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Abstract. Our aim consists of studying, in the spirit of Gamma conver-
gence, a dimension reduction problem for a multi-domain filled of either an
hyperelastic material or a non simple grade-two one. We derive asymptoti-
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1 Introduction

The purpose of this article is to derive the energy density of a multi-domain consti-
tuted either by non simple grade two material or by a hyperelastic material, both
described through non convex bulk energy densities, by making use of the basic
principles of the Γ convergence method. It is a sequel of previous works investigat-
ing junction conditions in thin multi-domains modelled either by convex second
order bulk energies or by convex energies depending on the first order derivatives
of the displacement, see [17] and [13], respectively. The bulk of presented proofs
is mainly concerned about the second order case, and we present the result in
the gradient case just in the last section, the motivation being that, though not a
corollary the gradient case can be given in a more classical framework.

The model problem can be described through∫
Ωn

W (DsUn)dx (s = 1, 2) (1.1)

where Ωn stands for the thin multi-domain, as in figure
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Figure 1 The thin multidomain.

W is a continuous energy density with p growth (p > 1) from above and
below, that may be defined either on triples of symmetric 3×3 matrices or on 3×3
matrices, in dependence on the fact that the model describes non simple grade
two materials or takes into account ’classical’ nonlinear elastic energies, and Un is
the deformation defined on Ωn subject to suitable boundary condition, while Ds

stands for the derivatives of order s = 1, 2. In the sequel, x = (x1, x2, x3) = (x′, x3)
denotes the generic point of R

3, M
m×N , the set of m×N matrices, Sym(Rk×k)

(for k = 3, 2) the set of the triples of completely symmetric k×k- bilinear forms.
We denote by D and D2 the gradient and the hessian tensor, while, Dx′ and D2

x′ ,
Dx3 and D2

x3
stand for the gradient and the hessian tensor with respect to the first

2 variables, for the first and the second derivative with respect to the last variable,
respectively. Then, according to these notations, D2

x′,x3
stands for Dx′(Dx3).

Let s = 2, let ω ⊂ R
2 be a bounded open connected and simply connected

set such that the origin in R
2, denoted by 0′, belongs to ω and L2(ω) = 1, and let

{rn}n∈N
, {hn}n∈N

⊂]0, 1[ be two sequences such that

lim
n
hn = 0 = lim

n
rn. (1.2)
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For every n ∈ N, consider the thin multi-domain Ωn = Ωa
n ∪ Ωb

n (a for
“above”, b for “below”) union of two vertical cylinders, one placed upon the other:
a “wire” Ωa

n = rnω × [0, 1[ with small cross section rnω and constant height, a “
thin film” Ωb

n = ω×] − hn, 0[ with small thickness hn and constant cross section.
Moreover, set Ω = ω×] − 1, 1[.

For every n ∈ N, consider the transformation fields Un corresponding to
equilibria, namely those fields which minimize or almost minimize the energy

Un −→
∫

Ωn

W
(
D2Un

)
dx =

∫
Ωn

W

(
D2

x′Un

(
D2

x′,x3
Un

)T

D2
x′,x3

Un D2
x3
Un

)
dx, (1.3)

among all the functions Un ∈ W 2,p(Ωn; R3) realizing the Dirichlet boundary
condition ca + da · x′ (the · here represents the row column product) on the top
of Ωa

n, and f b + gbx3 on the lateral surface of Ωb
n, for some ca ∈ R

3, da ∈ R
3×2

and f b, gb ∈ W 2,p(ω; R3). As it is usual, one tries to reformulate the problem on
a fixed domain through appropriate re-scalings which map Ωn into Ω := Ωa ∪ Ωb.
Namely, by setting

un(x) =



ua

n(x′, x3) = Un(rnx′, x3), (x′, x3) a.e. in Ωa = ω × [0, 1[;

ub
n(x′, x3) = Un(x′, hnx3), (x′, x3) a.e. in Ωb = ω×] − 1, 0[;

(1.4)

it is easily seen that ua
n ∈ W 2,p(Ωa; R3) assumes the re-scaled Dirichlet boundary

condition ca + rnd
a ·x′ on the top of Ωa, ub

n ∈ W 2,p(Ωb; R3) assumes the re-scaled
Dirichlet boundary condition f b+hng

bx3 on the lateral boundary of Ωb. Moreover,
un = (ua

n, u
b
n) satisfies the following junction conditions:


ua
n(x′, 0) = ub

n(rnx′, 0), x′ a.e. in ω;

1
rn
Dx′ua

n(x′, 0) = (Dx′ub
n)(rnx′, 0), x′ a.e. in ω;

Dx3u
a
n(x′, 0) =

1
hn
Dx3u

b
n(rnx′, 0), x′ a.e. in ω;

and is an admissible field for the re-scaled energy:

un = (ua
n, u

b
n) −→

∫
Ωa

W




1
r2n
D2

x′ua
n

(
1
rn
D2

x′,x3
ua

n

)T

1
rn
D2

x′,x3
ua

n D2
x3
ua

n


 dx+

hn

r2n

∫
Ωb

W




D2
x′ub

n

(
1
hn
D2

x′,x3
ub

n

)T

1
hn
D2

x′,x3
ub

n

1
h2

n

D2
x3
ub

n


 dx,

(1.5)
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among all the functions un subject to the same conditions of un. Our aim consists
of describing the limit energy in (1.5), as n → +∞, when the volumes of Ωa

n and
Ωb

n tend to zero with the same rate, i.e.

lim
n

hn

r2n
= q ∈]0,+∞[. (1.6)

Define

Ka
n : ua ∈ W 2,p(Ωa; R3) −→

∫
Ωa

W




1
r2n
D2

x′ua

(
1
rn
D2

x′,x3
ua

)T

1
rn
D2

x′,x3
ua D2

x3
ua


 dx, (1.7)

Kb
n : ub ∈ W 2,p(Ωb; R3) −→

∫
Ωb

W




D2
x′ub

(
1
hn
D2

x′,x3
ub

)T

1
hn
D2

x′,x3
ub 1

h2
n

D2
x3
ub


 dx, (1.8)

and

Un =
{

(ua, ub) ∈ (
ca + rnd

a · x′+W 2,p
a (Ωa; R3)

)×
(
f b+hng

bx3+W
2,p
b (Ωb; R3)

)
:

ua(x′, 0) = ub(rnx′, 0), x′ a.e. in ω;

1
rn
Dx′ua(x′, 0) = (Dx′ub)(rnx′, 0), x′ a.e. in ω;

Dx3u
a(x′, 0) =

1
hn
Dx3u

b(rnx′, 0), x′ a.e. in ω
}
,

(1.9)

with rn, hn, ca, da, f b and gb as defined before, W 2,p
a (Ωa; R3) the closure, with

respect to W 2,p-norm, of
{
ua∈C∞(Ωa; R3) : ua=0 in a neighbourhood of ω×{1}}

and W 2,p
b (Ωb; R3) the closure, with respect to W 2,p-norm, of

{
ub ∈ C∞(Ωb; R3) :

ub = 0 in a neighbourhood of ∂ω×] − 1, 0[
}
. Without loss of generality, we may

assume that

f b = 0 = gb a.e. in B, (1.10)

for some bi-dimensional ball B such that 0′ ∈ B ⊂⊂ ω . We seek to determine
the asymptotic behavior of

inf




lim infn

(
Ka

n(ua
n) + hn

r2
n
Kb

n(ub
n)
)

: (ua
n, u

b
n) ∈ Un,

(ua
n, u

b
n) ⇀ (ua, ub)in W 2,p,

(
1
rn
Dx′ua

n,
1

hn
Dx3u

b
n

)
⇀ (ξa, ξb) in W 1,p


,

(1.11)
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with ua, ub, ξa, ξb limit functions, ua and ξa just depending on x3 and ub and ξb

just depending on x′. We also emphasize that ua and ub represent the limit defor-
mations ’above’ and ’below’ of the limit multi-structure, while ξa and ξb, whose
appearance comes from the presence of a second order energy, can be interpreted
as Cosserat vectors for the limit multi-domain, namely ξa (a pair of triples) which
does not describe neither torsion or bending effect of the limit wire, but just keeps
memory of the deformation of the cross section of the original 3 −D wire, while
ξb, is a vector taking into account the limit deformation of the middle surface
of the 3 − D film and not describing bending effects of the limit film below. In
other words these vectors (two above in ξa and one below ξb) keep memory of
the unit normals to the middle curve (above) and surface (below) in the original
thick multi-domain. As regards the limit multi-structure, one can also say that
(ξa, Dx3u

a) constitutes the Cosserat triple for the ‘limit wire’, while (Dx′ub, ξb)
is the analogous one for the limit film. The choice of the topology in (1.11) will
be made clear in the sequel. The limit energy will be still represented through an
integral functional, namely it will be given, (on the class V p in (2.3) below) by

∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′, (1.12)

whereQA2W0 and Ŵ ∗∗ are suitable ‘convexifications’ of the original energy density.
We point out that, as proven in [17], the limit problem is partially coupled

by the junction condition:

ua(0) = ub(0′) if 1 < p ≤ 2,

and coupled by the previous junction condition for u and by the junction conditions:

ξa(0) = Dx′ub(0′), Dx3u
a(0) = ξb(0′) if 2 < p.

Moveover the minimizers of the limit problem depend also on the limit of the ratio
between the volumes of Ωa

n and Ωb
n.

The structure of the paper is the following. In section 2 some preliminaries
are established, dealing essentially with Γ convergence and convexity properties.
Since the case of non simple grade two materials is primarily considered, section 3
is devoted to establish compactness and semicontinuity theorems to be exploited in
the sequel. Section 4 concerns the Γ convergence result. Finally the fifth section
considers the case of hyperelastic energy density, i.e. the gradient case. Some
remarks, essentially dealing with multi-structures in R

N , for N > 3, both for
gradient and hessian cases, are given in the last section. There is also a final
remark showing that arguing as in Proposition 4.1 the limit energy can be better
described also in the convex case, through a fewer number of limit functions than
it has been done in [13] and [17].
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2 Notations and Preliminaries

In the thin multi-domain we introduce a bulk energy density of the kind W (DsU)
(s=1,2). First we consider the case s = 2, eventually we present the result for
the case s = 1. We recall that by Sym(R3×3) we denote the set of triples of
completely symmetric bilinear forms on R

3. Precisely, let

W : M ∈ Sym(R3×3) −→ W (M) ∈ R (2.1)

be a continuous function satisfying the following assumptions:

a+ α|M|p ≤ W (M) ≤ b+ β|M|p, ∀M ∈ Sym(R3×3);
for some a, b ∈ R, α, β ∈]0,+∞[ and 1 < p < +∞.

(2.2)

Moreover, in the sequel, for a given A ∈ Sym(R2×2), B ∈ R
3×2 and C ∈ R

3,

W

(
A BT

B C

)
means W (M), where M = (mi,j)

k=1,2,3
i,j=1,2,3 and (mi,j)

k=1,2
i,j=1,2 = A,

(m3,j)
k=1,2,3
j=1,2 = B, (mi,3)

k=1,2,3
i=1,2 = BT and mk=1,2,3

3,3 = C. To describe the limit

energy of the sequence in (1.11), as n → +∞, when the volumes of Ωa
n and Ωb

n

tend to zero with the same rate, (cf. (1.2) and (1.6)) we introduce the limit spaces
V p (we point out the strong dependence on p for the limit junction conditions):

V p =




{
((ua, ub), (ξa, ξb)) ∈ U×Ξ : ua(0) = ub(0′)

}
, if 1 < p ≤ 2;{

((ua, ub), (ξa, ξb)) ∈ U×Ξ : ua(0) = ub(0′),

ξa(0) = Dx′ub(0′), Dx3u
a(0) = ξb(0′)

}
,

if 2 < p;
(2.3)

where

U =
(
ca +W 2,p

a (]0, 1[; R3)
)×

(
f b +W 2,p

0 (ω; R3)
)
,

Ξ =
(
da +

(
W 1,p

a ]0, 1[; R3×2))×(gb +W 1,p
0 (ω; R3)),

(W 2,p
a (]0, 1[; R3) is the closure, with respect toW 2,p-norm, of {ua ∈ C∞([0, 1]; R3) :

ua = 0 in a neighbourhood of 1}.)
Introduce the auxiliary space:

V =
{

(ua, ub, ξa, ξb) ∈ (
ca + C∞

a ([0, 1]; R3)
)× (

f b + C∞
0 (ω; R3)

)×(
da +

(
C∞

a ([0, 1]; R3×2)
))× (

gb + C∞
0 (ω; R3)

)
:

ua(0) = ub(0′), Dx′ub(0′) = ξa(0), Dx3u
a(0) = ξb(0′)

}
,

(2.4)
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where C∞
a ([0, 1]; R3)=

{
ua ∈ C∞([0, 1]; R3) : ua(1)=0, Diua(1) = 0 ∀i ∈ N

}
. We

point out that assumption (1.10) gives a meaning to the junction conditions in
the definition (2.4). The following density result will be exploited in the sequel
(see Proposition 4.1 in [17]).

Proposition 2.1 Let V p and V be as in (2.3) and (2.4), respectively. Then V is
dense in V p.

In order to obtain the representation result we need to recall some well known
notions of convex analysis, as well as some more general properties, essentially
concerning A-quasiconvexity. Let g : R

d → R be a function, the convex envelope
of g is the function

g∗∗ = sup{h ≤ g : h convex }. (2.5)

Consider a collection of linear operators A(i) ∈ Lin(Rd ,Rl), i = 1, . . . , N , and
define

Av :=
N∑

i=1

A(i) ∂v

∂xi
, v : R

N → R
d,

A(w) :=
N∑

i=1

A(i)wi ∈ Lin(Rd,Rl), w ∈ R
N ,

where Lin(X,Y ) is the vector space of linear mappings from the vector space X
into the vector space Y . Furthermore assume that A satisfies the constant rank
property, i.e. there exists r ∈ N such that

rankA(w) = r for all w ∈ SN−1

(where SN−1 is the unit sphere in R
N ). Here and in the sequel Q will denote the

unit cube in R
d: i.e. Q :=]0, 1[d.

Definition 2.2 A Borel function f : R
d → R is said to be A-quasiconvex if

f(v) ≤
∫

Q

f(v + w(x))dx for every w ∈ C∞
per(R

N ; Rd) ∩ KerA,
∫

Q

w(y)dy = 0.

Recall the notion of A-quasiconvexification, which extends to the A-free setting
(i.e. test functions in KerA ) the notion of ‘quasiconvexity’.

Definition 2.3 Given a Borel function f : R
d→R, the A−quasiconvexification

of f at v ∈ R
d is given by

QAf(v) := inf
{∫

Q

f(v + w(x))dx : w ∈ C∞
per(R

N ; Rd) ∩ KerA,
∫

Q

w(y)dy = 0
}
.
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i) It is worthwhile to observe that the convexification in (2.5) can be obtained
as a particular case of A-quasiconvexity, i.e. when the operator A is 0, i.e.
with no constraints on the admissible fields.

Let Ω be connected and simply connected.

ii) Consider a matrix-valued function v : Ω ⊂ R
N → M

m×N and define the
operator A as the curl operator, i.e.

curlv = 0, i.e.
∂vjk

∂xi
− ∂vji

∂xk
= 0, 1 ≤ j ≤ m, 1 ≤ i, k ≤ N,

then

KerA(w) = {v ∈ M
m×N : A(x)v = 0} = {v ∈ M

m×N : v = a⊗w,
for some a ∈ R

m}.
In this case the well known notion of quasiconvexity is recovered and the
formula stated in Definition 2.2 becomes

f(v) ≤
∫

Q

f(v + ∇w(x))dx for every w ∈ C∞
0 (Q; Rm) (2.6)

analogously the A-quasiconvexification in Definition 2.3 recovers the usual
quasiconvexification, or equivalently the quasiconvex envelope,

Qf(v) := inf
{∫

Q

f(v + ∇w(x))dx : w ∈ C∞
0 (Q; Rm)

}
, (2.7)

with Q =]0, 1[N .

Let E be a nonempty set and Q2 be the cube ]0, 1[2 and C∞
per(Q2;E) the set

of smooth functions defined and periodic on Q2 with values in E. In the sequel
it will be made a large use of the subsequent differential operator A2 := (A2

2,A2
1)

given by

A2 : v ≡ (h, ξ) ∈ Sym(R2×2)×M
3×2 → (A2

2h,A2
1ξ) (2.8)

where

A2
2h =

(
∂hi

j1

∂x2
− ∂hi

j2

∂x1

)
i=1,2,3,j=1,2

and A2
1ξ =

(
∂ξi

1

∂x2
− ∂ξi

2

∂x1

)
i=1,2,3

.

Remark 2.4 It is easily verified that{
h ∈ C∞(Q2;Sym(R2×2)) : A2

2h = 0,
∫

Q2

hdx = 0
}

=
{
D2

x′u : u ∈ C∞
per(Q2,R

3)
}
.

(2.9)
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In fact, for every i = 1, 2, 3, if A2
2h

i = 0 then hi
jk = ∂wi

j

∂xk
for some functions wi

j ∈
C∞

per(Q2,M
3×2) with average zero. Note that wi

j is periodic since hi is periodic
and

∫
Q
hidx = 0. Then, by the symmetry of hi

jk with respect to i and j, it results

curlwi = 0 and we conclude that hi
jk = ∂2ui

∂xk∂xj
for some ui ∈ C∞

per(R
2; R). The

operator is a constant rank operator. Indeed, for every w ∈ S1, we have

kerA2
2(w) =

{
X ∈ Sym(R2×2) : wiX

l
jk−wjX

l
ik = 0, i, j = 1, 2, k = 1, 2, l = 1, 2, 3

}
=
{
b⊗ w ⊗ w, b ∈ R

3} , (2.10)

so dim KerA2
2(w) = 3. Also{

ξ ∈ C∞(Q2,M
3×2) : A2

1ξ = 0,
∫

Q2

ξdx = 0
}

=
{
Dαϕ : ϕ ∈ C∞

per(Q2,R
3)
}
,

(2.11)

and for every w ∈ S1 it results KerA2
1(w) =

{
V ∈ M3×2 : A2(w)V l = 0, l = 1, 2, 3

}
=
{
wiV

l
j − wjV

l
i = 0, l = 1, 2, 3, i, j = 1, 2

}
=
{
a⊗ w, a ∈ R

3} and dim KerA2
1(w)

= 3. It follows immediately that A2 is a constant rank operator, and for every w ∈
S1, KerA2(w) =

{
(X,V ) ∈ Sym(R2)×M

3×2 : (X,V ) = (b⊗w⊗2, a⊗w), b ∈ R
3, a ∈

R
3} , where w⊗2 stands for w⊗w. For every v ∈ Sym(R2×2)×M

3×2, with v

= (h, ξ), for every Borel function f : Sym(R2×2)×M
3×2 → R, we have

QA2f(v) = inf
{∫

Q

f(v+w(x))dx : w ∈ C∞
per(Q2;Sym(R2×2)×R

3×2) ∩ KerA2,∫
Q2

wdx = 0,
}
,

or, equivalently,

QA2f((h, ξ)) = inf
{∫

Q2
f((h+D2

x′u, ξ +Dx′ϕ))dx : ϕ ∈ C∞
0 (Q2; R3),

u ∈ C∞
0 (Q2,R

3)
}
.

(2.12)

We end this section by recalling the main features of Γ convergence, see [9] for
more details.

Let (X, τ) be a topological space. Given a sequence of functionals Fn : X →
R ∪ {+∞}

Γ − lim inf
n→∞ Fn(x) := inf{lim inf

n→∞ Fn(xn) : xn → x in τ},

Γ − lim sup
n→∞

Fn(x) := inf{lim sup
n→∞

Fn(xn) : xn → x in τ}
(2.13)

which are called, respectively, the Γ lower limit and the Γ-upper limit at the
point x.
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Definition 2.5 We say that a sequence Fn : X → [−∞; +∞] Γ- converges to a
functional F : X → [−∞,+∞] at a point x ∈ X, and we write

Γ − lim
n→∞Fn(x) = F (x)

if
Γ − lim inf

n→∞ Fn(x) = Γ − lim sup
n→∞

Fn(x) = F (x).

We say that a sequence of functionals Γ-converges on a set if it Γ-converges at
every point of the set.

It can be easily verified that a sequence Fn : X → [−∞; +∞] Γ-converges to a
functional F : X → [−∞; +∞] if the following two conditions hold:

i) for every sequence xn ∈ X converging to x in τ one has

lim inf
n→∞ Fn(xn) ≥ F (x);

ii) there exists a sequence xn ∈ X converging to x in τ and

lim
n→∞Fn(xn) = F (x).

The next definition and result enlighten the behavior of the ‘almost’- minimizers
of a sequence {Fn} with respect to the the minimizers of its Γ-limit F .

Definition 2.6 The sequence Fn is said to be equi-coercive if for any real number
M there exists a τ -compact and a τ -closed subset KM of X such that

{x : Fm(x) ≤ M} ⊆ KM for every n.

Proposition 2.7 Let us assume that Γ-limn→∞ Fn = F on X and that the
sequence Fn be equi-coercive. Then it results that

i) F is τ -lower semicontinuous;

ii) F is τ -coercive;

iii) if xn ∈ X satisfy lim infn→0 Fn(xn) = lim infn→∞ inf Fn (e.g. if xn mini-
mizes Fn) then

a) if xn → x in τ then x is a minimizer of F on X and limn→∞ Fn(xn) =
F (x);

b) there is a sequence {xnk
} ⊂ X and a minimizer x of F on X such that

xnk
→ x in τ .
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3 Compactness and Lower Semicontinuity

In order to perform our asymptotic analysis we will also make use of the following
compactness result whose proof can be found in Section 6 of [17], observing that
the proof only uses (2.2) and the fact that the sequences are energy bounded ones.

Proposition 3.1 Let W be a function satisfying (2.1) and (2.2), and let, {(ua
n,

ub
n)} an energy bounded sequence, in the sense that (ua

n, u
b
n) ∈ Un for every n

and lim supn

(
Ka

n(ua
n) + hn

r2
n
Kb

n(ub
n)
)

≤ C. Let V p be as in (2.3). Assume that
(1.2) and (1.6) hold. Then, there exist an increasing sequence of positive integer
numbers {ni}i∈N and ((ua, ub), (ξ

a
, ξ

b
)) ∈ V p, depending possibly on the selected

subsequence {ni}i∈N, such that

ua

ni
⇀ ua weakly in W 2,p(Ωa; R3),

ub
ni
⇀ ub weakly in W 2,p(Ωb; R3),

(3.1)




1
rni

Dx′ua
ni
⇀ ξ

a
weakly in W 1,p(Ωa; R3×2),

1
hni

Dx3u
b
ni
⇀ ξ

b
weakly in W 1,p(Ωb; R3).

(3.2)

Recalling that for every H ∈ Sym(R3×3), the decomposition, after the re-
scaling, is the following

H =
(
h ξT

ξ c

)

with H ∈ Sym(R2×2), ξ ∈ M 3×2 and c ∈ R
3 in the sequel we exploit the functions

Ŵ (c, ξ) = inf
h∈Sym(R2×2)

W

(
h ξT

ξ c

)
, (3.3)

and

W0(h, ξ) = inf
c∈R3

W

(
h ξT

ξ c

)
(3.4)

Remark 3.2 We observe that under the assumptions made on W (see 2.2), argu-
ing as in Proposition 1 in [24], it follows that Ŵ and W0 are continuous and satisfy
a growth condition of order p.
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Lemma 3.3 Let W be the energy density in (2.1), satisfying assumptions (2.2)
and let Ŵ and W0 the functions in (3.3) and (3.4) respectively. For every ((ua, ub),
(ξa, ξb)) ∈ V p define the functionals

Jp
0 (ua, ub, ξa, ξb) = inf




lim inf
n→∞



∫ 1

0
Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3

+q
∫

ω

W0(D2
x′ub

n, Dx′ξb
n)dx′ :




((ua
n, u

b
n), (ξa

n, ξ
b
n)) ∈ V p, ua

n ⇀ ua in W 2,p(]0, 1[; R3),
ξa
n ⇀ ξa in W 1,p(]0, 1[; R3×2), ub

n ⇀ ub in
W 2,p(ω; R3), ξb

n ⇀ ξb in W 1,p(ω; R3)



,

(3.5)

then it results

Jp
0 (ua, ub, ξa, ξb) =

∫ 1

0
Ŵ ∗∗(D2

x3ua, Dx3ξ
a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′

(3.6)

for every ((ua, ub), (ξa, ξb)) ∈ V p.

Proof. Standard relaxation arguments, (see [8], [4] among the others) ensure that

inf
{

lim infn→∞
∫ 1
0 Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3 : ua

n ⇀ ua in W 2,p(]0, 1[; R3),
ξa
n ⇀ ξa in W 1,p(]0, 1[; R3)

}

=
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3

(3.7)

for every (ua, ξa) ∈ ((ca+W 2,p
a (]0, 1[; R3))×(da+W 1,p(]0, 1[; R3×2))). Analogously

Theorem 5.1 in [18] (see also [4]) guarantees that

inf
{

lim infn→∞
∫

ω
W0(D2

x′ub
n, Dx′ξb

n)dx′ : ub
n ⇀ ub in W 2,p(ω; R3),

ξb
n ⇀ ξb in W 1,p(ω; R3)

}

=
∫

ω

QA2W0(D2
x′ub, Dx′ξb)dx′

(3.8)

for every (ub, ξb) ∈ (f b +W 2,p
0 (ω; R3))×(gb +W 1,p

0 (ω; R3)). Again classical argu-
ments with smooth cut-off functions allow to prove (3.7) and (3.8) in the case
when the boundary data are prescribed, i.e.

inf
{

lim infn→∞
∫ 1
0 Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3 : ua

n ⇀ ua in W 2,p(]0, 1[; R3),
ua

n(1) = ua(1), Dua
n(1) = Dua(1)

ξa
n ⇀ ξa in W 1,p(]0, 1[; R3×2), ξa

n(1) = ξa(1)
}

=
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3

(3.9)
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for every (ua, ξa) ∈ ((ca +W 2,p
a (]0, 1[; R3))×(da +W 1,p

a (]0, 1[; R3)), and

inf
{

lim inf
n→∞

∫
ω

W0(D2
x′ub

n, Dx′ξb
n)dx′ : ub

n ⇀ ub in W 2,p(ω), ub
n = ub,

Dx′ub
n = Dx′ub on ∂ωξb

n ⇀ ξb in W 1,p(ω; R3), ξb
n = ξb on ∂ω

}
=
∫

ω

QA2W0(D2
x′ub, Dx′ξb)dx′

(3.10)

for every (ub, ξb) ∈ (f b +W 2,p
0 (ω; R3))×(gb +W 1,p

0 (ω; R3)).
Formulas (3.9) and (3.10) entail the following result

J ′p
0(u

a, ub, ξa, ξb) = inf




lim inf
n→∞

[ ∫ 1
0 Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3

+q
∫

ω
W0(D2

x′ub
n, Dx′ξb

n)dx′

]
:

ua
n ⇀ ua in W 2,p(]0, 1[; R3), ua

n, u
a ∈ ca

+W 2,p
a (]0, 1[; R3)

ξa
n ⇀ ξa in W 1,p(]0, 1[; R3×2), ξa

n, ξ
a ∈ da

+W 1,p
a (]0, 1[; R3×2),

ub
n ⇀ ub in W 2,p(ω; R3), ub

n, u
b ∈ f b

+W 2,p
0 (ω; R3)

ξb
n ⇀ ξb in W 1,p(ω; R3), ξb

n, ξ
b ∈ gb +W 1,p

0 (ω; R3)




=
∫ 1

0
Ŵ ∗∗(D2

x3ua, Dx3ξ
a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′

(3.11)

for every ((ua, ub), (ξa, ξb)) ∈ V p. Since, obviously J ′p
0(u

a, ub, ξa, ξb) ≤ Jp
0 (ua, ub,

ξa, ξb) for every (ua, ub, ξa, ξb) ∈ V p, in order to conclude the proof it will be
enough to prove the converse inequality. To this end, we should consider the two
cases. First assume that 1 < p ≤ 2, then the only difference in the definition of
J ′p

0 and Jp
0 consists of requiring that the test functions ua

n and ub
n in the latter

functional have to coincide at the origin, i.e. ua
n(0) = ub

n(0′). The proof will be
concluded if we show that J ′p

0 admits on V p the same representation as

J ′′p
0(u

a, ub, ξa, ξb) = inf




lim inf
n→∞



∫ 1

0
Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3

+q
∫

ω

W0(D2
x′ub

n, Dx′ξb
n)dx′


 :

ua
n ⇀ ua in W 2,p(]0, 1[; R3), ua

n, u
a ∈ ca

+W 2,p
a (]0, 1[; R3)

ξa
n ⇀ ξa in W 1,p(]0, 1[; R3×2), ξa

n, ξ
a ∈ da

+W 1,p
a (]0, 1[; R3×2),

ub
n ⇀ ub in W 2,p(ω; R3), ub

n, u
b ∈ f b +W 2,p

0 (ω; R3)
ξb
n ⇀ ξb in W 1,p(ω; R3), ξb

n, ξ
b ∈ gb

+W 1,p
0 (ω; R3), ua

n(0) = ua(0), ub
n(0′) = ub(0′)




,
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since obviously the following chain of inequalities holds on V p, (1 < p ≤ 2)

J ′p
0 ≤ Jp

0 ≤ J ′′p
0.

For every ua ∈ W 2,p(]0, 1[; R3), ξa ∈ W 1,p(]0, 1[; R3×2) and ub ∈ W 2,p(ω; R3),
ξb ∈ W 1,p(ω; R3) define

Gp(ua, ξa;A) :=
∫

A
(1 + |Dξa|p + |D2ua|p)dx3,

Hp(ub, ξb;B) :=
∫

B
(1 + |Dξb|p + |D2ub|p)dx1dx2,

where A is any open subset of ]0, 1[ and B is any open subset of ω. Thus,
given ε > 0, take a sequence ((ua

n, u
b
n), (ξa

n, ξ
b
n)) ∈ (ca + W 2,p

a (]0, 1[; R3), f b +
W 2,p

0 (ω; R3))×(da + W 1,p
a (]0, 1[; R3×2), gb + W 1,p

0 (ω; R3)) such that ua
n ⇀ ua in

W 2,p(]0, 1[; R3), ub
n ⇀ ub in W 2,p(ω; R3), ξa

n ⇀ ξa in W 1,p(]0, 1[; R3×2) and
ξb
n ⇀ ξb in W 1,p(ω; R3) and

lim inf
n→∞

[∫ 1

0
Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3 + q

∫
ω

W0(D2
x′ub

n, Dx′ξb
n)dx′

]
≤ J ′p

0(u
a, ub, ξa, ξb) + ε.

One can extract a subsequence {nk} such that

lim inf
n

[∫ 1

0
Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3 + q

∫
ω

W0(D2
x′ub

n, Dx′ξb
n)dx′

]

= lim
k→∞

[∫ 1

0
Ŵ (D2

x3
ua

nk
, Dx3ξ

a
nk

)dx3 + q

∫
ω

W0(D2
x′ub

nk
, Dx′ξb

nk
)dx′

]
,

and the sequences of measures νk := Gp(ua, ξa; ·) + Gp(ua
nk
, ξa

nk
; ·) and µk := Hp

(ub, ξb; ·) + Hp(ub
nk
, ξb

nk
; ·) converge weakly ∗ to some Radon measures ν and µ

respectively.
Denoting for every t > 0 by Bt a spherical neighborhood of 0′ in ω, centered

at 0′ with radius t and by At :=]0, t[, we fix η > 0 and for every 0 < δ < η we define
the subsets Lδ := Bη+δ \Bη−2δ. Analogously on the x3 edge, we may consider the
set Aη :=]0, η[ and L′

δ := Aη+δ \Aη−2δ =]η− 2δ, η+ δ[. Consider two smooth cut-
off functions ϕδ ∈ C∞

0 (Aη+δ; [0, 1]) and ψδ ∈ C∞
0 (Bη+δ; [0, 1]) such that ϕδ = 1

on Bη and ψδ = 1 on Aη. Since the thickness of the strips Lδ and L′
δ is of order

δ the following upper bounds hold ‖Dx′ϕδ‖L∞(Aη+δ) ≤ C
δ , ‖D2

x′ϕδ‖L∞(Aη+δ)

≤ C
δ2 and ‖Dx3ψδ‖L∞(Bη+δ) ≤ C

δ , ‖D2
x3
ψδ‖L∞(Bη+δ) ≤ C

δ2 .
Define

wa
n := uaψδ + (1 − ψδ)ua

n

wb
n := ubϕδ + (1 − ϕδ)ub

n.

Clearly, wa
n ⇀ ua in W 2,p(]0, 1[; R3) and wa

n(0) = ua(0), and analogously wb
n ⇀ ub

in W 2,p(ω; R3) and wb
n(0′) = ub(0′). Then, since we are dealing with integral
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functionals and by virtue of Remark 3.2∫ 1

0
Ŵ (D2

x3
wa

nk
, Dx3ξ

a
nk

)dx3 + q

∫
ω

W0(D2
x′wb

nk
, Dx′ξb

nk
)dx′

≤
∫ η

0
Ŵ (D2

x3
ua, Dx3ξ

a
nk

)dx3 + q

∫
Bη

W0(D2
x′ub, Dx′ξb

nk
)dx′

+
∫ 1

η+δ

Ŵ (D2
x3
ua

nk
, Dx3ξ

a
nk

)dx3 + q

∫
ω\Bη+δ

W0(D2
x′ub

nk
, Dx′ξb

nk
)dx′

+
∫ η+δ

η−2δ

Ŵ (D2
x3
wa

nk
, Dx3ξ

a
nk

)dx3 + q

∫
Bη+δ\Bη−2δ

W0(D2
x′wb

nk
, Dx′ξb

nk
)dx′

≤
∫ 1

0
Ŵ (D2

x3
ua

nk
, Dx3ξ

a
nk

)dx3 + q

∫
ω

W0(D2
x′ub

nk
, Dx′ξb

nk
)dx′

+C
∫ η

0
[|D2

x3
ua|p + |Dx3ξ

a
nk

|p]dx3 + Cq

∫
Bη

[|D2
x′ub|p + |Dx′ξb

nk
|p]dx′

+C
(Gp(ua, ξa;L′

δ) + Gp(ua
nk
, ξa

nk
; L′

δ) + Hp(ub, ξb;Lδ) + Hp(ub
nk
, ξb

nk
;Lδ)

)
+C

(∫
L′

δ

[
1
δp |Dx3u

a
nk

−Dx3u
a|p +

1
δ2p

|ua
nk

− ua|p
]
dx3

+q
∫

Lδ

[
1
δp

|Dx′ub
nk

−Dx′ub|p +
1
δ2p

|ub
nk

− ub|p
]
dx′

)
.

Then, passing to the limit as k → +∞, one gets

lim inf
k→∞

[∫ 1

0
Ŵ (D2

x3
wa

nk
, Dx3ξ

a
nk

)dx3 + q

∫
ω

W0(D2
x′wb

nk
, Dx′ξb

nk
)dx′

]
≤ J ′p

0(u
a, ub, ξa, ξb) + ε+ C

(
ν(Aη) + µ(Bη) + µ(Lδ) + ν(L′

δ)
)
,

Letting δ go to zero one obtains

J ′′p
0(u

a, ub, ξa, ξb) ≤ J ′p
0(u

a, ub, ξa, ξb)+ε+C(ν(Aη)+µ(Bη)+ν(∂Aη)+µ(∂Bη)).

hence, by choosing a subsequence {ηk} such that ηk → 0+ and ν(∂Aηk
) = µ

(∂Bηk
) = 0, the thesis follows in the case 1 < p ≤ 2, by letting first k → +∞ and

then ε → 0+. The case p > 2 can be proved in analogy with the previous step,
just considering four cut-off functions ψδ, ψ1

δ defined in Aη+δ, and ϕδ, ϕ1
δ defined

in Bη+δ, in order to ensure the three junction conditions defining V p. So far, one
construct four sequences

wa
n := uaψη + (1 − ψη)ua

n

wb
n := ubϕη + (1 − ϕη)ub

n

ξ̃a
n := ξaψ1

η + (1 − ψ1
η)ξa

n

ξ̃b
n := ξbϕ1

η + (1 − ϕ1
η)ξb

n,

that guarantee ξa
n(0) = ξa(0) = Dx′ub(0′) = Dx′ub

n(0′) and ξb
n(0′) = ξb(0′) = Dx3

ua(0) = Dx3u
a
n(0) and finally one passes to the limit as in the case 1 < p ≤ 2,

exploiting the growth condition and the continuity of Ŵ and W0 established in
Remark 3.2. �

Next we recall a technical lemma (see [9])
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Lemma 3.4 Let X ↪→ Y be two Banach spaces such that X is reflexive and
compactly embedded in Y . Consider a functional G : X → R such that for all
v ∈ X, G(v) ≥ g(‖v‖X) where g is such that g(t) → +∞ as t → +∞. Let
G∗ : Y → R be defined by G∗(v) = G(v) if v ∈ X, G∗(v) = +∞ otherwise. Let
Γ − G denote the sequential lower semi-continuous envelope of G for the weak
topology of X and let Γ−G∗ denote the lower semi-continuous envelope of G∗ for
the strong topology of Y . Then Γ −G∗ = (Γ −G)∗.

Remark 3.5 From the very definition (3.5), the coercivity assumption (2.2) on
W , Remark 3.2, Lemma 3.3 and Lemma 3.4, it follows the sequential lower semi-
continuity of the functional∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′,

extended to +∞ in (W 1,p(]0, 1[; R3)×W 1,p(ω; R3)×Lp(]0, 1[; R3×2)×Lp(ω; R3)) \
V p, with respect to the weak topology in V p.

4 Γ-convergence

In order to deal with the classical arguments of Γ-convergence (see [9]) it is con-
venient, also in view of the coercivity assumption (2.2), to extend the energies to
a metric space and define for every (ua, ub) ∈ W 1,p(Ωa; R3)×W 1,p(Ωb; R3)(

Ka
n(·) +

hn

r2n
Kb

n(·)
)

∗
(ua, ub) :=

{
Ka

n(ua) + hn

r2
n
Kb

n(ub) if (ua, ub) ∈ Un,
+∞ otherwise.

(4.1)

Next the Γ-limit can be computed for the sequence (Ka
n + hn

r2
n
Kb

n)∗ with respect to
the strong topology of W 1,p for what concerns the convergence of (ua

n, u
b
n) →

(ua, ub) and the strong topology of Lp for what concerns the convergence of(
1
rn
Dx′ua

n,
1

hn
Dx3u

b
n

)
→ (ξa, ξb). The final result will be achieved through the

two next propositions, according to Definition 2.5. We also emphasize that we are
not in presence of the ‘classical’ Γ-convergence because of the rescalings, but all
the results stated at the end of section 2 can be easily adapted to our context.

Proposition 4.1 Let W be a function satisfying (2.1), and (2.2). For every n ∈
N, let Ka

n, Kb
n and Un be as in (1.7), (1.8), and (1.9), respectively. Let V be as in

(2.4). Assume that (1.2) and (1.6) hold.Then, for every (ua, ub, ξa, ξb) ∈ V

inf
{

lim supn

(
Ka

n(·) + hn

r2
n
Kb

n(·)
)

∗
(ua

n, u
b
n), (ua

n, u
b
n) ∈ Un :

(ua
n, u

b
n) → (ua, ub) in W 1,p,

(
1
rn
Dx′ua

n,
1

hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp} ≤∫ 1

−1
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′vb, Dx′ξb)dx′.

(4.2)
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Proof. The proof is a by now rather standard argument (see [24], [13] and [17]),
apart from the fact that it involves functionals which are formally coupled. We
present some details for the reader’s convenience. The role of the recovery sequence
is played by the following sequences (4.3) and (4.4). Fix (ua, ub, ξa, ξb) ∈ V and
(za, zb) ∈ W 2,p

0 (]0, 1[; R3×4)×W 2,p
0 (ω; R3), and for every n ∈ N, set

ua
n(x′, x3) =



ua(x3) + rnξ
a(x3) · x′ + r2nx

′T · za(x3) · x′,
for a.e. x = (x′, x3) ∈ ω×]εn, 1[;[

− 2
ε3n
ua(εn) − 2

rn
ε3n
ξa(εn) · x′ − 2

r2n
ε3n
za(εn) +

2
ε3n
ub(rnx′)+

1
ε2n
Dx3u

a(εn) +
rn
ε2n
Dx3ξ

a(εn) · x′ +
r2n
ε2n
x′T ·Dx3z

a(εn) · x′ +
1
ε2n
ξb(rnx′)

]

x3
3 +

[
3
ε2n
ua(εn) + 3

rn
ε2n
ξa(εn) · x′ + 3

r2n
ε2n
x

′T za(εn) · x′ − 3
ε2n
ub(rnx′)−

1
εn
Dx3u

a(εn) − rn
εn
Dx3ξ

a(εn) · x′ − r2n
εn
x

′TDx3z
a(εn)x′ − 2

εn
ξb(rnx′)

]

x2
3 +

[
ξb(rnx′)

]
x3 + ub(rnx′), for a.e. x = (x′, x3) ∈ ω×]0, εn[;

(4.3)

and

ub
n(x′, x3) = ub(x′) + hnξ

b(x′)x3 + h2
nx

2
3z

b(x′), for a.e. x = (x′, x3) ∈ Ωb;
(4.4)

where {εn}n∈N ⊂]0, 1[ is suitably chosen, for example one can choose εn = r2n.

Clearly (ua
n, u

b
n) ∈ Un, (ua

n, u
b
n) → (ua, ub) strongly in W 2,p(Ωa; R3)×

W 2,p(Ωb; R3), and
(

1
rn
Dx′ua

n,
1

hn
Dx3u

b
n

)
→ (ξa, ξb) strongly in W 1,p(Ωa; R3×2)×

W 1,p(Ωb; R3). Arguing as in Proposition 5.1 in [17] where the convexity on the
density W has not been exploited and with the only difference in the choice of za

and zb, which now do not depend on all the variables, it can be proved that

Kb
n(ub

n) =
∫
Ωb

W

(
D2

x′ub
n,

1
hn

D2
x′,x3

ub
n,

1
h2

n

D2
x3

ub
n

)
dx

=
∫
Ωb

W


 D2

x′ub + hnD2
x′ξb(x′)x3

+h2
nx2

3D2
x′zb(x′) (Dx′ξb(x′) + 2hnx3Dx′zb(x′))T

(Dx′ξb(x′) + 2hnx3Dx′zb(x′)) 2zb(x′)


 dx

→
∫
Ωb

W


 D2

x′ub (Dx′ξb(x′))T

(Dx′ξb(x′)) 2zb(x′)


 dx (4.5)
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as n → +∞. By managing the first term in (4.2) as in Proposition 5.1 in [17],
observe that

Ka
n(ua

n)

=
∫

ω

∫ 1

εn

W

(
2za(x3) (Dx3ξ

a+2rnDx3z
a(x3) · x′)T

Dx3ξ
a+2rnDx3z

a(x3) · x′ D2
x3
ua+rnD2

x3
ξa · x′+r2nx

′TD2
x3
za · x′

)
dx

+
∫

ω

∫ εn

0
W




1
r2n
D2

x′ua
n

(
1
rn
D2

x′,x3
ua

n

)T

1
rn
D2

x′,x3
ua

n D2
x3
ua

n


 dx

still converges to

∫
Ωa

W

(
2za(x3) (Dx3ξ

a)T

Dx3ξ
a D2

x3
ua

)
dx. (4.6)

Since (4.5) and (4.6) are true for all zb ∈ W 2,p
0 (ω; R3), and za ∈ W 2,p

0 (]0, 1[; R3×4)
respectively, from the properties of Γ convergence, it results that

inf
{

lim inf
n

(
Ka

n(ua
n) +

hn

r2n
Kb

n(ub
n)
)
, (ua

n, u
b
n) ∈ Un : (ua

n, u
b
n) → (ua, ub) in W 1,p,(

1
r3
Dx′ua

n,
1

hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp

}
≤ inf

za∈W 2,p
0 (]0,1[;R3×4),zb∈W 2,p

0 (ω;R3)

{∫
Ωa

W

(
2za (Dx3ξ

a)T

(Dx3ξ
a) D2

x3
ua

)
dx

+q

∫
Ωb

W

(
D2

x′ub (Dx′ξb)T

(Dx′ξb) 2zb

)
dx

}
.

(4.7)

On the other hand, from the density of W 2,p
0 (ω; R3) in Lp(ω; R3), and of W 2,p

0 (]0,
1[; R3×4) in Lp(]0, 1[; R3×4) the dominated convergence theorem

inf
za∈W 2,p

0 (]0,1[;R3×4),zb∈W 2,p
0 (ω;R3){∫

Ωa

W

(
2za (Dx3ξ

a)T

(Dx3ξ
a) D2

x3
ua

)
dx+ q

∫
Ωb

W

(
D2

x′ub (Dx′ξb)T

(Dx′ξb) 2zb

)
dx

}

= inf
za∈Lp(]0,1[;R3×4),zb∈Lp(ω;R3){∫
Ωa

W

(
2za (Dx3ξ

a)T

(Dx3ξ
a) D2

x3
ua

)
dx+ q

∫
Ωb

W

(
D2

x′ub (Dx′ξb)T

(Dx′ξb) 2zb

)
dx

}
.

(4.8)
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Since za and zb are independent from each other, one can re-write (4.8) as

inf
za∈Lp(]0,1[;R3×4)

{∫
Ωa

W

(
2za (Dx3ξ

a)T

(Dx3ξ
a) D2

x3
ua

)
dx

}

+q inf
zb∈Lp(ω;R3)

{∫
Ωb

W

(
D2

x′ub (Dx′ξb)T

(Dx′ξb) 2zb

)
dx

}

Define two auxiliary functions g :]0, 1[×R
3 → R by g(x3, z

a) := W(
2za (Dx3ξ

a(x3))T

(Dx3ξ
a(x3)) D2

x3
ua

)
and f : ω×R

3 → R by f(x′, zb) = W(
D2

x′ub(x′) (Dx′ξb(x′))T

(Dx′ξb(x′)) 2zb

)
. It is easily seen that they are Carathéodory func-

tions. By (3.3), (3.4) and applying the measurable selection lemma, cf. [10] and
[24], it can be deduced the existence of two measurable functions za

0 and zb
0, such

that

Ŵ (D2
x3
ua(x3), Dx3ξ

a(x3)) = W

(
2za

0 (x3) (Dx3ξ
a(x3))T

(Dx3ξ
a(x3)) D2

x3
ua(x3)

)
for a.e. x3 ∈]0, 1[,

and

W0(D2
x′ub(x′), Dx′ξb(x′)) = W

(
D2

x′ub(x′) (Dx′ξb(x′))T

(Dx′ξb(x′)) 2zb
0(x

′)

)
for a.e. x′ ∈ ω.

Due to the coerciveness assumption (2.2), za
0 ∈ Lp(]0, 1[; R3×4) and zb

0 ∈
Lp(ω; R3), and thus

inf
za∈W 2,p

0 (]0,1[;R3×4),zb∈W 2,p
0 (ω;R3)

{∫
Ωa

W

(
2za (Dx3ξ

a)T

(Dx3ξ
a) D2

x3
ua

)
dx

+q
∫

Ωb

W

(
D2

x′ub (Dx′ξb)T

(Dx′ξb) 2zb

)
dx

}
≤
∫ 1

0
Ŵ (D2

x3
ua, Dx3ξ

a)dx3

+q
∫

ω

W0(D2
x′ub, Dx′ξb)dx′.

(4.9)

(4.7), (4.9), Lemma 3.3, Remark 3.5 and the sequential lower semicontinuity of ‘Γ
upper limit’ entail that

inf
{
lim inf

n

((
Ka

n(·)+hn

r2n
Kb

n(·)
)

∗
(ua

n, u
b
n)
)

:(ua
n, u

b
n)∈ Un, (ua

n, u
b
n)→(ua, ub) in W 1,p,(

1
rn
Dx′ua

n,
1
hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp

}
(4.10)

≤
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′.

�
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The next result deals with the lower bound for our Γ limit.

Proposition 4.2 Let W be a function satisfying (2.1), and (2.2). For every n ∈
N, let Ka

n, Kb
n and Un be as in (1.7), (1.8), and (1.9), respectively. Let V p be as in

(2.3). Assume that (1.2) and (1.6) hold. For every (ua, ub, ξa, ξb) ∈ V p it results
that

inf
{

lim inf
n

(
(Ka

n(·) +
hn

r2n
Kb

n(·))∗(ua
n, u

b
n)
)

: (ua
n, u

b
n) ∈ Un,

(ua
n, u

b
n) → (ua, ub) in W 1,p,

(
1
rn
Dx′ua

n,
1
hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp

}

≥
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′.

(4.11)

Proof. The arguments used in the proof are very close to those used in [24], but
here there is the presence of suitable A-quasiconvex functions and of coupled
functionals. Take (ua, ub, ξa, ξb) ∈ V p. Considered the sequence {(ua(x3) + rnx

′ ·
ξa(x3), ub(x′)+hnx3ξ

b(x′))}n, it results thatKa
n(ua+rnx′·ξa)+hn

r2
n
Kb

n(ub+hnx3ξ
b)

is bounded uniformly in n. Consequently inf{lim infn

(
(Ka

n(·) + hn

r2
n
Kb

n(·))∗
)
}(ua,

ub, ξa, ξb) is also bounded. By the very definition of Γ -lower limit there exists a
sequence {ua

n, u
b
n} ∈ Un such that (ua

n, u
b
n) → (ua, ub) in W 1,p and

(
1
rn
Dx′ua

n,
1

hn

Dx3u
b
n

)
→ (ξa, ξb) in Lp. Clearly Proposition 3.1 provides the weak convergence

of (ua
n, u

b
n) to (ua, ub) in W 2,p(Ωa; R3)×W 2,p(Ωb; R3) and of

(
1
rn
Dx′ua

n,
1

hn
Dx3u

b
n

)
to (ξa, ξb) in W 1,p(Ωa; R3×4)×W 1,p(Ωb; R3). Moreover it results that

∫
Ωa

W


 1

r2
n
D2

x′ua
n

(
1
rn
D2

x3,x′ua
n

)T

(
1
rn
D2

x3,x′ua
n

)
D2

x3
ua

n


 dx≥

∫
Ωa

Ŵ

(
1
rn
D2

x3,x′ua
n, D

2
x3
ua

n

)
dx

≥
∫

Ωa

Ŵ ∗∗
(

1
rn
D2

x3,x′ua
n, D

2
x3
ua

n

)
dx.

∫
Ωb

W


 1

h2
n
D2

x3
ub

n

(
1

hn
D2

x3,x′ub
n

)T

(
1

hn
D2

x3,x′ub
n

)
D2

x′ub
n


 dx≥

∫
Ωb

W0

(
1
hn
D2

x3,x′ub
n, D

2
x′ub

n

)
dx

≥
∫

Ωb

QA2W0(D2
x′ub

n,
1
hn
D2

x′,x3
ub

n)dx.

To obtain the last inequalities one can observe that for fixed x′:∫ 1

0
Ŵ

(
1
rn
D2

x3,x′ua
n, D

2
x3
ua

n

)
dx3 ≥

∫ 1

0
Ŵ ∗∗

(
1
rn
D2

x3,x′ua
n, D

2
x3
ua

n

)
dx3,
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and for fixed x3:∫
ω

W0

(
D2

x′ub
n,

1
hn
D2

x3,x′ub
n

)
dx′ ≥

∫
ω

QA2W0(D2
x′ub

n,
1
hn
D2

x′,x3
ub

n)dx′.

We can observe that QA2W0 : Sym(R2×2)×M3×2 → [0,+∞[ is A2−quasiconvex
and continuous (see [27]).

We can define a new function Z : Sym(R3×3)×M 3×3 → R as

Z(H|B) = QA2W0(h|ξ), (4.12)

where ξij = Bij , i = 1, 2, 3, j = 1, 2 and h is such that hi
jk := Hi

jk, i = 1, 2, 3
and j, k = 1, 2. The function Z is A− quasiconvex in the sense of the differential
operator A3 defined by the system of PDE’s:

A3V := (A3
2H,A3

1B) (4.13)

where

A3
2H :=

(
∂

∂xi
H l

jk − ∂

∂xj
H l

ik

)
i,j,k,l=1,...,3

,

where Q3 =]0, 1[3 and H ∈ C∞
per(Q3, Sym(R3)). Furthermore

A3
1B =

(
∂Bi

j

∂xk
− ∂Bi

k

∂xj

)
i,j,k=1,2,3

.

Arguing as in Remark 2.4, it can be shown that A3 satisfies the constant rank
property and that

KerA3(w)
=
{
(X,V )∈Sym(R3)×M3×3:(X,V )=(b⊗w⊗2, a⊗w), b ∈ R

3, a ∈ R
3} , (4.14)

where w⊗2 stands for w⊗w (see also [18] for details). To prove the A3-quasiconvexity
of Z, we consider a test function ω ∈ C∞

per(R
3, Sym(R3×3)×M 3×3), ω = (ωH , ωB)

which satisfies the constraint A3ω = 0 and such that
∫

Q3
ω(y)dy = 0. It is easy

to see that for every x3 fixed we have ω(·, x3) ∈ C∞
per(R

2, Sym(R2×2)×M3×2), as
ω(·, x3) = (ωh(·, x3), ωξ(·, x3)), in the sense that A2

2ωh = 0, A2
1ωξ = 0.

We also have
∫

Q2
ωdx′ = 0, which follows from (4.13),

∫
Q3
ωdx = 0 and

the periodicity of ω. Indeed, given (H,B) ∈ Sym(R3×3)×M 3×3, from (4.12) and
Definition 2.2 it follows∫

Q

Z((H|B) + ω(x))dx =
∫ 1

0

∫
Q2

QA2W0((h|b) + (ωh|ωb))dx′dx3

≥
∫ 1

0

∫
Q2

QA2W0(h, b)dx′dx3 =
∫

Q

Z(H|B)dx.



720 G. Gargiulo and E. Zappale NoDEA

It can be easily verified that the function Z is bounded from below and also
satisfies the same growth condition as W , hence Theorem 3.7 in [11] ensures that
G2 : W 2,p(Ωb; R3)×W 1,p(Ωb; R3) → R, defined asG2(ub, ξb) :=

∫
Ωb QA2W0

(
D2

x′ub,

Dx′ξb
)
dx is lower semicontinuous. An analogous (even easier) argument, ensures

the same property for G1 : W 2,p(Ωa; R3)×W 1,p(Ωa; R3×2) → R, defined as G1(ua,
ξa) :=

∫
Ωa Ŵ

∗∗ (D2
x3
ua, Dx3ξ

a
)
dx. Hence one can write

lim inf
n


∫

Ωa

W


 1

r2
n
D2

x′ua
n

(
1
rn
D2

x3,x′ua
n

)T

(
1
rn
D2

x3,x′ua
n

)
D2

x3
ua

n


 dx

+
hn

r2n

∫
Ωb

W


 1

h2
n
D2

x3
ub

n

(
1

hn
D2

x3,x′ub
n

)T

(
1

hn
D2

x3,x′ub
n

)
D2

x′ub
n


 dx




≥ lim inf
n

(
G1

(
ua

n,
1
rn
Dx′ua

n

)
+
hn

r2n
G2

(
ub

n,
1
hn
Dx3u

b
n

))

≥ lim inf
n

G1

(
ua

n,
1
rn
Dx′ua

n

)
+ lim inf

n

hn

r2n
G2

(
ub

n,
1
hn
Dx3u

b
n

)
≥ G1(ua, ξa) + qG2(ub, ξb)

=
∫ 1

0
Ŵ ∗∗(D2ua, Dξa)dx3 + q

∫
ω

QA2W0(D2ub, dξb)dx′,

and this concludes the proof. �

Theorem 4.3 Let W be a function satisfying (2.1), and (2.2). For every n ∈ N,
let Ka

n, Kb
n and Un be as in (1.7), (1.8), and (1.9), respectively. Let V be as in

(2.4). Assume that (1.2) and (1.6) hold.

inf
{

lim inf
n

(
(Ka

n(·) +
hn

r2n
Kb

n(·))∗(ua
n, u

b
n)
)

: (ua
n, u

b
n) ∈ Un, (ua

n, u
b
n)

→ (ua, ub) in W 1,p,

(
1
rn
Dx′ua

n,
1
hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp

}

=
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′.

(4.15)

for every (ua, ub, ξa, ξb) ∈ V . Furthermore the Γ lower limit is a Γ limit.

Proof. The theorem is a direct consequence of Propositions 4.1 and 4.2 and of
Definition 2.5. �

Theorem 4.4 Let W be a function satisfying (2.1), and (2.2). For every n ∈ N,
let Ka

n, Kb
n and Un be as in (1.7), (1.8), and (1.9), respectively. Assume that (1.2)

and (1.6) hold.
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inf
{

lim inf
n

((
Ka

n(·) +
hn

r2n
Kb

n(·)
)

∗
(ua

n, u
b
n)
)

: (ua
n, u

b
n) ∈ Un, (ua

n, u
b
n)

→ (ua, ub) in W 1,p,

(
1
rn
Dx′ua

n,
1
hn
Dx3u

b
n

)
→ (ξa, ξb) in Lp

}

=
∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′

(4.16)

for every (ua, ub, ξa, ξb) ∈ V p. Furthermore the Γ lower limit is a Γ limit.

Proof. The statement will be achieved by double inequality. Take (ua, ub, ξa, ξb) ∈
V p, then one inequality follows from Proposition 4.2. It remains to prove the
converse one. By virtue of Proposition 2.1, the growth condition (2.2) inherited
by QA2W0 and Ŵ ∗∗, and standard relaxation arguments, allow us to say that
smooth recovery sequence can be used in Lemma 3.3, thus getting∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3 + q

∫
ω

QA2W0(D2
x′ub, Dx′ξb)dx′

= inf




lim inf
n→∞

[∫ 1

0
Ŵ (D2

x3
ua

n, Dx3ξ
a
n)dx3 + q

∫
ω

W0(D2
x′ub

n, Dx′ξb
n)dx′

]
:

((ua
n, u

b
n), (ξa

n, ξ
b
n)) ∈ V, ua

n ⇀ ua in W 2,p(]0, 1[; R3),
ξa
n ⇀ ξa in W 1,p(]0, 1[; R3×4), ub

n ⇀ ub in W 2,p(ω; R3),
ξb
n ⇀ ξb in W 1,p(ω; R3)



.

(4.17)

Since (4.17) holds, for any (ua, ub, ξa, ξb) ∈ V p one can construct a diagonal
sequence still denoted by {(ua

n, u
b
n)}n ⊂ Un such that (ua

n, u
b
n) → (ua, ub) in W 1,p,(

1
rn
ua

n,
1

hn
ub

n

)
→ (ξa, ξb) in Lp and

lim
n

(
Ka

n(·) +
hn

r2n
Kb

n(·)
)

∗
(ua

n, u
b
n) =

∫ 1

0
Ŵ ∗∗(D2

x3
ua, Dx3ξ

a)dx3

+q
∫

ω

QA2W0(D2
x′ub, Dx′ξb)dx′

and this concludes the proof. �

5 The Case s = 1
In this section we generalize the result presented in [13] (for a quasilinear Neumann
problem) to the non-convex case. We just sketch the main steps needed to get
the main result, since most of the theorems are already established in [13] (in
the Neumann context, yet with a straightforward generalisation to the Dirichlet
framework) and other results can be easily obtained by adapting to the gradient
context the propositions and lemmata proven in the previous sections for the case
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of non simple grade two materials. The thin multi-domain, that we consider here,
is the multi-structure Ωn as in figure 1, with the characteristic lengths hn and
rn satisfying assumption (1.2) and (1.6). Let p > 1, and assume that the energy
density

W : M
3×3 → R (5.1)

is a continuous function such that there exist three constants α ∈ R and β,C > 0
for which

α+
1
C

|F |p ≤ W (F ) ≤ β + C|F |p (5.2)

for every F ∈ M
3×3. The model can be described through an energy of the kind∫

Ωn

W (DUn)dx, (5.3)

where the admissible fields Un ∈ W 1,p(Ωn; R3) verify the boundary condition as
in section 2, namely we require that Un coincide with ca on the top of Ωa

n with
f b on the lateral boundary of Ωb

n, for f b ∈ W 1,p(ω; R3). By adopting the same
re-scaling as in (1.4) we obtain the following energy in Ω = Ωa ∪ Ωb = ω×] − 1, 1[

En(ua
n, u

b
n) :=

∫
Ωa

W

(
1
rn
Dx′ua

n, Dx3u
a
n

)
dx+

hn

r2n

∫
Ωb

W

(
Dx′ub

n,
1
hn
Dx3u

b
n

)
dx,

(5.4)

with the following junction condition

ua
n(x′, 0) = ub

n(rnx′, 0) a.e. in ω. (5.5)

We describe the limit energy as n → +∞, when the volumes of Ωa
n and Ωb

n

tend to zero with the same rate, i.e. (1.2) and (1.6) hold. Define

U ′
n =

{
(ua, ub) ∈ (

ca +W 1,p
a (Ωa; R3)

)×
(
f b +W 1,p

b (Ωb; R3)
)

:
ua(x′, 0) = ub(rnx′, 0), x′ a.e. in ω

}
(5.6)

with rn, hn, ca, and f b as defined before, W 1,p
a (Ωa; R3) the closure, in W 1,p, of

{ua ∈ C∞(Ωa; R3) : ua = 0 in a neighbourhood of ω×{1}} and W 1,p
b (Ωb; R3) the

closure in W 1,p, of
{
ub ∈ C∞(Ωb; R3) : ub = 0 in a neighbourhood of ∂ω×] −

1, 0[
}
. Furthermore we can still assume that (1.10) holds. A compactness result

analogous to Proposition 3.1 still holds, (cf. Proposition 2.1 in [13] where the
dead loads played the role of prescribed boundary data) by replacing the boundary
conditions of Un, with those of U ′

n and the convergences in Proposition 3.1 with the
weak convergence in W 1,p(Ωa; R3)×W 1,p(Ωb; R3). Actually the arguments used
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there can be adapted to this framework by using standard cut-off functions. This
fact leads to consider the following problem:

inf
{

lim inf
n→∞ En(ua

n, u
b
n) : (ua

n, u
b
n) ∈ U ′

n, (u
a
n, u

b
n) → (ua, ub) in Lp

}
, (5.7)

where En(ua
n, u

b
n) has been extended to +∞ in (Lp(Ωa; R3)×Lp(Ωb; R3))\U ′

n. The
limit functions ua and ub, do not depend on x′ and x3 respectively, and junction
conditions, in this case, as emphasized in [13], are the following:

i) the limit problem is uncoupled if 1 < p ≤ 2,

ii) coupled by the junction condition: ua(0) = ub(0′) if p > 2.

The following theorem can be proved

Theorem 5.1 Let W be the energy density in (5.1), satisfying (5.2). For every
n ∈ N, let En be the functional introduced in (5.4) and U ′

n be as in (5.6). Assume
that (1.2) and (1.6) hold.Then

inf
{

lim inf
n→∞ En(ua

n, u
b
n) : (ua

n, u
b
n) ∈ U ′

n, (u
a
n, u

b
n) → (ua, ub) in Lp

}
=∫ 1

0
W̃ ∗∗(Dx3u

a) +
∫

ω

QW1(Dx′ub)dx′ (5.8)

for every (ua, ub) ∈ W 1,p(]0, 1[; R3)×W 1,p(ω; R3) with ua(1) = ca, ub(x′) = f b(x′)
on ∂ω and ua(0) = ub(0′) if p > 2.

We recall that W̃ : R
3 → R is the function defined by

W̃ (f) := inf
g,h∈R3

W (f |g|h) (5.9)

while W1 : R
3×2 → R is the function defined by

W1(F ′) := inf
I∈R3

W (F ′|I) (5.10)

The analogous of Remark 3.2 still holds. Furthermore the energy densities appear-
ing in (5.8) are respectively the convexification of W̃ according to definition (2.5)
and the quasiconvexification of W1 defined in (2.7).

Sketch of the proof. The structure of the proof (again relying on Γ convergence
arguments) is analogous to the case s = 2. Namely (5.8) follows by double inequal-
ity. By the same token as above, we need the following analogue of Lemma 3.3,
dealing with relaxation of ’coupled’ functionals, if p > 2, whose proof is omitted
since entirely similar to the mentioned Lemma:
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Lemma 5.2 Let W be the energy density in (5.1), satisfying (5.2), let W̃ and W1
be the functions in (5.9) and (5.10). Let p > 2, for every (ua, ub) ∈ W 1,p(]0, 1[; R3)
×W 1,p(ω; R3) with ua(1) = ca, ub(x′) = f b(x′) on ∂ω, define the functionals

I0(ua, ub) = inf




lim inf
n→∞

[∫ 1

0
W̃ (Dx3u

a
n)dx3 + q

∫
ω

W1(Dx′ub
n)dx′

]
:

(ua
n, u

b
n) ∈ W 1,p(]0, 1[; R3)×W 1,p(ω; R3),

ua
n(1) = ca, ub

n(x′) = f b(x′) on ∂ω,
ua

n ⇀ ua in W 1,p(]0, 1[; R3),
ub

n ⇀ ub in W 1,p(ω; R3), ua
n(0) = ub

n(0′)



,

(5.11)

then

I0(ua, ub) =
∫ 1

0
W̃ ∗∗(Dx3u

a)dx3 + q

∫
ω

QW1(Dx′ub)dx′

for every ((ua, ub) ∈ W 1,p(]0, 1[; R3)×W 1,p(ω; R3) with ua(1) = ca, ub(x′) =
f b(x′) on ∂ω.

If 1 < p ≤ 2 there is no need of proving such results because the limit problem is
uncoupled, the relaxed functionals have separate behavior and no junction enters
in the proof of the main theorem. The proof of the lower bound in entirely sim-
ilar to that of Proposition 4.2. The main difference consists of replacing the A2

quasiconvexification of W0 with the quasiconvexification of W1 and in applying
the well known semicontinuity result, established in [2], instead of Theorem 3.7
in [11]. The upper bound is first obtained in a dense subset of the limit space,
in analogy with [13]. More precisely a density result similar to Proposition 3.1 in
[13] still holds (using the proof of that result and cut-off functions) by considering
a class of functions which also verifies the boundary conditions of the limit ones.
Next one can ’mimic’ the proof of Proposition 4.1 to get the Γ lim sup inequality,
by adopting the following ’recovery sequence’:

ua
n(x) :=

{
(rnx′ · za(εn) + ua(εn))x3

εn
+ vb(rnx′) εn−xn

εn
if x = (x′, x3) ∈ ω×]0, εn[,

rnx
′ · za(x3) + ua(x3) if x = (x′, x3) ∈]εn, 1[

and
ub

n(x) := hnx3z
b(x′) + ub(x′) if x ∈ Ωb,

where {εn} is any sequence converging to 0 as {rn}, the functions ua and ub

belong to the dense subspace, za ∈ W 1,p
0 (]0, 1[; R3×2) and zb ∈ W 1,p

0 (ω; R3). The
final step consists of applying the same diagonal argument as in Theorem 4.4. �

6 Conclusions

• It is worthwhile to mention the fact that by virtue of the coercivity assump-
tions (2.2) and (5.2) made on the energy density both in the case s = 2 and
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s = 1, the families of functionals {Ka
n(·) + hn

r2
n
Kb

n} and {En} are equico-
ercive according to what stated in Definition 2.6, convergence of almost
minimizers of these families in the classes Un and U ′

n respectively, to the
minimizers of

∫ 1
0 Ŵ

∗∗(D2ua, Dξa)dx3 + q
∫

ω
QA2W0(D2ub, Dξb)dx′ and of∫ 1

0 W̃
∗∗(Dua)dx3 + q

∫
ω

QW1(Dub)dx′ respectively, follows, in the spirit of
Theorem 2.7.

• The argument used in the proof of Proposition 4.1 for the construction of
the ‘recovery sequences’, i.e. the choice of za and zb independent of x′ and
x3 respectively and the definitions of W0, Ŵ and W1, W̃ in (3.4), (3.3) and
(5.10), (5.9) can be regarded as a way of obtaining a slight improvement
to the representation results obtained in Theorem 1.1 in [17] and Theorem
1.1 of [13] also in the convex case, in the sense that one could first take the
infimum on the last variables z, thus obtaining energy densities still convex
but explicitly depending only on (ua, ub, ξa, ξb) if s = 2 ((ua, ub) for s = 1).

• As we already observed this paper is not aimed by investigating junction
conditions but just by showing what is the asymptotic behavior of hypere-
lastic or grade two materials filled multi-structures as in figure 1, when the
energy density is not convex. Because of the physical relevance of this ques-
tion, both for describing thin hyperelastic structures (s = 1) and for non
simple materials thin multi-domains (s = 2), we just considered the case
N = 3. The mathematical problems can nonetheless be managed also for
N > 3, as they have been developed in [13] and [17] in the convex context.
Clearly the junction possibilities in the limit could be different from the
cases presented here, since they explicitly depend on the relations between
the Sobolev exponent p and the space dimension N . Actually when s = 1
there is no difference in the proof of Theorem 5.1 (since the only junction
conditions are analogous to i) and ii), namely the limit problem is

i) uncoupled if 1 < p ≤ N − 1,

ii) coupled by the junction condition: ua(0) = ub(0′) if p > N − 1.

The proof differs just for the fact that the limit functions (ua, ub) are defined
in R×R

N−1 respectively, rather than R×R
2 and being R

N rather than R
3.

A new facet shows up for s = 2. Apart from the obvious variations in
domain and codomain of functions, in this case the junction conditions can
be summarized as follows: the limit problem is uncoupled if 1 < p ≤ N−1

2 ,
“partially” coupled if N−1

2 < p ≤ N − 1, and coupled if N − 1 < p. On the
other hand also the transmission conditions in Un are different since the
traces on the junction surface at x3 = 0 if 1 < p ≤ N−1

2 are meaningless.
As in the case s = 1 both the compactness theorem and Theorem 4.4
carry over to the N - dimensional case. The same can be said also for
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the previous results and lemmata. The proofs are identical to case N = 3
when the limit problem is partially coupled and coupled. The situation is
slightly different albeit simpler when 1 < p ≤ N−1

2 , since in this case there
is no need for a result such as Lemma 3.3, because the limit functionals are
really independent and the relaxation procedure works separately.
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