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1 Introduction

The main object of this paper is to investigate the existence of multiple positive
solutions of the problem

−ε2∆u+ u = h2(x)|v|q−1v, −ε2∆v + v = h1(x)|u|p−1u in R
N , (1.1)

where the exponents p, q > 1 are below the critical hyperbola, that is,

1
p+ 1

+
1

q + 1
>
N − 2
N

, N ≥ 3. (1.2)

Problem (1.1) in bounded domains, even with more general nonlinearities,
were studied in [5], [7], [8], [10] and references therein. The problem in the whole
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space was considered in [9], [11] and [13]. The typical feature of Problem (1.1) is
that its related functional is strongly indefinite at zero. Linking type theorems and
dual variational methods are used in studying the problem. A multiplicity result
was obtained by T. Bartsch and D.G. Figueiredo [2] by min-max theorems. On the
other hand, it is well-known that the geometry and topology of the set of critical
points of coefficients h1 and h2 affect the existence of number of positive solutions
for a single equation. See [6], [14] and [15] for recent results. In particular, the
number of solutions of a single equation is related to the topology of the set of
global minimum points of a ground energy function. See [6]. The purpose of the
present paper is to consider this problem for the system (1.1). We will study the
relation between the number of positive solutions and the topology of the set of
maximum points of coefficients h1 and h2. Because the functional associated to
Problem (1.1) is strongly indefinite, the arguments used in recent works cannot
be pursued straightly. Our idea is to combine the dual variational method with
the Nehari technique. Thus we may relate the set of maximum points of the
coefficients of its dual variational problem to the number of positive solutions of
Problem (1.1). To state our results, let

Mi = {x ∈ R
N : hi(x) = sup

x∈RN

hi(x)}, i = 1, 2,

and M = M1 ×M2. Let us define

h∞
i = lim

|x|→∞
suphi(x), i = 1, 2.

We assume

(A1) hi ∈ L∞(RN ), is continuous, hi(x) ≥ α > 0 for all x ∈ RN , with i = 1, 2.

(A2) hi(x) > h∞
i ,∀x ∈ Mi for i = 1, 2.

We note that (A1) and (A2) imply M is bounded. Let us denote Mδ =
{x : dist(x,M) < δ} and catB(A) the relative category of A in B. We obtain the
following multiplicity result.

Theorem 1.1 Suppose that h1, h2 satisfy (A1)–(A2). Then, for any δ > 0 there
exists ε0 = ε0(δ) > 0 such that (1.1) possesses at least catMδ

(M) positive solutions
for 0 < ε < ε0.

To prove the theorem we will use the following results connecting the relative
category and the multiplicity of critical points.

Lemma 1.1 (Lemma 2.2, [6]) Let H, Ω+ and Ω− be closed subsets with Ω− ⊂ Ω+,
let β : H → Ω+, Φ : Ω− → H be two continuous maps such that β ◦ Φ is homo-
topically equivalent to the embedding j : Ω− → Ω+. Then catH(H) ≥ catΩ+(Ω−).

Let X be a Banach space, φ ∈ C2(X,R), V := {x ∈ X : φ(x) = 1}, and for
all v ∈ V , φ′(v) �= 0. Denote by φd = {x ∈ V : φ(x) ≤ d}.
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Lemma 1.2 (Theorem 5.20, [12]) If φ|V is bounded from below and satisfies the
(PS )c condition for any c ∈ [infV φ, d], then φ|V contains at least catφd(φd) critical
points of φ|V .

In Section 2, using the dual variational formulation of the problem, we define
the Nehari manifold Σε and study the critical values associated to the least energy
solution of (1.1) and the limit system. In Section 3, we will define a homotopy
between the set M and a manifold Σε. Finally in Section 4 we will prove the (PS)
condition and the Theorem 1.1.

2 The Nehari Manifold and the Critical Value

Let X = L1+ 1
p (RN ) × L1+ 1

q (RN ) for p, q > 1. We define the canonical injection

ip : H1(RN ) → Lp+1(RN ), i∗p : L
p+1

p (RN ) → H−1(RN )

and the operator

Tε := iq ◦ (−ε2∆ + id)−1 ◦ i∗p : L1+ 1
p (RN ) → Lq+1(RN ).

Denote w = (w1, w2) ∈ X, and define the functional

Jε(w) =
p

p+ 1

∫
RN

hp|w1|1+ 1
p dx+

q

q + 1

∫
RN

hq|w2|1+ 1
q dx

−1
2

∫
RN

(w1Tεw2 + w2Tεw1)dx,

on X, where hp = h
− 1

p

1 and hq = h
− 1

q

2 . It is standard to verify that Jε is well
defined and it is of class C1 on X. If w is a critical point of Jε, then w satisfies

Tεw2 = hp|w1| 1
p −1w1, Tεw1 = hq|w2| 1

q −1w2.

Let u = Tεw2, v = Tεw1, then (u, v) is a solution of (1.1). We will obtain
solutions of (1.1) by finding critical points of Jε which are contained in the Nehari
set

Σε = {w ∈ X\{0} : 〈J ′
ε(w), w〉 = 0}.

Lemma 2.1 Σε is a smooth manifold.

Proof. Let g(w) = 〈J ′
ε(w), w〉, for w ∈ Σε. Then

〈g′(w), w〉 =
(

1 +
1
p

)∫
RN

hp|w1|1+ 1
p dx+

(
1 +

1
q

)∫
RN

hq|w2|1+ 1
q dx

−2
∫
RN

(w1Tεw2 + w2Tεw1)dx
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Using the characterization of Σε, we get

〈g′(w), w〉 =
(

1
p

− 1
)∫

RN

hp|w1|1+ 1
p dx+

(
1
q

− 1
)∫

RN

hq|w2|1+ 1
q dx.

Because w �= 0 and p, q > 1 we conclude that

〈g′(w), w〉 < 0, ∀ w ∈ Σε.

The assertion follows by the Implicit Function Theorem. �

We will use the solution of the limit system

−∆u+ u = h∞
2 |v|q−1v, −∆v + v = h∞

1 |u|p−1u, in RN (2.1)

to compare the solutions of (1.1). The functional associated to this system is

I∞(u, v) =
∫
RN

(∇u · ∇v + uv)dx− 1
p+ 1

∫
RN

h∞
1 |u|p+1 dx

− 1
q + 1

∫
RN

h∞
2 |v|q+1 dx.

Its dual functional on X is

J∞(w) =
p

p+ 1

∫
RN

h∞
p |w1|1+ 1

p dx+
q

q + 1

∫
RN

h∞
q |w2|1+ 1

q dx

− 1
2

∫
RN

(w1Tw2 + w2Tw1)dx,

where h∞
p = (h∞

1 )− 1
p , h∞

q = (h∞
2 )− 1

q , T = i2 ◦ (−∆ + id)−1 ◦ i∗2. It is proved in
[11] under the condition (1.2) that the ground state (U, V ) of (2.1) exists and it
has exponential decay at infinity. By a ground state solution we mean a solution
with the least positive critical value of the functional I∞. Let w = (w1, w2) =
((−∆ + id)U, (−∆ + id)V ), we have

J∞(w) = I∞(U, V ) := c∗. (2.2)

The manifold associated to J∞ is given by

Σ∞ = {w ∈ X\{0} : 〈J ′
∞(w), w〉 = 0}.

As it was proved in Lemma 2.1, we can see that Σ∞ is a smooth manifold. Consider
the variational problem

c∞ = inf
w∈Σ∞

J∞(w). (2.3)
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Lemma 2.2 There exists w ∈ Σ∞ such that J∞(w) = c∞.

Proof. Let wn = (w1
n, w

2
n) be a minimizing sequence. We will show that wn

has a converging subsequence. First, we will prove that {wn} can be replaced
by a positive radially symmetric minimizing sequence. In fact, we may assume∫
RN w1

nTw
2
ndx ≥ 0. To prove this fact, let us consider the following cases.

(i) If w1 ≥ 0 then Tw1 ≥ 0. By the Maximum principle, Tw2 ≤ T |w2|,
which implies∫

RN

w1Tw2dx ≤
∫
RN

w1T |w2|dx =
∫
RN

|w1|T |w2|dx.

By the definition of Σ∞ we have∫
RN

(h∞
p |w1|1+ 1

p dx+ h∞
q |w2|1+ 1

q )dx ≤
∫
RN

|w1|T |w2|dx. (2.4)

Thus, there exists 0 < t ≤ 1 such that (t|w1|, t|w2|) ∈ Σ∞. By (2.4)

J∞(t|w1|, t|w2|) ≤
(

p

p+ 1
t1+

1
p − t2

2

)∫
RN

h∞
p |w1|1+ 1

p dx

+
(

q

q + 1
t1+

1
q − t2

2

)∫
RN

h∞
q |w2|1+ 1

q dx.

Let γ(t) = c1( p
p+1 t

1+ 1
p − 1

2 t
2)+ c2( q

q+1 t
1+ 1

q − 1
2 t

2), where c1, c2 > 0, and t ∈ [0, 1].
It is easy to verify that the maximum is attained at t = 1. Thus,

J∞(t|w1|, t|w2|) ≤ J∞(w1, w2). (2.5)

We have obtained a positive minimizing sequence for the case (i).
(ii) If w1 changes in sign, we define w̃1 = |w1| and

sgn(w1)Tw2 = T (sgnw1)w2 := Tw̃2.

Therefore ∫
RN

w1Tw2dx =
∫
RN

w̃1Tw̃2dx,

and w̃1 ≥ 0. Clearly (w̃1, w̃2) ∈ Σ∞ and J∞(w1, w2) = J∞(w̃1, w̃2). We reduce
the problem to the case (i).

Next, we replace the positive sequence {wn} by a sequence of radial func-
tions. The operator T is an integral operator with kernel K(x, y) which is the
generalized solution of

−∆u+ u = δ

where δ is the Dirac distribution. This equation can be solved by Fourier transform
and we know that the fundamental solution is radially symmetric. Thus,∫

RN

w1(x)Tw2(x)dx =
∫
R2N

w1(x)K(x, y)w2(y)dxdy.
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Let us denote by u∗ the Steiner symmetrization of the function u. By the
convolution inequality (see [3]) we get∫

R2N

w1(x)K(x, y)w2(y)dxdy ≤
∫
R2N

w∗
1(x)K∗(x, y)w∗

2(y)dxdy

=
∫
R2N

w∗
1(x)K(x, y)w∗

2(y)dxdy =
∫
RN

w∗
1(x)Tw∗

2(x)dx.

It is well known that if p > 0 and q > 0,∫
RN

(h∞
p w

1+ 1
p

1 + h∞
q w

1+ 1
q

2 )dx =
∫
RN

(h∞
p (w∗

1)1+
1
p + h∞

q (w∗
2)1+

1
q )dx,

then there exists 0 < t∗ ≤ 1 such that (t∗w∗
1 , t

∗w∗
2) ∈ Σ∞ and, as in (2.5), we have

J∞(w1, w2) ≥ J∞(w∗
1 , w

∗
2). (2.6)

Thus, the infimum of J∞ in Σε is attained among the positive radial solutions.
Finally, we will show that c∞ is attained at some w ∈ Σ∞. Denote by Xr

the subspace of radial functions in X. From (2.6) we know that

c∞ = inf
w∈Σr

J∞(w), where Σr = Xr ∩ Σ∞.

By the Ekeland’s variational principle, (see Theorem 2.4, [12]) we can replace
the minimizing sequence {wn} by a (PS) sequence of J∞, that is, {wn} ⊂ Xr,

J ′
∞(wn) → 0, J∞(wn) → c∞, as n → ∞. (2.7)

Let un = |w2
n| 1

p −1w2
n, vn = |w1

n| 1
q −1w1

n. From (2.7) we know that ‖wn‖X

is uniformly bounded. Clearly, (un, vn) is radial. Using Theorem 4.1 in [9],
{(un, vn)} has a convergent subsequence in Lp+1(RN ) × Lq+1(RN ). Then, {wn}
has a convergent subsequence in Xr. Thus c∞ is attained at some w ≥ 0, which
is a solution of J ′

∞(w) = 0. �

Next, we will prove the equivalence between (2.2) and (2.3).

Corollary 2.1
c∞ = c∗.

Proof. Because c∗ is the critical value corresponding to the minimal energy
solution, it is clear that c∞ ≥ c∗. To prove the reverse inequality, we note from
Lemma 2.2 that c∞ is attained by some w. By definition of c∞, J∞(w) ≤ J∞(w) =
c∗, where w denotes the ground state of (2.1). �
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To relate the solutions of (1.1) to the set M , we study the system

−∆u+ u = h2(ξ2)|v|q−1v, −∆v + v = h1(ξ1)|u|p−1u in RN , (2.8)

where ξ = (ξ1, ξ2) ∈ M . This problem has a ground state solution with exponen-
tial decay at infinity. The dual functional

JM (w) =
p

p+ 1

∫
RN

hp(ξ1)|w1|1+ 1
p dx+

q

q + 1

∫
RN

hq(ξ2)|w2|1+ 1
q dx

−1
2

∫
RN

(w1Tw2 + w2Tw1)dx.

associated to (2.8) is C1 on X. Let ΣM = {w ∈ X\{0} : 〈J ′
M (w), w〉 = 0}, we

define
cM = inf

ΣM

JM (w)

and
cε = inf

Σε

Jε(w).

Using the ground state of (2.8), we will construct a test function which
approximates asymptotically this ground state and we will use it to estimate the
critical value cε with εNcM .

Let δ > 0 be fixed and η be a smooth non-increasing function defined on
[0,+∞), such that

η(t) =
{
1 0 ≤ t ≤ δ

2 ,
0 t > δ,

with 0 ≤ η(t) ≤ 1, |η′(t)| ≤ c. Let (U, V ) be a ground state of (2.8) related to
ξ = (ξ1, ξ2) ∈ M . Let us define the functions

(ϕε,ξ1(x), ψε,ξ2(x)) :=
(
η(|x− ξ1|)U

(
x− ξ1
ε

)
, η(|x− ξ2|)V

(
x− ξ2
ε

))
.

Lemma 2.3 There exists tε > 0 such that

(w1
ε,ξ1

, w2
ε,ξ2

) = (tεh1ϕ
p
ε,ξ1

, tεh2ψ
q
ε,ξ2

) ∈ Σε

for ε > 0 small. Thus, Σε �= ∅.

Proof. We may assume
∫
RN w1Tεw2dx > 0. The critical points of γε(t) := Jε(tw)

satisfy

0 = γ′
ε(t) = t

1
p

∫
RN

hp|w1|1+ 1
p dx+ t

1
q

∫
RN

hq|w2|1+ 1
q dx

−t
∫
RN

(w1Tεw2 + w2Tεw1)dx.
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Since Tε is self-adjoint, there holds
∫
RN w1Tεw2dx =

∫
RN w2Tεw1dx. Thus,

t
1
p −1

∫
RN

hp|w1|1+ 1
p dx+ t

1
q −1

∫
RN

hq|w2|1+ 1
q dx = 2

∫
RN

w1Tεw2dx > 0.

This implies that there exists a unique tε such that tεw ∈ Σε. In particular,

(w1
ε , w

2
ε ) := (tεh1ϕ

p
ε,ξ1

, tεh2ψ
q
ε,ξ2

) ∈ Σε.

�

We turn to study the asymptotic estimate of cε in terms of cM .

Lemma 2.4 ∫
RN

h1ϕ
p
ε,ξ1

Tεh2ψ
q
ε,ξ2

dx =
∫
RN

h1ϕ
p+1
ε,ξ1

dx+ o(1),

∫
RN

h2ψ
q
ε,ξ2

Tεh1ϕ
p
ε,ξ1

dx =
∫
RN

h2ψ
q+1
ε,ξ2

dx+ o(1)

as ε → 0.

Proof. By the definition of the functions ϕε,ξ1 and ψε,ξ2 and the exponential decay
at infinity of (U, V ) we get∫

RN

h1(ξ1 + εy)(η(ε|y|)U)p+1dy =
∫
RN

h1(ξ1)Up+1dy + o(1), (2.9)

∫
RN

h2(ξ2 + εy)(η(ε|y|)V )q+1dy =
∫
RN

h2(ξ2)V q+1dy + o(1) (2.10)

as ε → 0. Consider the system

Tεh2ψ
q
ε,ξ2

= ϕε,ξ1 + ηε, in Bδ, (2.11)

Tεh1ϕ
p
ε,ξ1

= ψε,ξ2 + ξε, in Bδ.

Solving for ηε we have

(−ε2∆ + id)ηε = h2ψ
q
ε,ξ2

− (−ε2∆ + id)ϕε,ξ1 .

Changing variables to y = x−ξ2
ε we get

(−∆ + id)η̃ε = h2(εy + ξ2)ψ̃
q
ε,0 − (−∆ + id)ϕ̃ε,ξ1+ξ2 , in B

(
ξ2,

δ

ε

)
,

where η̃ε(y) = ηε(εy + ξ2), ψ̃ε(y) = ψε(εy + ξ2). From the Newtonian potential
estimates and interpolation theorem we have

‖η̃ε‖W 2,2(B δ
ε
) ≤ C‖h2(εy + ξ2)ψ̃

q
ε,0 − (−∆ + id)ϕ̃ε,ξ1+ξ2‖L2(B δ

ε
).
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But by the exponential decay of the ground states, the continuity of h2, and
the definition of (ϕε,ξ1 , ψε,ξ2) we have that

‖η̃ε‖W 2,2(B δ
ε
) ≤ o(1) + ‖h2(ξ2)ψ̃

q
ε,0 − (−∆ + id)ϕ̃ε,0‖L2(B δ

ε
\B δ

2ε
) = o(1)

as ε → 0. The same estimate is obtained for ξ̃ε. From the Sobolev embeddings
and the change of variables, we obtain

‖ηε‖Lp(RN ) = ‖ξε‖Lp(RN ) = o(1),

as ε → 0 and for 1 ≤ p ≤ 2N
N−4 . Thus, using (2.11)

∫
RN

h1ϕ
p
ε,ξ1

Tεh2ψ
q
ε,ξ2

dx =
∫
RN

h1ϕ
p+1
ε,ξ1

dx+ o(1).

Similar estimates can be obtained for the term
∫
RN h2ψ

q
ε,ξ2

Tεh1ϕ
p
ε,ξ1

dx. Thus, we
conclude the proof. �

Finally, we obtain the approximation lemma.

Lemma 2.5
Jε(w1

ε,ξ1
, w2

ε,ξ2
) = εN{cM + o(1)}

as ε → 0.

Proof. There holds

Jε(w1
ε,ξ1

, w2
ε,ξ2

) =
p

p+ 1
t
1+ 1

p
ε

∫
RN

h1ϕ
p+1
ε,ξ1

dx+
q

q + 1
t
1+ 1

q
ε

∫
RN

h2ψ
q+1
ε,ξ2

dx

−1
2
t2ε

∫
RN

(h1ϕ
p
ε,ξ1

Tεh2ψ
q
ε,ξ2

+ h2ψ
q
ε,ξ2

Tεh1ϕ
p
ε,ξ1

)dx.

By the estimates in Lemma 2.4, we obtain that the last term simplifies to(
p

p+ 1
t
1+ 1

p
ε − 1

2
t2ε

)∫
RN

h1ϕ
p+1
ε,ξ1

dx+
(

q

q + 1
t
1+ 1

q
ε − 1

2
t2ε

)∫
RN

h2ψ
q+1
ε,ξ2

dx+ o(1)

for ε small. Thus, from (2.9), (2.10), and the definition of (ϕε,ξ1 , ψε,ξ2) we obtain

Jε(w1
ε,ξ1

, w2
ε,ξ2

) = εN

((
p

p+ 1
t
1+ 1

p
ε − 1

2
t2ε

)∫
RN

h1(ξ1)Up+1dy

+
(

q

q + 1
t
1+ 1

q
ε − 1

2
t2ε

)∫
RN

h2(ξ2)V q+1dy + o(1)

)
. (2.12)
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Since (w1
ε,ξ1

, w2
ε,ξ2

) ∈ Σε, we have

(t
1
p −1
ε − 1)

∫
RN

h1(ξ1)Up+1dy + (t
1
q −1
ε − 1)

∫
RN

h2(ξ2)V q+1dy = o(1). (2.13)

Then, if ε → 0, tε → 1. From (2.12) we obtain

Jε(w1
ε,ξ1

, w2
ε,ξ2

) = εN

((
p

p+ 1
− 1

2

)∫
RN

h1(ξ1)Up+1dy

+
(

q

q + 1
− 1

2

)∫
RN

h2(ξ2)V q+1dy + o(1)

)
= εN (cM + o(1)).

�

3 Homotopy

We will devote this section to the construction of the homotopy needed for
Lemma 1.1.

We are going to construct a mapping Φε fromM to Σε and a mapping β from
Σε to Mδ such that β ◦ Φε is homotopic to the inclusion j : M → Mδ.

Let wε,ξ = (w1
ε,ξ1

, w2
ε,ξ2

) be as in Lemma 2.3. We define the mapping Φε :
M → Σε by

Φε(ξ) = (w1
ε,ξ1

, w2
ε,ξ2

).

Since the set M is bounded, there exists ρ > 0 such that Mδ ⊂ Bρ × Bρ.
Let χ : RN → RN be a function given by

χ(x) =
{
x if |x| ≤ ρ,
ρx
|x| if |x| > ρ.

We define β : Σε → RN × RN by

β(w) = (β1(w1), β2(w2)) =

(∫
RN χ|w1|1+ 1

p dx∫
RN |w1|1+ 1

p dx
,

∫
RN χ|w2|1+ 1

q dx∫
RN |w2|1+ 1

q dx

)
.

This corresponds to a local center of mass of (w1, w2). We have the following
asymptotic relation.

Lemma 3.1 For each point (ξ1, ξ2) ∈ M , there holds β(Φε(ξ)) = (ξ1, ξ2) + o(1)
as ε → 0.

Proof. Note that

β1(w1
ε,ξ1

) =

∫
RN χt

1+ 1
p

ε h1ϕ
p+1
ε,ξ1

dx∫
RN t

1+ 1
p

ε h1ϕ
p+1
ε,ξ1

dx
.
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Changing variables, we get

β1(w1
ε,ξ1

) =

∫
RN χ(εx+ ξ1)h1(εx+ ξ1)|η(ε|x|)U(x)|p+1dx∫

RN h1(εx+ ξ1)|η(ε|x|)U(x)|p+1dx

= ξ1 +

∫
RN (χ(εx+ ξ1) − ξ1)h1(εx+ ξ1)|η(ε|x|)U(x)|p+1dx∫

RN h1(εx+ ξ1)|η(ε|x|)U(x)|p+1dx
.

Using the continuity of χ we obtain, for ε small,

β1(w1
ε,ξ1

) = ξ1 + o(1).

Similarly, we get β2(w2
ε,ξ2

) = ξ2 + o(1). �

Let h(ε) be a positive function tending to 0 as ε → 0 slowly. Because of the
asymptotic behavior of Jε(w), we can define

Σ̃ε = {w ∈ Σε : Jε(w) ≤ εN (cM + h(ε))},
which, by Lemma 2.3, is not empty for ε > 0 small.

We claim that β(w) restricted to Σ̃ε approaches to a point in Mδ. We will
first prove the following lemma.

Lemma 3.2 Let {wn} be a minimizing sequence of cM . Then

(i) there exists {wn} ⊂⊂ ΣM such that

JM (wn) → cM , J ′
M (wn) → 0,

and
‖wn − wn‖X → 0

as n → ∞.

(ii) Furthermore, there exists {ξn} ⊂ RN such that if we define w̃n(·) = wn(·+
ξn), then {w̃n} is precompact.

Proof. (i) It is a direct consequence of the Ekeland’s variational principle,
(see [12]).

(ii) We will use the Concentration Compactness given in Lemma 1.21, [12].
Let us show that {wn} is tight. Because JM (wn) → cM and wn ∈ ΣM ,

p− 1
2p+ 2

∫
RN

hp(ξ1)|wn
1 |1+ 1

p dx+
q − 1
2q + 2

∫
RN

hq(ξ2)|wn
2 |1+ 1

q dx ≤ cM + 1

for n large. Let zn = (Tw2
n, Tw

1
n). Thus, ‖zn‖X∗ ≤ c. This implies that zn ∈ E,

where

E := (W 2,1+ 1
q (RN ) ∩W 1,1+ 1

q (RN )) × (W 2,1+ 1
p (RN ) ∩W 1,1+ 1

p (RN )).

Since the sequence is bounded, we may assume that zn ⇀ z in E.
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Using J ′
M (wn) → 0, we have that

un = hp(ξ1)|w1
n| 1

p −1w1
n + o(1), vn = hq(ξ2)|w2

n| 1
q −1w2

n + o(1)

as n → ∞, which implies

w1
n = h1(ξ1)|un|p−1un + o(1), w2

n = h2(ξ2)|vn|q−1vn + o(1) (3.1)

as n → ∞. Therefore,

cM + o(1) = JM (wn) =
p

p+ 1

∫
RN

hp(ξ1)|w1
n|1+ 1

p dx

+
q

q + 1

∫
RN

hq(ξ2)|w2
n|1+ 1

q dx− 1
2

∫
RN

(w1
nTw

2
n + w2

nTw
1
n)dx

=
p− 1
2p+ 2

∫
RN

h1(ξ1)|un|p+1dx+
q − 1
2q + 2

∫
RN

h2(ξ2)|vn|q+1dx+ o(1).

We claim that vanishing does not happen for {zn}. By contradiction, sup-
pose that for some r > 0

sup
y∈RN

∫
B(y,r)

|un|p+1dx → 0,

and
sup

y∈RN

∫
B(y,r)

|vn|q+1dx → 0.

Because of the Sobolev’s embedding Hs(RN ) ↪→ Lγ
loc(R

N ), for 2 ≤ γ ≤
2N

N−2s and s > 0, we have that un → 0 in Lγ
loc(R

N) for 2 < γ < 2N
N−2s and vn → 0

in Lµ
loc(R

N) for 2 < µ < 2N
N−2t , with s + t = 2. For any p + 1 < α < 2N

N−2s , the
Hölder’s inequality and the Sobolev’s embedding imply that

‖u‖Lα(B(y,r)) ≤ ‖u‖1−λ
Lp+1(B(y,r))‖u‖λ

L
2N

N−2s (B(y,r))

≤ c‖u‖1−λ
Lp+1(B(y,r))‖u‖λ

Hs(B(y,r)),

where λ = α−p−1
2N

N−2s −p−1

2N
N−2s

α . Choosing λ = 2
α , we obtain

∫
B(y,r)

|u|αdx ≤ cα‖u‖α−2
Lp+1(B(y,r))‖u‖2

Hs(B(y,r)).

Covering RN with balls of radius r in such a way that each point of RN is
contained at most in m+ 1 balls, we find that

∫
RN

|u|αdx ≤ (m+ 1)cα sup
y∈RN

(∫
B(y,r)

|u|p+1

)α−2
p+1

‖u‖2
Hs(RN ).
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Then un → 0 in Lα(RN ) for 2 < α < 2N
N−2s . In the same way vn → 0 in

Lµ(RN ) for 2 < µ < 2N
N−2t . Consequently

JM (wn) =
(

p

p+ 1
− 1

2

)∫
RN

h1(ξ1)|un|p+1dx

+
(

q

q + 1
− 1

2

)∫
RN

h2(ξ2)|vn|q+1dx → 0

as n → ∞, contradicting to the fact that JM (wn) → cM > 0. Therefore vanishing
does not happen. Thus, there exists σ > 0 such that

lim
n

sup
y∈RN

∫
B(y,1)

|un|γdx ≥ 2σ > 0 or lim
n

sup
y∈RN

∫
B(y,1)

|vn|µdx ≥ 2σ > 0,

where 2 < γ < 2N
N−2s and 2 < µ < 2N

N−2t . Then, there exists a sequence {ξn} ⊂ RN

such that ∫
B(ξn,1)

|un|γdx ≥ σ > 0 or
∫

B(ξn,1)
|vn|µdx ≥ σ > 0.

Let ûn(x) = un(x + ξn), v̂n(x) = vn(x + ξn). Then, ûn ⇀ û in Hs(RN ),
v̂n ⇀ v̂ in Ht(RN ). By the Sobolev embedding, ûn → û, v̂n → v̂ in Lγ

loc(R
N ) and

Lµ
loc(R

N ) respectively. In particular, ûn → û, v̂n → v̂ a.e in RN . Then, (û, v̂) �= 0
and by (3.1) it solves

−∆u+ u = h1(ξ1)|v|q−1v, −∆v + v = h2(ξ2)|u|p−1u, (3.2)

in a weak sense. We know that this is a classical solution by the regularity theory.
Let ŵn = ((−∆ + id)ûn, (−∆ + id)v̂n) and ŵ = ((−∆ + id)û, (−∆ + id)v̂).

Using the fact that (û, v̂) is a solution of (3.2), we find that ŵ ∈ ΣM . Note that
from (i)

‖ŵn − wn(· + ξn)‖ → 0 and J ′
M (ŵn) → 0 as n → ∞.

We will show that {ŵn} is precompact. By the Brézis-Lieb Lemma (see
Lemma 1.32 in [12]), we have

lim
n→∞

∫
RN

|ŵ1
n|1+ 1

p dx = lim
n→∞

(∫
RN

|ŵ1
n − ŵ1|1+ 1

p dx+
∫
RN

|ŵ1|1+ 1
p dx

)
,

lim
n→∞

∫
RN

|ŵ2
n|1+ 1

q dx = lim
n→∞

(∫
RN

|ŵ2
n − ŵ2|1+ 1

q dx+
∫
RN

|ŵ2|1+ 1
q dx

)
.

Hence,

cM = JM (ŵn) + o(1) = JM (ŵn − ŵ) + JM (ŵ) + o(1)
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as n → ∞. Since ŵ ∈ ΣM , we have JM (ŵ) ≥ cM . If ŵn − ŵ → w0 �= 0 then
J(w0) > 0, it yields

cM ≥ JM (ŵn − ŵ) + cM + o(1) ≥ cM + JM (w0) + o(1) > cM

which is a contradiction. We conclude that

ŵn → ŵ in L1+ 1
p (RN ) × L1+ 1

q (RN ).

�

To finish the construction of the homotopy, let us prove that β◦Φε approaches
to the injection j as ε → 0.

Lemma 3.3
lim
ε→0

sup
w∈Σ̃ε

inf
ξ∈Mδ

|β(w) − ξ| = 0.

Proof. Let εn → 0. For any n there exists wn ∈ Σ̃εn such that

inf
ξ∈Mδ

|β(wn) − ξ| = sup
w∈Σ̃εn

inf
ξ∈Mδ

|β(w) − ξ| + o(1).

Then, it is sufficient to find points ξn ∈ Mδ such that

lim
n→∞ |β(wn) − ξn| = 0. (3.3)

Defining Σ̃(εn) := {w :
∫
RN (hp(εnx)|w1|1+ 1

p + hq(εnx)|w2|1+ 1
q )dx =∫

RN (w1Tw2 + w2Tw1)dx} and denoting w̃n(x) = wn(εnx) ∈ Σ̃(εn), we get∫
RN

(hp(εnx)|w̃1
n|1+ 1

p + hq(εnx)|w̃2
n|1+ 1

q )dx =
∫
RN

(w̃1
nTw̃

2
n + w̃2

nTw̃
1
n)dx

≥
∫
RN

(hM
p |w̃1

n|1+ 1
p + hM

q |w̃2
n|1+ 1

q )dx.

Therefore, there exists 0 < tn ≤ 1 such that tnw̃n ∈ ΣM . From the definition of
Σ̃εn , we obtain

h(εn) + cM ≥ JΣ̃εn
(w̃n) ≥ JΣ̃(εn)(tnw̃n) ≥ JM (tnw̃n) ≥ cM > 0. (3.4)

Thus, (3.4) implies that {tnw̃n} is a minimizing sequence of cM . We also have
that tn → 1 as n → ∞.

By Lemma 3.2 there exists {wn} such that ‖wn − tnw̃n‖ → 0 as n → ∞.
Thus, |β(wn) − β(tnw̃n)| → 0 as n → ∞ and there exists a sequence {ξn} ⊂ RN

such that {wn(· + ξn)} is precompact.
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Let ŵn(x) = wn(x+ ξn). Then, ŵn is bounded in X. We may assume that
ŵn → ŵ in X. Clearly ŵn ∈ ΣM and ŵ ∈ ΣM . We claim that the sequence
{εnξn} is bounded.

In fact, if it is not bounded, we would have

h(εn) + cM ≥
(

p

p+ 1
− 1

2

)∫
RN

hp(εn(x+ ξn))|ŵ1
n|1+ 1

p dx

+
(

q

q + 1
− 1

2

)∫
RN

hq(εn(x+ ξn))|ŵ2
n|1+ 1

q dx+ o(1).

Thus, by Fatou’s lemma

cM ≥ lim inf
n→∞

((
p

p+ 1
− 1

2

)∫
RN

hp(εn(x+ ξn))|ŵ1
n|1+ 1

p dx

+
(

q

q + 1
− 1

2

)∫
RN

hq(εn(x+ ξn))|ŵ2
n|1+ 1

q dx

)

≥
(

p

p+ 1
− 1

2

)∫
RN

lim inf
n→∞hp(εn(x+ ξn))|ŵ1

n|1+ 1
p dx

+
(

q

q + 1
− 1

2

)∫
RN

lim inf
n→∞hq(εn(x+ ξn))|ŵ2

n|1+ 1
q dx

≥
(

p

p+ 1
− 1

2

)∫
RN

h∞
p |ŵ1|1+ 1

p dx+
(

q

q + 1
− 1

2

)∫
RN

h∞
q |ŵ2|1+ 1

q dx.

Also note that∫
RN

hp(εn(x+ ξn))|ŵ1
n|1+ 1

p dx+
∫
RN

hq(εn(x+ ξn))|ŵ2
n|1+ 1

q dx

≥
∫
RN

h∞
p |ŵ1|1+ 1

p dx+
∫
RN

h∞
q |ŵ2|1+ 1

q dx. (3.5)

Since ŵn ∈ ΣM , using (3.5) we obtain the existence of t, 0 < t ≤ 1, such
that tŵ ∈ Σ∞. Hence, we have

cM ≥
(

p

p+ 1
− 1

2

)∫
RN

h∞
p |ŵ1|1+ 1

p dx+
(

q

q + 1
− 1

2

)∫
RN

h∞
q |ŵ2|1+ 1

q dx

≥ J∞(tŵ) ≥ c∞

which is a contradiction. Thus {εnξn} is bounded. Suppose that εnξn → ξ =
{ξ1, ξ2}. Since ŵ ∈ ΣM , there holds

cM ≥
(

p

p+ 1
− 1

2

)∫
RN

hp(ξ1)|ŵ1|1+ 1
p dx+

(
q

q + 1
− 1

2

)∫
RN

hq(ξ2)|ŵ2|1+ 1
q dx

≥
(

p

p+ 1
− 1

2

)∫
RN

hM
p |ŵ1|1+ 1

p dx+
(

q

q + 1
− 1

2

)∫
RN

hM
q |ŵ2|1+ 1

q dx,

= JM (ŵ) ≥ cM ,

where hM
p = hp(ξ1), hM

q = hq(ξ2) for any (ξ1, ξ2) ∈ M , then ξ ∈ M .
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Next, we prove (3.3). Using the definition of β and wn, we get

β(wn) =

(∫
RN χ(x)|w1

n|1+ 1
p dx∫

RN |w1
n|1+ 1

p dx
,

∫
RN χ(x)|w2

n|1+ 1
p dx∫

RN |w2
n|1+ 1

p dx

)

=

(∫
RN χ(εn(x+ ξn

1 ))|ŵ1
n(x)|1+ 1

p dx∫
RN |ŵ1

n|1+ 1
p dx

,

∫
RN χ(εn(x+ ξn

2 ))|ŵ2
n|1+ 1

p dx∫
RN |ŵ2

n|1+ 1
p dx

)

→ (ξ1, ξ2) ∈ M, as n → ∞,

since ŵn converges strongly in X. �

4 (PS) Condition and Proof of the Theorem

In this last section, we will prove Theorem 1.1. First, we need the (PS) condition.

Lemma 4.1 Jε satisfies the (PS) condition in {w ∈ Σε : Jε(w) < εNc∞}.
Proof. It is clear that {w ∈ Σε : Jε(w) < εNc∞} is not empty because c∞ > cM
and by the results obtained in Lemma 2.5. Let {wn} be a (PS)-sequence at level
c for 0 < c < εNc∞. Then,

Jε(wn) = c+ δn, J ′
ε|Σε

(wn) = δn

with δn → 0 as n → ∞. By the Ekeland’s variational principle, we may assume

Jε(wn) = c+ δn, J ′
ε(wn) = δn, δn → 0

as n → ∞. By Lemma 3.2, we need only to rule out dichotomy, that is, we need
to show that for any δ > 0 there exists R > 0 such that∫

{|x|≥R}
|w1

n|1+ 1
p dx < δ,

∫
{|x|≥R}

|w2
n|1+ 1

q dx < δ, (4.1)

which implies in a standard way that {wn} converges strongly in X.
Now, let us prove (4.1). By contradiction, suppose that there exist a subse-

quence {wk} of {wn} and α0 > 0 such that∫
{|x|≥k}

|w1
k|1+ 1

p dx ≥ α0, ∀ k. (4.2)

From |〈J ′
ε(wn), v〉| ≤ ε‖v‖, we have for v = ((1 − χR)w1

n, 0), where χR is the
characteristic function for BR, that∫

{|x|≥k}
|w1

n|1+ 1
p dx ≤ ε‖w1

n‖1+ 1
p

+
∫

{|x|≥k}
w2

nTεw
1
n dx

≤ ‖w1
n‖1+ 1

p
(ε+ c‖w2

n‖1+ 1
q
).
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Thus,

‖w1
n‖

1
p

L
1+ 1

p ({|x|≥k})
≤ ε+ c‖w2

n‖
L

1+ 1
q ({|x|≥k})

.

Using (4.2) and the last inequality we obtain

α
1
p

0 ≤ ε+ c

(∫
{|x|≥k}

|w2
k|1+ 1

q dx

) q
q+1

.

For ε small and k large, there holds

0 <


α 1

p

0 − ε

c




(q+1)
q

=: α1 ≤
∫

{|x|≥k}
|w2

k|1+ 1
q dx, ∀k. (4.3)

In particular, for η > 0 small there exists r(η) > 0 such that∫
{r≤|x|≤r+1}

|w1
k|1+ 1

p dx < η,

∫
{r≤|x|≤r+1}

|w2
k|1+ 1

q dx < η, (4.4)

for a subsequence still indexed by k. In fact, if it is not so, for any m > r there is
an index km such that ∫

{m≤|x|≤m+1}
|w1

k|1+ 1
p dx ≥ η

for all k > km. Thus,∫
RN

|w1
k|1+ 1

p dx ≥
∫

{r≤|x|≤m}
|w1

k|1+ 1
p dx ≥ (m− r)η → ∞

if m → ∞. This contradicts the fact that ‖w1
k‖ ≤ c. The same result is obtained

if
∫

{m≤|x|≤m+1} |w2
k|1+ 1

q dx ≥ η. Thus, we have achieved (4.4).
Let us prove that this contradicts to our assumption on the energy. For this

purpose we write
wi

k = vi
k + zi

k, i = 1, 2,

where vi
k = ρwi

k, zi
k = (1 − ρ)wi

k, i = 1, 2 and ρ : RN → [0, 1] is a cut-off function
such that

ρ(x) =
{
1 if |x| ≤ r,
0 if |x| ≥ r + 1,

and |∇ρ| ≤ c in RN . Thus,

|〈J ′
ε(wk), vk〉 − 〈J ′

ε(vk), vk〉| ≤ O(η).

and
|〈J ′

ε(wk), zk〉 − 〈J ′
ε(zk), zk〉| ≤ O(η).
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Therefore, we can split the derivative as

〈J ′
ε(vk), vk〉 = O(η) + δk = 〈J ′

ε(zk), zk〉. (4.5)

We also have
Jε(wk) ≥ Jε(vk) + Jε(zk) +O(η).

But
Jε(vk) ≥ c(‖v1

k‖1+ 1
p

+ ‖v2
k‖1+ 1

q
) +O(η) + δk > δk,

for k large. Thus,
Jε(wk) ≥ Jε(zk) +O(η) + δk.

From (4.2) and (4.3), we have∫
{|x|≥R}

hp|z1
k|1+ 1

p dx+
∫

{|x|≥R}
hq|z2

k|1+ 1
q dx ≥ α0 + α1 +O(η).

Let tk be such that tkzk ∈ Σε. From (4.5), we have

tk = 1 +O(η) + δk,

in particular
Jε(tkzk) = Jε(zk) +O(η) + δk.

Define z̃k = tkzk(εx). Let t̃k be such that t̃kz̃k belongs to the set

Ση :=

{
w :
∫
RN

((h∞
p − η)|w1|1+ 1

p + (h∞
q − η)|w2|1+ 1

q )dx

=
∫
RN

(w1Tw2 + w2Tw1)dx

}
.

Then,

εN
(∫

RN

(h∞
p − η)|z̃1

k|1+ 1
p dx+

∫
RN

(h∞
q − η)|z̃2

k|1+ 1
q dx

)

=
∫
RN

(h∞
p − η)|tkz1

k|1+ 1
p dx+

∫
RN

(h∞
q − η)|tkz2

k|1+ 1
q dx

≤
∫
RN

hp|tkz1
k|1+ 1

p dx+
∫
RN

hq|tkz2
k|1+ 1

q dx

=
∫
RN

(tkz1
k)Tε(tkz2

k)dx+
∫
RN

(tkz2
k)Tε(tkz1

k)dx

= εN
(∫

RN

(z̃1
k)T (z̃2

k)dx+
∫
RN

(z̃2
k)T (z̃1

k)dx
)
dx.
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We conclude that t̃k ≤ 1. Finally, taking η small and R(η) large enough
such that h∞

p − η < h∞
p < hp(x) and h∞

q − η < h∞
q < hq(x) if |x| > R(η), then

one has

εNcη ≤ Jη :=
p

p+ 1

∫
RN

(h∞
p − η)|t̃kz̃1

k|1+ 1
p dx+

q

q + 1

∫
RN

(h∞
q − η)|t̃kz̃2

k|1+ 1
q dx

−
∫
RN

(t̃kz̃1
k)T (t̃kz̃2

k)dx−
∫
RN

(t̃kz̃2
k)T (t̃kz̃1

k)dx

≤ J∞(t̃kz̃k) ≤ J∞(z̃k) ≤ Jε(tkzk) = Jε(zk) +O(η) + δk,

where cη = infΣηJη. We obtain the estimate

εNcη ≤ c+O(η) + δk. (4.6)

From the characterization of the critical value, for η small, we can define a
test function based on the ground state for c∞ and prove that c∞ −O(η) > cη. If
limη→0 cη = ĉ < c∞, for a ground state zη of cη, we have

Jη(zη) ≤ J∞(zη) −O(η) < c∞.

For ηk = 1
k , {zηk

} is a bounded positive radial sequence. By the Sobolev inclusions,
zηk

→ ẑ. Taking limits in the last inequality we obtain that c∞ ≤ J∞(ẑ) ≤ c∞,
which is a contradiction. Thus,

lim
η→0

cη = c∞.

Letting k → +∞ and using (4.6) we conclude that

εNc∞ ≤ c,

which contradicts the assumption on the level set. �

Proof of Theorem 1.1. Choose h(ε) > 0 such that h(ε) → 0 as ε → 0 and
εN{cM + h(ε)} is not a critical value of Jε. Let Σ̃ε be as above with h(ε) <
εN (c∞ − cM ). Lemma 4.1 shows that Jε satisfies (PS) in Σ̃ε. By Lemma 3.3,

sup
w∈Σ̃ε

inf
ξ∈Mδ

|β(w) − ξ| ≤ δ

2
, ∀ε < ε0

for some ε0 > 0. By Lemma 2.5, Jε(Φε(ξ)) ≤ εN (cM + h(ε)) < εNc∞, for ξ ∈ M ,
0 < ε < ε0. Thus Φε(M) ⊂ Σ̃ε. Then, we may assume that

dist(β(w),Mδ) <
δ

2
, ∀ε < ε0, w ∈ Σ̃ε.

Thus, β(Σ̃ε) ⊂ Mδ.
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The map β ◦ Φε is homotopic to the inclusion j : M → Mδ. Set Σ̃+
ε =

Σ̃ε ∩ {w ∈ Σε : w ≥ 0}. If w changes in sign, we have that w+ = max{w, 0} �= 0
and w− = min{w, 0} �= 0. Using the maximum principle we can prove that∫
RN (w+

1 Tεw
−
2 + w−

1 Tεw
+
2 )dx ≤ 0 Thus, for some positive numbers t+ and t−, we

have that t+w+ and t−w− belong to Σ̃ε. We obtain

εN (cM + h(ε)) ≥ Jε(w)

≥ Jε(t+w+) + Jε(t−|w−|) − t+t−
∫
RN

(w+
1 Tεw

−
2 + w−

1 Tεw
+
2 )dx

≥ Jε(t+w+) + Jε(t−|w−|)
≥ JM (t+w̃+) + JM (t−|w̃−|) ≥ 2εNcM ,

where w̃(x) = w(εx). This is a contradiction for ε small. Thus, the solutions
obtained does not change in sign. If the solution w satisfies w ≤ 0, then ŵ = −w
is also a positive solution. Therefore, in any case we may obtain positive solutions.
By Lemma 1.1,

catΣ̃ε
(Σ̃ε) = catΣ̃ε

(Σ̃+
ε ) ≥ catMδ

(M).

We deduce by Theorem 1.2 that Jε has at least catMδ
(M) positive solutions.
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