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Abstract. We study a mathematical model describing the nonlinear diffu-
sion of oxygen in a living tissue, in presence of consumption due to metabolism.
The tissue is perfused by a system of parallel capillaries in which oxygen is
carried by the blood both in the form of gas freely diffusing in plasma and
bound to hemoglobin. We prove global existence of a unique smooth solution
to the resulting parabolic-hyperbolic system.
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1 Introduction

It is well known that oxygen is supplied to living tissues through microcirculation
of blood. The first attempt to describe the phenomenon in mathematical terms
is the classical Krogh’s model (see [13], [14]). This model deals with an idealized
geometrical arrangement consisting of one capillary of circular cross section con-
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centric with a circular cross section of muscle tissue; the exchange of oxygen is
modeled through a law of Robin’s type (flux proportional to the jump between
partial pressure of O2 in blood and in the tissue) and a diffusion problem in axial
symmetry with a consumption term has to be solved in the region occupied by
the tissue.

Many extensions of Krogh’s model have been proposed and studied (see [6],
[20] for a survey) and several semianalytical or approximated methods have been
developed, also to incorporate the effect of the presence of many capillaries.

The number of papers devoted to this subject in last 2-3 decades is really
impressive and we will just quote a few of them, referring the interested reader to
the literature quoted therein.

We single out three main lines of research: (i) modeling the mechanism of
transport/storage of O2 in microcirculation and of transport/storage/consumption
of oxygen in living tissue ([10], [18], [20]); (ii) discussing the boundary conditions
that express the exchange across the walls of capillaries ([5], [7], [19], [21]), and
(iii) finding approximated solutions often based on the use of line sources to mimic
the presence of capillaries and/or on asymptotic expansions ([1], [4], [5], [11], [22]).

Our approach is based on the discussion carried out on topics (i) and (ii)
and has the aim of obtaining a rigorous mathematical result on the well-posedness
(existence, uniqueness, dependence on the data) of the corresponding analytical
problem.

In [16] we already considered the problem of perfusion of living tissue by a
bundle of parallel capillaries and we discussed the corresponding homogenization.

In the present paper we release some assumptions that were instrumental
for the proofs of [16]: the fact that the transport of O2 in blood was supposed
to be based only on convection and the assumption of instantaneous equilibrium
between oxygen in plasma and bound to erythrocytes.

Thus, the model we deal with is more similar to the one presented in [17].
The analysis given there is heavily based on symmetry (just one capillary sur-
rounded by a co-axial cylindrical slab of tissue as in the original Krogh’s model,
while in our case we have N capillaries of radii Ri, i = 1, 2 . . . N), and on the use
of classical representation techniques that are clearly inapplicable to our general
geometric situation. Our existence and uniqueness results could be compared with
the study of smooth solutions for two-scale quasilinear parabolic systems, arising
in modeling of catalytic reactors, in [8].

The plan of the paper is the following.
In Section 2 we give the mathematical formulation of the problem, just

recalling the basic physiological facts (see [12] for a comprehensive introduction
to mathematical physiology), and we prove a simple a-priori estimate; in Section
3 we consider several auxiliary problems which are necessary in the proof of the
existence theorem which is given in Section 4 and is based on Schauder’s fixed
point theorem. The solution is sufficiently smooth, as it will be clear by the
arguments. In the last Section we prove the uniqueness.
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2 Formulation of the problem
and basic assumptions

Let O be a bounded set in R2 with smooth boundary. Let x ≡ (x, y, z) and denote
by Ω ≡ {x ≡ (x, y, z) : (x, y) ∈ O, 0 < z < L}. For i = 1, 2, . . . , N denote by
Ci ≡ {x : (x − xi)

2 + (y − yi)
2

< Ri
2, 0 < z < L}, and by C =

⋃N
i=1 Ci.

We will assume that the living tissue occupies ω = Ω \ C, while C represents
the bundle of capillaries. We assume that ∂C and ∂Ω have no common parts
outside z = 0 and z = L.

We have to find 2N + 1 functions: C(x, t), defined in ω × R+, represents
the volumetric concentration of oxygen diffusing in the tissue; ci(z, t) and �i(z, t),
defined on Ci × R+ (i = 1, 2 . . . N), represent the concentrations of oxygen in the
blood flowing in the i-th capillary, respectively dissolved in plasma and bound to
hemoglobin.

Oxygen diffuses in the tissue according to mass balance equation:

∂M(C)
∂t

− D �C = Q(C), (2.1)

where D is the diffusion coefficient, Q ≤ 0 represents, in absolute value, the rate
of oxygen consumption, and M(C) is the total oxygen content of a unit volume
of tissue, that is a monotone function of the concentration C of freely diffusing
oxygen. To be specific, we can think of a law of type Michaelis-Menten

M(C) = C + λCp(Cp + kp)−1
, (2.2)

where λ and k are positive constants and a typical value for p is 2.5 (see [12],
[19]). Assuming (2.2) corresponds to postulate that the mass of oxygen contained
in the unit volume of the tissue is the sum of the mass C of the freely diffusing
oxygen(e.g. to myoglobin) which is assumed to be in instantaneous equilibrium
with the former.

Of course, the equation (2.1) can also include nonlinear diffusivity. Explicit
dependence on x and t will be excluded to avoid additional technical complications.

At the boundaries ∂Ci, i.e. at the walls of capillaries, we assume that oxygen
flow is induced by deviations from the osmotic equilibrium (Henri’s law) and we
write

Ci(θ, z, t) − νci(z, t) = β
∂Ci

∂r
, i = 1 . . . N, (2.3)

where ν and β are positive constants and we denoted by Ci(θ, z, t) the value of
C at point (xi + Ri cos θ, yi + Ri sin θ, z) and at time t (where θ is an angular
coordinate) and by ∂Ci

∂r its derivative, normal to ∂Ci and pointing toward tissue,
at the same point and time.

A generalization of (2.3) in which the normal derivative
∂Ci

∂r
is a monotone function of

Ci − νci could be also treated with only minor changes.
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Mass balance of oxygen in each Ci will include convection (with given speed
u(t) of the blood, say in the positive z direction) for both �i and ci, diffusion in
axial direction for ci, and exchange with the surrounding tissue. If α and 1 − α
represent the volume fraction of the blood occupied by plasma and erythrocytes,
respectively, and d is the diffusivity of oxygen in plasma, we will write

α{∂ci

∂t
+ u(t)

∂ci

∂z
− d

∂2ci

∂z2 } + (1 − α){∂�i

∂t
+ u(t)

∂�i

∂z
} = (2.4)

=
D

πRi
2

∫ 2π

0

∂Ci

∂r
Ridθ, i = 1 . . . N.

From now on, we will assume that u(t) is a given positive C1-function. Finally,
we will have to postulate a relationship between �i and ci. In [16] we assumed
a law of instantaneous equilibrium �i = γ(ci), γ being a monotone increasing
function with γi(0) = 0. Here, we make the more general assumption that a
relaxation mechanism toward equilibrium is given: so that a positive constant τ
and a monotone function Φ (Φ(0) = 0) exist, so that:

τ{∂�i

∂t
+ u(t)

∂�i

∂t
} = Φ(γ(ci) − �i), i = 1 . . . N. (2.5)

The problem is completed by prescribing the following conditions:

(i) initial conditions:


C(x, 0) = C0(x), x ∈ ω,

ci(z, 0) = ci
0(z), z ∈ (0, L), i = 1 . . . N,

�i(z, 0) = �i
0(z), z ∈ (0, L), i = 1 . . . N ;

(2.6)

(ii) inlet/outlet boundary conditions for the capillaries:


ci(0, t) = ci0(t), t > 0, i = 1 . . . N,

ci(L, t) = ciL(t), t > 0, i = 1 . . . N,

�i(0, t) = �i0(t), t > 0, i = 1 . . . N ;
(2.7)

(iii) boundary conditions for the tissue, that we will take simply as homogeneous
Neumann conditions:

∂C

∂n
= 0, on ∂Ω \ ∂C, t > 0. (2.8)

We note that, incorporating α and 1 − α in the definition of ci and �i and
renormalizing variables, the problem reduces to the following, where the same
symbols have been used to save notation:

∂M(C)
∂t

− �C = Q(C) in ω × R+ (2.9)
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Ci(θ, z, t) − ci(z, t) = β
∂Ci(θ, z, t)

∂r
on ∂Ci × R+ (2.10)

∂ci

∂t
+ u

∂ci

∂z
− d

∂2ci

∂z2 +
∂�i

∂t
+ u

∂�i

∂z
=

K

πRi

∫ 2π

0

∂Ci

∂r
dθ, in Ci × R+ (2.11)

∂�i

∂t
+ u

∂�i

∂z
= Φ(γ(ci) − �i), in Ci × R+ (2.12)

where i = 1, 2 . . . N in (2.10)-(2.12) and the initial and boundary conditions are
given by (2.6)-(2.8).

We make the following assumptions on functions M, Q, Φ, γ appearing in
(2.9)-(2.12).

(H1) M is a positive strictly increasing locally Lipschitz continuous function
defined on [0, +∞).

(H2) Q is a non-positive locally Lipschitz continuous function defined on [0, +∞),
Q(0) = 0.

(H3) Φ is an increasing locally Lipschitz continuous function defined on
(−∞, +∞), Φ(0) = 0, Φ′(0) > 0.

(H4) γ is a strictly increasing locally Lipschitz continuous function defined on
[0, +∞), γ(0) = 0.

Concerning the notations and the functional spaces, we follow the reference [15] .
We prove the following a-priori estimate.

Proposition 2.1 Assume that initial and boundary data for ci and C are strictly
positive and smaller than a constant E. Then, if

E1 = γ(E), (2.13)

and if data for �i are strictly positive and less than E1, any classical solution of
problem (2.6)-(2.12) is such that

0 < C(x, t) < E, x ∈ ω, t > 0; (2.14)

0 < ci(z, t) < E, z ∈ [0, L], t > 0, i = 1 . . . N ; (2.15)

0 < �i(z, t) < E1, z ∈ [0, L], t > 0, i = 1 . . . N. (2.16)

We could allow positive quantities β and K to depend on i.
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Proof. We confine ourselves to prove the upper bound. If the second inequality
is violated in any of (2.14)-(2.16), then a t0 > 0 should exist such that for t < t0
they hold and one of the following cases occur:

(a) �i(z0, t0) = E1 for some z0 and i, while
C(x, t0) < E, x ∈ ω and ci(z, t0) < E in (0, L)∀i;

(b) ci(z0, t0) = E for some z0 and i, while
C(x, t0) < E, x ∈ ω and �i(z, t0) ≤ E1 in (0, L)∀i.

(c) C(x0, t0) = E for some x0 and
�i(z, t0) ≤ E1, ci(z, t0) ≤ E, z ∈ (0, L), ∀i.

In case (a), first we note that z0 �= 0, z0 �= L so that �iz(z0, t0) = 0. Hence (2.12)
implies

Φ(γ(ci(z0, t0)) − E1) ≥ 0, (2.17)

but since ci < E, γ(ci) < E1 and (2.17) contradicts (H3).
In case (b), again z0 �= 0, z0 �= L, so that ciz = 0, cizz ≤ 0, cit ≥ 0. Moreover,
from (2.12):

�it + u�iz |zo,to
= Φ(γ(E) − �i) ≥ 0. (2.18)

Consequently, from (2.11)
∫ 2π

0 Cir |zo,to
dθ ≥ 0, which is in contradiction with

(2.10) and (b).
Finally, maximum principle applied to (2.9) ensures that if C attains a maximum
value in ω× (0, t0], it should be attained at some point of ∂Ci ×{t0} where Cir has
to be strictly negative, according to boundary point principle. But this contradicts
(2.10). �

Corollary 2.2 Let (H1)-(H4) and the assumptions of Proposition 2.1 hold. Then
functions M, Q, γ, Φ in (2.9), (2.12) can be truncated, i.e. there is no loss of
generality in assuming that

(H5) Functions M, |Q|, |Φ|, γ are Lipschitz continuous and bounded by a con-
stant M̂ .

3 Preliminary results

Denote by ST = {(z, t) : 0 < z < L, 0 < t < T } and consider the following

Problem A. For any given non-negative w ∈ Hα, α/2(ST ) ∩ C(ST ), find �(z, t) ∈
C(ST ) and satisfying

�t + u(t)�z = Φ(γ(w) − �) in ST , (3.1)

In fact its material derivative corresponding to the velocity u(t)�ez is also continuous.
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�(z, 0) = � 0(z) ≥ 0, 0 < z < L, (3.2)

�(0, t) = �0(t) ≥ 0, 0 < t < T. (3.3)

We prove

Proposition 3.1 Let the chain of data (3.2), (3.3) be continuous , and denote
by �0MAX its maximum. Then Problem A has a unique solution; moreover

0 ≤ � ≤ γ(W ), in ST , (3.4)

where

W = max(‖w‖C(ST ), γ−1(�0MAX)). (3.5)

Furthermore, if the chain of data is Hölder continuous with the exponent α ∈ (0, 1),
the solution is Hölder continuous with exponent α/2.

Proof. To find �(z, t) it is sufficient to integrate an ordinary differential equation
along the characteristics z−

∫ t

0 u(τ)dτ =const. Hence �(z, t) is continuously differ-
entiable along the tangential direction to the characteristics. The normal direction
enters as a parameter and inherits the smoothness of the chain of data. Estimate
(3.4) follows at once using assumptions (H3) and (H4). �

Next, we want to investigate how the solution �[w] of Problem A depends on w
and we prove

Proposition 3.2 Under the same assumptions, there exists a constant k > 0
such that

‖�[w
′
] − �[w

′′
]‖L∞(0,T ;L2(0,L)) +

√
min

0≤t≤T
u(t)‖�[w

′
] − �[w

′′
]‖L2(0,T ;L∞(0,L))

≤ k ‖w
′ − w

′′‖L∞(0,T ;L2(0,L)). (3.6)

Proof. For given w
′

and w
′′

find �[w′] and �[w′′] solving Problem A and let � =
�[w′] − �[w′′]. Then �(z, t) solves

�t + u(t)�z = [Φ(γ(w′) − �′) − Φ(γ(w′) − �′′)] + [Φ(γ(w′) − �′′) − Φ(γ(w′′) − �′′)]
(3.7)

with zero initial and boundary data. Multiply (3.7) by � and note that the first
term on the r.h.s. of the equation so obtained is negative, while the second term
is dominated by Λ2|w′ − w′′||�|, where Λ is the largest of the Lipschitz constants
of Φ and of γ. Integrating over ST concludes the proof. �

As usual, by this expression we mean that data themselves are continuous and zero-order
compatibility conditions are satisfied (in this case �0(0) = �0(0)).
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Remark 3.3 The calculations as in Proposition 3.2 are justified by regulariza-
tion. For such calculations in the theory of the first order semi-linear hyperbolic
equations see e.g. [2] . Using the technique from [2] it is straightforward to prove
that for �0 ∈ BV (0, T ) and �0 ∈ BV (0, L) we have � ∈ L∞(0, T ; BV (0, L)) and

‖�‖L∞(0,T ;BV (0,L)) ≤ C
{
‖�0‖BV (0,T ) + ‖�0‖BV (0,L) + ‖∂zw‖L1((0,L)×(0,T ))

}
(3.8)

We note that this regularity doesn’t require the compatibility of �0 and �0.

Next, for i = 1, 2 . . . N we consider the following

Problem B. For any wi as in Problem A and for any given positive constant
λi and any non-negative function Ai ∈ Hβ,β/2(ST ) ∩ C(ST ) find ci ∈ Wq

2,1(ST )
∩ C(ST ) (∀q ∈ [2, +∞)) such that

cit + u(t)ciz − dcizz = −Φ(γ(ci) − �[wi]) + Ai(z, t) − λici, in ST , (3.9)

ci(z, 0) = ci
0(z) ≥ 0, 0 < z < L, (3.10)

ci(0, t) = ci0(t) ≥ 0, 0 < t < T, (3.11)

ci(L, t) = ciL(t) ≥ 0, 0 < t < T. (3.12)

From now on we drop index i for simplicity. We prove

Proposition 3.4 Let the chain of the data (3.10)-(3.12) be Hölder continuous
and denote by c0MAX its maximum. Then Problem B has a unique solution

c ∈
0
V

1,0

2,2(ST ) ∩ Hα, α/2(ST ), where

0
V

1,0

2,2 ≡ { ϕ ∈ L∞(0, T ; L2(0, L)) : ϕz ∈ L2(ST ),∫ T

0
h−2‖ϕ(z, t + h) − ϕ(z, t)‖2

L2(ST −h) dh < +∞}.

Moreover

0 ≤ c ≤ M in ST (3.13)

where

M = max(c0MAX, W, ‖A‖C(ST )/λ). (3.14)

If, in addition ci(·, 0) ∈ C2[0, L], ci(0, ·) and ci(L, ·) ∈ C1[0, T ], and the zeroth
order compatibility conditions are satisfied, then c ∈ W 2,1

q (ST ), ∀q < ∞.
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Proof. From Theorem 6.4 and Theorem 6.7 of [15] chapter V it follows that
Problem B has a solution such that

c ∈
0
V

1,0

2,2(ST ) ∩ Hα, α/2(ST ), α > 0, (3.15)

Moreover, with additional regularity of the data, c ∈ W 2,1
q (ST ) for any q > 1

(see [15], Chapter 4, and recall boundedness of Φ and A) we have

cz ∈ Hλ, λ/2(ST ), ∀λ < 1. (3.16)

To prove uniqueness, denote by c′ and c′′ two possible solutions and let

c(z, t) = c′(z, t) − c′′(z, t). (3.17)

We have

ct + ucz − dczz + λc = Φ(γ(c′′) − �[w]) − Φ(γ(c′) − �[w]), (3.18)

with c = 0 on the parabolic boundary of ST . Multiply (3.18) by c and integrate
over ST . Using (H3) and (H4) we conclude that c ≡ 0. Next, use maximum
principle noting that the r.h.s. of (3.9) is non-negative for c = 0 and non-positive
for c = M . �

It is clear that, for fixed A and λ, solving Problem A for any w and then Problem
B for �[w] defines a mapping

c = c[w]. (3.19)

According to Proposition (3.1) and (3.4), if

|w| ≤ max{γ−1(�0 MAX), c0 MAX, ‖A‖C(ST )/λ} ≡ M (3.20)

then

|c[w]| ≤ M. (3.21)

Hence c[w] maps the ball with radius M of C(ST ) into itself.
Moreover, since

‖cz‖Hλ, λ/2 ≤ k (3.22)

where k only depends on M , the mapping is compact. To prove that the mapping
is continuous we take a sequence {wm} and study the corresponding cm = c[wm].
Since

‖cm
z ‖Hλ, λ/2(ST ) + ‖cm‖W 2,1

q
≤ k, (3.23)
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there is a subsequence cr converging to ĉ(z, t) uniformly and converging weakly in
W 2,1

q . Hence, passing to the limit (along the subsequence) in the equation satisfied
by c[wr] we obtain that c[wr] → c[w]. Using Schauder fixed point theorem gives
us the existence theorem for the following

Problem C. For any given λi > 0 and non-negative Ai ∈ Hβ, β/2(ST ) ∩ C(St)
solve Problem B with �[wi] replaced by �[ci].

Now (dropping again index i) we investigate the dependence of c upon A
and prove

Proposition 3.5 Let c′ and c′′ be solutions of Problem C corresponding to A′

and A′′ respectively. Then, for any t ∈ (0, T ) it is:∫ L

0
|c′(z, t) − c′′(z, t)| dz ≤ k ‖A′ − A′′‖L1(ST ). (3.24)

Proof. Writing again c = c′ − c′′, it is

cz + u(t)cz − dczz + λc = Φ(γ(c′′) − �[c′′]) − (Φ(γ(c′) − �[c′]) + A′ − A′′. (3.25)

Testing (3.25) with regularized sign(c) we get∫ L

o

|c(z, t)|dz + λ

∫∫
St

|c|dzdτ +
∫∫

St

(Φ′′ − Φ′)sign c ≤
∫∫

ST

|A′ − A′′|dzdτ,

(3.26)

(the meaning of Φ′ and Φ′′ is obvious).

Now, proceeding as in the proof of Proposition 3.2, the integral containing
Φ′′ − Φ′ is estimated in terms of

∫∫
St

|�[c′′] − �[c′]|dz dτ . Then using Proposition
(3.2) the proof is concluded. �

Therefore we have

Corollary 3.6 Solution to Problem C is unique.

Now, we state and solve our last auxiliary problem.

Problem D. For any given n-tuple ϕ ≡ {ϕ1 . . . ϕN} of non-negative functions

ϕi ∈ L∞(ST ) find C ∈ L∞(QT ) ∩ V
1,1/2
2 (QT ) (QT = ω × (0, T )), such that

∂

∂t
M(C) − ∆C = Q(C) in QT , (3.27)

C(x, 0) = C0(x), x ∈ ω, (3.28)
∂C

∂n
= 0, on ∂Ω \ ∂C × (0, T ), (3.29)

[C − βCr]i = ϕi, on ∂Ci × (0, T ), (3.30)
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where we wrote for simplicity [C − βCr]i to indicate that the quantity in bracket
has to be evaluated for x = xi + Ri cos θ, y = yi + ri sin θ.

We prove

Proposition 3.7 If C0 ∈ L∞(ω) is a given non-negative function, then Problem
D is uniquely solvable in QT . Moreover, if C0 is in addition Hölder continuous,
then

0 ≤ C ≤ max{max C0, max
i

‖ϕi‖L∞(ST )}, (3.31)

and there exist positive constants δ, k1 and k2 such that

‖C‖
V

1,1/2
2 (QT ) + ‖C‖Hδ,δ/2(QT ) ≤ k1

∑
i

‖ϕi‖L∞(ST ) + k2, (3.32)

where

‖C‖
V

1,1/2
2 (QT ) = ‖ � C‖2

L2(QT ) +
∫ T−h

0
dt

∫
ω

h−1|C(x, t + h) − C(x, t)|2 dx.

Proof. Using the classical theory of linear parabolic equations with discontinuous
coefficients from [15], together with the Schauder fixed point theorem, we arrive
at solvability of the Problem D. The membership of C in V

1,1/2
2 (QT ) and estimate

(3.32) follow from classical theory of parabolic equations.
Uniqueness is obtained by the theory of entropy solutions (see [3]).
It can also be seen that constants k1 and k2 exist such that

‖C‖Hδ,δ/2(QT ) ≤ k1

∑
i

‖ϕi‖L∞(ST ) + k2. (3.33)

For more details we refer to [15], pages 418-423. From maximum principle and
assumptions (H1), (H2), it is immediately seen that C ≥ 0.
Moreover, since Q is non-positive, and β > 0 the upper bound for C is obtained
at once. �

Corollary 3.8 Let C0(x) ∈ C2(ω̄) and that its normal derivative vanishes on ∂ω\
C; moreover let ϕ ∈ C[ST ], ϕiz ∈ Hβ,β/2 be chosen so that (3.30) holds initially.
Then the problem (3.27)-(3.30) has a unique solution C ∈ H2+β,1+β/2 (QT ).

Proof. From Theorem 7.4 page 491 of [15] we find that under our assumptions a
solution of Problem D exists in the class specified. �

Remark 3.9 Having stated the problem in a class of very smooth functions, we
require lot of smoothness on the data. Some generalizations are however possible.
Par example, we could study the problem in the class of bounded elements of

V
1,1/2
2 (ω × (0, T )) ×

0
V

1,0

2,2(Ci × (0, T ))N × L∞(0, T ; BV (Ci))N and then only the
zeroth order compatibility conditions, with minimal regularity, should be imposed.
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4 Existence theorem

Denote by K(M, T ) the set of all n-tuple of functions ϕi ∈ C(ST ) and such that

0 ≤ ϕi(z, t) ≤ M, i = 1, . . . N, z ∈ ST . (4.1)

Solve Problem D with this choice of ϕ ≡ {ϕ1, ϕ2 . . . ϕN} and let

Ai(z, t) =
λi

2π

∫ 2π

0
C(xi + Ri cos θ, yi + Ri sin θ, z, t) dθ, i = 1, 2, . . . N. (4.2)

Now, for each i, solve Problem C and find an n-tuple c ≡ {c1, . . . , cN}.
Thus, we have defined a mapping

c = T [ϕ], (4.3)

and we have

Proposition 4.1 Let λi = 2K
βRi

. If ĉ is a fixed point of mapping (4.3)

ĉ = T [ĉ],

then our problem is solved by the 2N + 1 functions

ĉ, �[ĉ], C[ĉ]

where �[ĉ] ≡ {�1[ĉ1], �2[ĉ2], . . . , �N [ĉN ]} is obtained solving Problem A and C[ĉ]
is obtained solving Problem D.

In order to prove that the mapping T has a fixed point we should establish its
properties. First we prove

Proposition 4.2 There exists M > 0 such that

ϕ ∈ KM,T ⇒ T [ϕ] ∈ KM,T (4.4)

for any given T > 0.

Proof. Take

M > max{ ‖C0‖C(ω̄), c0MAX , γ−1(�0MAX)} (4.5)

and recall (3.4), (3.13), (3.21), (3.31). �

Now we prove

Proposition 4.3 T maps KM,T into a compact subset.
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Proof. Proposition 3.7 guarantees that (3.31) and (3.32) are satisfied. This ensures
that C[c] belongs to a set A which is compact in L2(0, T ; Hα(ω)) for any α < 1.
Then T [c] is uniformly bounded in W 2,1

q (recall (3.23)) and hence compact in
KM,T for q > 3. �

Proposition 4.4 T is continuous.

Proof. Let cm → c in KM,T . Then the set A is compact in L2(0, T, Hα(ω)) for
any α < 1 as seen above and C[cm] contains a subsequence converging strongly
in L2(0, T ; Hα(ω)), weakly in V

1,1/2
2 (QT ) and weak∗ in L∞(QT ) to a solution C

of Problem D. Because of the uniqueness, the whole sequence converges.
Moreover, from Proposition 3.2 we have that �[cm] converges in L1(ST ) and T [cn]
are uniformly bounded in W 2,1

q (ST ) so that they converge uniformly and weakly
in W 2,1

q .
Finally, w = lim T [cn] satisfies Problem C and, because of uniqueness, the whole
sequence converges. �

Hence we have proved the following result

Corollary 4.5 Let us suppose hypothesis (H1)-(H5). Let C0 be a non-negative
bounded function. Let c0 ∈ C2[0, L] and c0, cL ∈ C1[0, T ] be non-negative vec-
tor valued functions satisfying zero-order compatibility condition. Let �0 and �0
be non-negative vector functions of bounded variation. Then there is M > 0
such that the mapping T has at least one fixed point ĉ ∈ KM,T . Furthermore,
{ĉ, �[ĉ], C[ĉ} ∈ W 2,1

q (Ci × (0, T ))N × L∞(0, T ; BV (Ci))N × V
1,1/2
2 (ω × (0, T )),

∀q ≥ 2.

Supposing a bit more of regularity, we find that solution is very regular :

Theorem 4.6 Let the assumptions of Corollary 4.5 be satisfied and let in addition
C0 ∈ C3(ω̄) and let chain of data (3.2)-(3.3) be Hölder continuous, with exponent
λ ∈ (0, 1). Furthermore, let the compatibility condition (3.30) be satisfied at t =
0. Then the problem (2.6)-(2.12) has a non-negative solution {ĉ, �[ĉ], C[ĉ} ∈
W 2,1

q (Ci × (0, T ))N × Hλ(C̄i × [0, T ])N × H2+β,1+β/2(ω × (0, T )) , ∀q ≥ 2 and
β ∈ (0, 1).

Remark 4.7 Let in addition c0 ∈ C3[0, L] and c0, cL ∈ C2[0, T ] be non-negative
vector valued functions satisfying zero and first-order compatibility condition.
Then ĉ ∈ H2+λ,1+λ/2(Ci × (0, T ))N .

5 Uniqueness theorem

The uniqueness theorem is somehow unexpected, except with very high regularity.
We note that even for a special case of our model, studied in [17], no uniqueness
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result was obtained. In fact for the uniqueness we don’t really need classical solu-

tions. The regularity V
1,1/2
2 (ω × (0, T ))×

0
V

1,0

2,2(Ci × (0, T ))N ×L∞(0, T ; BV (Ci))N

is enough, but we have to balance carefully the corresponding ” energy ” terms.
It should be noted that the presence of M makes the calculations with the time
derivatives and time differences tricky. Only optimal arrangement of the terms
from 3 equations gives the right conclusion.

Theorem 5.1 The problem (2.6)-(2.12) has a unique bounded non-negative solu-

tion {C, c, �} ∈ V
1,1/2
2 (ω × (0, T )) ×

0
V

1,0

2,2(Ci × (0, T ))N × L∞(0, T ; BV (Ci))N .

Proof. Let us suppose that there exist two solutions for the problem (2.6)-(2.12).
Then the difference of the solutions, denoted by {C, c, �}, is once more in V

1,1/2
2 (ω×

(0, T ))×
0
V

1,0

2,2(Ci × (0, T ))N ×L∞(0, T ; BV (Ci))N . We note that there are N capil-
lary tubes Ci of the length L and consequently functions c and � are vector valued
with N components.

We proceed in several steps.
1. STEP We integrate the equation (2.9) in time and get

M(C1(x, t)) − M(C2(x, t)) − D∆
∫ t

0
C(x, ξ) dξ =

∫ t

0

(
Q(C1) − Q(C2)

)
dξ

(5.1)

Consequently for every ϕ ∈ H1(ω) we have

∫
ω

(M(C1(x, t)) − M(C2(x, t))) ϕ dx + D

∫
ω

∇
( ∫ t

0
Cdξ

)
∇ϕ dx +

D

β

N∑
i=1

∫ L

0

∫
{r=Ri}

(∫ t

0
Cdξ

)
ϕ dSdz =

∫
ω

(∫ t

0
(Q(C1) − Q(C2)) dξ

)
ϕ dx

+
D

β

N∑
i=1

∫ L

0

∫
{r=Ri}

(∫ t

0
c dξ

)
ϕ dSdz (5.2)

We take ϕ = C as a test function and get

∫ t

0

∫
ω

(M(C1(x, ξ)) − M(C2(x, ξ))) C dxdξ +
D

2

∫
ω

|∇
(∫ t

0
C dξ

)
|2 dx

+
D

2β

N∑
i=1

∫ L

0

∫
{r=Ri}

(∫ t

0
C dξ

)2

dSdz
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−D

β

N∑
i=1

∫ t

0

∫ L

0

∫
{r=Ri}

C(ξ)

(∫ ξ

0
c dη

)
dSdzdξ

=
∫ t

0

∫
ω

(∫ ξ

0
(Q(C1) − Q(C2) dη)C(ξ)

)
dxdξ (5.3)

Since

|
∫ t

0

∫
ω

(∫ ξ

0
(Q(C1) − Q(C2)) dη

)
C(ξ) dxdξ = |

∫ t

0

∫
ω

(Q(C1(η)) −

Q(C2(η)))
(∫ t

η

C(ξ) dξ

)
dxdη|

≤ ‖Q′‖∞|
∫ t

0

∫
ω

|C(η)|
(∫ t

η

|C(ξ)| dξ

)
dxdη| =

t

2
‖Q′‖∞

∫
ω

(∫ t

0
|C(ξ)| dξ

)2

dx ≤ t2

2
‖Q′‖∞

∫ t

0

∫
ω

C2 dxdξ (5.4)

and

D

β

N∑
i=1

∫ t

0

∫ L

0

∫
{r=Ri}

C(ξ)(
∫ ξ

0
c dη) dSdz

=
D

β

N∑
i=1

∫ L

0

∫
{r=Ri}

((∫ t

0
C dξ

)(∫ t

0
c dξ

)

−
∫ t

0
(c(ξ)

(∫ ξ

0
C(η) dη

)
dξ)

)
dSdz (5.5)

we get (
min M′ − t2

2
‖Q′‖∞

)∫ t

0

∫
ω

C2 dxdξ +
D

2

∫
ω

|∇
( ∫ t

0
C dξ

)
|2 dx

+
D

2β

N∑
i=1

∫ L

0

∫
{r=Ri}

(
∫ t

0
C dξ)2 dSdz − D

β

N∑
i=1

∫ L

0

∫
{r=Ri}(

(
∫ t

0
C dξ)(

∫ t

0
c dξ) −

∫ t

0
(c(ξ)(

∫ ξ

0
C(η) dη) dξ)

)
dSdz ≤ 0 (5.6)

2. STEP Next we study the equation for c :

∂c

∂t
+ u(t)

∂c

∂z
− d

∂2c

∂z2 +
2K

βRi
c = −

(
Φ(γ(c1) − �1) − Φ(γ(c2) − �2)

)

+
K

βπRi

∫ 2π

0
C|r=Ri dϑ in (0, L) × (0, T ) (5.7)
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We integrate (5.7) from 0 to t and test the obtained equation by c. Then we have

∫ t

0

∫ L

0
c2 dzdξ +

∫ t

0

∫ L

0
c(ξ)(

∫ ξ

0
u(η)

∂c

∂z
dη) dzdξ +

d

2

∫ L

0
| ∂

∂z

∫ t

0
c dη|2 dz

+
K

βRi

∫ L

0
(
∫ t

0
c dξ)2 dz − K

πβR2
i

∫ t

0

∫ L

0
(
∫

{r=Ri}

∫ ξ

0
C dξ) dS)c(ξ) dzdξ

≤ ‖Φ′‖∞

(
t

2
‖γ′‖∞

∫ t

0

∫ L

0
c2 dzdξ +

∫ t

0

∫ L

0
|c(ξ)| (

∫ ξ

0
|�(η)| dη) dzdξ

)
(5.8)

Clearly, we should first take care of the transport term :

|
∫ t

0

∫ L

0
c(ξ)(

∫ ξ

0
u(η)

∂c

∂z
dη) dxdξ|

= |
∫ t

0

∫ L

0

(
∂ξ(
∫ ξ

0
u(η)

∂c

∂z
dη

∫ ξ

0
c(η) dη)

−u(ξ)
∂c

∂z
(ξ)
∫ ξ

0
c

)
dxdξ| ≤ d

4

(∫ L

0
| ∂

∂z

∫ t

0
c(η) dη|2 dz

+
2‖u‖2

∞
d

∫ t

0

∫ L

0
| ∂

∂z

∫ ξ

0
c dη|2 dzdξ

)

+(
t‖u‖2

∞
d

+ 1/2)
∫ t

0

∫ L

0
c2 dzdξ (5.9)

After inserting (5.9) into (5.8), multiplication by
DπR2

i

K
and summation over i,

we get

D

2K

(
1 − t(‖Φ′‖∞‖γ′‖∞ +

2‖u‖2
∞

d
)
) N∑

i=1

∫ t

0

∫
Ci

c2 dxdξ

+
Dd

4K

N∑
i=1

∫
Ci

| ∂

∂z

∫ t

0
c dξ|2 dx

+
D

2β

N∑
i=1

∫ L

0

∫
{r=Ri}

(
(
∫ t

0
c dξ)2 − 2(

∫ t

0
c(ξ)(

∫ ξ

0
C(η) dη) dξ)

)
dSdz

≤ D

K
‖Φ′‖∞

N∑
i=1

∫
Ci

∫ t

0
|c(ξ)| (

∫ ξ

0
|�(η)| dη) dx

+
D‖u‖2

∞
2K

∫ t

0

N∑
i=1

∫
Ci

| ∂

∂z

∫ ξ

0
c dη|2 dxdξ (5.10)
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3. STEP Now we study the equation for � :

∂�

∂t
+ u(t)

∂�

∂z
= (Φ(γ(c1) − �1) − Φ(γ(c2) − �2)) in (0, L) × (0, T ) (5.11)

By testing this equation by regularized � and after arguing as in Proposition 3.2,
we get

1
2

∫ L

0
�(t)2 dz ≤ ‖Φ′‖∞‖γ′‖∞

∫ t

0

∫ L

0
|c||�| dzdξ (5.12)

Hence we have∫ t

0

∫ L

0
�2 dzdξ ≤ (2‖Φ′‖∞‖γ′‖∞t)2

∫ t

0

∫ L

0
c2 dξdz for every i (5.13)

Consequently, we have

D

K
‖Φ′‖∞

N∑
i=1

∫
Ci

∫ t

0
|c(ξ)| (

∫ ξ

0
|�(η)| dη) dx ≤ D

4K

N∑
i=1

∫
Ci

∫ t

0
c2 dξdx +

‖Φ′‖2
∞

Dt2

2K

N∑
i=1

∫
Ci

∫ t

0
�2 dξdx ≤

(
D

4K
+ ‖Φ′‖4

∞
2Dt4

K

) N∑
i=1

∫
Ci

∫ t

0
c2 dξdx(5.14)

4. STEP Now we insert (5.14) into (5.10) and add the resulting
inequality and (5.6). We get(

min M′ − t2

2
‖Q′‖∞

)∫ t

0

∫
ω

C2 dxdξ +
D

2

∫
ω

|∇
( ∫ t

0
C dξ

)
|2 dx

+
D

2β

N∑
i=1

∫ L

0

∫
{r=Ri}

(
∫ t

0
(C − c) dξ)2 dSdz +

Dd

4K

N∑
i=1

∫
Ci

| ∂

∂z

∫ t

0
c dξ|2 dx

+
D

2K

(
1
2

− t(‖Φ′‖∞‖γ′‖∞ +
2‖u‖2

∞
d

+ 4T 3‖Φ′‖3
∞)
) N∑

i=1

∫ t

0

∫
Ci

c2 dxdξ

≤ D‖u‖2
∞

2K

∫ t

0

N∑
i=1

∫
Ci

| ∂

∂z

∫ ξ

0
c dη|2 dxdξ (5.15)

For t ≤ T0 = min{T,
√

min M′
‖Q′‖∞

, 1

4(‖Φ′‖∞‖γ′‖∞ +
2‖u‖2

∞
d

+ 4T 3‖Φ′‖3
∞)

} and by

using Gronwall’s inequality , we conclude that c(x, t) = 0 and C = 0. � are also
zero.

Therefore we have uniqueness on a small time interval with length indepen-
dent of the data. By repeating this procedure a finite number of times, we get
uniqueness on (0, T ). �



366 A. Mikelić and M. Primicerio NoDEA

References

[1] C. BOS, L. HOOF and T. OOSTENDORP, Mathematical model of erytro-
cytes as point-like sources, Math. Biosci. 125 (1995), 165–189.

[2] C. BOURDARIAS, Sur un système d’E.D.P. modélisant un processus
d’adsorption isotherme d’un mélange gazeux, M2AN Mathematical Modelling
and Numerical Analysis, Vol. 26 (1992), 867–892.

[3] J. CARRILLO, Entropy Solutions for Nonlinear Degenerate Problems, Arch.
Rational Mech. Anal., 147 (1999), 263–361.

[4] A. DUTTA and A. S. POPEL, A Theoretical analysis of intracellular oxygen
diffusion, J. Theoret. Biol. 176 (1995), 165–174.

[5] C. D. EGGLETON, A. VARDAPALLI, T. K. ROY and A. S. POPEL, Cal-
culation of intracapillary oxygen tension distribution in muscle, Math.Biosci.,
167 (2000), 123–143.

[6] J. E. FLETCHER, Mathematical modeling of the microcirculation, Math.
Biosci. 38 (1978), 155–202.

[7] J. E. FLETCHER and R. W. SHUBERT, On the computation of substrate
levels in perfused tissues, Math. Biosci. 62 (1982), 75–106.

[8] A. FRIEDMAN and A. TZAVARAS, A Quasilinear Parabolic System Arising
in Modelling of Catalytic Reactors, J. of Differential Equations, 70 (1987),
167–196.

[9] J. GONZALEZ - FERNANDEZ and S. ATTA, Transport and consumption
of oxygen in capillary-tissue structure, Math. Biosci. 2 (1968), 225-261.

[10] L. HOOFD, Calculation of oxygen pressures in tissue with anisotropic capil-
lary orientation, Math. Biosci. 129 (1995), 1–23.

[11] R. HSU, T. W. SECOMB, A Green’s function method for analysis of oxygen
delivery to tissue by microvascular networks, Math. Biosci. 96 (1989), 61-78.

[12] J. KEENER and J. SNEYD, Mathematical Physiology, Interdisciplinar Appl.
Math. 8 Springer Verlag, 1998.

[13] A. KROGH, The number and distribution of capillaries in muscles with
calculations of the oxygen pressure head necessary for supplying the tissue,
J. Physiol. (London) 52 (1919), 409–415.

[14] A. KROGH, The Anatomy and Physiology of Capillaries, Yale Univ. Press,
New Haven 1929.



Vol. 13, 2006 A diffusion-consumption problem for oxygen 367
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