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1 Introduction

We study the Cauchy problem for the following Dirac—Klein—Gordon equation in
one space dimension:

Du+mu=wu, u(0)=u, (1.1)
Ow + Mw =ufu, w(0) =wy, w(0) = w. ’

where m, M > 0 are masses, u is a function from R? to C? such that
_(u _ (ult,2)
U= (v) o (v(tx)) ’ (1.2)

and w is a function from R? to R such that w = w(t, ). The Dirac operator D is
defined by D = ivg0; + iy10, with the Dirac matrices, see also section 6,

() (03



626 S. Machihara NoDEA

The d’Alembert operator stands for O = O, = 9?7 — ¢?92? with the propagation
speed c. It is well known that D? = —[,I where I is a unit matrix. We write
down the right hand side of equations in full,

wu = (ZZ) , ufu=@v) (Z) =2R(w) for u= (3) , (1.4)

where w is the complex conjugate of u. The initial data uy and wq, wy are functions
from R to C? and from R to R respectively such that

uy = (gg) = (Z;’Eg) and  wg = wp(x), w; = wi(x). (1.5)

We study the existence of solutions (u,w) for this problem. Especially we
are interested in the smaller order of Sobolev space where solutions being. There
are available results. In 73, Chadam [2] proved the time global existence of
(u,w) € H' ® H'. In ’00, Bournaveas [1] proved the time global existence of
(u,w) € L? ® H'. In 02, Fang [3] gave the parallel proof with [1] and later in
'04 [4] he proved the time local existence of (u,w) € H~'Y/4*te @ HY/?+% with
0<e<1/4, 0 <6< 2¢, and the time global existence of (u,w) € L? @ H'Y/?*+9,
So the regularities of solution u have been successively reduced. The appropriate
null form estimates on ufu were derived and utilized effectively for the solutions
with low regularity. However, the orders of Sobolev space for w are greater than
1/2. The case w € H'/? is called critical in [4]. Indeed the Sobolev embedding
theorem in one dimension H® — L*° s > 1/2 plays an important role for the
estimates on wu in available papers [1], [2], [3], [4]. We remark that the embedding
HY? — L fails.

In this paper we deal with the solutions in critical setting (u, w) € H- g
H'Y2. Moreover we consider the super critical solution w € H®, s < 1/2 in
exchange for the additional regularity of solution u. For a proof, we employ the
arguments in the series of papers by Fang and Fang—Grillakis [4, 5, 6] for the study
on the same problem to ours in space dimensions 1,2 and 3 respectively with some
improvements. See also [12].

We investigate the solutions of wave equations in Fourier space for variables
(1,£). We take a notice of that the Fourier transform of solutions for wave equa-
tions with a propagation speed c¢ are described mainly by variables for the light
lines 7—c€ and 74 ¢£, and Dirac equation consists of the system of wave equations
with a propagation speed ¢ = 1. In this paper we deal with the Klein—-Gordon
equation with the general propagation speed ¢ > 0, against [4]. We make use of
the rooms for the arguments on the solution w for Klein—-Gordon equation which
come from the enough smoothing effect in comparison to Dirac equation. It is
sufficient for the proof to derive the bilinear estimates which work with these vari-
ables 7 — ¢£ and 7 + ¢£ for only ¢ = 1.

Here we introduce the notation. We denote the Fourier transform with
respect to & and ¢ variables by F, and JF; respectively or simply taking a hat™,
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and use a tilde f = F,F,f. We use (z) = 1 + |z|. For s € R, norm of Sobolev
space H? is defined by

1fllers = 14€)° Fl 2. (1.6)

The mixed norm for L2 L7 is defined by

1/2
Iflszcz = ( [, 15 €)Pagar ) (1.7
The following cut-off function 1 is provided and be often used through this paper,

Lo <,

1.8
0, l1>2 (18)

Co® 2 (t) ={

We denote the rescaled function by ¢r(t) := ¥ (¢t/T).
We state our main theorem.

Theorem 1.1 Let m,M > 0. Letc¢ > 0. Let 0 < 2a < s <1/2 0r0<a<
1/4, 1/2 < s <1 —2a. Then for any ug € H™%, wo € H*, wy € H*"1, there
exists T > 0 and a unique solution (u,w) for (1.1) in the time interval [—T, T
satisfying

ueC(-T,T;H "), weC(-T,T;H)nCY(~-T,T; H*™1). (1.9)

Moreover when 0 = a < s < 1/2, the solution (u,w) can be extended to global
time,

uc CR;L?), weCR;H)NC R H™). (1.10)

Remark 1.2 Time local solutions (u,w) € H~® ® H® with the case 0 < a <
1/4, 1/2 < s <1 —2a were obtained by Fang [4] for ¢ = 1. We remark that when
even the critical case s = 1/2, we can take any a < 1/4 in this theorem. In regard
to a time global solution, we impose the lower regularities s than previous works
too.

The rest of this paper is organized as follows. In section 2, we gather the
elemental estimates which play a role for the calculation in the other sections.
In section 3, we give the estimates on the solutions to the reduced-wave equa-
tions which constitute to the Dirac equation, and wave equation respectively. In
section 4, we derive the bilinear estimates for the Sobolev space with negative
index. In section 5, we prove the existence results by applying the standard con-
traction mapping principle. In section 6, we discuss about the Dirac equation
with another sets of Dirac matrices to (1.3).
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2 Preliminaries

We often use the following elementary estimates, see [7], [11] and so on.

Lemma 2.1 Let a,b € R. Let p,q satisfy p+ q > 1. Then the following integral
converges.

> dz
f«xx—wux—wf @1)

Set k = min(p,q,p + g — 1). The following estimates hold,

(i) In the case max(p,q) =1, for anye >0

> dx 1
< . 2.2
== e 22
(ii) In the case max(p,q) # 1,
> dx 1
< . 2.
I e=r e e s 23
(iii) For any p,q,
> dx 1
> . 24
| e 24
The following estimates are also easy.
Lemma 2.2 Let ¢ > 0. There exists C' such that
(T+8){r—¢)
< C foranyr, & 2.5
@t -eg < C Frawn s (29
Proof. In the case ¢ > 1. When 0 < £ < 7, we estimate
[T+él =T+ < T+ =T+ck, (2.6)
[T =&l =7—cf+ (c—1E < |7 — k] + (e = DS (2.7)
When 0 < 7 < &, we estimate
IT+él=r+{< T+ =T+, (2.8)
[T =& =¢—T7<E=[¢] (2.9)

We finish the proof for the case 7,£ > 0. The other cases follow by taking 7/ = —7
or ¢ =—¢.
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In the case ¢ < 1. When 0 < £ < 7, we estimate

[T+&l=74+E<T/c+ €= T+ c€|/e, (2.10)

[r—¢l=7—¢<T7—c€ =1 — k| (2.11)
When 0 < 7 < &, we estimate

IT+&l=T7+{<T/c+{=|T+c|/c (2.12)

IT—¢l=¢6—-T7<E=¢ (2.13)

We finish the proof for the case 7,£ > 0. The other cases follow by taking 7/ = —7
or ¢ = —¢. O
3 Linear estimates

In this section we give the linear estimates for the solutions to the following inhomo-
geneous reduced-wave equations and inhomogeneous wave equation respectively:

ou+ 0yu=F, u(0,z)=up(x), (3.1)
O — 0,0 =G, v(0,2) = vo(x), (3.2)
OPw — 202w =H, w(0,2) =wo(x), dw(0,z) = w;(z). (3.3)

We prove the following estimates.

Proposition 3.1 Let a + b < 1/2, max{—a,1 — b} # 1/2 and max{b— 1,a +
b—1/2} < a. Let u and v be solutions to (3.1) and (3.2) respectively. Then the
following estimates hold respectively,

rre ™~ F
a 1/1 * 5 —a + a ’ 3.4
T | S el |
(T — f>17b L < G;
) < . 3.5
1 Y %0 s lvoll zr-a + e () s (3.5)

Remark 3.2 For instance, when a+b < 1/2 and a > 0, estimates (3.4) and (3.5)
hold.

Proposition 3.3 Let a < 1/4, b € R. Let w be solution to (3.3). Then the
following estimate holds,

(r+ )" —cg) ™
(€’

12;*171

272
L2L3

H
(€)™ + c€)™ (1 — c€)*

< lwollg—os + ol g—as + (3.6)

L2L3
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Proof of Proposition 3.1.
We firstly prove (3.5). We have two expressions for the Fourier transform of
the solution v to (3.2), see [12].

S (R (it)E #, 6(r — €) [ (0 — &) LG(0,€)do
B(r,€) = 8(r — )50 (£) — i x or

(r—&7'G(r,6) = 6(1 — &) [(0 — &) 'G(0,§)do
(3.7)

We split a inhomogeneous term G =: G; + G2 with regard to the support in
Fourier space, neighborhood of 7 = £ and otherwise.

Gi(r, &) = 0(T = )G(1,8),  Ga(r,€) = (1 — (1 — )G(7,£). (3.8)

As in [12], we try to estimate for the following terms,

Ur) = 87 = OBl ~ i S () 4 3~ €) [ (0= "' Galer o
k=1
62(7,5) . G~2<Uv§>
—4 p— +z§(7‘—§)/ —do. (3.9)

We estimate for the terms with Delta’s function. For any function f(§) and k > 0
we have

br x i) *8(r — ) (&) b x (it)*  3(7 ~ €)
3.10
| =&+ | H‘ 9 e |, L 1
£
We set hy(7) := wT*( t)k and concentrate on L2 norm to calculate
hi(7) % 6(T = £) (T h(r)
=l7a - T oaa 3.
v B | 77+ 2) 1
14a—>b
S el ol s S g —. @

Consequently we have the boundedness by [[(€)™“ f|| r2- For the second term in
R.HS. of (3.9),

H<§1> /<" —&)*1G1(0,€)do

(3.13)
L

) 1/2
2ad
§>a </Io—£|<2 o+ J) .
3

Gy (7,€)

Ty

272
L2L3
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here
1 2a 2a
— + do < — do < C. 3.15
€™ /o—s<2 e S /Io—£|<2 s (3:19)
Similarly for the forth term,
1 [ Go(0,6)
‘ " / p— do , (3.16)
g
2 1/2 ~
1 <0._|_€>‘1 G2(7-7€)
< = B/ _ 3.17
Te@ (/<o©1b U) O
L Te
here we obtain from assumptions on a,b and Lemma 2.1,
2
1 + &)
@%/éigh = 1%

We commute (7 — &)* and @Z} x, H(1,£) for any function H(7,&). When
a > 0 we estimate pointwisely, from (1 — &) < (7 — o) + (0 — &)

(r =" B9 < [((7 =)+ o = §°)ir(r — ) H(0,9ldo (319)
< r) | = [H(7,6)| + |+ (r — ©)°|H(7,€)|. (3.20)
When a <0, from (0 — &) < (o —7)+ (T = &)

(1 — o) H(0,)]

T— aA*HT, < (r=€)” T—o) Y+ (r=&7“ — do
=6 = B0l < (0" [(r—0) ™"+ (- ) FIT 2
(3.21)
_ _ Aa —a % |H(7—7£)|>+ o % |H(T’§)|
tr=0)" (17 Trl» L) 4 i
(3.22)
From these pointwise estimates, we have for a € R,
lr = &%br * H(r, &) L222 S I1(m — ) H (7, )| 2 12- (3.23)

We also obtain from above calculations twice, for o, 8 € R,

Ir = &% + 8 0« Hr.Ollzse S Ir — € + O HT. )2z (3.29)
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We then estimate the third term in R.H.S of (3.9) easily,

1-b A ~
<T €> - '(/)T % G2(Ta 5) < ?2 - (325)
<T+§> T—=§ L?rLg <T+§> <T*€> LELE
We complete the proof for (3.5). The proof for (3.4) is similar. O

Proof of Proposition 3.3.

We see easily it is sufficient to prove the case b = 0 in (3.6). The solution for
wave equation consists of the solutions for reduced-wave equation. The Fourier
transform with respect to x of the solution @ for (3.3) is given by

N eic&t + e—ic{t . eic&t _ e—ic&t .
t eicf(tft’) _ eficf(tft’) ﬁ ! evap! 507
t t .
+ [ — (t.6) (3.27)

So the estimate (3.6) for the region || > 1 is derived similarly with the above
arguments. From here, we restrict the region || < 1 in LEL?. For the second
term,

wct __ ,—ickt - - © Lk 9 k—1 N
% wi(é) =e Zcftz 7 ( Z]Cj) Ti(o). (3.28)
k=1 :

We take Fourier transform with respect to ¢ and estimate similarly to (3.10),

(7 +c€)' (7 = &)~ “Pr # 8(r + &) + t* € T (E) |2 12 (3.29)
S I ™ w162 ger<y S llwrllz—o. (3.30)
For the third term, we split again the inhomogeneous term H =: H; + H> as

follows,
Hy(1,&) = v(r| — [€NH(7,6),  Ha(r.€) = (1 — (7| — [€)H(r.€). (3.31)

We estimate on Hy,

teicg(tft') _ eficﬁ(tft') o ,
/O Tt Hi (', €)dt (3.32)
1 eic&t _ eiat . e—ic{t _ eiat __
© (_it\k ) _ B—1 _ E—1
— Z ( ]z't) /ezot (0 Cg) 266(0 + Cg) H, (0_7 §)d0 (334)
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We take Fourier transform with respect to ¢t and estimate,

—a e O T—cE)F 1l — (14 )1 ~
(r+ ) r - ey Gy b x T RN g
3 r2r?
(3.35)
_aeVk=1 _ k—1 __
e T e e Iy 1) T
& L2132
H
S ; (3.37)
RS
at the last inequality, we use |7],|¢| S 1.
On the other hand, we estimate on Ho,
teicg(t—t’) _ e—z‘cg(t—t’) S .
/0 Sice Hy(t',€)dt (3.38)
4 Hy(0,¢) et [ Hy(0,€)
_ 1ot
N /e o—c&)(o+c€ do+ 2c€ o—ck do
(
—ictt 7
S (0.8 4, (3.39)

2c€ o+ ct

— _ | piot M o 4 eickt M .
= [ et et et 6

eickt _ p—ickt ﬁg(g, €)
+ e G )
We take Fourier transform with respect to t,
_ Hy(1§ _  Hy(0,8)
_(T—Cf)(7-+cg) +6(7' Cf)/ (0_05)(J+C§) do (342)

(2¢6)F1 [ Hy(0,€)

+;5(T+C§)*(it)k P el

(3.43)

The estimates for the first term is obvious. We estimate the second and third
terms,

e Hy(0,€)
e [ o8 (3.44)
/(U—Cf)(‘”LCg) L2(gl<1)
< 1—a 1 do ? a ’
S / (o —ct) "o +ct) " rg= e 147 T ST =R,

(3.45)
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||<§>1_“§’“1 Hal0:8) o, (3.46)
o+ c€
Lg(lgl<1)
L [ H(0.9) H
S ||7ae S @ @ (3.47)
G T N LR I
We complete the proof for (3.6). O

4 Bilinear estimates

Here we give the bilinear estimates for the inhomogeneous terms of Dirac—Klein—
Gordon equation. The following proposition is essential in this section. The special
case f>1/2,8> a=v> —fis given in [g].

Proposition 4.1 Let o+ > 1/2. Let v < (resp. <) min{e, 8, a+6—1/2} when
max{«, 8} = 1/2 (resp. # 1/2). Then the following estimate holds,

1fgller—e SNl mollgll - (4.1)

Proof. We employ the duality argument. We prove for any ¢ € L2,

/k@*“ﬁiwdgsH@Vﬁmmu@yﬂmuﬂwnm. (4.2
We set u = (£)° f and v = (€) 7.
/<£>—aﬁ o dé — / (n) "u(€ = mv(n)e(§) dnde (4.3)

(&€ —m)”
gmm(/w%

) 1/2
/u@—mw@d# M) w
1/2
2y _ 2 1
s|v||Lg{/<n> ([ 1uts = metorP ac) </<£>2“<5n>2" d£> dn}

©€—n)’

(4.5)
1/2

< ol lulus el <sup<n>2”J/1ds> (46)

A € -m*

here we have the boundedness from Lemma 2.1,

1 1
— 55 S - (4.7)

/kQQK—WVﬁ (n)*”

We obtain (4.2). O
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As a corollary, we obtain the following.

Corollary 4.2 Forj=1,2, let aj+53; > 1/2 and y; < (resp. <) min{e;, B, o, +
B —1/2} when max{a;, 5;} = 1/2 (resp. # 1/2). Then the following estimates
hold,

uv v
< +r Brie o\ ’
H €+ =7 M2z © W e elas sy €+ €= Nlpare
(4.8)
—~ B L \B2
| e . 8 H“” N e (1.9
RN P (U N T
Proof. We prove (4.9) only. We set the following operator P,
(PF)(r,€) = F(73%, 3%) for F=F(r,¢) (4.10)
and which implies
(PE)(E+ 7,6 —7) = F(1,9). (4.11)
We remark the following property of P,
|PFlliape ~ [ Flasz. (4.12)
We calculate
H uv _H(Pﬂ)(erT,éT)*(Pﬂ)(§+ﬂ£T)
€+ =) Ml 22 E+m)" (€ -7 L2z
(4.13)
By changing the variables 7 +& — 7, 7 — & — £, we continue
(1) (&) L2132
We then apply Proposition 4.1 to both the variables 7 and &, and continue
B1 B2
u) (T, v)(T, .15
|9 eame| |9 rneme (1.15)
L2L? L2L?
E+T A E—T1 Pa
~ M u(r,§) 25_’_7_;71 o(7,§) (4.16)
L2L2 L2132

O
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5 Time local and global existence

Now we are ready to prove Theorem 1.1. We restrict time interval [-T,T] and
consider the following system,

{Du = —myru + Yiwu (5.1)

Ow = —Myrw + P2utu

We apply the standard contraction mapping principle to obtain a solution for the
rescaled equations.

Proof of Theorem 1.1. Firstly we investigate the equation by a scaling argument.
We consider the following system for A > 0

{Du = —mAu + wu (5.2)

Ow = — MM 2w + ufu

Then (u,w) is a solution for (5.2) with A = 1 if and only if the following (ux,wy)
is a solution for (5.2),

uy(t, ) = A 2u(\t, Ax), (5.3)
wy(t, x) = Aw(At, Az). (5.4)

We calculate the initial data ugx(z) = ux (0, 2) = ug(Az) and woy(z) = wx(0,z) =
wo(Az) where ug and wq are in (1.5). We have

laorllzr—o < A (luollar-ay  [lworllme < A2l (5:5)

Therefore we can reduce the size of initial data and mass terms for small A with
a < 1,8 > —1/2. In the following, we seek for the solution (uy,w),) of (5.2), and
for simplicity, we abbreviate (uy,wy) = (u,w).

As in [4], we consider the iteration map ®(u®, w*) = (u**1, w**1). We show
that ® is a contraction map on the space,

Or = {(u,w) = (u,v,w); |[(u,v,w)||le < R} (5.6)
where
u, v, W = 7<T+€>1ib u 7@—7@171) v
H( s Uy )H@ - <7__£>a LELE <7_+£>a LELE (57)
(T+c6) T — )" 53)
<£>1—a—s L$L§
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We restrict the case 0 < 2a < s < 1/2. We set b such that
a+b<1/2, 0<a<b+s—1/2. (5.9)

We firstly give the estimate for the norm of u. From Proposition 3.1,

1—b — o
T+ —~ MNPV — 2w
% Y xu S luollg-e HW (5.10)
Obviously we obtain from a < b,
— 1-b
v T — —~
—¢bT a N =0 a Yr*v (5.11)
(r+ " = O a2 (T+¢) Lar2
We remark b+ s > 1/2 and 1 — b > 1/2 to apply Corollary 4.2,
77/1/2\1;11 s~ T—¢ =6
R S+ € e | T G e
<T+£> <T7§> L3L§ <T+€> LELE
(5.12)
We calculate the weight of norm for w with a + s < 1,
s s s <T+C€>1_a<770§>1_a
(148 < (74+ ) (1 —¢£)” < <§>1_a_s . (5.13)
The estimates for v is similar to above, that is
1-b —
T — — m\ppru — Yrwu
U8 Gov| S ol + | 220T0 V0 (5.14)
(T+&) L1z (r = +¢) Ler2
The estimates for the inhomogeneous terms are given by
— 1—b
wau a S/ <T ks §> a wT * U ) (515)
(r =& (r +&)" || a2 (r—¢) rae
vhwu o~ T+ ~
e < - & wdllpans | L Grd
<T - €> <T + §> LE—LE <T B €> Lng

(5.16)
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For w, we have from Proposition 3.3,

1—a l1—a
e o) s
<€> L2 L2
e
MNrw — ¢2utu
< lwoll e + e + || T~ VP (5.17)
<€> <T + C€> <T - C€> L2112
]
We have
T 1—a l—a 7 | ~
H e Z <[\ ;f? Yrxt (5.18)
<£> <T+C€> <T—C§> L%Lg <£> L72'L§
We remark a <1 —a — s to apply Lemma 2.2,
H l—a—s w%u—‘-ua a ~ ¢%auTu a (5.19)
3 (7 +c6)"(r =€) || P (T+&6"(1—¢) 1212
We apply Corollary 4.2 with 1 —b > 1/2 again
v 0" = N -9~
A  aa S |lm—fa Yr*u a Yr*v
R I T A
(5.20)
Consequently we obtain
1@ (Wru, prv,drw)lle S luolla- + lvollm-« + llwolle + [[wi]l e (5.21)
+(A + X)|(@ru, drv, vrw)lle + | (ru, drv, prw)|ls.
(5.22)

We obtain for sufficiently small A which also means sufficiently small initial data,
and appropriate R,

| (ru, Yrv, Prw)le < R. (5.23)

The estimate for the difference of each solutions is similar, see for reference [4]
1@ (7 (u! —u?), pr(v! —v?),9r(w' —w?))lle (5.24)
< CO+ N+ R)|[(yr(u' —u?),yr(v! —0*) gr(w' —w?))lle.  (5.25)

We take C'(\ + A% + R) < 1 to conclude the proof for the time local existence.
The continuous properties of solutions u and w with respect to ¢t in H~® and H*®
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norms respectively follow from the embeddings,

<5>a L L} ~ <§>a LLL
- (r—8° (r+ &', ¢)
A [ RCr St (3 P B et SN | Y I
1—b
5 <7<—T—’__§2>aﬂ(7—a£) ’ (526)
L2L3
and from similar calculation,
0| -9 5 97
Gl P e Rl 20
l1—a o l—a
"0t Ol | E St (5.25)
L2132

We now turn to the proof for the global existence in the case a = 0 and 0 <
s < 1/2. We give the a priori estimate. For u = *(u,v), we use the conservation
of charge, see [2, 3, 4]

la@®)lzz = lu®lZz + lv®IZz = lluollZz + llvollZz = [luollZe (5.29)

for any ¢t. On the other hand, for the bound of w, we use the energy estimate for
the inhomogeneous Klein—Gordon equation,

t
lw®lms S llwollers + fJwa ]l g +/ lata(t)|| - dt'. (5.30)
0
We apply Proposition 4.1 with 1 — s > 1/2 for the inhomogeneous term,
[ ()1 S llu)llzz vz < C. (5.31)
Therefore we obtain a priori estimate and derive the global existence. O

6 Discussions

In this section, we explain that our choice of Dirac matrices (1.3) is not the special
case to apply the arguments in this paper. We rewrite the Dirac operator D and
the inhomogeneous term ufu for the Klein-Gordon equation as follows,

D =i0;0; + a0, ufu= tﬁozju for j#£k (6.1)
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where «;, j =1,2,3 are the Pauli matrices

w0 (0) @ (0 0) 6o

We could deal with any pairs of (o, o), j # k to compose D and {. The choice of
(1.3) corresponds to the case (j, k) = (1,2). We consider the case (j,k) = (3,2),
and the other cases are similar. We calculate in this case,

_ B | iug — vy + (m—w)u
0=Du+(m—wu = <ivt + dug + (m — w)v> ’ (6.3)
ulu = |u® - |v? (6.4)
for u = *(u,v). We set f =wu+wv, g =u — v to obtain
_(ife —ife+(m—w)g
= (o) (65)
ufu = R(fg) (6.6)

which turns to the case (j, k) = (1,2).
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