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1 Introduction

The purpose of this article is to derive the energy density of a multi-domain consti-
tuted either by non simple grade two material or by a hyperelastic material, both
described through non convex bulk energy densities, by making use of the basic
principles of the I' convergence method. It is a sequel of previous works investigat-
ing junction conditions in thin multi-domains modelled either by convex second
order bulk energies or by convex energies depending on the first order derivatives
of the displacement, see [17] and [13], respectively. The bulk of presented proofs
is mainly concerned about the second order case, and we present the result in
the gradient case just in the last section, the motivation being that, though not a
corollary the gradient case can be given in a more classical framework.
The model problem can be described through

/W(DSUn)dax (s=1,2) (1.1)
Qn

where €2,, stands for the thin multi-domain, as in figure
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Figure 1 The thin multidomain.

W is a continuous energy density with p growth (p > 1) from above and
below, that may be defined either on triples of symmetric 3x3 matrices or on 3x3
matrices, in dependence on the fact that the model describes non simple grade
two materials or takes into account ’classical’ nonlinear elastic energies, and U, is
the deformation defined on €2,, subject to suitable boundary condition, while D?
stands for the derivatives of order s = 1, 2. In the sequel, z = (21, x2,x3) = (2, z3)
denotes the generic point of R3, M™ Y the set of mx N matrices, Sym(Rka)
(for k = 3,2) the set of the triples of completely symmetric kxk- bilinear forms.
We denote by D and D? the gradient and the hessian tensor, while, D, and D?,,
D,, and D2, stand for the gradient and the hessian tensor with respect to the first
2 variables, for the first and the second derivative with respect to the last variable,
respectively. Then, according to these notations, D2, _ stands for D,/(D,,).

x/,x3
Let s = 2, let w C R? be a bounded open connected and simply connected
set such that the origin in R?, denoted by 0/, belongs to w and L2(w) = 1, and let
{rn}nens {hntnen ClO, 1] be two sequences such that

limh,, =0=limr,. (1.2)
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For every n € N, consider the thin multi-domain Q, = Q¢ U QY (a for
“above”, b for “below”) union of two vertical cylinders, one placed upon the other:
a “wire” Q% = rpw x [0, 1] with small cross section r,w and constant height, a “
thin film” Q% = wx] — h,,,0[ with small thickness h,, and constant cross section.
Moreover, set = wx| —1,1].

For every n € N, consider the transformation fields U, corresponding to
equilibria, namely those fields which minimize or almost minimize the energy

2 2 T
U_>/ dgc—/ W( DUn (D 0,Un) )dw, (1.3)
Q. D} .U, DU,
among all the functions U, € W2’p(Qn;R3) realizing the Dirichlet boundary
condition ¢ + d® - 2’ (the - here represents the row column product) on the top
of 02, and f + g®z3 on the lateral surface of QY for some c® € R?, d* € R**?
and f¥, g* € W?P(w;R?). As it is usual, one tries to reformulate the problem on
a fixed domain through appropriate re-scalings which map ,, into Q := Q*UQP°.
Namely, by setting

ul(x!,x3) = Up(rpa’,x3), (2/,23) a.e. in Q% =w x [0,1];
up(z) = (1.4)
ub (2, 23) = U (2, hpxs), (2, 73) ae. in Q0 =wx] —1,0[;
it is easily seen that u® € W2P(Q% R*) assumes the re-scaled Dirichlet boundary
condition ¢ +r,,d* - =’ on the top of Q“, ub € W2P(QP; R?) assumes the re-scaled
Dirichlet boundary condition f2+h,g%z3 on the lateral boundary of Q°. Moreover,
up = (u2,ul) satisfies the following junction conditions:

ul(z',0) = ul (r,a’,0), z’ a.e. in w;

1
— Dyul(z',0) = (Dpul) (rn2’,0), ' ae. in w;

Tn

D ul(2,0) = —D ul (rpa’,0), ' ae. in w;

3 ¥'n h 3 ¥'n

and is an admissible field for the re-scaled energy:

1 T
2 a 2 a
b ﬁDr’un (7" Dr T3 n>
Up = (up, u,) — w 1n dx +
Qe 2 a 2 u?
aDz’,zgun ng n
T
D2 b 1 D2 b
h 2 Un h z’ x3un
u / W n dz,
5 Jav L2 b Lo b
7 :v’,:cgun hig wgun
n n
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among all the functions u,, subject to the same conditions of u,. Our aim consists
of describing the limit energy in (1.5), as n — +oo, when the volumes of Q¢ and
QP tend to zero with the same rate, i.e.

hn
liylgn =4 €]0, +o0]. (1.6)
Define
T
1 1
—ZDi,u“ ( Di,mu“>
K :u® e W*P(Q4R?) — | W 1’”n T'n dz, (1.7)
@ — D2, T Disu“

KYub e W2P(QYR?) — [ W
Qb Lo b LDQ ub

U, = {(u“,ub) € (" +rpd®- x’+W(12’p(Q“;R3)) X (berhngbngerQ’p(Qb;]Rg)) :

u(2’,0) = ub(rp2’,0), z’ a.e. in w;

1 a(.,.! b ’ / :

—Dyu®(a’,0) = (Dypu’)(rp2’,0), 2’ ae. in w; (1.9)
Tn

Dy u®(z,0) = h—Dm3ub(rnx',0), x' ae. inw },

with 7, hn, ¢, d°, f° and g® as defined before, W2P(Q% R?) the closure, with
respect to W2P-norm, of {u®eC*>(Q9; R?) : u*=0 in a neighbourhood of wx{1}}
and Wf’p(ﬂb; R?) the closure, with respect to W?2P-norm, of {ub e C> (@; R3) :
u® = 0 in a neighbourhood of dwx] — 1, 0[} Without loss of generality, we may
assume that

f'=0=g"ae. in B, (1.10)

for some bi-dimensional ball B such that 0/ € B CC w . We seek to determine

the asymptotic behavior of

liminf,, (Kﬁ(u‘fl) + %Kﬁ(u%)) S(ul,ub) € Uy,

(UZ,U,Z) - (uaaub)in W27;D, (%”Dw'ugw %”D13U%) - (Ea’gb) in Wl,p
(1.11)

inf
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with u®, ub, &2, b limit functions, u® and &% just depending on x5 and u’ and ¢°
just depending on z’. We also emphasize that u® and u’ represent the limit defor-
mations 'above’ and ’below’ of the limit multi-structure, while £€* and £°, whose
appearance comes from the presence of a second order energy, can be interpreted
as Cosserat vectors for the limit multi-domain, namely £% (a pair of triples) which
does not describe neither torsion or bending effect of the limit wire, but just keeps
memory of the deformation of the cross section of the original 3 — D wire, while
€%, is a vector taking into account the limit deformation of the middle surface
of the 3 — D film and not describing bending effects of the limit film below. In
other words these vectors (two above in £* and one below ¢°) keep memory of
the unit normals to the middle curve (above) and surface (below) in the original
thick multi-domain. As regards the limit multi-structure, one can also say that
(€%, Dy, u®) constitutes the Cosserat triple for the ‘limit wire’, while (D, u?,£%)
is the analogous one for the limit film. The choice of the topology in (1.11) will
be made clear in the sequel. The limit energy will be still represented through an
integral functional, namely it will be given, (on the class V? in (2.3) below) by

1
/ W**(D2,u®, Dy, £")dxs + q/ Q2 Wo(D2ub, D,/ €%)da’, (1.12)
0 w

where Q 42 Wy and W** are suitable ‘convexifications’ of the original energy density.
We point out that, as proven in [17], the limit problem is partially coupled
by the junction condition:

u®(0) = u’(0') if 1 < p < 2,
and coupled by the previous junction condition for v and by the junction conditions:
£(0) = D (0'), Dayu®(0) = £°(0) if 2 < p.

Moveover the minimizers of the limit problem depend also on the limit of the ratio
between the volumes of Q% and QY.

The structure of the paper is the following. In section 2 some preliminaries
are established, dealing essentially with I' convergence and convexity properties.
Since the case of non simple grade two materials is primarily considered, section 3
is devoted to establish compactness and semicontinuity theorems to be exploited in
the sequel. Section 4 concerns the I' convergence result. Finally the fifth section
considers the case of hyperelastic energy density, i.e. the gradient case. Some
remarks, essentially dealing with multi-structures in RY, for N > 3, both for
gradient and hessian cases, are given in the last section. There is also a final
remark showing that arguing as in Proposition 4.1 the limit energy can be better
described also in the convex case, through a fewer number of limit functions than
it has been done in [13] and [17].
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2 Notations and Preliminaries

In the thin multi-domain we introduce a bulk energy density of the kind W (D*U)
(s=1,2). First we consider the case s = 2, eventually we present the result for
the case s = 1. We recall that by Sym(R**®) we denote the set of triples of
completely symmetric bilinear forms on R®. Precisely, let

WM e Sym(R*?) — W(M) e R (2.1)
be a continuous function satisfying the following assumptions:

a+ aMP <W(M) <b+ pIMP, YMe Sym(R3X3);

2.2
for some a,b € R, «, €]0,+o0] and 1 < p < +o0. (22)

Moreover, in the sequel, for a given A € Sym(R**?), B € R**? and C € R?,

A BT k=1,2,3 k=1,2
Wi 5 ¢ ) means W(M), where M = (m;;); 7% 5 and (mg;); "7, = A,
k=1,2,3 k=1,2,3 =1,2 . o
(msj)is " =B, (mig) 15" = BT and m§3 23 — . To describe the limit

energy of the sequence in (1.11), as n — 400, when the volumes of Q% and Q%
tend to zero with the same rate, (cf. (1.2) and (1.6)) we introduce the limit spaces
VP (we point out the strong dependence on p for the limit junction conditions):

((u®,ub), (£2,€%)) € UXZE : u®(0) = ub(O’)}, ifl<p<2;
VP = ((u®, ub), (£2,€%) € UXE : u®(0) = ub(0"), £2<p (2.3)
£2(0) = Dar®(0'), Dyyu®(0) = €2(0) }, ’
where

U= (c"+ W2r(J0,1;R%)) x (fb WP (w; R3)) ,

E = (d"+ (Wa 710, 1L R¥?)) x(g" + Wy P (wi R%)),

(W22(]0, 1[; R?) is the closure, with respect to W2P-norm, of {u® € C*([0, 1];R?) :
u® =0 in a neighbourhood of 1}.)
Introduce the auxiliary space:
V= { (u?,u”, €%, €") € (¢ + O ([0, 1 RY) x (* + C5°(ws RY)) x
(d* + (C([0,1];R¥2))) x (g* + O5° (w3 R?)) - (2.4)
ut(0) = u(0), aw%w—@@,Dwﬂm—ﬁW>}
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where C2°([0,1]; R?)={u® € C*°([0,1}; R*) : u(1)=0, D'u®(1) =0 Vi € N}. We
point out that aﬁsumptlon (1.10) gives a meaning to the junction conditions in
the definition (2.4). The following density result will be exploited in the sequel
(see Proposition 4.1 in [17]).

Proposition 2.1 Let VP and V be as in (2.3) and (2.4), respectively. Then V is
dense in VP,

In order to obtain the representation result we need to recall some well known
notions of convex analysis, as well as some more general properties, essentially
concerning A-quasiconvexity. Let ¢ : R? — R be a function, the convex envelope
of g is the function

g™ =sup{h < g: h convex }. (2.5)

Consider a collection of linear operators A® e Lin(R% RY, i = 1,..., N, and
define

a (i)av N d
Av::ZA , v:RY — R

8:@

N
Aw) =" ADw; € Lin(R*,R"),w € RV,
i=1
where Lin(X,Y) is the vector space of linear mappings from the vector space X
into the vector space Y. Furthermore assume that A satisfies the constant rank
property, i.e. there exists » € N such that

rankA (w) = r for all w € SN~!

(where SV —1 is the unit sphere in RN ). Here and in the sequel @ will denote the
unit cube in R%: ie. Q :=]0,1[%

Definition 2.2 A Borel function f : R — R is said to be A-quasiconvex if

v) < / flo+w(z))dx for every w € ngr(RN R%) ﬂKer.A,/ w(y)dy =
Q Q

Recall the notion of A-quasiconvexification, which extends to the A-free setting
(i.e. test functions in Ker.A ) the notion of ‘quasiconvexity’.

Definition 2.3 Given a Borel function f : RY—R, the A—quasiconvexification
of f at v e R? is given by

Qaflv 1nf{/fv+w ))dx : wGngr(RN Rd OKerA/ dy—O}
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i) It is worthwhile to observe that the convexification in (2.5) can be obtained
as a particular case of A-quasiconvexity, i.e. when the operator A is 0, i.e.
with no constraints on the admissible fields.

Let € be connected and simply connected.

ii) Consider a matrix-valued function v : @ ¢ RY — M™*" and define the
operator A as the curl operator, i.e.

(%jk _ (%ji

. =0, 1<57<m,1<14,k<N,
Ox; Oxy, =J= -

curlv = 0, i.e

then

KerA(w) = {v € M™N : A(z)v =0} = {v e M™*V : v = a@w,
for some a € R™}.

In this case the well known notion of quasiconvexity is recovered and the
formula stated in Definition 2.2 becomes

flv) < /Qf(v + Vw(z))dx for every w € CF°(Q; R™) (2.6)

analogously the A-quasiconvexification in Definition 2.3 recovers the usual
quasiconvexification, or equivalently the quasiconvex envelope,

Qf(v) = inf {/Q Fo + Vu(e))ds : w e CSO(Q;RM)} , (2.7)

with @ =]0, 1[V.

Let E be a nonempty set and Q3 be the cube ]0,1[? and C2.(Q2; E) the set

per
of smooth functions defined and periodic on @2 with values in E. In the sequel

it will be made a large use of the subsequent differential operator A2 := (A3, A?%)
given by

A% v = (h,€) € Sym(R¥*?)xM3*2 — (A2h, A2€) (2.8)

where

Oh' Oht i i
Ash = (aﬂ— aﬂ) andA?f:(gfl —g£2> .
2 T ) 10312 T2 L1/ =1,2,3

Remark 2.4 It is easily verified that

{h € C*®(Qq; Sym(R**?)) : A2h =0, | hdx = O} ={D2u:uce ngr(Qg,Rg)} .
Q2
(2.9)
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In fact, for every i = 1,2,3, if A3h' = 0 then hl; = Tus
pcr(Qg,M3X2) with average zero. Note that wj is periodic since ht is perlodlc
and fQ hidz = 0. Then, by the symmetry of hi k Wlth respect to ¢ and j, it results

curlw’ = 0 and we conclude that hjk = ar aq« for some u’ € C%.(R* R). The

per
operator is a constant rank operator. Indeed, for every w € S', we have

kerA3(w) = {X € Sym(R*?) : w; X!} —w; X} = 0,i,j =1,2,k =1,2,1=1,2,3}

:{b®w®w,beR3}, (2.10)

so dim KerA3(w) = 3. Also

{5 € C™(Qq, M>*?) . A2¢ = 0,/@ Edr = 0} ={Dap: ¢ € C2(Q2,R%)},
(2.11)

and for every w € S! it results KerA {V e M3x2 . AQ( Wh=0,1= 1,2,3}
= {wZle —w;VE=0,1=1,2,3,i,j = 1,2} {a Qw,a € R } and dim KerA? (w)
= 3. It follows immediately that .42 is a constant rank operator, and for every w €
St KerA?(w) = {(X,V) € Sym(R*)xM*>*?: (X,V) = (b@w®?, aw),b € R*,a €
R®}, where w®? stands for w@w. For every v € Sym(R***)xM**?, with v
= (h, &), for every Borel function f : Sym(R?**?)xM?>**? — R, we have

Qaflv) = mf{/ flvtw(z))dz 1w e Cper(QQ;Sym(R2X2)XR3X2) A Ker A2,

wdx :07},
Q2

or, equivalently,

Quef(1,8) = inf {fo, F((h+ D2u§ + Do)l ¢ € CRQuiRY). (1
0o 3 ’
We end this section by recalling the main features of I' convergence, see [9] for
more details.
Let (X, 7) be a topological space. Given a sequence of functionals Fj, : X —
R U {400}
' — liminf F,,(z) := inf{liminf F,(x,) : ©,, — x in 7},

(2.13)
I' — limsup F,,(x) := inf{limsup F,,(z,,) : ¢, — z in 7}
which are called, respectively, the I' lower limit and the I'-upper limit at the
point x.
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Definition 2.5 We say that a sequence F,, : X — [—o0;+0oc] I'- converges to a
functional F : X — [—o00,400] at a point z € X, and we write

I'— lim F,(z) = F(x)

n—oo
if
I' —liminf F,,(z) = ' — limsup F,,(z) = F(z).
n—o00 —00
We say that a sequence of functionals I'-converges on a set if it I'-converges at
every point of the set.

It can be easily verified that a sequence F,, : X — [—o0;+00] I'-converges to a
functional F : X — [—o0;400] if the following two conditions hold:

i) for every sequence z, € X converging to x in 7 one has

liminf F,,(z,) > F(z);

n— oo

ii) there exists a sequence T,, € X converging to = in 7 and

lim F, (%) = F(x).

n—oo

The next definition and result enlighten the behavior of the ‘almost’- minimizers
of a sequence {F,} with respect to the the minimizers of its I'-limit F.

Definition 2.6 The sequence F, is said to be equi-coercive if for any real number
M there exists a 7-compact and a 7-closed subset Kj; of X such that

{z: F,(z) < M} C Ky for every n.

Proposition 2.7 Let us assume that T'-lim, .. F,, = F on X and that the
sequence F,, be equi-coercive. Then it results that

i) F is T-lower semicontinuous;
it) F is T-coercive;
i1) if xn € X satisfy iminf,, o F,,(z,) = liminf,,_ . inf F,, (e.g. if x, mini-
mizes F,) then
a) if t, — x in T then x is a minimizer of F on X and lim, . F,(x,) =
F(x);

b) there is a sequence {x,, } C X and a minimizer © of F' on X such that
Tp, — T INT.
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3 Compactness and Lower Semicontinuity

In order to perform our asymptotic analysis we will also make use of the following
compactness result whose proof can be found in Section 6 of [17], observing that
the proof only uses (2.2) and the fact that the sequences are energy bounded ones.

Proposition 3.1 Let W be a function satisfying (2.1) and (2.2), and let, {(T2,
)} an energy bounded sequence, in the sense that (Wl,ut) € U, for every n
and limsup,, (Kﬁ(ﬁ%) + ?—;Kﬁ(ﬁi)) < C. Let VP be as in (2.3). Assume that
(1.2) and (1.6) hold. Therz there exist an increasing sequence of positive integer
numbers {n;}ien and ((@®,a), (E“f’)) € VP, depending possibly on the selected
subsequence {n;}ien, such that

Uy, — U weakly in W2P(Qe;R?),

(3.1)
ul, — u’ weakly in W2r(Qb;R?),

1 _,
— Dyt — & weakly in WP (Q%; R3*?),
Tni ‘

(3.2)

1 _
h—stﬂfLi — §b weakly in WHP(QP;R?).

i

Recalling that for every H € Sym(R3*?), the decomposition, after the re-

scaling, is the following
H= h &t
=l¢e

with H € Sym(R**?), ¢ € M3*2 and ¢ € R® in the sequel we exploit the functions

~ T
e = e w(gE ). (33)
and
W(hg):infw<h5T) (3.4)
0 ) ceR? 5 c .

Remark 3.2 We observe that under the assumptions made on W' (see 2.2), argu-
ing as in Proposition 1 in [24], it follows that W and Wy are continuous and satisfy
a growth condition of order p.
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Lemma 3.3 Let W be the energy density in (2.1), satisfying assumptions (2.2)
and let W and Wy the functions in (3.3) and (3.4) respectively. For every ((u®,u®),
(€9,£%)) € VP define the functionals

1
/ W (D2, u?, Dy £8)das
lim inf

I (u,u’, €%, €") = inf o Wo(D%tn, D)o’ ,
((ug,ud), (ﬁn,sn» € VP ug —u in WP(]0,1[; R?),
€ — €% in WhP(J0, 1 R¥*?), ub — b in

W2P(w; R?), &5 — €8 in WP (w; R?)

(3.5)

then it results

JE(u b €€ / W ( Diwa,DmSﬁa)dmg—i—q/ Q2 Wo(D%ub, D, €%)da
(3.6)
for every ((ut, ub), (€%, €)) € V.
Proof. Standard relaxation arguments, (see [8], [4] among the others) ensure that
inf 4 Tminfp o fo W (D2 ul, Dy, £8)dxs : ul — u® in W2P(]0,1[;R?),

& =& wt p(]o 1L R%)

- /0 W** (D2, u", Dy, €*)dzs
(3.7)

for every (u®,£%) € ((c*+W2P(]0, 1[; R?)) x (d*+ W' (]0, 1[; R**?))). Analogously
Theorem 5.1 in [18] (see also [4]) guarantees that

nf liminf, oo [, Wo(D2ub, Dy &h)da’ : uly — ub in W2P(w; R?),
€~ ¢bin WLp(w R3) (3.8)
:/QAQWO( 2ub, Dy €)da!

for every (u?, &%) € (f* + WP (w; R?))x (g° + WyP (w; R?)). Again classical argu-
ments with smooth cut-off functions allow to prove (3.7) and (3.8) in the case
when the boundary data are prescribed, i.e.

z3Yno

ul(1) = u(1), Du %(1) = Du®(1)

n

f{ liminf,, fo W(D2 u®, Dy, %) dzs - u® — u® in W2P(]0,1[; R?),

1
€ — € in W0 1GRV).600) = ()} = [ W (DR, D€y
(3.9)
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for every (u®,£%) € ((¢* + W2P(]0, 1[; R?))x (d* + WLP(]0, 1[; R?)), and

inf{hmlnf WO(Dx,u D, §b)dx u —u’in W2’p( )ub =ub,

n—oo

Dyl = Dyub on Oweb — €% in WP (w; R?), €2 = ¢b on dw (3.10)

/QA2W0( 2, Dy &) da

for every (ub, &%) € (f* + WP (w; R?))x(g° + WyP (w; R®)).
Formulas (3.9) and (3.10) entail the following result

JB(us ub €9, €) = inf

0

D2 u Dxdgi)dl';g .

ot f0+qf Wo(D ,Dw,s:;)dx'} '

up — u® in W2p(]0 1; Rg),uz,ua cc
+W2P(0, 1, R?)

€8 — &% in WHP(]0,1[; R3*?),£2,£ € d*
+W17P(]0 1[; R®*?),

ub — b in W2’p(w RB),un,u c fb
+W5 ’p(w,R3)

b =& in WP (w;R?), &), 8" € g* + Wy P (w; RY)

1
:/ W**(DiSUG’stga)d$3 +q/ QAQWO(Dx/u 7Dx/§b)dx

(3.11)

for every ((u®,u?), (£%,£%)) € VP. Since, obviously J'5(u®, u®, £%,¢%) < JP(u®, ub,
€9,€%) for every (u,ub, £%,€%) € VP in order to conclude the proof it will be
enough to prove the converse inequality. To this end, we should consider the two
cases. First assume that 1 < p < 2, then the only difference in the definition of
J'5 and JI consists of requiring that the test functions u? and u’, in the latter
functional have to coincide at the origin, i.e. u2(0) = u(0’). The proof will be
concluded if we show that J; admits on V? the same representation as

J”g(ua,ub,ga,ﬁb) = inf

/ W(D2 ul, Dy, &8)das
lim inf

e +q/WO D2ub, Dy €8)da!

upy — u® in W27p(]() 1; R? ), us,u* € c*
+W34’(]07 1[; R?)
€4 — ¢%in WHP(J0, 1[; R®*?),£2,£% € d°
Wl p(]o 1[ R3><2)
ub — b in Wz’p(w R?’),un,u e fo+ W()Q’p(w;R?’)
HWmemmm:W@mmw:MW>
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since obviously the following chain of inequalities holds on VP, (1 < p < 2)
Jo<Jb<J".

For every u® € W2?(]0,1[;R?), ¢€* € WbP(]0,1[;R**?) and u® € W?P(w;R?),
¢b € WhP(w; R?) define

Gp(u®, 6% A) = [, (L +|Dg[P +|D?u?|P)das,
Hy(u®,8% B) i= [5(1+ |DEP + |D*u®|P)da1das,

where A is any open subset of ]0,1[ and B is any open subset of w. Thus,
given ¢ > 0, take a sequence ((ug,u?), (&2 §b)) € (¢ + W2r(0,1[;R?), f* +
WP (w; R?))x (d* + WEP(]0,1[; R3*?), g* + Wy P (w; R?)) such that u? — u® in
W2r(10,1[;R?), u’ — wb in WQvP(w;RS), €0 — ¢ in W()0,1[;R**?) and
b — b in WhP(w; R®) and

lim inf [/ W (D2, u, Dy, &%) dxs +q/

n—oo
w

WO( :v’u D Eb)dx:|
< JB(u®,ul, €%, €8) +e.

One can extract a subsequence {ny} such that

1
limninf {/0 W D?%umDms{Z)dxg +q/ Wo(D2ul, D, gb)dx}

- lim [/ W (D2, Deit s+ g [ Wo(D2ath,, D )a |

and the sequences of measures vy, 1= Gp(u®, &%) + Gp(ug, ,&n, ;-) and py := H,
(ub, &%) + Hp(ub, , &b ;-) converge weakly * to some Radon measures v and p
respectively.

Denoting for every t > 0 by B; a spherical neighborhood of 0’ in w, centered
at 0’ with radius ¢ and by A; :=]0, t[, we fix n > 0 and for every 0 < § < 7 we define
the subsets Ls := By4s \ By—25. Analogously on the x5 edge, we may consider the
set A, :=]0,n[ and L§ := A, 5\ Ay_25 =]n—26,n+ 6[. Consider two smooth cut-
off functions s € C§°(Ap+s;[0,1]) and 15 € C5°(By4s;[0,1]) such that 5 = 1
on By, and 15 = 1 on A,. Since the thickness of the strips L5 and Lf is of order
) the following upper bounds hold Dz sl Loo(a,s) < 6 , 1D2 @5l Lo (a,.s)

< 52 and ||D$3w5||L°°(BT,+5) = 5’ HDa:;:,w5||L°° (Bn+s) < (SC;

Define
wh = uYs + (1 — ps)ul
wl = ulps + (1 — ps)ub
Clearly, w® — u® in WQ’P (Jo, 1[; R?’) and w2 (0) = u®(0), and analogously w® — u®

in W2p(w R?) and w?(0") = u(0'). Then, since we are dealing with integral
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functionals and by virtue of Remark 3.2

1

W(Dis z,‘q xagnk)dx3+Q/W0 @’ ZkaD fzk)

< [ WO Doty v [ WDRL Dl
0

0

1
[ WDl Dayet das + g / Wo(D2ul, , Dy€l )da

TH_—?—(S W\Bn+5

n .

[ WD, D e+ Wo(D2w), , Dot )
7] 20 Bn+5\Bn725

w
c / (D2, uP + | Dyy?. [P]das + Cg / nDi/ubluwm/gm]dx'

B77
+C gp( 7£a Ll)+gp( nwfny )+H:D(ub’§b;L5)+Hp( nkvgnkvL(S))

e (IL, LD, — Dayu® P+ < fut — 7] das

52

1 b b|p 1 b bip /

Then, passing to the limit as £ — 400, one gets

lin nf [/ W(D2, 0, Dutit, s + 0 [ WolDRul, Duréh, o'
< J”’ (u®,ub, €%, &%) + e+ C (z/(An) + :(Bn) + (L) + u(Lg)) ,
Letting § go to zero one obtains
J"o( €%, &%) < TGt €%, &%) + e+ Cv(Ag) + p By) +v(04y) + n(9By)).

hence, by choosing a subsequence {7} such that 7, — 07 and v(9A,,) = p
(0By,) = 0, the thesis follows in the case 1 < p < 2, by letting first K — +oo0 and
then ¢ — 0T. The case p > 2 can be proved in analogy with the previous step,
just considering four cut-off functions s, ¥} defined in A, s, and s, ¢} defined
in By4s, in order to ensure the three junction conditions defining V. So far, one
construct four sequences

wyy = uy + (1 — 1y )uy,

wﬁ = ubpy + (1= oy )ul,

& ="y + (1= y)&0

&h =8y + (1— )8,
that guarantee £2(0) = £%(0) = Dub(0') = Dyul (0') and £2(0') = £°(0') = D,,
u®(0) = D,,u?(0) and finally one passes to the limit as in the case 1 < p < 2,

3 “n ~
exploiting the growth condition and the continuity of W and W, established in
Remark 3.2. O

Next we recall a technical lemma (see [9])
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Lemma 3.4 Let X — Y be two Banach spaces such that X is reflexive and
compactly embedded in Y. Consider a functional G : X — R such that for all
v e X, Gw) > g(||vlx) where g is such that g(t) — 400 as t — +oo. Let
G. Y — R be defined by G.(v) = G(v) if v € X, Gi(v) = +0oo otherwise. Let
I' — G denote the sequential lower semi-continuous envelope of G for the weak
topology of X and let T' — G, denote the lower semi-continuous envelope of G, for
the strong topology of Y. Then T — G, = (T — G)..

Remark 3.5 From the very definition (3.5), the coercivity assumption (2.2) on
W, Remark 3.2, Lemma 3.3 and Lemma 3.4, it follows the sequential lower semi-
continuity of the functional

1
/ W**(Dgsu“,Dmf“)dxg—i—q/ Q2 Wo(D2ub, DY) da!,
0 w

extended to 400 in (WHP(]0, 1[;R*)x WP (w; R*)x LP(]0, 1[; R**?)x LP (w; R?)) \
VP with respect to the weak topology in VP.

4 I'-convergence

In order to deal with the classical arguments of I-convergence (see [9]) it is con-
venient, also in view of the coercivity assumption (2.2), to extend the energies to
a metric space and define for every (u®,u’) € WhP(Q%; R*)x W1 P(QP; R?)

(1200 + a2 ) (ueuty o= { 220D RO G L) S L

2 400 otherwise. (4.1)

*

hy
2
TTI,

Kb), with respect to

the strong topology of WP for what concerns the convergence of (u®,u?) —

(u®,u’) and the strong topology of LP for what concerns the convergence of
(iDyu“ A D ub> — (£€9,€%). The final result will be achieved through the

Tn n’ h, x3 “'n

Next the I'-limit can be computed for the sequence (K2 +

two next propositions, according to Definition 2.5. We also emphasize that we are
not in presence of the ‘classical’ I'-convergence because of the rescalings, but all
the results stated at the end of section 2 can be easily adapted to our context.

Proposition 4.1 Let W be a function satisfying (2.1), and (2.2). For every n €
N, let K¢, K’ and U, be as in (1.7), (1.8), and (1.9), respectively. Let V be as in
(2.4). Assume that (1.2) and (1.6) hold. Then, for every (u®,ub,£% %) € V

inf {Timsup,, (Ka() + L KA()) (ud, ), (uh,ub) € Uy -
(u,ul) — (u®,u’) in Whp, (LDT/’U,G D ub) — (£9,€%) in LP} <

n»o'n Tn E no h, T3 Yn
1
/ W**(DgguaaDmsfa)dx3+Q/ QA2WO(D5’Ub7Dx’§b)dZ'/'
-1 w
(4.2)
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Proof. The proof is a by now rather standard argument (see [24], [13] and [17]),
apart from the fact that it involves functionals which are formally coupled. We
present some details for the reader’s convenience. The role of the recovery sequence
is played by the following sequences (4.3) and (4.4). Fix (u®,u’,£%,£%) € V and
(2%,2%) € WP (0, 1[; R***) x WP (w; R®), and for every n € N, set

ul (2, x3) =

u®(xz) + rp€®(xs) - o’ + rfbx,T - 2%(xg) - 2,

for a.e. © = (¢, x3) € wx]ep, 1[;
2 a T a 3 a 2
) 250 )~ 23 ) + S

n ’I’L n

a Tn .q 7’2 3
T3+ { %u (en) + 35%5 (en) - 2"+ 3§x Tro(en) -2 gu (rpa’)—
1 " 2, 2
Dy u®(en) — Z—Dmsfa(sn) - Z—”x TDyy2(en)2’ — Egb(rnx')]

z3 + [£(rpa’)] x5 + ub(rpa’), for ae. x = (2/,23) € wx]0,&,];
(4.3)

and

ul (2, x3) = ub(2') + hn&® (2 )xs + h22220(2'),  for ae. x = (2, x3) € QY
(4.4)

where {e,, }nen CJ0, 1] is suitably chosen, for example one can choose €,, = r2.
Clearly (u2,ub) € U, (ul,ub) — (u® u’) strongly in W2P(Q%R*)x
W2P(QF;R?), and ( Dyué, hl Dmgun) — (£9,£P) strongly in W1P(Q%; R¥*?)x

WLP(QP;R?). Arguing as in Proposition 5.1 in [17] where the convexity on the
density W has not been exploited and with the only difference in the choice of z¢

and 2%, which now do not depend on all the variables, it can be proved that

Kb(ubl) = /QbW(Dg,u e —D2, . nvﬁDQ )dx

D?,ub + hy, D?,£b(z' )3 by b/ \\T
— / w ﬂ-hix%Di,Zmb(x/) (Dz’é (m ) + 2h7’bx3Dz/Z (x )) dx
Qb (D, €%(2') + 2hnz3 D,y 28 (2')) 220(z’)

Dilub (Dz’gb(x,))T
- / W( )dac (4.5)
ar ( )

D,/ £%(2")) 220 (a/
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as n — +o0o. By managing the first term in (4.2) as in Proposition 5.1 in [17],

observe that

Ko (up)
[[w 229(z) (et s D) )
- T
wlen  \Dy,€942r, Dy, 2%(23) - @' D2 u+r, D2 €% - a/+r22'TD2 20 '

1 T
en — D2l ( D2 .. ;)
+// w T dx
wJO 1

2 a a
EDw’,wgun Dig Unp,
still converges to
2z¢ Dy )"
/ w( Zwe) (Def®)7) (4.6)
a D, £ Dggua

Since (4.5) and (4.6) are true for all 2 € WP (w; R®), and z* € WP (0, 1[; R**%)
respectively, from the properties of I' convergence, it results that

inf{hmmf( n(u )+h—K”( )> (ud,ul) € Uy < (ug, upy) — (u®,u’) in W,

n

( LD ’U'n7 h1 Dzsun) - (§a7€ ) m L;D}
a a\T
< inf {/ W< 22 (Dayt®) )dm
zaEWOZ’p(]0,1[;R3X4),zbEW§’p(w;R3) a (Drsg ) D.’tsu
D%y (Dg 0T
+q/QbW<(DZ/§b) 221) d.’L‘ .

On the other hand, from the density of WP (w; R?) in LP(w; R?), and of W3P(]0,
1[;R***) in L?(]0, 1[; R®**) the dominated convergence theorem

(4.7)

inf
20 €WZP(]0,1[;R3%4) 20 €W 2P (w;R3)

2,0 ( 933£a - D2,u (lefb)T .
Lo (e Yoo, ")

2 (AVE
(oo 758" )}

11
ze€Lr(]0,1[;R3%4) zbe LP (w;R3)

(o <5sfi Jasta [

S
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Since 2z and 2° are independent from each other, one can re-write (4.8) as
. 227 (D, &N)T
f %% 3 d
soeLn(01[RI*) {/ ((Dmga) Diut )™

D2ub (D )T
inf W l' z d
ca,int A ow( (oo P8 )i

Define two auxiliary funcTtions g J0,1[xR* — R by g(x3,2%) = W

( (Dmf;(xg)) (Dx;§§3(5a3)) > and f : wxR® — R by f(z,2)) = W
D2u(a) (Dar€ ()T

(ua@w» 2:b

tions. By (3.3), (3.4) and applying the measurable selection lemma, cf. [10] and

[24], it can be deduced the existence of two measurable functions 2§ and z§, such

that

. It is easily seen that they are Carathéodory func-

W (D2 u®(xs), Dy (w5)) = W ( <Di§gfi)3>>(%§i5f£§f ) for a.e. z3 €]0,1[,

and

Diu’(z') (Dw€(2')"
Dy*(a'))  224(a)

Due to the coerciveness assumption (2.2), z¢ € L?(]0,1[;R***) and 2§ €
LP(w;R?), and thus

a\T
inf {/ W( 22@ (Day£%) >dz
zaEW&’”(]O,I[;RSX[‘),z”EWQp(w R3) a w3§ ) D£E3u
DQ’ub (D § 2 ,a a 4
p 9
+q/QbW ( (Doeh) 2 dx / W(D2u?, D, 6% dzy  (4.9)

WO( z/u D f)

w

wwzm<mm@uw=W((

) for a.e. 2’ € w.

(4.7), (4.9), Lemma 3.3, Remark 3.5 and the sequential lower semicontinuity of ‘T’
upper limit’ entail that

h"l .
i it (K245 KEC)) (00800 ), 0 2) ) i W17,

<1D " D%un) — (£%,¢%) in L”} (4.10)

/ W** Disu“,Dﬁf“)dJ;g—l—q/ QAQWO(DiIUb,lefb)dx/
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The next result deals with the lower bound for our I' limit.

Proposition 4.2 Let W be a function satisfying (2.1), and (2.2). For every n €
N, let K&, Kb and U, be as in (1.7), (1.8), and (1.9), respectively. Let VP be as in
(2.3). Assume that (1.2) and (1.6) hold. For every (u®,u’ £, €%) € VP it results
that

in {hmmf (( HORSLTION <un,uz>) (o) € Uy,
() = (s W, (LD L Dmun)ﬂsa,sb) 2}

Z/ W**(Dﬁsu“,Dxaﬁa)dxg—Fq/QA2W0( x,u D, E)
0

w

(4.11)

Proof. The arguments used in the proof are very close to those used in [24], but
here there is the presence of suitable A-quasiconvex functions and of coupled
functionals. Take (u®,u®, &%, £%) € VP, Considered the sequence {(u®(x3) + 7,2’
£%(23), ub(2') +hpz3€®(2")) b, it results that K (ud+r,a’-£%)+ 2 Kb (ub+-h,25€°)
is bounded uniformly in n. Consequently inf{lim inf,, ((Kﬁ() + %Kﬁ()h) Hu®,
ub, €9, €%) is also bounded. By the very definition of I' -lower limit there exists a
sequence {u?,ub} € U, such that (u2,ub) — (u®,ub) in WP and ( Dl %
ngu,I) — (€2, in LP. Clearly Proposition 3.1 provides the weak convergence
of (u®,ul) to (u®,ub) in W2P(Q% R*)xW?2P(QP; R®) and of ( Dyru&, hl Dmgun)
to (£%,€%) in WhP(Q*; R¥*>*) x WP (QP; R?). Moreover it results that

T
LDQ,u‘}L ( D2 ul ) (1 5
/W 3 de/ W Ddxlun,D up | dx
a 2 a D2 a a
( D ,un> s Un
T rkk 1 2 2 a
> w rD oz Uns Dyt | d.

r3,T
1 2 1 2 b T
/ W s ¥ hn s, dch/ Wo < 92% oul, D% ul )d:p
o \( D2 ,ug) D2, @\

r3,T

Z/ Q.A2WO(D927 ]’L Dg T3 n)dl’
Qb

To obtain the last inequalities one can observe that for fixed z':

1 1
~ 1 .
/W( D:, oul, D2 u ;3) dxgz/ W**( D3, ul, D2, ;l,) dzs,
0 0
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and for fixed z3:

1 1
/ Wo (Di,uz, . 92:3@,112) dz' > / Q2 Wo (D2 u?, . 2 i)
w n w n

We can observe that Q 42Wy : Sym(R**?)x M3*2 — [0, +o0[ is A —quasiconvex
and continuous (see [27]).
We can define a new function Z : Sym(R**3)x M3*3 — R as

Z(H|B) = Q42 Wo(h), (4.12)

where &; = B;;, ©=1,2,3, j = 1,2 and h is such that h;k = H;k, i=1,2,3
and j,k = 1,2. The function Z is A— quasiconvex in the sense of the differential
operator A? defined by the system of PDE’s:

AV = (A3H, A1) (4.13)

where

0 0
ASH = <Hl‘k - ka) )
ox; 7 Oz ik, l=1,....3

where Q3 =0,1[* and H € C32,(Qs, Sym(R?)). Furthermore

oB:  9Bi
AB= |- - —£ :
8xk 81']' .
i,5,k=1,2,3

Arguing as in Remark 2.4, it can be shown that A? satisfies the constant rank
property and that

KerA®(w)
= {(X,V)eSym(R®)x M**3:(X, V)=(baw®?, a@w), b € R®,a € R?} | (4.14)

where w®? stands for wgw (see also [18] for details). To prove the A*-quasiconvexity
of Z, we consider a test function w € C25.(R?, Sym(R**)x M**%), w = (wpy,wsp)

which satisfies the constraint A%w = 0 and such that an w(y)dy = 0. It is easy
to see that for every 3 fixed we have w(-,z3) € ngr(]RQ, Sym(R**?)x M3*2), as
w(-yz3) = (Wi (-, 23),we (-, ¢3)), in the sense that A3wy, = 0, Afwe = 0.

We also have [, wdz’ = 0, which follows from (4.13), [, wdz = 0 and
the periodicity of w. Indeed, given (H, B) € Sym(R***)x M3*3, from (4.12) and
Definition 2.2 it follows

/ Z((H|B) + w(z))dz / Qe Wol(BIB) + (wn|wn))da' das
Q 0 JQ2

Y

1
/ Q.2 Wo (h, b)da' das — / Z(H|B)dz.
0 JQ2 Q
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It can be easily verified that the function Z is bounded from below and also
satisfies the same growth condition as W, hence Theorem 3.7 in [11] ensures that
Gy : W2P(QY R xWEP(QF; R?) — R, defined as Ga(u®, £°) := [, Qa2Wo (D2,ub,
Dx/ﬁb) dz is lower semicontinuous. An analogous (even easier) argument, ensures
the same property for G : W2P(Q% R¥)xWP(Q*; R**?) — R, defined as G (u?,

“) = [ W (D?mu“, Dm&“) dz. Hence one can write

12 0 (
2 D?u
. . 2 4
lim inf / W 1T" v I3’
n 2 a u
¢ <ED1‘3,7;’un) 3:3 Up,
112 1 2
+h%l/ w |, #Pn (7D
Tn Jab (1 D2 I/U ) D2/U

> lim inf (G1 (qu7 Dz/u%> + h—GQ ( T —Dg,u ))
n Tn

hn 1
> hm inf G, ( T—Dm/u > + lim inf TTGQ (ufw th3uz>
n n n

n

Z Gl(uaa Sa) + qGQ(ub7 fb)
1
- / W**(D?u®, DE%)das + q/ Q2 Wo(D?u?, de®)da’
0 w

and this concludes the proof. O

Theorem 4.3 Let W be a function satisfying (2.1), and (2.2). For every n € N,
let K&, K and U, be as in (1.7), (1.8), and (1.9), respectively. Let V be as in
(2.4). Assume that (1.2) and (1.6) hold.

e Jrimnt ((1620) + 2220, <un,u2>) (1) € Un, (1%, u8)

n
n

1
— (u,ub) in WP, (rD " Dmun) — (£,€%) in Lp} (4.15)

1
= / W**(D2,u®, Dy, £")das + g / Q2 Wo(D2ub, D,/ €% da’
0 w

for every (u®,ub, €%, €%) € V.. Furthermore the T lower limit is a T limit.

Proof. The theorem is a direct consequence of Propositions 4.1 and 4.2 and of
Definition 2.5. O

Theorem 4.4 Let W be a function satisfying (2.1), and (2.2). For every n € N,
let K&, Kb and U, be as in (1.7), (1.8), and (1.9), respectively. Assume that (1.2)
and (1.6) hold.
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inf {liminf ((Kﬁ() + h;Kﬁ()) (u%ub) : (ui,u%) ceU,, (ufl,ul,’l)
n r

n *

1 1
— (u®,u®) in WHP, (TDI,uZ, = ISuZ) — (£%,€%) in Lp} (4.16)

1
= / W** (D2, u®, Dy, £%)das + q / Qu2Wo(D2ub, D) da!
0 w

for every (u®,ub, €%, £%) € VP. Furthermore the T' lower limit is a T limit.

Proof. The statement will be achieved by double inequality. Take (u®,u’, £, £%) €
VP then one inequality follows from Proposition 4.2. It remains to prove the
converse one. By virtue of Proposition 2.1, the growth condition (2.2) inherited
by Q42Wy and W**, and standard relaxation arguments, allow us to say that
smooth recovery sequence can be used in Lemma 3.3, thus getting

1
/ W**(Dggua,ngﬁa)dmg,—i—q / Q2 Wo(D2ub, D,/ €% da’
0

1 w
lim inf i W (D2, u®, Dy, £8)das + q / Wo(D2ul, D, €0)da’
= inf ¢ ((u%,ub), (65,€0)) € V,ul —u® in W>P(J0, 1;R?),

& — €% in WHP(0, 1R,y — u” in WP (w; R),
&, — & in Whr(w;RY)
(4.17)

Since (4.17) holds, for any (u®,u’ £% &% € VP one can construct a diagonal
sequence still denoted by {(u2,u%)}, C U, such that (u2,u’) — (u®, u’) in WP,

n? n n? n

(iua L u%) — (£€2,€%) in LP and

T N hy

B '
i (K20)+ 200 )t = [ (D200 Drnga

n *

+q / Q2 Wo(D2u®, D, %) da’

and this concludes the proof. O

5 The Case s=1

In this section we generalize the result presented in [13] (for a quasilinear Neumann
problem) to the non-convex case. We just sketch the main steps needed to get
the main result, since most of the theorems are already established in [13] (in
the Neumann context, yet with a straightforward generalisation to the Dirichlet
framework) and other results can be easily obtained by adapting to the gradient
context the propositions and lemmata proven in the previous sections for the case
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of non simple grade two materials. The thin multi-domain, that we consider here,
is the multi-structure §2,, as in figure 1, with the characteristic lengths h,, and
ry, satisfying assumption (1.2) and (1.6). Let p > 1, and assume that the energy
density

WM SR (5.1)

is a continuous function such that there exist three constants « € R and 3,C > 0
for which

1
a+5|F|”§W(F)§6+C|F|p (5.2)
for every F € M®*®. The model can be described through an energy of the kind

/ W(DU,)dz, (5.3)
Qp

where the admissible fields U, € W'?(Q,,;R?) verify the boundary condition as
in section 2, namely we require that U, coincide with ¢* on the top of Q% with
f% on the lateral boundary of Q2 for f* € WP (w; ]RS). By adopting the same
re-scaling as in (1.4) we obtain the following energy in Q = Q4 U QP = wx] —1,1]

1 h 1
En(u®,ul) := / W (leuZ,Dw3u2> dzr + %/ w (Dwzuf17 Dmufl) dz,
Qa Tn Tn Jab hn
(5.4)
with the following junction condition
u®(2',0) = ul (r,2’,0) a.e. in w. (5.5)

We describe the limit energy as n — 400, when the volumes of Q¢ and Q°
tend to zero with the same rate, i.e. (1.2) and (1.6) hold. Define

U — (ut, ub) € (¢ + WhP(Q4R?)) x (fb + Wl}’p(Qb;R3)> : (5.6)
! ut(z',0) = ub(r,z’,0), 2’ ae. inw .

with 7, By, ¢, and f® as defined before, WP (2% R?) the closure, in WP, of
{u® € C>°(Q%;R?) : u* = 0 in a neighbourhood of wx{1}} and Wbl’p(Qb;RB) the
closure in W7, of {ub € C>°(QP;R?) : u’ = 0 in a neighbourhood of dwx] —
1,0[}. Furthermore we can still assume that (1.10) holds. A compactness result
analogous to Proposition 3.1 still holds, (cf. Proposition 2.1 in [13] where the
dead loads played the role of prescribed boundary data) by replacing the boundary
conditions of U,,, with those of U/, and the convergences in Proposition 3.1 with the
weak convergence in W'P(Q%R?)x WP (Q% R?). Actually the arguments used
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there can be adapted to this framework by using standard cut-off functions. This
fact leads to consider the following problem:

inf {liminfEn(qu,uZ) Cu®,ul) e, (ul,ul) — (u®,u’) in Lp}, (5.7)
where E,, (u?,u®) has been extended to +oo in (LP(Q%;R*)x LP(Q; R*))\U/,. The

limit functions u® and u®, do not depend on z’ and x3 respectively, and junction
conditions, in this case, as emphasized in [13], are the following:

i) the limit problem is uncoupled if 1 < p < 2,

ii) coupled by the junction condition: u®(0) = u®(0’) if p > 2.

The following theorem can be proved

Theorem 5.1 Let W be the energy density in (5.1), satisfying (5.2). For every
n € N, let E,, be the functional introduced in (5.4) and U], be as in (5.6). Assume
that (1.2) and (1.6) hold. Then

inf{liminfEn(qu,uZ) Cul,ul) e U, (ul,ul) — (u®,ul) in Lp} =

n»'n
n—oo

L. (5.8)
/ W** (Dyyu®) + / OWy (Dyrub)da’
0 w
for every (u®,ub) € WH(]0, 1[; R®*) x WP (w; R?) with u®(1) = %, ub(z') = f°(z)
on 0w and u®(0) = u®(0") if p > 2.

We recall that W : R?> — R is the function defined by

W)= it W(flglh) (59)

while W7 : R**? — R is the function defined by

AN ’
Wi(E") = inf W (F'|1) (5.10)

The analogous of Remark 3.2 still holds. Furthermore the energy densities appear-
ing in (5.8) are respectively the convexification of W according to definition (2.5)
and the quasiconvexification of W7 defined in (2.7).

Sketch of the proof. The structure of the proof (again relying on I' convergence
arguments) is analogous to the case s = 2. Namely (5.8) follows by double inequal-
ity. By the same token as above, we need the following analogue of Lemma 3.3,
dealing with relaxation of 'coupled’ functionals, if p > 2, whose proof is omitted
since entirely similar to the mentioned Lemma:
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Lemma 5.2 Let W be the energy density in (5.1), satisfying (5.2), let W and Wi
be the functions in (5.9) and (5.10). Letp > 2, for every (u®,u’) € WHP(]0, 1[;R?)
XWLP(w; R?) with u®(1) = ¢*, ub(x') = fo(x') on dw, define the functionals

1
lim inf W(nguﬁ)dxg—l—q/ Wl(Dx’ui’l)dx’} :
n—oo 0 w

(up, up) € WHP(0, 1[ R x W (w; RY),

ul (1) = ¢, ub (2') = f(2') on Ow, ’
u® — u® in WHP(]0,1[; R?),

ul — b in WP (w; R?), u2(0) = ub (0')

r'n

Io(u®, u®) = inf

then
1 ~
Io(u®, ub) :/ W**(Dmu“)dm—&—q/ QW1 (Dyub)da’
0 w

for every ((u®,ub) € WP(]0,1[;R*)xW'P(w; R?) with u®(1) = ¢, ub(2') =
fb(z') on Ow.

If 1 < p < 2 there is no need of proving such results because the limit problem is
uncoupled, the relaxed functionals have separate behavior and no junction enters
in the proof of the main theorem. The proof of the lower bound in entirely sim-
ilar to that of Proposition 4.2. The main difference consists of replacing the A2
quasiconvexification of Wy with the quasiconvexification of W and in applying
the well known semicontinuity result, established in [2], instead of Theorem 3.7
in [11]. The upper bound is first obtained in a dense subset of the limit space,
in analogy with [13]. More precisely a density result similar to Proposition 3.1 in
[13] still holds (using the proof of that result and cut-off functions) by considering
a class of functions which also verifies the boundary conditions of the limit ones.
Next one can 'mimic’ the proof of Proposition 4.1 to get the I' lim sup inequality,
by adopting the following 'recovery sequence’:

@ (3) = (rnz’ - 2%(en) + u(en)) 2 + v (rpa’) faztn if ¢ = (2', 23) € wx|0,&n],
e rax’ - 2%(xz3) + u(x3) if & = (2/,x3) €len, 1]

U

and

ul () := hpas32®(2’) + u (') if z € QF,
where {e,} is any sequence converging to 0 as {r,}, the functions u® and u’
belong to the dense subspace, 2% € W, *(]0,1[;R**?) and 2> € Wy*(w; R®). The

final step consists of applying the same diagonal argument as in Theorem 4.4. [J

6 Conclusions

e It is worthwhile to mention the fact that by virtue of the coercivity assump-
tions (2.2) and (5.2) made on the energy density both in the case s = 2 and
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s = 1, the families of functionals {K%(-) + 2 K’} and {E,} are equico-
ercive according to what stated in Definition 2.6, convergence of almost
minimizers of these families in the classes U,, and U, respectively, to the
minimizers of fol W** (D?u®, DY) das + q [, Q2 Wo(D?ub, DE¥)dz’ and of
fol W**(Du®)dxs + q [, QW1 (Du’)da’ respectively, follows, in the spirit of
Theorem 2.7.

e The argument used in the proof of Proposition 4.1 for the construction of
the ‘recovery sequences’, i.e. the choice of 2 and z® independent of z’ and
3 respectively and the definitions of Wy, W and Wy, W in (3.4), (3.3) and
(5.10), (5.9) can be regarded as a way of obtaining a slight improvement
to the representation results obtained in Theorem 1.1 in [17] and Theorem
1.1 of [13] also in the convex case, in the sense that one could first take the
infimum on the last variables z, thus obtaining energy densities still convex
but explicitly depending only on (u®,u’, £%,€%) if s = 2 ((u®, u?) for s = 1).

e As we already observed this paper is not aimed by investigating junction
conditions but just by showing what is the asymptotic behavior of hypere-
lastic or grade two materials filled multi-structures as in figure 1, when the
energy density is not convex. Because of the physical relevance of this ques-
tion, both for describing thin hyperelastic structures (s = 1) and for non
simple materials thin multi-domains (s = 2), we just considered the case
N = 3. The mathematical problems can nonetheless be managed also for
N > 3, as they have been developed in [13] and [17] in the convex context.
Clearly the junction possibilities in the limit could be different from the
cases presented here, since they explicitly depend on the relations between
the Sobolev exponent p and the space dimension N. Actually when s =1
there is no difference in the proof of Theorem 5.1 (since the only junction
conditions are analogous to ¢) and i), namely the limit problem is

i) uncoupled if 1 <p < N — 1,

ii) coupled by the junction condition: u®(0) = u®(0) if p > N — 1.

The proof differs just for the fact that the limit functions (u®, u®) are defined
in RxRY 1 respectively, rather than RxR? and being RY rather than R3.

A new facet shows up for s = 2. Apart from the obvious variations in
domain and codomain of functions, in this case the junction conditions can
be summarized as follows: the limit problem is uncoupled if 1 < p < %,
“partially” coupled if % <p< N —1, and coupled if N — 1 < p. On the
other hand also the transmission conditions in U, are different since the
traces on the junction surface at z3 = 0if 1 < p < % are meaningless.
As in the case s = 1 both the compactness theorem and Theorem 4.4
carry over to the NN- dimensional case. The same can be said also for
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the previous results and lemmata. The proofs are identical to case N = 3
when the limit problem is partially coupled and coupled. The situation is
slightly different albeit simpler when 1 < p < %, since in this case there
is no need for a result such as Lemma 3.3, because the limit functionals are
really independent and the relaxation procedure works separately.
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