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Abstract. Inspired by a recent paper of Giacomini et al [3], we give the
exact expression of the limit cycles for a class of two-dimensional differential
sytems. We study also the uniqueness of such limit cycles. An application
to Liénard equation and several examples are given at the end.
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1 Introduction

We consider here a class of autonomous two dimensional dynamical systems of
the form { .

x = X(x, y),
.
y = Y (x, y), (1)

where (X, Y ) is a vector field defined in an open subset A of R
2. A dot over

a letter denotes derivative with respect to the time variable t. When (X, Y ) is
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a polynomial vector field, this type of dynamical systems appears frequently in
several areas of science, such as biology, chemistry, astrophysics, mechanics, elec-
tronic, fluid mechanics, ecology, economy, etc (see textbooks [4,7]).

The most interesting solutions of (1) are the limit cycles, firstly defined by
Poincaré in a serie of fundamental papers [8,9]. In the (x, y) plan, a limit cycle
is an isolated closed path corresponding to a periodic solution, and is of course
independent of the initial conditions x(t0) and y(t0). All other solutions of (1)
approach or recede from the limit cycle either from its interior or from its exterior
depending on the initial conditions asymptotically as t −→ ∞. Indoubtfully the
most famous problem on limit cycles is the unsolved sixteenth problem of Hilbert
[5,6] : If (X, Y ) is a polynomial vector field of degree not greater than n, what
is the maximum number of limit cycles, and what are their relative positions in
the phase plane. In fact, even for the case n = 2, the problem remains not fully
answered despite great efforts (hundreds of papers were devoted to the subject, see
[10]). The determination of the exact expression for a limit cycle corresponding to
a given planar system of the type (1), is rarely, if ever, analytically possible. In a
recent paper [1], Mostafa A. Abdelkader has given an exact expression for the limit
cycle in the phase plane for a relaxation oscillator modeled by the autonomous
Liénard differential equation

..
x + f(x)

.
x + g(x) = 0. (2)

Also in a serie of papers, Giacomini, Chavarriga et al (see [2,3] and references
therein) have introduced two new criteria for studying the nonexistence, existence
and uniqueness of limit cycles of (1). We will use mainly their first criteria given
by the following theorem :

Theorem 1 ([3]) Let (X, Y ) be a C1 vector field defined in the open subset A of
R

2, (x(t), y(t)) a periodic solution of (X, Y ) of period T , R : A −→ R a C1 map
such that

∫ T

0 R(x(t), y(t))dt �= 0 and V = V (x, y) a C1− solution of the linear
partial differential equation

X
∂V

∂x
+ Y

∂V

∂y
= RV, (x, y) ∈ A. (3)

Then the closed trajectory γ = {((x(t), y(t)) ∈ A : t ∈ [0, T ]} is contained in Σ =
{(x, y) ∈ A : V (x, y) = 0}, and γ is not contained in a period annulus of (X, Y ).
Moreover, if the vector field (X, Y ) and the functions R and V are analytic, then
γ is a limit cycle.

We note that Theorem 1 shows that when we know explicitly the trajectories
V (x, y)=0 of a vector field (X, Y ) through equation (3) for a given R, we addition-
ally have information on the periodic solutions of (X, Y ), because if γ is a closed
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trajectory it must satisfy that either γ is contained in {(x, y) ∈ A : V (x, y) = 0},
or

∮
γ

R = 0. Without loss of generality, we take A = R
2 and consider the system

{ .
x = (y − h(x))n(x, y) + k(x)ym(x, y),
.
y = (h′(x)y − h(x)h′(x) + k′(x))n(x, y) − (f(x)y + g(x))k(x)m(x, y), (1)

where m, n are analytic functions of R
2, h, k are real analytic functions and the

real functions f and g are not specified for the moment. Here a prime stands for
derivative with respect to the variable x.
According to Theorem 1, the associated partial differential equation is :

((y − h)n + kym)
∂V

∂x
+ ((h′y − hh′ + k′)n − (fy + g)km)

∂V

∂y
= RV, (5)

2 The main result

Our main result is contained in the following theorem :

Theorem 2 Let α and β two real constants such that α < β. Suppose that
i) h and k are real analytic functions such that k(x) > 0 for x ∈ ]α, β[ ,

k(α) = k(β) = 0 and k(x) < 0 elsewhere and h is such that h2(x) − 2k(x) �= 0
everywhere on ]α, β[;

ii) m and n are analytic functions on R
2 for which

∫ β

α

k′h
k

(
m(x, y1)

y1m(x, y1) − √
2kn(x, y1)

− m(x, y2)
y2m(x, y2) +

√
2kn(x, y2)

)
dx, (6)

where y1 = h(x)−√
2k(x) and y2 = h(x)+

√
2k(x), is a convergent nonvanishing

integral.
Then the curve (γ) :

{
(x, y) : 1

2 (y − h(x))2 − k(x) = 0
}

is the unique limit cycle
of the system{ .

x = kmy + n(y − h),
.
y = m((h′k + k′h

2 )y + k′(k − h2

2 )) + n(h′(y − h) + k′).
(7)

To state this result, we consider system (4), let us first proof the following
lemmas :

Lemma 3 For f = −(h′ + k′h
2k ) and g = k′(h2

2k − 1), the C1-function V = U =
1
2 (y − h(x))2 − k(x) is a solution of (5) with R(x, y) = h(x)k′(x)m(x, y).

Proof. We observe that for the smooth function V = U = 1
2 (y −h)2 −k, we have

(ykm + (y − h)n) Ux + ((h′y − h′h + k′)n − (fy + g)km) Uy = −2 (f + h′) kmU
+ (k′ + fh + g + hh′) kmy +

(
hg + h2f + h′h2 − 2kf − 2kh′) km.
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If we choose f = −(h′ + k′h
2k ) and g = k′(h2

2k − 1), the function U satisfy the linear
partial differential equation

(ykm + (y − h)n) Ux + ((h′y − h′h + k′)n − (fy + g)km) Uy = RU, (8)

with R(x, y) = −2 (f + h′) km(x, y) = k′hm(x, y), which is a C1− function as
required.

Lemma 4 The curve (γ) : {(x, y) : U(x, y) = 0} is a smooth Jordan curve.

Proof. In the (X, Y ) plan, the curve (C) : Y 2 = k(X) is a smooth and
closed curve, since it is just the reunion of the two arcs (C1) : Y =

√
k(X) and

(C2) : Y = −√
k(X) and is completely located between α and β. At the points

(α, 0) and (β, 0), the tangent to (C) is parallel to the Y -axis. The curve (γ) :
1
2 (y−h(x))2−k(x) = 0 is the image of the curve (C) by the global diffeomorphism{

x = X,

y =
√

2Y + h(X),
(9)

of R
2, hence it is smooth and closed. At the points (α, h(α)) and (β, h(β)), the

tangent to (γ) is parallel to the y-axis.

Proof of Theorem 2. From Lemma 1 and Theorem 1, it follows that the
curve (γ) : U(x, y) = 0 defines a periodic solution of (6), and obviously there are
no other closed trajectories in the set

{
(x, y) ∈ R

2 : U(x, y) = 0
}
.

(γ) is the union of the two arcs defined by : (γ1) : y1 = h(x) +
√

2k(x) and
(γ2) : y2 = h(x) − √

2k(x).
If T is the period of this solution, we have successfully∫ T

0
R(x(t), y(t))dt

=
∫ T

0
m(x(t), y(t))k′(x(t))h(x(t))dt

=
∮

γ

k′(x)h(x)m(x, y)dx

k(x)m(x, y)y + n(x, y)(y − h(x))

=
∮

γ1

k′hm(x, y)dx

km(x, y)y + n(x, y)(y − h)
+

∮
γ2

k′hm(x, y)dx

km(x, y)y + n(x, y)(y − h)

=
∫ β

α

k′h
k

(
m(x, y1)

y1m(x, y1) − √
2kn(x, y1)

− m(x, y2)
y2m(x, y2) +

√
2kn(x, y2)

)
dx,

and by condition (ii),
∫ T

0 R(x(t), y(t))dt �= 0.

According to Theorem 1 again, (γ) is the unique limit cycle of system (6).

Remark 1 The condition ii) of Theorem 2, is easily ensured here, for exam-
ple for m(x, y) = k′h(l2(x, y) + 1), were l is an arbitrary analytical function.
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3 Applications

3.1 Liénard-type

If we put m(x, y) = 1 and n(x, y) = 1 − k(x) in system (7), we have the following

analytic system in R
2

{ .
x = y + (k − 1) h,
.
y =

( 1
2k′h + h′) y + k′ − 1

2k′h2 − h′h + h′hk.
(10)

The associated partial differential equation is

(y − (1 − k) h)
∂U

∂x
+

((
1
2
k′h + h′

)
y + k′ − 1

2
k′h2 − h′h + h′hk

)
∂U

∂y
= k′hU.

(11)

Under the diffeomorphim {
X = x,
Y = y + h(x)(k(x) − 1), (12)

the curve U(x, y) = 1
2 (y − h)2 − k = 0 is transformed into the smooth Jordan

curve Ũ(X, Y ) = 1
2 (Y − k(X)h(X))2 − k(X) = 0.

The function Ũ satisfy the linear partial differential quation

Y
∂Ũ

∂x
+

((
h′k +

3
2
k′h

)
Y + k′ − 1

2
k′kh2

)
∂Ũ

∂y
= k′hŨ, (13)

which means that Ũ(X, Y ) = 0 defines a periodic solution of the system{ .

X = Y,
.

Y = (h′k + 3
2k′h)Y + k′ − 1

2k′kh2.
(14)

This system is nothing but the Liénard-type oscillator :

..

X −
(

3
2
k′h + h′k

)
.

X − k′
(

1 − 1
2
h2k

)
= 0. (15)

Here the associated R satisfy∫ T

0
R(x(t), y(t))dt =

∫ T

0
k′(x(t))h(x(t))dt

= 2
√

2
∫ β

α

k′h
√

k

h2 − 2k
dx.
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When the expressions of h and k are given, we can in principle compute this
integral in order to ensure the condition ii) of Theorem 2, or study it at the
vicinnity of α and β taking into account that h2 − 2k �= 0 between α and β
and making additional hypothesis on the functions h and k. But to avoid any
calculations here, let us put h = k′, we have∫ T

0
R(x(t), y(t))dt =

∫ T

0
k′2(x(t))dt > 0,

hence the curve Ũ(x, y) = 1
2 (y − k(x)k′(x))2 − k(x) = 0 defines the unique limit

cycle of (15). We have proved the following :

Theorem 5 If the function k satisfies the assumptions of Theorem 2, the Liénard-
type oscillator

..
x −

(
3
2
k′2 + k′′k

)
.
x − k′

(
1 − 1

2
k′2k

)
= 0, (16)

admits a unique limit cycle defined in the phase plan by the equation 1
2 (y −

k(x)k′(x))2 − k(x) = 0.

Exemple : For k(x) = 1 − x2 in the above theorem, the oscillator
..
x − 2

(
4x2 − 1

) .
x + 4x5 − 3x3 + 2x = 0 (17)

admits the curve 1
2 (y +2x(1−x2))2 − (1−x2) = 0 as a single limit cycle enclosing

the equilibrium point (0, 0).

Remark 2 It is interesting to look to the converse problem :
When the equation (2) admit a unique limit cycle given by an equation of the
form 1

2 (y − h(x))2 − k(x) = 0 ?
To be more precise, if the functions f and g are subjected to the well known
sufficient conditions of existence and uniqueness of the limit cycle, we can show
that :

k(x) =
1

h2(x)
exp(−2

∫ x

0

f(s)
h(s)

ds), (18)

and h(x) verify the very hard nonlinear ordinary differential equation

h′′ =
h2(f + h′)(g′ + h′2 + fh′ + f ′h) + (f ′h3 − f2 − 3h2h′)(g + hh′ + fh)

h3(f + h′ + g + hh′ + fh)
.

(19)

It is clear that this peculiar choice of the equation of the limit cycle causes serious
limitations on the prescribed functions f and g and even if (19) is solved, we are
not sure that the functions h and k obtained ensure the closedness.
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3.2 Polynomial systems

In order to get a cubic system from (7) with a unique limit cycle, we take m(x, y) =
1, n(x, y) = a0 + a1x + a2y, h = ax and k = b − cx2, where a0, a1, a2, a, b and c
are real constants with b > 0, c > 0 and a �= 0. The system (7) reduces to :


.
x = (b − cx2)y + (a0 + a1x + a2y)(y − ax),
.
y = (a(b − cx2) − acx2)y − 2cx(b − cx2 − a2x2

2 )
+(a0 + a1x + a2y)(a(y − ax) − 2cx).

It is preferable to put the former system into the standard form


.
x = −a0ax + (b + a0)y + (a1 − a2a)xy − a1ax2 + a2y

2 − cx2y,
.
y = −(2bc + a0a

2 + 2a0c)x + (ab + a0a)y + (a1a − a2a
2 − 2a2c)xy

−(a1a
2 + 2a1c)x2 + a2ay2 − 2acx2y + (2c2 + ca2)x3.

(20)

For this system, ∫ T

0
R(x(t), y(t))dt =

∫ T

0
k′(x(t))h(x(t))dt

= −2ac

∫ T

0
x2(t))dt �= 0.

Hence, the system (20) admits as a unique limit cycle the ellipse

(y − ax)2 = 2(c − dx2),

which encloses the equilibrium point (0, 0).

4 Conclusion

In this work, we have obtained the explicit expressions of the limit cycles for a
wide class of analytical planar systems and shown their uniqueness easily. The
techniques used are simple and can be applied to investigate other planar systems.
We have recovered the results of [1] for the Liénard-type oscillators, we hope that
such systems are enough general to model some dynamical systems arising from
other areas of science or at least to built someone (governing the behavior of some
electric or electronic circuits for example) with desirable asymptotic behaviour.
They can also serve to compare the accuracy of the numerical methods generally
used to approximate the shape of the limit cycle.
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[8] H. POINCARÉ, Mémoires sur les courbes définies par une équation differ-
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