17) we obtain

∣∣∣∣
∫

MH≤2t

〈B, E〉 dx

∣∣∣∣ ≤ C(n) t
n

n−1

∞∑
i=1

ci |Qi| (19)

Here each coefficient ci indicates the number of times that the given cube �i is
present in �i1 ∩ · · · ∩ �i1 
= ∅ with 1 ≤ i1 < · · · < ik and k = 1, 2, . . . , N . For
a given k = 1, 2, . . . , N , there are at most Nk−1 expressions �i1 ∩ · · · ∩ �ik


= ∅
in which �i appears as one of its terms, as �i may intersect at most 41n of
the cubes �1,�2, . . . (see Proposition 2.5) . Consequently, we have the following
uniform bound for these coefficients.

ci ≤ 1 + N + N2 + · · · + NN−1 ≤ NN

Therefore inequality (19) reduces to∣∣∣∣∣
∫

MH≤2t

〈B, E〉 dx

∣∣∣∣∣ ≤ C(n) t
n

n−1

∞∑
i=1

|Qi| = C(n) t
n

n−1 |IRn\F|

= C(n) t
n

n−1 |{x ∈ IRn : MH(x) > 2t}| (20)

Second Step: Approximation procedure
By a standard mollification argument, we can consider two sequences Ek,

Bk ∈ C∞
0 (Ω, IRn×m) such that Ek → E in Lq(Ω, IRn×m) and Bk → B in

Ls(Ω, IRn×m).
We can certainly assume that Ek → E, Bk → B and 〈Bk, Ek〉 → 〈B, E〉 at

almost every point x ∈ IRn. Since the functions Hk = |Bk|s + |Ek|q converge to
H = |B|s + |E|q in L1(IRn), we find that MHk → MH weakly in L1(IRn), thus
in measure as well. In particular,

lim
k→∞

∣∣{x ∈ IRn : MHk(x) > 2t
}∣∣ =

∣∣{x ∈ IRn : MH(x) > 2t
}∣∣ (21)

for every t > 0. We shall confine ourselves to a subsequence, again denoted by
{MHk}, so that MHk → MH almost everywhere.

Since inequality (14) is valid in C∞
0 (Ω; IRn×m) we have∣∣∣∣

∫
MHk≤2t

〈Bk, Ek〉 dx

∣∣∣∣ ≤ C(n) t
n

n−1
∣∣{x ∈ IRn : MHk > 2t

}∣∣ (22)

Passing to the limit in the right hand side is legitimate, by (21). Moreover the
bounds

|〈Bk, Ek〉| ≤ H
n

n−1
k ≤ |MHk(x)| n

n−1
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imply that

χMHk≤2t(x)〈Bk, Ek〉 ≤ (2t)
n

n−1 χΩ(x) (23)

Then Lemma 2.2 and (23) allow us to use the Lebesgue Dominated Convergence
Theorem and to conclude that∫

MHk≤2t

〈Bk, Ek〉 dx −
∫

MH≤2t

〈B, E〉 dx =
∫

Ω

[
χMHk≤2t(x)〈Bk, Ek〉

−χMH≤2t(x)〈B, E〉] dx → 0

The proof of Theorem 4.1 is now complete. �

5 Proof of theorem 1.2

This section is devoted to the proof of our main theorem.

Proof. (of Theorem 1.2) Let us fix a ball B0 strictly contained in Ω and a function
ϕ ∈ C∞

0 (Ω) such that 0 ≤ ϕ ≤ 1 and suppϕ ⊂ B0. Consider ũ = ϕ
p

p−1 · u and
observe that it belongs to the Sobolev space W 1,q(B0; IRm) for all q < p. To
shorten the notation, we introduce the function

A(x) = ϕp(x)A(x, Du) = A(x, ϕ
p

p−1 Du)

The last identity is due to assumption (4). Equation (1) yields for all q < p

divA(x) = pA(x, Du)ϕp−1∇ϕ ∈ L
q

p−1 (B0; IRm)

Applying the divergence operator, we obtain

divA(x, ϕ
p

p−1 Du) = div(A(x) − Ao)

where Ao can be any divergence free matrix field. We use Lemma 3.3 to choose
Ao such that (13) holds. Obviously

|A(x) − Ao| ∈ Ls(B0) for every s <
nq

n(p − 1) − q
.

Then ũ solves the following nonhomogeneous equation

divA(x, Dũ) = divg

where
g(x) = [A(x) − Ao] + [A(x, Dũ) − A(x, ϕ

p
p−1 Du)]

belongs to L
q

p−1 (B0; IRn×m), for all q < p.
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Now let us associate to ũ the matrix fields B̃ = A(x, Dũ) − g, Ẽ = Dũ which are
divergence and curl free, respectively. Setting H̃ = |B̃|s + |Ẽ|q, with q = p(n−1)

n

and s = p(n−1)
(p−1)n , we can easily check that∫
H̃≤2t

〈B̃, Ẽ〉 dx ≤
∫

{H̃≤2t}∩{MH̃≤2t}

〈B̃, Ẽ〉 dx +
∫

{H̃≤2t}∩{MH̃>2t}

〈B̃, Ẽ〉 dx

≤
∫

MH̃≤2t

〈B̃, Ẽ〉 dx + c

∫
{H̃≤2t}∩{MH̃>2t}

H̃
n

n−1 dx

≤
∫

MH̃≤2t

〈B̃, Ẽ〉 dx + ct
n

n−1 |{MH̃ > 2t}|

≤
∫

MH̃≤2t

〈B̃, Ẽ〉 dx + ct
1

n−1

∫
H̃>t

H̃ dx

where in the last inequality we used Proposition 2.1.
Therefore, applying Theorem 4.1, we deduce∫

H̃≤2t

〈B̃, Ẽ〉 dx ≤ ct
1

n−1

∫
H̃>t

H̃(x) dx (24)

Elementary calculations give

〈B̃, Ẽ〉 = ϕp+p′〈B, E〉 + ϕp′〈Ao(x) − A(x), Du〉 + p′ϕp′−1∇ϕ〈Ao(x), u〉
where p′ denotes the Hölder conjugate exponent of p.

Setting F = |Ao − A||Du| + |∇ϕ||Ao||u| we have∫
H̃≤2t

ϕp+p′〈B, E〉 dx ≤
∫

H̃≤2t

〈B̃, Ẽ〉 dx + c

∫
H̃≤2t

Fdx (25)

and combining (24) and (25)∫
H̃≤2t

ϕp+p′〈B, E〉 dx ≤ c

∫
H̃≤2t

Fdx + ct
1

n−1

∫
H̃>t

H̃(x) dx

Last inequality can be written as∫
H̃

1
n−1 ≤2

1
n−1 λ

ϕp+p′〈B, E〉 dx ≤ c

∫
H̃

1
n−1 ≤2

1
n−1 λ

Fdx + cλ

∫
H̃

1
n−1 >λ

H̃(x) dx

(26)

for λ = t
1

n−1 . Consider the function

Φ(λ) =
1
λ

(log−α−1 λ − (1 + α) log−α−2 λ) (27)

where α > 0 will be determined later.
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Multiplying both sides of (26) by Φ(λ) and integrating with respect to λ
between λ0 and ∞ for λ0 > max{e1+α, e2α} we get

1
2α

∫
H̃

1
n−1 <λ0

ϕp+p′〈B, E〉
logα λ0

dx +
1
2α

∫
H̃

1
n−1 >λ0

ϕp+p′〈B, E〉
logα H̃

1
n−1

dx

≤ c(n)
α

∫
B0

F

logα max{λ0, H̃
1

n−1 }
dx +

∫
H̃

1
n−1 >λ0

H̃
n

n−1

log1+α H̃
1

n−1
dx (28)

Note that for λ > e1+α the function Φ(λ) is nonnegative. By the definition of H̃
one can easily check that

H̃
n

n−1 ≤ c
[
ϕp+p′

H
n

n−1 + G
]

where G = |∇ϕ|p|u|p+|A−Ao|p′
. Using that the function tn log−(1+α) t is increas-

ing for t > λ0 and the assumption in (5) we get

H̃
n

n−1

log1+α H̃
1

n−1
≤ n

ϕp+p′
H

n
n−1 + G

log1+α
[
ϕp+p′H

n
n−1 + G

]

≤ n
ϕp+p′

K(x)〈B, E〉 + G

log1+α
[
ϕp+p′H

n
n−1 + G

]
in the set where H̃

1
n−1 > λ0. The elementary inequality

ab ≤ a log(1 + a) + eb − 1

for non-negative real numbers, implies

ϕp+p′
K(x)〈B, E〉 ≤ 2

β

[
exp

(
β

2
K(x)

)
+ ϕp+p′〈B, E〉 log(1 + ϕp+p′〈B, E〉)

]

Therefore, previous estimates yield

H̃
n

n−1

log1+α H̃
1

n−1
≤ C(n)

β

[
exp

(
β
2 K(x)

)
log1+α H̃

1
n−1

+
G

log1+α H̃
1

n−1

+
ϕp+p′

K(x)〈B, E〉 log(1 + ϕp+p′〈B, E〉)
log1+α

[
ϕp+p′H

n
n−1 + G

]
]

≤ C(n)
β

[
exp

(
β
2 K(x)

)
log1+α H̃

1
n−1

+
G

log1+α H̃
1

n−1

+
ϕp+p′

K(x)〈B, E〉
logα

[
ϕp+p′H

n
n−1 + G

]
]
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Integrating over the set where H̃
1

n−1 > λ0 we obtain∫
H̃

1
n−1 >λ0

H̃
n

n−1

log1+α H̃
1

n−1
dx

≤ C(n)
β

∫
H̃

1
n−1 >λ0

[
exp

(
β

2
K(x)

)
+

ϕp+p′〈B, E〉
logα H̃

1
n−1

]
dx

+C(n)
∫

H̃
1

n−1 >λ0

G

log1+α H̃
1

n−1
dx

Now combining the last inequality with (28), we have

1
2α logα λ0

∫
H̃

1
n−1 <λ0

ϕp+p′〈B, E〉 dx

≤
(

c(n)
β

− 1
2α

) ∫
H̃

1
n−1 >λ0

ϕp+p′〈B, E〉
logα H̃

1
n−1

dx

+
c(n)
β

∫
H̃

1
n−1 >λ0

exp

(
β

2
K(x)

)
dx + C(n)

∫
H̃

1
n−1 >λ0

G

log1+α H̃
1

n−1
dx

+
C(n)

α

∫
B0

F

logα max{λ0, H̃
1

n−1 }
dx

In order to have
C(n)

β
− 1

2α
negative, we choose α =

β

4C(n)
, thus obtaining

1
(n − 1)2α logα λ0

∫
H̃

1
n−1 <λ0

ϕp+p′〈B, E〉 dx

≤ C(n)
β

∫
H̃

1
n−1 >λ0

exp

(
β

2
K(x)

)
dx + C(n)

∫
H̃

1
n−1 >λ0

G

log1+α H̃
1

n−1
dx

+
C(n)

α

∫
B0

F

logα max{λ0, H̃
1

n−1 }
dx

Multiplying both sides of last inequality by logα λ0, letting λ0 tend to infinity,
and recalling the definition of F , it follows by monotone convergence theorem and
Lebesgue dominated convergence theorem that∫

B0

〈B, E〉 dx ≤ C(n)
∫

B0

[
|∇ϕ| |Ao| |u| + |A − Ao| |Du|

]
dx

since exp(β
2 K(x)), |u|p, |A − Ao|p′

, |Ao| |u| and |A − Ao| |Du| are integrable. In
conclusion 〈B, E〉 ∈ L1

loc(Ω) and then u has finite energy. �
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