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Abstract. We deal with positive solutions of ∆u = a(x)up in a bounded
smooth domain Ω ⊂ R

N subject to the boundary condition ∂u/∂ν = λu, λ a
parameter, p > 1. We prove that this problem has a unique positive solution
if and only if 0 < λ < σ1 where, roughly speaking, σ1 is finite if and only if
|∂Ω ∩ {a = 0}| > 0 and coincides with the first eigenvalue of an associated
eigenvalue problem. Moreover, we find the limit profile of the solution as
λ → σ1.
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1 Introduction

It is the main concern of the present work the study of the following semilinear
boundary value problem:


∆u = a(x)up x ∈ Ω

∂u

∂ν
= λu x ∈ ∂Ω ,

(1.1)
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where Ω ⊂ R
N is a bounded smooth domain of class C2,α, 0 < α < 1, with outward

unit normal ν on ∂Ω and where λ ∈ R is regarded as a perturbation parameter.
It will be assumed that a(x) ∈ Cα(Ω), a �≡ 0, is a nonnegative coefficient, while
the exponent p will be kept in the range p > 1.

The main feature of problem (1.1) is its dependence on the parameter λ
precisely in the boundary condition. Our main objective here is just to study the
variation regimes of λ giving existence of positive solutions to (1.1) (so, we have
avoided employing the more formal |u|p or |u|p−1u instead of up) analyzing their
uniqueness, dependence on λ and covering the asymptotic behavior when λ → ∞
in those cases where such solutions exist for large λ.

Problem (1.1) may be considered in some sense as “sublinear” due to the
sign of the nonlinearity, controlled by the condition a(x) ≥ 0 in Ω. Accordingly,
aside of considering the case a(x) > 0, x ∈ Ω, it is also of much interest to
ascertain the effect exerted on the existence and behavior of positive solutions to
(1.1) by the vanishing of a(x) somewhere in Ω. Especially, if a �≡ 0 is zero in
a whole subdomain of Ω (see, for instance, [3], [20], [4], [7], [8], [18], [6] for this
kind of features in the realm of Dirichlet or Robin boundary conditions which
do not depend on parameters). In order to simplify the exposition and to avoid
unnecessary technical complications it will be assumed that the set Ω ∩ {a = 0}
is either empty, i.e. a(x) > 0 for all x ∈ Ω, or (its interior) constitutes a smooth
subdomain Ω0 ⊂ Ω. As will be opportunely remarked later (see Remark 9), many
other more common possibilities can be handled as variations of this reference
situation. Moreover, when searching for weak solutions, the requirements on Ω0
can be further relaxed (see Theorem 2).

In order to state our main results we are describing with more precision our
hypotheses on the vanishing subdomain Ω0 ⊂ Ω. If a(x0) = 0 at some x0 ∈ Ω
it will be assumed that Ω ∩ {a = 0} = Ω \ {a > 0} = Ω ∩ Ω0 where Ω0 ⊂ Ω
is a C2,α subdomain of Ω. As observed later, no essentially new phenomena
arise if Ω0 consists of several connected pieces (see Remark 11). Being both ∂Ω,
∂Ω0 open and compact smooth n − 1 dimensional manifolds, and hence locally
connected, they can only exhibit finitely many connected pieces all of them also
being pairwise disjoint closed n−1 dimensional manifolds. Since a �≡ 0 then Ω0 �= ∅
implies Ω ∩ ∂Ω0 �= ∅. Again for the sake of brevity, the following requirement on
∂Ω0 will be assumed in most part of the work:

(H) “Writing ∂Ω0 = Γ1 ∪Γ2, with Γ1 = ∂Ω∩∂Ω0 and Γ2 = Ω∩∂Ω0, Γ2 satisfies
Γ2 ⊂ Ω”

(notice that Γ2 �= ∅ whenever Ω0 �= ∅). We could equivalently ask that Γ2 be a
closed subset of ∂Ω. Hypothesis (H) says that those possible connected compo-
nents of ∂Ω0 touching ∂Ω are “separated” from the ones meeting Ω (which are
required in (H) to lie entirely in Ω). See Figure 1. This is obviously the case if,
for instance, either Ω0 = ∅ or Ω0 ⊂ Ω0 ⊂ Ω. Nevertheless, in the part of this
work devoted to weak solutions we are also dealing with a more general setting
allowing that a component of ∂Ω0 simultaneously meets ∂Ω and Ω.



Vol. 14, 2007 A bifurcation problem governed by the boundary condition 501

 0

 1

 1

 2  2

 0

a) b)

Figure 1 a) A valid configuration of Ω0 in hypothesis (H). b) A domain Ω not satisfying (H).
The domain Ω is the union of the two shaded regions.

In the λ-regime for the existence of positive solutions to (1.1) the relative
position of ∂Ω with respect to the null set Ω0 turns out to be crucial. If Ω0 is
far apart from ∂Ω, i.e. Γ1 = ∅ or plainly Ω0 = ∅, then positive solutions exist
for λ arbitrarily large. On the contrary, such an existence is limited above for
λ by a threshold value λ = σ1 which is the principal eigenvalue of the mixed
Dirichlet-Steklov eigenvalue problem:



∆ϕ = 0 x ∈ Ω0

∂ϕ

∂ν
= σϕ x ∈ Γ1

ϕ = 0 x ∈ Γ2.

(1.2)

The required discussion on the existence and properties of the principal eigenvalue
σ1 for this unusual problem and other eigenvalue problems will be provided in
Section 2. For the moment, we are already in position of stating our main results.

Theorem 1 Assume that a ∈ Cα(Ω), 0 < α < 1 is nonnegative while either
a(x) > 0 for all x ∈ Ω or Ω ∩ {a = 0} = Ω ∩ Ω0 with Ω0 a C2,α subdomain of Ω
satisfying (H). Then the following properties hold:

i) Problem (1.1) admits a positive solution if and only if:

0 < λ < σ1, (1.3)

where 0 < σ1 < ∞ is the principal eigenvalue of (1.2) provided Γ1 is
nonempty, σ1 = ∞ otherwise. Moreover, the positive solution is unique.

ii) If uλ stands for the positive solution to (1.1) then uλ ∈ C2,α(Ω) for every
λ satisfying (1.3), being the mapping λ �→ uλ increasing and continuous
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regarded as valued in C2,α(Ω). Moreover:

lim
λ→0+

uλ = 0,

in C2,α(Ω), i.e. uλ bifurcates from u = 0 at λ = 0.

iii) Observing (1.1) as the stationary problem associated to:


∂u

∂t
= ∆u− a(x)up x ∈ Ω

∂u

∂ν
= λu x ∈ ∂Ω ,

(1.4)

then uλ is asymptotically stable for all λ satisfying (1.3). Moreover, it is
globally attractive for the positive solutions to (1.4).

Remark 1 It should be remarked that a(x) in Theorem 1 is allowed to vanish
somewhere on ∂Ω (even being identically zero on ∂Ω).

If we look for weak solutions to (1.1) instead of classical, the conditions on
a(x), Ω and Ω0 can be considerably relaxed. Regarding existence, next theorem
describes a particular choice for the weak setting.

Theorem 2 Let Ω ⊂ R
N be a Lipschitz bounded domain, a(x) ∈ L∞(Ω) satisfying

either a(x) > 0 a.e. in Ω, or a(x) > 0 a. e. in Ω \ Ω0, a(x) = 0 a.e. in Ω0,
Ω0 a C1 subdomain of Ω. If Γ1 := ∂Ω ∩ ∂Ω0 defines a C1 n − 1 dimensional
submanifold of ∂Ω with boundary, when nonempty, then problem (1.1) admits a
positive weak solution u ∈ W 1,2(Ω) ∩ C1,β(Ω) for every 0 < β < 1 provided that
0 < λ < σ1, where σ1 stands for the weak principal eigenvalue of (1.2) if Γ1 �= ∅,
σ1 = ∞ otherwise.

Remark 2 The meeting region Γ1 = ∂Ω ∩ ∂Ω0 if nonempty is required to be
a not too small part of ∂Ω (indeed a submanifold with boundary of ∂Ω). For
instance, Figure 1.b) provides a possible simple example of such situation. Cases
of “smaller” intersections, for instance ∂Ω∩∂Ω0 a n−2 submanifold of ∂Ω or even
a smaller object) may be handled as a perturbation of the first case. However,
that is beyond our objectives in this work.

The behavior of positive solutions uλ to (1.1) described in Theorem 1 is
similar to the corresponding solutions to the logistic problem{ −∆u = λu− a(x)ur x ∈ Ω

u = 0 x ∈ ∂Ω, (1.5)

r > 1, a(x) being as in that theorem and λ1(Ω) < λ < λ1(Ω0) (λ1(Ω), λ1(Ω0) the
first Dirichlet eigenvalues in Ω and Ω0, respectively). See [8] for details.
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Theorem 1 asserts that positive solutions uλ to (1.1) abruptly cease to exist
when λ crosses σ1 if such a value is finite. This raises the question on what kind of
singularization undergoes uλ when λ → σ1 and where does it occur. Next result
gives a full answer to this question (see [8], [18] for the corresponding case in the
logistic problem (1.5)).

Theorem 3 Under the hypotheses of Theorem 1 assume in addition that a ∈
C1(Ω). Set Ω+ := Ω ∩ {a > 0} and suppose that Γ1 �= ∅ and so σ1 < ∞. The
profile of the positive solution uλ to (1.1) as λ ↗ σ1 is then described in the
following terms.

i) Firstly,
lim

λ↗σ1
uλ(x) = ∞,

uniformly in Ω0.

ii) If Γ+ := ∂Ω+ ∩ ∂Ω �= ∅ (Figure 2.a)) then,

uλ(x) → zM,Ω+(x),

as λ ↗ σ1 in C2,α(Ω+ ∪ Γ+), where zM,Ω+ ∈ C2,α(Ω+ ∪ Γ+) stands for the
minimum solution to the singular mixed boundary value problem:



∆u = a(x)up x ∈ Ω+

u = ∞, x ∈ ∂Ω+ ∩ Ω

∂u

∂ν
= σ1u, x ∈ Γ+.

(1.6)

iii) If, on the contrary, ∂Ω+ ⊂ Ω (Figure 2.b)) then

uλ(x) → zD,Ω+(x),

as λ ↗ σ1 in C2,α(Ω+), where zD,Ω+(x) ∈ C2,α(Ω+) is the minimum solu-
tion of the singular Dirichlet problem,


∆u = a(x)up x ∈ Ω+

u = ∞, x ∈ ∂Ω+.
(1.7)

Remark 3 Observe that from (H), Ω = Ω0 ∪ Γ2 ∪ Ω+ and so ∂Ω+ = Γ+ ∪ Γ2, all
the sets involved being pair-wise disjoint.

As a counterpart of Theorem 3 the following result describes the asymptotic
profile of uλ if σ1 = ∞.
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Figure 2 a) A simple configuration for Ω as in point ii). b) A possible Ω as in point iii). The
domain Ω is the union of the two shaded regions.

Theorem 4 Suppose that σ1 = ∞ in Theorem 1. Then,

uλ(x) → zD(x),

as λ → ∞ in C2,α(Ω) where zD(x) ∈ C2,α(Ω) is now the minimum solution to the
problem, 


∆u = a(x)up x ∈ Ω

u = ∞, x ∈ ∂Ω.
(1.8)

Moreover:

lim inf
λ→∞

(
λ−2/(p−1) sup

x∈Ω
uλ(x)

)
≥ |a|∞,Ω

−1/(p−1)
. (1.9)

Remark 4 It can be shown that the minimum solution to (1.8) coincides with
the corresponding minimum solution of the singular Neumann problem,


∆u = a(x)up x ∈ Ω,

∂u

∂ν
= ∞, x ∈ ∂Ω.

On the other hand, the uniqueness of a positive solution to the singular problem
(1.6) holds if a(x) suitably decays to zero at Γ2 = ∂Ω+ \ ∂Ω. Notice that a
must be identically zero there. The uniqueness for (1.8) holds even under less
restrictive assumptions on the behavior of a at ∂Ω. See [9], [19] for further details
and references.

This paper is organized as follows. Section 2 contains a detailed analysis
of some auxiliary special eigenvalue problems. Existence and uniqueness results
are treated in Section 3 while the discussion of asymptotic profiles of the positive
solutions as λ → σ1 are considered in Section 4.
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2 Preliminaries

In the present section two different kinds of –to some extent– non standard eigen-
value problems are considered. The first one was studied in detail in [15] (see
Section 2 there) and the material required for the present work is thus collected in
a single statement. An outline of its proof is enclosed for later use and also in order
to properly highlight the smoothness properties of the relevant eigenfunctions.

Proposition 5 Let Ω ⊂ R
N be a smooth C2,α domain, 0 < α < 1, and consider

the eigenvalue problem:




∆φ = µφ x ∈ Ω

∂φ

∂ν
= λφ x ∈ ∂Ω,

(2.1)

where µ stands for the eigenvalue while λ ∈ R has the “status” of a parameter.
Then, the following properties hold.

i) For every λ ∈ R, (2.1) admits a unique principal eigenvalue µ1, i. e. an
eigenvalue associated to a one-signed eigenfunction, which is simple with
any associated eigenfunction φ1 ∈ C2,α(Ω).

ii) As a function of λ ∈ R, µ1 is smooth and increasing with µ1 = 0 at λ = 0
and µ1 → ∞ as λ → ∞. Moreover:

lim inf
λ→∞

µ1

λ2 ≥ 1. (2.2)

Remark 5 Problem (2.1) becomes non standard when λ > 0 which is just the
case of interest for the present work (with λ < 0, λ = 0 (2.1) is the Robin,
Neumann eigenvalue problem, respectively).

Sketch of the proof. We are only dealing with the anomalous sign λ > 0. Define
M = {u ∈ H1(Ω) :

∫
Ω u

2 = 1} and consider J : M → R defined as:

J(u) =
∫

Ω
|∇u|2 − λ

∫
∂Ω
u2.

The functional J is sequentially weakly lower semicontinuous. It is in addition
coercive in M. In fact, by using the equivalent norm |u|2H1(Ω) =

∫
Ω |∇u|2+

∫
∂Ω u

2,
the existence of a sequence un ∈ M, |un|H1(Ω) → ∞ with J(un) ≤ K for some
K > 0 implies that

∫
∂Ω u

2
n → ∞. Then, after choosing a subsequence if necessary,

vn := un/|un|L2(∂Ω) weakly converges to some v ∈ H1(Ω) being vn → v both in
L2(Ω) and L2(∂Ω). That is not possible since |vn|L2(Ω) = |un|−1

L2(∂Ω) → 0 while
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v �= 0. Thus, J is coercive and reaches an infimum in M ([22]) which must be
negative. Setting −µ1 = infM J then:

−µ1 = inf
u∈H1(Ω)\{0}

∫
Ω

|∇u|2 − λ

∫
∂Ω
u2

∫
Ω
u2

:= inf
u∈H1(Ω)\{0}

Q(u),

and any φ ∈ H1(Ω) satisfying Q(φ) = −µ1 defines a weak eigenfunction to (2.1)
associated to µ1, i.e., ∫

Ω
∇φ∇v + µ1

∫
Ω
φv = λ

∫
∂Ω
φv, (2.3)

for all v ∈ H1(Ω). To show that φ ∈ C2,α(Ω) consider the auxiliary problem:


∆v −Mv = f x ∈ Ω

∂v

∂ν
− λv = 0 x ∈ ∂Ω,

(2.4)

with M > 0, f := (µ1 − M)φ. Problem (2.4) can be transformed into a Cα

coefficients Neumann problem by setting w = eλh(x)v, h being any C2,α extension
to Ω of dist (x, ∂Ω) in a neighbourhood of ∂Ω. As a first consequence, φ ∈
H2(Ω). On the other hand, it follows from [1] that (2.4) becomes uniquely solvable
in W 2,p(Ω) for any f ∈ Lp(Ω) and p ≥ 1 if M is selected conveniently large.
Bootstrapping in φ we get φ ∈ W 2,p(Ω) for all p ≥ 1, hence φ ∈ C1,β(Ω) for all
0 < β < 1. Being (2.4) also uniquely solvable in C2,α(Ω) for M large (see [1],
[12]) we finally get the searched regularity φ ∈ C2,α(Ω).

That any eigenfunction φ to µ1 must be one-signed follows from the fact
that, say φ+ is also an eigenfunction provided φ+ �≡ 0 since Q(φ+) = −µ1. By
the maximum principle φ+ > 0 in Ω, hence φ− = 0 and φ is positive.

Check [15] for a detailed account of the remaining and other additional
interesting properties of µ1. �

Remark 6 As a consequence of the estimate (2.2) some rough information on
the behavior of the –normalized in some way– principal eigenfunction φ1,λ > 0
as λ → ∞ can be given. In fact, observe that from the maximum principle
φ1,λ(x) < sup∂Ω φ1,λ for all x ∈ Ω. Assume that φ1,λ has been normalized with
sup∂Ω φ1,λ = 1. Then by integrating in (2.1) we arrive at:

0 <
∫

Ω
φ1,λ <

λ

µ1
|∂Ω|.

Thus from (2.2) it follows that φ1,λ → 0 in L1(Ω) as λ → ∞. A more detailed
account of this convergence will be given later in Section 4 (cf. Remark 10).
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In our next result an eigenvalue problem similar to (1.2) is considered. In
fact a Schrödinger potential term q(x) is included for later use in Section 4 (see
the proof of Theorem 3).

Theorem 6 Let Ω0 ⊂ R
N be a class C2,α bounded domain whose boundary splits

up in two sets Γ1, Γ2 of connected pieces (thus, each of them being a closed n− 1
dimensional manifold) while the potential q(x) ∈ Cα(Ω0). Then, the eigenvalue
problem, 



∆ϕ− q(x)ϕ = 0 x ∈ Ω0

∂ϕ

∂ν
= σϕ x ∈ Γ1

ϕ = 0 x ∈ Γ2

(2.5)

admits a principal eigenvalue, i.e. an eigenvalue with a one-signed eigenfunction,
if and only if

λ1(q) > 0, (2.6)

where λ1(q) stands for the principal Dirichlet eigenvalue of the operator −∆+q(x)
in the domain Ω0. Moreover, such an eigenvalue σ1(q) is the unique principal
eigenvalue, simple and the smallest of all possible eigenvalues. In addition, σ1(q)
is increasing with respect to q. Finally, any associated eigenfunction ϕ1 belongs
to C2,α(Ω0).

Remark 7 As a consequence of Theorem 6 observe that the eigenvalue problem
(1.2) admits a principal eigenvalue σ1 (σ1 will be used with the meaning of
σ1(q)|q=0) since λ1(q)|q=0, the first Dirichlet eigenvalue of −∆ in Ω0, is positive.
Furthermore, σ1 is positive. In fact, if ϕ1 is a positive associated eigenfunction it
follows from the maximum principle that ϕ1 > 0 on Γ1 while direct integration
gives:

σ1 =

∫
Ω0

|∇ϕ1|2∫
Γ1

ϕ2
1

.

The same holds true for σ1(q) if either q(x) ≥ 0 in Ω0 or infΩ0 q is not too large
(in absolute value) in case of being negative.

Proof of Theorem 6. We begin by noticing that the existence of a principal
eigenvalue σ with associated positive eigenfunction ϕ provides a positive strict
supersolution to the equation,

−∆u+ qu = 0,
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in Ω0 since ϕ must be positive on Γ1. This is well known to imply that λ1(q) > 0
(see [17]).

Let us now show the sufficiency of (2.6) to ensure the existence of a principal
eigenvalue. Define now H = HΓ2(Ω0) = {u ∈ H1(Ω0) : u|Γ2 = 0} equipped
with the norm |u|2H =

∫
Ω0

|∇u|2 +
∫
Γ2
u2 =

∫
Ω0

|∇u|2, which is equivalent to the
standard one in H1(Ω), M = {u ∈ H :

∫
Γ1
u2 = 1} being J : M → R defined as

J(u) =
∫

Ω0

|∇u|2 +
∫

Ω0

qu2.

We are next proving that (2.6) implies the coercivity of J . Assume on the contrary
that there exists un ∈ M such that |un|H → ∞ with J(un) ≤ C for some constant
C. Since q is bounded this implies that tn := |un|L2(Ω0) → ∞. Setting vn = un/tn
we find that vn is bounded in H1(Ω0) then vn ⇀ v weakly in H1(Ω0) and strongly
in L2(Ω0) and L2(Γ1). Observe that v = 0 in Γ1 (in the sense of traces) and hence
v ∈ H1

0 (Ω0) while |v|L2(Ω0) = 1. Finally, from the boundedness of J(un) we
obtain,

λ1(q)
∫

Ω0

v2 ≤
∫

Ω0

|∇v|2 +
∫

Ω0

qv2 ≤ 0,

and this implies v = 0 which is impossible. Thus, J is coercive in M.
On the other hand, since J is also sequentially weakly lower semicontinuous,

J attains a minimum value σ1 in M ([22]),

σ1 = inf
u∈H\{u|Γ1≡0}

∫
Ω0

|∇u|2 +
∫

Ω0

qu2

∫
Γ1

u2
. (2.7)

This variational representation simultaneously ensures that σ1 is an eigenvalue,
and the smallest among all other possible eigenvalues σ to (2.5). The discussion of
both the smoothness and the one sign character of any associated eigenfunction ϕ1
is the same as in Proposition 5. In fact, observe that the analysis in [1] of smooth-
ness up to the boundary can be separately performed on each Γi, i = 1, 2. On the
other hand, the simplicity of σ1 follows from the fact that two possible independent
eigenfunctions lead to two L2 orthogonal eigenfunctions what is impossible in this
case (this also explains why σ1 is the unique principal eigenvalue). Finally, the
monotonicity of σ1(q) with respect q follows from the variational representation
(2.7). �

Remark 8 The proof of existence of a unique principal eigenvalue to problem
(2.5) can be extended without changes to more general domains Ω0. For instance,
Ω0 a Lipschitz bounded domain where Γ1 ⊂ ∂Ω0 is a C1 n−1 dimensional compact
manifold with boundary and Γ2 := ∂Ω0 \ Γ1 nonempty. Notice that Γ1 and Γ2
meet at the n− 2 dimensional boundary of Γ1.
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In our next result, the dependence of the eigenvalue problem (2.5) with
respect to certain perturbations of the domain Ω0 (Ω0 under the hypotheses of
Theorem 6) and the potential q is considered. The perturbed domains are,

Ω0,t = Ω0 ∪ {x ∈ R
N : dist(x,Γ2) < |t|},

0 < |t| < ε being the perturbation parameter, ε > 0 small. Notice that Ω0
is deformed an amount |t| in the outward normal field only with respect to the
boundary Γ2. Remark also that ∂Ω0,t = Γ1 ∪Γ2,t. The perturbed version of (2.5)
under consideration is given by




∆ϕ = q(t)ϕ x ∈ Ω0,t

∂ϕ

∂ν
= σϕ x ∈ Γ1

ϕ = 0 x ∈ Γ2,t,

(2.8)

where |t| < ε, q ∈ C1(−ε, ε), q(0) = 0. As observed in Remark 7, problem (2.8)
admits a principal eigenvalue σ1,t. By means of the holomorphic families of type
(A) approach (see [13]) and arguing as in [15, 18] –coefficient q in addition real
analytic in this case– or by the direct variational approach used in [11] it can be
shown that σ1,t is differentiable with respect to t. More importantly, an expression
for its derivative can be produced and is enclosed in the next statement. For the
sake of brevity its proof is omitted. Nevertheless it can be reconstructed following
the arguments in either [11] or [18].

Proposition 7 Under the conditions of Theorem 6 let σ1 be the principal eigen-
value of (1.2) with associated eigenfunction ϕ1. Then the derivative of the princi-
pal eigenvalue σ1,t to the perturbed problem (2.8) at t = 0 is given by the expression

d

dt
(σ1,t)|t=0 =

q1

∫
Ω0

ϕ2
1 −

∫
Γ2

|∇ϕ1|2∫
Γ1

ϕ2
1

, (2.9)

where q1 =
dq

dt |t=0
.

3 Existence and uniqueness results

This section is devoted to the proof of our results concerning existence and unique-
ness of positive solutions to the problem (1.1).
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3.1. Proof of Theorem 2

Proof of Theorem 2. Firstly, we are introducing the concept of weak solution
to be used. It is said that u ∈ H1(Ω) is a weak solution of (1.1) provided:∫

Ω
a|u|p+1 < ∞,

together with the usual relation:∫
Ω

∇u∇v +
∫

Ω
a|u|p−1uv = λ

∫
∂Ω
uv, (3.1)

for all v ∈ C1(Ω). In the case u ≥ 0 a.e. in Ω, the test function v may be supposed
to belong to H1(Ω) by a standard approximation argument. In particular, notice
that positive weak solutions u ∈ H1(Ω) are only possible provided λ > 0 since
from (3.1) with v = u: ∫

Ω
|∇u|2 +

∫
Ω
aup+1 = λ

∫
∂Ω
u2.

Let us consider in H1(Ω) the equivalent norm |u|H1(Ω) = (
∫
Ω |∇u|2 +∫

∂Ω |u|2)1/2 and introduce the functional,

Φ(u) =
1
2

∫
Ω

|∇u|2 +
1

p+ 1

∫
Ω
a(x)|u|p+1 − λ

2

∫
∂Ω

|u|2,

which may be infinity at some u ∈ H1(Ω). We will find a weak solution of (1.1)
by showing that Φ reaches its minimum in H1(Ω).

As a preliminary remark notice that for a small positive constant K we have,

Φ(K) =
Kp+1

p+ 1

∫
Ω
a(x) − λ|∂Ω|

2
K2 < 0,

and a possible minimum u of Φ will satisfy Φ(u) < 0, being such minimum
nontrivial. Replacing u by |u|, we may assume in addition that u is nonnegative.

To see that there exists a minimum of Φ in H1(Ω) let us prove that Φ is
coercive and weakly lower semicontinuous (cf. [3], [22]). Let us first check that
Φ is coercive. Proceeding by contradiction, assume that there exists a sequence
un ∈ H1(Ω) such that

|un|H1(Ω) → ∞ and Φ(un) ≤ C.

Hence

1
2

∫
Ω

|∇un|2 +
1

p+ 1

∫
Ω
a(x)|un|p+1 ≤ C +

λ

2

∫
∂Ω

|un|2, (3.2)
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and therefore, since |un|H1(Ω) → ∞ we have that∫
∂Ω

|un|2 → ∞.

Setting vn = un/|un|L2(∂Ω) it follows from (3.2) that

1
2

∫
Ω

|∇vn|2 +
1

(p+ 1)(
∫

∂Ω |un|2)1−p

∫
Ω
a(x)|vn|p+1 ≤ C∫

∂Ω |un|2 +
λ

2
. (3.3)

Therefore vn is a bounded sequence in H1(Ω) and thus there exists a subsequence
(that we still call vn) such that vn ⇀ v weakly in H1(Ω) and vn → v strongly in
L2(∂Ω). Hence |v|L2(∂Ω) = 1. On the other hand, it follows from (3.3) that

1
(p+ 1)(

∫
∂Ω |un|2)1−p

∫
Ω
a(x)|vn|p+1 ≤ C∫

∂Ω |un|2 +
λ

2
.

Therefore

1
(p+ 1)

∫
Ω
a(x)|vn|p+1 ≤ C

(∫
∂Ω

|un|2
)1−p

→ 0, n → ∞.

Hence ∫
Ω
a(x)|v|p+1 = 0,

and we conclude that v ≡ 0 in Ω+ = {a > 0}. Notice that in the case σ1 = +∞
this implies v = 0 on ∂Ω, which is not possible since |v|L2(∂Ω) = 1.

If, on the contrary, σ1 < +∞, we get, using (3.3) again, that

1
2

∫
Ω

|∇v|2 ≤ λ

2
,

with |v|L2(∂Ω) = 1 and v = 0 on Γ2, and taking into account (2.7) that is not
compatible with the assumption λ < σ1.

Finally, let us see that Φ is weakly lower semicontinuous. Assume that un ⇀
u weakly in H1(Ω). By standard compactness results we have that un → u both
strongly in L2(∂Ω) and L2(Ω). Thus to show that

Φ(u) ≤ lim inf
n→∞ Φ(un),

it is only necessary to prove that∫
Ω
a|u|p+1 ≤ lim inf

n→∞

∫
Ω
a|u|p+1

n . (3.4)

However, Fatou’s lemma implies that from any subsequence of un a new one can be
selected so that (3.4) holds. Thus the relation holds true for the whole sequence.
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We have just shown that Φ achieves an absolute minimum at some
nonnegative ũ ∈ H1(Ω). It can be checked now that Φ can be differentiated
at any u ∈ H1(Ω), Φ(u) < ∞, in any direction v ∈ C1(Ω) with:

d

dt
(Φ(u+ tv))t=0 =

∫
Ω

∇u∇v +
∫

Ω
a|u|puv − λ

∫
∂Ω
uv. (3.5)

This means that ũ defines a weak solution to (1.1).
To conclude the proof observe that any weak nonnegative solution to (1.1)

satisfies −∆u ≤ 0 weakly in Ω. Thus u ∈ L∞
loc(Ω) (see Chapter 8 in [12]) and a

bootstrapping argument gives u ∈ C1,β(Ω), 0 < β < 1. �

3.2. Proof of Theorem 1

We are next providing a proof of Theorem 1. In the following lemma a proof of
uniqueness for classical solutions is given. For later use we are dealing with slightly
more general problems than (1.1). Then we will find the range for existence in a
second lemma to finally proceed with the main course of the proof.

Lemma 8 Suppose that Ω ⊂ R
N is a bounded C2,α domain such that ∂Ω splits

in two disjoint groups of connected pieces ΓN and ΓD. Consider the problem,


∆u = a(x)up x ∈ Ω

∂u

∂ν
= λu x ∈ ΓN

u = g(x) x ∈ ΓD,

where g ∈ C1(ΓD), and let u1, u2 ∈ C2(Ω) ∩ C1(Ω) be two classical nonnegative
and nontrivial solutions. Then u1 = u2.

Proof. It can be shown by means of Hopf’s maximum principle that any nonneg-
ative classical solution u ∈ C2(Ω) ∩ C1(Ω), u �≡ 0, satisfies infΩ u > 0.

We next use ideas from [3]. Assume that u1, u2 are positive solutions and
consider the relation,∫

Ω

(
−∆u1

u1
+

∆u2

u2

)
(u2

1 − u2
2) = −

∫
Ω
a(x)(up−1

1 − up−1
2 )(u2

1 − u2
2) ≤ 0. (3.6)

Integrating by parts we get,

−
∫

Ω
∆u1

(u2
1 − u2

2)
u1

= −
∫

ΓN

∂u1

∂ν

(u2
1 − u2

2)
u1

+
∫

Ω
∇u1∇

(
u2

1 − u2
2

u1

)

= −λ
∫

ΓN
(u2

1 − u2
2) +

∫
Ω

∇u1∇
(
u2

1 − u2
2

u1

)
.
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Similarly

−
∫

Ω
∆u2

(u2
1 − u2

2)
u2

= −λ
∫

ΓN
(u2

1 − u2
2) +

∫
Ω

∇u2∇
(
u2

1 − u2
2

u2

)
.

Thus,
∫

Ω

(
−∆u1

u1
+

∆u2

u2

)
(u2

1 − u2
2) =

∫
Ω

∣∣∣∣∇u1 − u1

u2
∇u2

∣∣∣∣
2

+
∣∣∣∣∇u2 − u2

u1
∇u1

∣∣∣∣
2

=
∫

Ω
u2

1

∣∣∣∣∇
(
u2

u1

)∣∣∣∣
2

+ u2
2

∣∣∣∣∇
(
u1

u2

)∣∣∣∣
2

≥ 0.

In conclusion, both integrals in (3.6) vanish. From the first one we get u2 = cu1
for some constant c, while the second implies u1 = u2 in {a > 0}. Therefore
u1 = u2. �

Lemma 9 Positive classical solutions to (1.1) are only possible if λ satisfies (1.3):

0 < λ < σ1.

Proof. If u is a positive solution of (1.1), direct integration gives:∫
Ω
aup = λ

∫
∂Ω
u.

As already shown, u is bounded away from zero in Ω and hence λ > 0.
As for the complementary estimate assume again that u is a positive solution.

From Green’s identity: ∫
∂Ω0

ϕ1
∂u

∂ν
− u

∂ϕ1

∂ν
= 0,

where ϕ1 is a principal positive eigenfunction to (1.2). Thus,

(λ− σ1)
∫

Γ1

uϕ1 =
∫

Γ2

u
∂ϕ1

∂ν
.

Since
∂ϕ1

∂ν
(x) < 0, x ∈ Γ2,

we then obtain that necessarily λ < σ1. �

Proof of Theorem 1. To obtain a classical positive solution we are employing
the method of sub and supersolutions (cf. [2]). A nonnegative u ∈ C2(Ω)∩C1(Ω)
is said to be a subsolution of (1.1) if

∆u ≥ a(x)up x ∈ Ω,
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together with
∂u

∂ν
≤ λu on ∂Ω (a supersolution is defined by reversing the inequal-

ities).
For every λ in the existence range (1.3) if φ1 is the positive eigenfunction

associated to the principal eigenvalue µ1 = µ1(λ) of (2.1), normalized as supΩ φ1 =
1, then it can be checked that

u := Aφ1,

defines a subsolution of (1.1) provided,

0 < A ≤
(

µ1

|a|∞,Ω

)1/(p−1)

, (3.7)

that is, provided A is small enough. Finding a comparable supersolution is how-
ever a more subtle task. We are considering by turn the cases a > 0 in ∂Ω and
a = 0 at some parts of ∂Ω (possibly at the whole ∂Ω).

Under the first assumption, if a > 0 in Ω (in particular Ω0 = ∅),

u := Bφ1,

is readily seen to be a supersolution if B is large enough as to satisfy:

B ≥
(

µ1

infΩ a (infΩ φ1)p−1

)1/(p−1)

.

Recall that infΩ φ1 > 0. Thus assume a > 0 on ∂Ω but Ω0 �= ∅. To construct
a supersolution an approach from [16] is used. Let δ > 0 be chosen so that
Bδ = B(Ω0, δ) := {x ∈ Ω : dist(x,Ω0) < δ} ⊂⊂ Ω. Let ψ1 be the principal
positive eigenfunction of the Dirichlet problem:{ −∆ψ = σψ x ∈ Bδ

ψ = 0 x ∈ ∂Bδ,

associated to the principal eigenvalue σ = σ1(Bδ), satisfying supBδ
ψ1 = 1 (recall

that σ1(Bδ) > 0). The restriction of ψ1 to B(Ω0, δ/2) can be extended to the
whole of Ω as a positive C2,α function ψ̂1 such that,

∂ψ̂1

∂ν
= λψ̂1,

on ∂Ω. For instance, it suffices that ψ̂1 = ceλd(x) near ∂Ω with d(x) = dist (x, ∂Ω)
and c a positive constant. Then,

u := Bψ̂1,

defines a C2,α supersolution to (1.1) if B > 0 is so large as to have:{
supDδ

|∆ψ̂1|
infDδ

a {infDδ
ψ̂1}p

}1/(p−1)

≤ B,
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where Dδ = Ω \B(Ω0, δ/2).
As a final conclusion, in the case a > 0 at ∂Ω a pair u, u of sub and super-

solutions can be constructed so that u ≤ u, hence a positive solution u ∈ C2,α(Ω)
exists in the functional interval [u, u] (cf. [2]).

Let us deal now with the case a = 0 at some points of ∂Ω. Under hypothesis
(H) we will first consider the very particular case a(x) = 0 for all x ∈ ∂Ω. To
construct a classical supersolution u consider,

Ωδ := [B(Ω0, δ) ∪ {dist (x, ∂Ω) < δ}] ∩ Ω

= {x ∈ Ω : dist (x,Ω0) < δ or dist (x, ∂Ω) < δ}.
Observe that ∂Ωδ = ∂Ω ∪ [∂Ωδ ∩ Ω] and that Ωδ approaches Ω0 and ∂Ωδ ∩ Ω
approaches (∂Ω \ Γ1) ∪ Γ2 as δ → 0+ (although Ωδ may not be connected, the
results in Section 2 concerning the eigenvalue problems still hold true). The
auxiliary problem: 


∆ϕ = 0 x ∈ Ωδ

∂ϕ

∂ν
= σϕ x ∈ ∂Ω

ϕ = 0 x ∈ ∂Ωδ ∩ Ω

admits (Theorem 6) a principal eigenvalue σ1,δ with a positive associated eigen-
function ϕ1 (its dependence on δ being omitted at this moment). We claim that
σ1,δ ≤ σ1 while in addition limδ↘0 σ1,δ = σ1. Assumed this fact, if λ < σ1
a construction similar as the previous one can be performed with the positive
eigenfunction ϕ1 associated to σ1,δ, provided δ > 0 is small as to verify,

λ < σ1,δ ≤ σ1.

Namely, to extend its restriction to Ωδ/2 to the whole Ω as a positive smooth
function ϕ̂1. Remark that now we define ϕ̂1 away from ∂Ω and have no interference
with the boundary condition in (1.1). The desired supersolution is thus provided
by,

u := Bϕ̂1,

with B > 0 large enough. Once more we get the existence of a positive solution
to (1.1) in this case.

For the general case of a introduce aδ(x) = η(x)a(x) where η is smooth,
supp η = {dist (x, ∂Ω) ≥ δ}, η = 1 in {dist (x, ∂Ω) ≥ 2δ}, 0 ≤ η ≤ 1. Assuming
δ > 0, the problem 


∆u = aδ(x)up x ∈ Ω

∂u

∂ν
= λu x ∈ ∂Ω ,

as just seen before admits a positive solution uλ,δ if λ < σ1,δ < σ1 and defines in
turn a supersolution to (1.1). It can be also enlarged by multiplying by a constant,
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i.e.,
u = Buλ,δ,

with B > 0. This concludes the proof of existence.
Let us come back to show the claim regarding σ1,δ. To fix notation set

Γδ = ∂Ωδ ∩ Ω = {x ∈ Ω : dist (x, ∂Ω) = δ or dist (x,Ω0) = δ}, H1
Γδ

= {u ∈
H1(Ωδ) : u|Γδ

= 0}. Then, if for u ∈ H1
Γδ

and δ > 0 we define,

Qδ(u) =

∫
Ωδ

|∇u|2∫
∂Ω
u2

,

whereas, for u ∈ H1
Γ2

Q0(u) =

∫
Ω0

|∇u|2∫
Γ1

u2
,

then, for every δ ≥ 0 small

σ1,δ = inf
u∈H1

Γδ
\{0}

Qδ(u),

wherein we understand Γδ = Γ2 and σ1,δ = σ1 when δ = 0. Select now any
eigenfunction associated to σ1, ϕ1 ∈ H1

Γ2
(Ω0). Its extension ϕ̄1 as zero to Ωδ

belongs to H1
Γδ

(Ωδ) while:

σ1 = Q0(ϕ1) = Qδ(ϕ̄1) ≥ σ1,δ.

If, similarly ϕ1,δi are eigenfunctions associated to σ1,δi , i = 1, 2, 0 < δ1 < δ2, ϕ1,δ1

extended as zero to Ωδ2 (ϕ̄1,δ1 the extension) lies in H1
Γδ2

and,

σ1,δ1 = Qδ1(ϕ1,δ1) = Qδ2(ϕ̄1,δ1) ≥ σδ2 .

In conclusion σ1,δ does not decrease as δ ↘ 0 and σ1,δ ≤ σ1.
We are next showing that lim infδ↘0 σ1,δ = σ1 (i.e., that σ1,δ → σ1 as δ ↘ 0).

In fact, for each δ > 0 small normalize ϕ1,δ so that
∫

∂Ω ϕ
2
1,δ = 1, designate as

ϕ̄1,δ ∈ H1(Ω) its extension by zero to Ω and use |u|1 =
(∫

Ω |∇u|2 +
∫

∂Ω u
2
)1/2 as

an equivalent norm for H1(Ω). Since,

|ϕ1,δ|21 = 1 + σ1,δ ≤ 1 + σ1,

ϕ̄1,δ ⇀ ϕ̄ weakly in H1(Ω) as δ ↘ 0, hence ϕ̄1,δ → ϕ̄ in L2(Ω), L2(∂Ω) and
L2(Γ2). As a first conclusion, ϕ̄ = 0 a. e. in Ω \ Ω0 and thus ϕ̄ = 0 both on Γ2
and ∂Ω \ Γ1 in the sense of traces. In particular,∫

Γ1

ϕ̄2 = 1.
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On the other hand,

σ1 ≤
∫

Ω0

|∇ϕ̄|2 =
∫

Ω
|∇ϕ̄|2 ≤ lim inf

δ→0

∫
Ω

|∇ϕ̄1,δ|2 = lim inf
δ→0

σ1,δ ≤ σ1.

This implies both that ϕ̄ as observed in Ω0 defines an eigenfunction associated to
σ1 and the desired limit. The proof of the claim is concluded.

We are next showing the remaining parts of Theorem 1. As for ii) observe
that problem (1.1)λ always admits subsolutions as small as desired (see (3.7)) while
the positive solution uλ1 to (1.1) with λ1 replacing λ defines a strict supersolution
to (1.1)λ if λ1 > λ. Thus,

uλ(x) < uλ1(x) x ∈ Ω,

for λ < λ1. To achieve the continuity of uλ in λ assume that λn → λ, λ > 0,
and set λ = inf λn (it can be assumed λ > 0), λ̄ = supλn. Then uλ ≤ uλn ≤ uλ̄

and uλn
is bounded in L∞. Now the relevant estimate in [2] (see Lemma 3.2

there) implies the boundedness of uλn
in W 1,p(Ω) for all p > 1 what, in turn and

by standard arguments, successively provides its boundedness in W 2,p(Ω) for all
p > 1 and in C1,β(Ω) for all 0 < β < 1. Next, the Schauder estimates ([12])
provide a subsequence uλn′ → uλ in C2,α(Ω). Finally, the uniqueness and the
same argument permit extending such convergence to the whole sequence uλn

.
By the same token, if λn → 0 in R

+, uλn
converges in C2,α(Ω) to a nonnegative

solution of (1.1) with λ = 0 which means that this limit is zero.
To show iii) let u0 ∈ C1,α(Ω)+, u0 �≡ 0 be an initial datum for (1.4) (due to

the parabolic regularization effect, this smoothness can be considerably relaxed).
Then, (1.4) admits a nonnegative and globally defined for t > 0 solution u(x, t),
u(·, t) ∈ C2,α(Ω) for all t. In fact u−(x, t) = 0 serves as a subsolution while
u+(x, t) = cφ1e

µ1(λ)t, with φ1 a positive principal eigenfunction of (2.1), defines
a positive supersolution for a suitably chosen constant c > 0. On the other hand,
the parabolic strong maximum principle implies that for all t > 0, u(x, t) > 0 in
Ω. This means that for t0 > 0 small as desired,

u(x) ≤ u(x, t0) ≤ u(x), x ∈ Ω,

if the constants A,B, modulating respectively the subsolution u and the superso-
lution u are properly chosen. It is then well known (cf. [21]) that this implies

u(x, t) → uλ(x) x ∈ Ω,

as t → ∞ (exponentially) in C2,α(Ω) and the proof of Theorem 1 is finished. �

Remark 9 It is implicit in the proof of Theorem 1 the existence for all λ > 0 of
a unique positive classical solution u ∈ C2,α(Ω) to (1.1) if, for instance, dist ({a =
0} ∩ Ω, ∂Ω) > 0 even being a = 0 at points of ∂Ω. Thus a ∈ Cα(Ω) may vanish in
Ω provided there is a gap between {a = 0} and the boundary ∂Ω.
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4 Behavior as λ → σ1

In this section we are providing the proofs of Theorems 3 and 4. We are first
considering the latter.

Proof of Theorem 4. First of all, it is well known that for a function a ∈ Cα(Ω),
positive in Ω, problem (1.8){

∆u = a(x)up x ∈ Ω
u = ∞ x ∈ ∂Ω,

admits a minimum positive solution zD(x) ∈ C2,α(Ω) attaining the boundary
condition in the sense limd(x)↘0 u(x) = ∞, d(x) = dist (x, ∂Ω) (see the references
in [5, 9, 19]). It can be also shown that,

zD(x) = supu(x) x ∈ Ω,

being the supremum extended to all classical nonnegative solutions u ∈ C2(Ω) ∩
C(Ω) of ∆u = aup. We claim that the same facts also hold in the case where a
vanishes in a whole subdomain Ω0 ⊂⊂ Ω just under the conditions of the present
statement (see a brief proof below). Assumed this and if uλ ∈ C2,α(Ω) stands for
the positive solution to (1.1) then,

uλ(x) < zD(x) x ∈ Ω,

for all λ > 0. Being uλ increasing in λ this implies that,

z(x) := sup
λ>0

uλ(x) = lim
λ→∞

uλ(x) ≤ zD(x) x ∈ Ω.

Moreover, employing the Lp estimates and bootstrap in the standard way (check
the proof of Theorem 1) we get z ∈ C2,α(Ω) being the limit valid in C2,α(Ω).
Therefore, z solves the equation in (1.8).

Our next issue is elucidating the boundary behavior of z. It will be in fact
shown that z and zD coincide. As a first remark observe that,

z(x) = sup
m>0

vm(x) x ∈ Ω,

where for m > 0, vm ∈ C2,α(Ω) is the unique positive solution to,{
∆u = a(x)up x ∈ Ω
∂u

∂ν
= m x ∈ ∂Ω.

In fact, notice that vm increases in m while, for λ > λ1 > 0,

∂uλ

∂ν
= λuλ > λuλ1 → ∞,
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uniformly on ∂Ω as λ → ∞.
On the other hand, in order to work with the constant coefficients case

observe that for each m > 0 we get by comparison ṽm < vm where ṽm is the
positive solution of, {

∆u = |a|∞up x ∈ Ω
∂u

∂ν
= m x ∈ ∂Ω.

Thus, being z̃ = supm ṽm we have z̃ ≤ z and so to get z = zD we only need to
show that z̃ → ∞ as d → 0+. Using now ideas from [5, 9] it is not too hard to
prove the following assertions. Consider,

γ =
2

p− 1
A =

{
γ(γ + 1)

|a|∞

}1/(p−1)

,

together with,
h(d) = (A− η)d−γ d(x) = dist (x, ∂Ω),

0 < η < A. Then, for η as small as desired positive constants δ, τ0 can be found
such that,

wτ (x) = h(d(x) + τ),

defines a C2,α subsolution of ∆u = |a|∞up in the region Dδ = {x ∈ Ω : 0 < d(x) <
δ} for every 0 ≤ τ < τ0. In addition, a positive constant k can be chosen so that,

0 < wτ (x) − k < z̃(x), (4.1)

for every x with d(x) = δ. Notice that wτ − k is again a subsolution under the
same conditions as wτ . On the other hand, ṽm solves the next mixed problem in
Dδ, 



∆u = |a|∞up x ∈ Dδ

∂u

∂ν
= m x ∈ ∂Ω

u = ṽm d = δ.

For 0 < τ < τ0 fixed we conclude in view of (4.1) and the finiteness of
∂wτ

∂ν
at ∂Ω

that for m large enough,

wτ (x) − k ≤ ṽm(x) x ∈ Dδ.

Making first m → ∞ and then τ ↘ 0 we get,

h(d) − k ≤ z̃,

which gives z̃ → ∞ as d ↘ 0, as desired.
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Let us prove now the claim. Namely, that the singular boundary value
problem (1.8) has a minimum classical positive solution z ∈ C2,α(Ω) if a ∈ Cα(Ω)
vanishes in a C2,α subdomain Ω0 ⊂ Ω0 ⊂ Ω (see [10] for a more general setting).
Following a standard approach (cf. [9], [14]) z is given by the limit, whose existence
must be proved,

z(x) = limum(x) x ∈ Ω, (4.2)

where um ∈ C2,α(Ω) is the positive solution to the problem,{
∆u = a(x)up x ∈ Ω
u = m x ∈ ∂Ω.

The existence of um is achieved, say by sub and supersolutions, while um increases
in m and the limit (4.2) is actually a supremum.

If zD,Ω+ ∈ C2,α(Ω+), Ω+ = {a(x) > 0}∩Ω, stands for the minimum positive
solution to {

∆u = a(x)up x ∈ Ω+

u = ∞ x ∈ ∂Ω+,

then,
um(x) < zD,Ω+(x) x ∈ Ω+,

and so by the bootstrap argument invoked before we get the existence and validity
of the limit (4.2) in C2,α(Ω+). In order to cover Ω0 observe that um solves the
Dirichlet problem, {

∆u = a(x)up x ∈ B(Ω0, δ)
u = um x ∈ ∂B(Ω0, δ),

where B(Ω0, δ) = {x ∈ Ω : dist (x,Ω0) < δ}, δ > 0 small. On the other hand,
since ∂B(Ω0, δ) ⊂ Ω+ then,

um(x) < zD,Ω+(x) x ∈ ∂B(Ω0, δ).

Being every um subharmonic this means that um is bounded in B(Ω0, δ) and
again, this implies the existence of the limit (4.2) in C2,α(B(Ω0, δ)), therefore in
C2,α(Ω). This finishes the proof of the claim.

Finally, the asymptotic rate (1.9) follows from (see (3.7)),

sup
Ω
uλ ≥

(
µ1

|a|∞

)1/(p−1)

together with the estimate (2.2) for µ1 as λ → ∞. �

Remark 10 It was pointed out in Remark 6 that the principal positive eigen-
function φ1,λ, normalized as supΩ φ1,λ = 1, decays to zero a. e. in Ω as λ → ∞.
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As a consequence of the last part of the proof of Theorem 4 it further follows that
φ1,λ(x) → 0 as λ → ∞ for all x ∈ Ω, faster than any polynomial. In fact (3.7)
implies, using p > 1 as a parameter, that

λ2/(p−1)φ1,λ(x) ≤
(
λ2

µ1

)1/(p−1)

|a|1/(p−1)
∞,Ω uλ(x) x ∈ Ω.

Hence, from (2.2):

lim sup
λ→∞

(
λ2/(p−1)φ1,λ(x)

)
≤ |a|1/(p−1)

∞,Ω z(x),

and the conclusion follows.

Proof of Theorem 3. Let us first deal with the behavior of uλ in Ω0 with special
emphasis on the boundary behavior. To construct a suitable subsolution to (1.1)
consider an special choice of the perturbed eigenvalue problem (2.5). Namely,


∆ϕ = c1δ ϕ x ∈ B(Ω0, δ)
∂ϕ

∂ν
= σϕ x ∈ Γ1

ϕ = 0 x ∈ Γ2,δ,

(4.3)

where B(Ω0, δ) = {x ∈ Ω : dist (x,Ω0) < δ}, Γ2,δ = {x ∈ Ω : dist (x,Ω0) = δ}
and δ > 0 is small (notice that ∂B(Ω0, δ) = Γ1 ∪ Γ2,δ). If ϕ1 is any principal
eigenfunction to (1.2), c1 is a positive constant chosen so that

c1

∫
Ω0

ϕ2
1 <

∫
Γ2

|∇ϕ1|2.

Thus, by using the expression (2.9) for the derivative dσ1,t/dt|t=0 (now t = δ), the
principal eigenvalue σ1,δ > 0 to (4.3) increases when δ decays to zero. Moreover,
with the same arguments as in the proof of Theorem 1 (now in a simpler case) it
is shown that limδ↘0 σ1,δ = σ1. On the other hand, if ϕ̃δ stands for the principal
eigenfunction to (4.3) normalized according to supΩ0

ϕ̃δ = 1, then the L∞ bound-
edness of {ϕ̃δ} and the estimates in [2], [1] yield ϕ̃δ → ϕ1 in C2,α(Ω0), where now
ϕ1 is the principal eigenfunction of (1.2) normalized as ϕ̃δ.

For λ ↗ σ1 we take δ = δ(λ) ↘ 0 such that σ1,δ < λ < σ1 and look for a
weak subsolution to (1.1) in the form

u = A ϕ̃δ,

where ϕ̃δ is extended as zero to Ω \ B(Ω0, δ) and A = A(δ). We claim that such
a subsolution can be constructed so that,

δ A(δ) → ∞ δ → 0 + . (4.4)
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Assumed this fact and since as large as desired positive supersolutions u to (1.1)
can be found, then the positive solution uλ satisfies

u(x) ≤ uλ(x) ≤ u(x) x ∈ Ω.

Being ϕ̃δ → ϕ1 in C2,α(Ω0) and ϕ1 > 0 in Ω0 ∪ Γ1, (4.4) implies that uλ → ∞ in
Ω0 ∪ Γ1. Moreover as,

inf
Γ2
ϕδ ∼ C1δ δ ↘ 0, (4.5)

(see [18]) by (4.4) we conclude that uλ → ∞ as λ ↗ σ1 uniformly on Γ2. This
proves i).

To show the claim we only need to check that an A satisfying (4.4) can be
found with the additional requirement,

A ϕ̃δ(x) ≤
{

c1
sup0<d(x)<δ(a(x)/δ)

}1/(p−1)

0 < d(x) < δ, (4.6)

with d(x) = dist (x,Ω0). This election is actually possible due to (4.5) and the
fact a(x) = o(d(x)) as d(x) ↘ 0.

Observe now that iii) is an immediate consequence of the previous discussion.
In fact, Ω+ ⊂⊂ Ω means that ∂Ω+ = Γ2. Since uλ|Γ2 → ∞ uniformly on Γ2 we
then conclude that uλ → zD,Ω+ in C2,α(Ω+) (see the proof of Theorem 4).

As for ii) we are proving the existence of the minimum solution to (1.6).
Accordingly, assume that z1(x) ∈ C2,α(Ω+ ∪ Γ+) is any of its possible positive
solutions. For each m ∈ N the auxiliary problem,



∆u = a(x)up x ∈ Ω+

∂u

∂ν
= σ1u x ∈ Γ+

u = m x ∈ Γ2,

(4.7)

admits at most a unique positive solution in C2,α(Ω+) (Lemma 8) and has superso-
lutions as large as required (proof of Theorem 1). Therefore it possesses a positive
solution um ∈ C2,α(Ω+) which by comparison is seen to satisfy,

um(x) ≤ z1(x).

In fact, being Ω+,δ := Ω \B(Ω0, δ), such inequality holds on Ω+,δ ∪ Γ+, for every
δ → 0+. On the other hand um is increasing in m while um(x) ≤ zD,Ω+(x) in Ω+.
Hence,

limum(x) = supum(x) := z(x) ≤ zD,Ω+(x) x ∈ Ω+, (4.8)

and this limit is valid in C2,α(Ω+). Hence, z solves ∆u = a(x)up in Ω+. To cover
Γ+ observe that ∂Ω+,δ = Γ+ ∪ Γ2,δ, Γ2,δ = {x ∈ Ω : dist (x,Ω0) = δ} while for
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δ > 0 small the auxiliary problem,


∆u = a(x)up x ∈ Ω+,δ

∂u

∂ν
= σ1u x ∈ Γ+

u = zD,Ω+ x ∈ Γ2,δ,

(4.9)

also admits a unique positive solution uδ(x) ∈ C2,α(Ω+,δ) (just the same reasons
as in (4.7)). Since every um a is subsolution to (4.9), and that problem possesses
large supersolutions, we obtain

um(x) ≤ uδ(x) x ∈ Ω+,δ.

By using the estimates in [2] and [1] we achieve that the limit (4.8) holds in
C2,α(Ω+,δ) for δ > 0 arbitrarily small. Thus the limit is actually valid in C2,α(Ω+∪
Γ+) and in particular

∂z

∂ν
= σ1z x ∈ Γ+.

Since in addition z(x) ≤ z1(x), z is the minimum solution to (1.6) which is denoted
as zM,Ω+ .

On the other hand, the solution uλ to (1.1) satisfies,

uλ(x) ≤ zM,Ω+(x) x ∈ Ω+ ∪ Γ+,

since uλ(x) ≤ um(x) in Ω+ for m large. Reasoning as before

z2(x) := sup
λ↗σ1

uλ(x) = lim
λ↗σ1

uλ(x) ≤ zM,Ω+(x) x ∈ Ω+ ∪ Γ+,

defines a classical solution of (1.6) being the limit valid in C2,α(Ω+ ∪Γ+). There-
fore, z2 = zM,Ω+ and the proof is concluded. �

Remark 11 Let us briefly discuss what happens if Ω0 ⊂ Ω consists of M
connected pieces Ω0,1, . . . ,Ω0,M , all of them C2,α and satisfying (H) in the sense
that for each 1 ≤ i ≤ M , Γ1,i = ∂Ω0,i ∩∂Ω is nonempty and consists of connected
pieces of ∂Ω, Γ2,i = ∂Ω0,i ∩ Ω.

If Ω0,i ⊂⊂ Ω for each i ∈ {1, . . . ,M} then a unique positive classical solution
uλ to (1.1) exists for all λ > 0 which exhibits all the features of both Theorems 1
and 4.

On the contrary, if Γ1,j �= ∅ for some 1 ≤ j ≤ M define σ∗ = min{σ1,i}
where σ1,i stands for the principal eigenvalue to problem (2.1) in Ω0,i, assumed
that Γ1,i �= ∅. Then, we also achieve the existence of a unique positive solution
uλ if and only if 0 < λ < σ∗ together with the remaining properties of Theorem
1 with σ1 replaced by σ∗. As for Theorem 3, uλ(x) → ∞ uniformly in ∪iΩ0,i

as λ ↗ σ∗, the union being extended to those connected pieces with exactly
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σ1,i = σ∗. Regarding ii) and iii), Ω+ must be now replaced by Ω∗ = Ω \ ∪iΩ0,i,
Γ+ by Γ∗ = ∂Ω∗ ∩ ∂Ω and σ1 by σ∗. Then the same conclusions hold again. In
particular, observe that uλ remains finite as λ ↗ σ∗ on the closure Ω0,l of every
component, if any, with σ1,l > σ∗.
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[9] J. GARCÍA-MELIÁN, R. LETELIER-ALBORNOZ and J. SABINA DE LIS,
Uniqueness and asymptotic behaviour for solutions of semilinear problems
with boundary blow-up, Proc. Amer. Math. Soc. 129(12) (2001), 3593–3602.
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