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1 Introduction

The main object of this paper is to investigate the existence of multiple positive
solutions of the problem

—e2Au+u = ho(z)|v]9 " v, —2Av 4 v = hy(z)|[u[P"ru inRY, (1.1)
where the exponents p,q > 1 are below the critical hyperbola, that is,
1 n 1 S N -2
p+1 g¢g+1 N
Problem (1.1) in bounded domains, even with more general nonlinearities,
were studied in [5], [7], [8], [10] and references therein. The problem in the whole

N >3 (1.2)
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space was considered in [9], [11] and [13]. The typical feature of Problem (1.1) is
that its related functional is strongly indefinite at zero. Linking type theorems and
dual variational methods are used in studying the problem. A multiplicity result
was obtained by T. Bartsch and D.G. Figueiredo [2] by min-max theorems. On the
other hand, it is well-known that the geometry and topology of the set of critical
points of coefficients k1 and ho affect the existence of number of positive solutions
for a single equation. See [6], [14] and [15] for recent results. In particular, the
number of solutions of a single equation is related to the topology of the set of
global minimum points of a ground energy function. See [6]. The purpose of the
present paper is to consider this problem for the system (1.1). We will study the
relation between the number of positive solutions and the topology of the set of
maximum points of coefficients h; and ho. Because the functional associated to
Problem (1.1) is strongly indefinite, the arguments used in recent works cannot
be pursued straightly. Our idea is to combine the dual variational method with
the Nehari technique. Thus we may relate the set of maximum points of the
coefficients of its dual variational problem to the number of positive solutions of
Problem (1.1). To state our results, let

M; = {z e RN : hj(z) = sup hi(z)}, i=1,2,
xRN

and M = M; x M. Let us define
h® = lim suph,(z), i =1,2.

|| — 00
We assume
(A1) h; € L=(RY), is continuous, hi(x) > a >0 for allz € RN, with i = 1,2.
(A2) hi(z) > h°, Vo € M; fori=1,2.
We note that (A1) and (A2) imply M is bounded. Let us denote Ms =

{z : dist(x,M) < ¢} and catp(A) the relative category of A in B. We obtain the
following multiplicity result.

Theorem 1.1 Suppose that hy, hy satisfy (A1)—(A2). Then, for any 6 > 0 there
exists €g = €9(0) > 0 such that (1.1) possesses at least catpr, (M) positive solutions
for 0 < e <ep.

To prove the theorem we will use the following results connecting the relative
category and the multiplicity of critical points.

Lemma 1.1 (Lemma 2.2, [6]) Let H, Q" and Q~ be closed subsets with 2~ C Q7
let 3: H—QF, ®:0Q — H be two continuous maps such that 8o ® is homo-
topically equivalent to the embedding j : @~ — QF. Then caty(H) > catg+(Q7).

Let X be a Banach space, ¢ € C?>(X,R), V := {z € X : ¢(z) = 1}, and for
allv € V, ¢'(v) # 0. Denote by ¢ = {z € V : ¢(z) < d}.
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Lemma 1.2 (Theorem 5.20, [12]) If ¢|y is bounded from below and satisfies the
(PS). condition for any ¢ € [infy ¢, d], then ¢|y contains at least catga(¢?) critical
points of P|y .

In Section 2, using the dual variational formulation of the problem, we define
the Nehari manifold ¥, and study the critical values associated to the least energy
solution of (1.1) and the limit system. In Section 3, we will define a homotopy

between the set M and a manifold .. Finally in Section 4 we will prove the (PS)
condition and the Theorem 1.1.

2 The Nehari Manifold and the Critical Value
Let X = L'*» (RY) x L'a (RY) for p,q > 1. We define the canonical injection

ip: HYRY) = IPPY(RY), it : L% (RY) — H'(RY)

and the operator

1

T. :=igo(—A+id)~'o in L% (RYN) — LIHH(RN).

Denote w = (w1, wz) € X, and define the functional

p 1+l q 1+l
Je = — h rd —_— h ad
) = 2 [ g h e [ st

1

-3 / N(wlTewg + wo T wy )d,
R

1 _1
on X, where h, = hy * and h, = hy *. It is standard to verify that J. is well
defined and it is of class C' on X. If w is a critical point of J., then w satisfies

1_ 1_
Towy = hylw|» ™ awy, Tewy = hglwa|v ™ ws.

Let v = Tews, v = Tews, then (u,v) is a solution of (1.1). We will obtain
solutions of (1.1) by finding critical points of J. which are contained in the Nehari
set

Be = {w € X\{0} : (Ji(w),w) = 0}.

Lemma 2.1 Y. is a smooth manifold.

Proof. Let g(w) = (J!(w),w), for w € X,. Then

1 1
(g'(w), w) = (1 + ) / hylws |7 da + (1 + ) / hylws| '@ d
p RN q RN
72\/ (wlTewg —+ ’LUQTE"U)l)dIL’
RN
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Using the characterization of 3., we get

1 1 1 1
<g’(w),w> = < — 1) / hp|w1|1+5dx + < — 1> / hq|w2|1+5dx.
p RN q RN

Because w # 0 and p, ¢ > 1 we conclude that
(¢ (w),w) <0, Vwe?2X..
The assertion follows by the Implicit Function Theorem. O
We will use the solution of the limit system
—Au+u = hCv|T w, —Av+v=hufu, in RV (2.1)

to compare the solutions of (1.1). The functional associated to this system is

1
Io(u,v) = / (Vu - Vo 4+ wv)de — —— hi’o|u|ple dx
RN p+1
1
- — h2|v|1Tt da.
qg+1

Its dual functional on X is

p+1/ h°°\w1|1+pdx+—/ heelwal ' ¥ d

— f/ (w1 Tws + woTw, )dex,
2 Jan

where hp® = (h‘fo)_%, hee = (th)‘%, T =iy0(—A+id)~1oij. It is proved in
[11] under the condition (1.2) that the ground state (U, V) of (2.1) exists and it
has exponential decay at infinity. By a ground state solution we mean a solution

with the least positive critical value of the functional I,. Let w = (wq,ws) =
(A +id)U, (—A 4 id)V), we have

Joo(w) = Lo(U, V) = ", (2.2)
The manifold associated to J, is given by
Yoo = {w € X\{0} : (J(w),w) = 0}.

As it was proved in Lemma 2.1, we can see that ¥, is a smooth manifold. Consider
the variational problem

> = wlenzfoo Joo (w). (2.3)



Vol. 12, 2005 Multiple solutions of nonlinear elliptic systems 463

Lemma 2.2 There exists w € oo such that Joo(w) = ™.

Proof. Let w, = (wl,w?) be a minimizing sequence. We will show that w,

has a converging subsequence. First, we will prove that {w,} can be replaced
by a positive radially symmetric minimizing sequence. In fact, we may assume
Jay wiTw2dz > 0. To prove this fact, let us consider the following cases.

(i) If wy > 0 then Twy; > 0. By the Maximum principle, Twe < T'|ws],
which implies

/ wlngdxg/ wlT\w2|daz:/ |w1 | T |we |d.
RN RN RN

By the definition of ¥, we have
/ (RS [ |5 dae + he® ws |+ 7 ) dar g/ w1 |T|ws |da. (2.4)
RN RN

Thus, there exists 0 < t < 1 such that (t|jw;],tlws]) € L. By (2.4)

2
p 1+4 t oo 1+1
Joo (t|lw1], t < | ——t7F — h rd

(tlwl, tlwa]) < <p+1 2)/11N o Jwy | p

2
4 41t 00 141
t q — — h adzx.
+<q+1 2>/RN o feal

Let ~(t) = cl(ﬁtH% — 3t%) +02(q%t1+% — 3t%), where ¢1,c; > 0, and t € [0, 1].

It is easy to verify that the maximum is attained at ¢ = 1. Thus,
Joo(t‘w1|,t|IU2|) S Joo(wl,wg). (25)

We have obtained a positive minimizing sequence for the case (i).
(ii) If wy changes in sign, we define w; = |w;| and

sgn(wy)Twe = T (sgnw ))ws := Tws.

/ wlTdex = / ’(I)lT”LT}QdZ,
RN RN

and w; > 0. Clearly (w1,wW3) € Yoo and Joo(wy, we) = Joo (01, w2). We reduce
the problem to the case (i).

Next, we replace the positive sequence {w,} by a sequence of radial func-
tions. The operator T is an integral operator with kernel K(z,y) which is the
generalized solution of

Therefore

—Au+tu=29

where § is the Dirac distribution. This equation can be solved by Fourier transform
and we know that the fundamental solution is radially symmetric. Thus,

[ o@Tusoyds = [ @)K e, g)uwa()dody.
RN R2N
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Let us denote by u* the Steiner symmetrization of the function u. By the
convolution inequality (see [3]) we get

/ mumwmm@w@s/ w} (@) K* (2, y)w} (y)dady
R2N R2N

=/ @mmmw@@mwz//@wﬂmwm
R2N RN

It is well known that if p > 0 and ¢ > 0,
e’} 1+% [e%) 1+% [e%) s\ 141 ) w\1+ L
(hpPwy 7+ hlwy *)dr = (hp?(wy) "7 + he(ws) "9 )dz,
RN RN
then there exists 0 < ¢* < 1 such that (t*w7, t*w3) € X and, as in (2.5), we have

Too(wy,wz) > Joo(w}, ). (2.6)

Thus, the infimum of J,, in ¥ is attained among the positive radial solutions.
Finally, we will show that ¢* is attained at some w € ¥ ,. Denote by X,
the subspace of radial functions in X. From (2.6) we know that

c>® = iné Joo(w), where X, = X, N X.
weX,

By the Ekeland’s variational principle, (see Theorem 2.4, [12]) we can replace
the minimizing sequence {w,} by a (PS) sequence of J, that is, {w,} C X,

Jo(wn) — 0, Joo(wy) — ¢, asn — oo. (2.7
Let u, = |w721|%71w,21, Up = |w}L|%71w}L From (2.7) we know that ||w,]| x

is uniformly bounded. Clearly, (un,v,) is radial. Using Theorem 4.1 in [9],
{(tn,v,)} has a convergent subsequence in LPTH(RY) x L9 (RY). Then, {w,}
has a convergent subsequence in X,.. Thus ¢* is attained at some w > 0, which
is a solution of J. (w) = 0. O

Next, we will prove the equivalence between (2.2) and (2.3).

Corollary 2.1

c® =c".

Proof. Because c¢* is the critical value corresponding to the minimal energy
solution, it is clear that ¢> > ¢*. To prove the reverse inequality, we note from

Lemma 2.2 that ¢* is attained by some w. By definition of ¢*°, Jo (W) < Joo(w) =
c*, where w denotes the ground state of (2.1). O
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To relate the solutions of (1.1) to the set M, we study the system
—Au+u = hy(&)|v]T v, ~Av+v=hi(&)uff 'y in RY, (2.8)

where £ = (£1,£2) € M. This problem has a ground state solution with exponen-
tial decay at infinity. The dual functional

p 144 q 141
J == h rd e h ad
m(w) el A p(&1) w1 I+q+1/RN q(&2)|wa| T dx

1

75\/1;N(w1T’LU2 +’UJ2T’[U1)d£L’

associated to (2.8) is C* on X. Let ¥j = {w € X\{0} : (J},(w),w) = 0}, we
define
ey = inf Jyy (w)
XM
and
Ce = lélsf Je(w).

Using the ground state of (2.8), we will construct a test function which
approximates asymptotically this ground state and we will use it to estimate the
critical value ¢, with eVepy.

Let 6 > 0 be fixed and 1 be a smooth non-increasing function defined on
[0,400), such that

_fro<t< s,
n(t)_{o t >4,

with 0 < n(t) < 1, [n/(t)] < c¢. Let (U,V) be a ground state of (2.8) related to
&= (&,&) € M. Let us define the functions

(e @) = (e - )0 () e - v (2 ).

€
Lemma 2.3 There exists tc > 0 such that

(Wegyr Weg,) = (tehapl e, tehavl,) € T
for € > 0 small. Thus, X, # 0.

Proof. We may assume fRN w1 Tewadz > 0. The critical points of v.(t) := J(tw)
satisfy

OZ’Y;(t):t%/ hp|w1|1+%dl'+t%/ hq|’w2|1+%d1~
RN RN

7t/ (wlTer + wQTewl)d:c.
RN
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Since T, is self-adjoint, there holds [, x w1Tcwadr = [gx woTcwidx. Thus,

tiil/ hp|w1|1+%dx + téfl/ hq|w2|1+%dx = 2/ w T wadx > 0.
This implies that there exists a unique t. such that t.w € ¥.. In particular,

(whw?) = (e, tehaly,) € B

We turn to study the asymptotic estimate of ¢, in terms of cjy.

Lemma 2.4

D q _ p+1
/RN h1<p67£1T€h21/)E752dx = /RN h1<p67€1 dzx + o(1),

q P _ qg+1
/RN hate g, Teh@e g da = /RN hat g, dz + o(1)
as € — 0.

Proof. By the definition of the functions ¢ ¢, and . ¢, and the exponential decay
at infinity of (U, V) we get

/’M@+wmmmmW@=/ (E)UP iy +o(1),  (29)
RN RN

[ et )V iy = [ (v o) (210)
RN RN
as € — 0. Consider the system

Tehol ., = g, +1e, in Bs, (2.11)

TehlSof’gl = ¢e,§2 +&, in Bs.
Solving for n. we have
(—€A +id)ne = ho? , — (—€A +id)pe g,

z—&2

Changing variables to y =

we get
. - o . 5
(_A + Zd)ne = h2(6y + 52)1/]5)0 - (_A + Zd)@€’£1+£27 m B 523 g 9

where 7.(y) = ne(ey + &2), 1[)5(y) = ¢(ey + &). From the Newtonian potential
estimates and interpolation theorem we have

17elw228,) < Cliha(ey + &)¥d o — (A +id)Pegi 16 llL2(m5)-
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But by the exponential decay of the ground states, the continuity of hs, and
the definition of (@ ¢,, ¥ee,) We have that

Hﬁ€||W2,2(Bé) < 0(1) + ||h2(§2)/(zeq,0 - (*A + id)@E,OHLz(Bé\B%) = 0(]_)

as € — 0. The same estimate is obtained for 56. From the Sobolev embeddings
and the change of variables, we obtain

el e @y = ll€ell oy = o(1),

ase—0and for 1 <p< %. Thus, using (2.11)

/RN hi? o Tehotp? . dw = /RN hie? thda + o(1).

Similar estimates can be obtained for the term fRN hgwg & T.hq cpf 510lac. Thus, we
conclude the proof. O

Finally, we obtain the approximation lemma.

Lemma 2.5
Je(w;gl,wigz) = e {ear +o(1)}

as € — 0.

Proof. There holds

P+ +1 q 1+ +1
Jo(wl, w? )= ——t / hiPt de + ——t @ ho?t dx
6( €81 6,52) p+1 € RN 1Pe¢, + g+1 € RN 2w€7§2

1
—§t§ /RN(hNPf,ngehzwg@ + hotpd o, Teha? ¢ )dow.

By the estimates in Lemma 2.4, we obtain that the last term simplifies to

P a+y 1, pt1 g a+; 1, a+1
<p—|—1t6 P— 2t5> /ruv h1<)06751 dx_" mte - ite RN the}fz dx“l‘o(l)

for € small. Thus, from (2.9), (2.10), and the definition of (¢ ¢, ,%e¢,) We obtain

1 2 y _ N p ity 1, il
Je(wg,fl?we’gQ) =€ ((p—klte 2t6) /RN h1(&)UP™ dy

+ (qtl+31t§)/ h2(52)vq+1dy+o(1)>. (2.12)
2 RN

qg+1



468 AL Avila and J. Yang ~ NoDEA

Since (w} ¢, , w?¢,) € Xe, we have

@ =1 [ @)Uty + @ =) [ ha(@)VTidy = o(1).  (2.13)
RY RY

Then, if € — 0, te — 1. From (2.12) we obtain

1
J( 1 2 — N L _ / h Up+1d
(We g, Weg,) = € 41 2) Jon 1(61) Y

+ (qil = ;) | a(&)Vi iy + o<1)> = e (ca +o(1)).
O

3 Homotopy

We will devote this section to the construction of the homotopy needed for
Lemma 1.1.
We are going to construct a mapping ®. from M to X, and a mapping 3 from
Y. to My such that 3o @, is homotopic to the inclusion j : M — Mj.
Let wee = (wel’gl,wi&) be as in Lemma 2.3. We define the mapping ®. :
M — ¥, by
(&) = (wi,gl,wf,&)'

Since the set M is bounded, there exists p > 0 such that Ms; C B, x B,.
Let x : RV — R" be a function given by

_fx if [x] <p,
X(@) = 9§ gz if |z] > p.

||

We define 3 : 3. — RN x RN by

wq 1+% T ~ X|ws 1+% CU
Blw) = (B1(w1), Bo(ws)) = (fRN x|wi] d fR x|wa| d )

I ) 1
fRN |w1|1+pda: fRN |w2\1+qala:

This corresponds to a local center of mass of (wq,ws). We have the following
asymptotic relation.

Lemma 3.1 For each point (§1,&2) € M, there holds B(®.(€)) = (&1,&2) + o(1)

as € — 0.

Proof. Note that

J, XtH%hlgopHd:c
N €
ﬁl (wi,él) = R €81

1—‘,—l +1 .
Jovte ” hl‘Pf,gl dx
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Changing variables, we get

st ) — J X(e + € (er + €Il U@+ da
Hhen Jen T (ex + &0 n(ela])U () [P+ Tda

gy e (e 60) — ) (ew + &)n(ela) U @)+ da
' Jen n(ez + &) [n(el)U () [P+ da

Using the continuity of x we obtain, for € small,
ﬁl(w;gl) =& +o(1).
Similarly, we get f2(w?,,) = &2 + o(1). O

Let h(e) be a positive function tending to 0 as € — 0 slowly. Because of the
asymptotic behavior of J.(w), we can define

Y, = {we X : J(w) < GN(CM +h(e))},

which, by Lemma 2.3, is not empty for € > 0 small.
We claim that §(w) restricted to X, approaches to a point in Ms. We will
first prove the following lemma.

Lemma 3.2 Let {w,} be a minimizing sequence of cpr. Then

(1) there exists {w,} CC Xps such that
I (@n) — enrs Ty (@n) — 0,
and
lwn = Wnllx —0
as n — o0o.
(ii) Furthermore, there exists {€,} C RN such that if we define W, () = W, (- +

&n), then {w,} is precompact.

Proof. (i) It is a direct consequence of the Ekeland’s variational principle,
(see [12]).

(ii) We will use the Concentration Compactness given in Lemma 1.21, [12].
Let us show that {w,} is tight. Because Jy/(w,) — cpr and w,, € Xy,

p_l —nl+L q—l / 1L
h n P h n idr < 1
2p+2/RN p (&)1 T+ 24 +2 Jun ¢(&2)|wy | r <cpy+

for n large. Let z, = (Tw?

2 Tw)). Thus, ||z,||x+ < c. This implies that z, € E,
where

1

E = (W2,1+§(RN) n W1,1+%(RN)) % (W2,1+p (RN) n W1,1+§(RN))_

Since the sequence is bounded, we may assume that z, — z in E.
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Using J},(w,) — 0, we have that
tn = hp (€[> 1) + 0(1), v = (&)@, + o(1)
as n — 0o, which implies

Wh = ha(€)un? M+ 0(1), WE = ha(E) val" o +0(1)  (3.1)

g

as n — 0o. Therefore,

e +o(1) = Jn (W) = % hy (&) [0 [ 7 da
1
" L ha(&) w5 i — */ (W) Tw}, + W, T, )da
p— 1

/ hl(fl)\un\”ldf”* 1/ ha(&2)[vn | dz + o(1).
RN

T p+2 20+ 2

We claim that vanishing does not happen for {z,}. By contradiction, sup-
pose that for some r > 0

sup / |un [P da — 0,
yERN JB(y,r)

and

sup / v, |9 d2 — 0.
yeERN JB(y,r)

Because of the Sobolev’s embedding H*(R"™) — L;’OC(RN)7 for 2 < v <
2

NN and s > 0, Wehavethat u, — 0in L] (RN) for 2 <y < andvn—>0

in L{, (RN) for 2 < p < 2%, with s +

Holder’s inequality and the Sobolev’s embeddmg imply that

ooy < Il gy Wl s

< C||U||Lp+1(3 (y,r)) HUHHS(B(y,T))?

ap1 e
where A = g F——
Nog Pl @

. Choosing A = =, we obtain

/(y - |u|0éd$ < c@Hu”Lerl(B y,T’))HuH%S(B(y,r)y

Covering RY with balls of radius r in such a way that each point of R is
contained at most in m + 1 balls, we find that

a—2
T
[, e < e s ( L |u|p+1> el vy
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Then u,, — 0 in L*RY) for 2 < a < 2. In the same way v, — 0 in

N—2s"
LH(RN) for 2 < p < 225 Consequently

s = (2= 5) [ @l ptiao

L_l q+1
+(q+1 2) /RN ho (&) v [T dx — 0

as n — oo, contradicting to the fact that Jys (w,) — cpr > 0. Therefore vanishing
does not happen. Thus, there exists ¢ > 0 such that

lim sup / |un|Ydz > 20 >0 or lim sup / lop|Hdx > 20 > 0,
" yeRN JB(y,1) " yeRN JB(y,1)

2N
N—-2s

2N
N-=-2t"

where 2 < v < Then, there exists a sequence {¢,} C RV

such that

and 2 < p <

/ |tn|"dx >0 >0 or / |vn|Fdx > o > 0.
B(&n,1) B(&n,1)

Let @, (z) = un(z + &), On(2) = vp(x + &,). Then, @, — 4 in H*(RYN),
o, — 0 in H'(RY). By the Sobolev embedding, d,, — @, 0, — 0 in L] (R") and
LI (RM) respectively. In particular, 4, — i, 0, — ¢ a.e in R™. Then, (@, ) # 0

and by (3.1) it solves
—Au+u=hi (&), —Av+v = hy(&)|ulP ", (3.2)

in a weak sense. We know that this is a classical solution by the regularity theory.
Let w, = ((=A + id)tp, (—A +id)d,) and W = ((—A 4 id) G, (—A + id)D).
Using the fact that (4, 9) is a solution of (3.2), we find that @ € 3. Note that
from (i)
[, — Wy (- + &,)|| — 0 and Jy; (w,) — 0 as n — oo.

We will show that {w@,} is precompact. By the Brézis-Lieb Lemma (see
Lemma 1.32 in [12]), we have

lim [0l [P de = lim (/ |w}ﬁw1\1+%dx+/ |1I)1|1+11>d:r),
n—oo RN n—oo RN RN

lim 102" idz = lim (/ |m2—w2|1+%dx+/ |uv21+édx>.
Hence,

Ccy = JM(wn) + 0(1) = JM(UA)n — 1I)) + JM(QIJ) + 0(1)
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as n — oo. Since W € Xy, we have Jy(0) > epr. If @, — W — wp # 0 then
J(wp) > 0, it yields
er = Iy (W, — @) + epr + o(1) > e + Jar(wo) +0(1) > e
which is a contradiction. We conclude that
Wy, — i in L5 (RN) x L' (RY).
|

To finish the construction of the homotopy, let us prove that So®, approaches
to the injection j as € — 0.

Lemma 3.3
li inf — & =0.
lim 525 inf. 16(w) ¢

Proof. Let €, — 0. For any n there exists w,, € ie” such that

(nf 16(wn) — ¢ = uiuxpn (nf [6(w) =& +o(1).

Then, it is sufficient to find points &, € Ms such that

Defining X(e,) = {w : fRN(hp(ena:)|w1|1+% + hq(enx)|w2|1+%)dx =
fRN (w1 Twy + waTwi)dx} and denoting W, (x) = wy(e,x) € i(en), we get

/ (ip(en) |G+ + hy(ena)| 2]+ )dz = / (@A Ta2 + 2Tk )
RN RN
2/ (BM L5 + M (@27 ) da.
RN

'.Fherefore, there exists 0 < t,, < 1 such that ¢,w, € Xj;. From the definition of
Y. , we obtain

€n>

h(en) + ear > T, (@n) > Jse (tntin) > Jar(tatin) > ear > 0. (3.4)

Thus, (3.4) implies that {t,w,} is a minimizing sequence of c¢p;. We also have
that t,, — 1 as n — oo.

By Lemma 3.2 there exists {w,} such that |w, — t,W,| — 0 as n — oo.
Thus, |3(w,,) — B(txd,)| — 0 as n — oo and there exists a sequence {¢,} € RN
such that {w, (- + &)} is precompact.
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Let @, () = Wy (2 + &,). Then, @, is bounded in X. We may assume that
W, — w in X. Clearly w, € X and w € ). We claim that the sequence
{€n&n} is bounded.

In fact, if it is not bounded, we would have

e a2 (g =3 ) [ lente Do

(Lo D) [ hylenta+ &) 102 Eda + o(1).
(75-3)

1
2 ) Jan

; (QLD/R“ (@ + &) 2 d)

> <p_;)/ lim inf hy,(e,(z + &)y, 3 dg
RN

p+1 n—oo
PR / lim inf hg(en(x + &))]@2] i da
q+1 2 RN n—00 "

p 1 [e's) 1+ 1 / o~ (141
> (P _ = hs de+ (—L- = h dz.
> (2 -5) Lomla e (- 5) [ nte e

Also note that
/ p(en +5n>>|w1\1+vdx+/ halen(z + &) |02 ¥ du
RN RN
oo~ [1+4 oo~ 1+
z/RN hee i | pdx+/RN he oo |3 de (3.5)

Since w,, € X, using (3.5) we obtain the existence of ¢, 0 < ¢ < 1, such
that tw € ¥,. Hence, we have

p 1 ~ 141 q 1 / ~oq14L
> - — — hee d - — = hee ad
CM_(erl 2>/RN o 1] x+(q+1 3) Jo oo T

which is a contradiction. Thus {€,&,} is bounded. Suppose that €,&, — ¢ =
{&1,&}. Since @ € Xy, there holds

p 1 Ty (1L q 1 / o~ 1L
“\pri 2 h pdo 4 ( ——= — 5 h id
cM<p+1 2)/RN (€Dl az—i—( - 2) [ n@isl e

1 1
> (Lo - / B iy |7 da + L,, / WM Jdoo |15 dar,

where h)! = hy(€1), b hq(&2) for any (&1,&) € M, then & € M.

M:
q



474 AL Avila and J. Yang ~ NoDEA

Next, we prove (3.3). Using the definition of 8 and w,, we get

1 1
By = [ S x@lwalrdr fon x(@)wn]™ s
' Jow WL Fode " fon w2 da
_ (fRNx(en<x+f?>>|w;<x>|l+pdz Jan x(en(z+§’§))w%1+pdz>
o 1 ) - T
Jux 047 d oo |02 5 da

H(€17€2)€Ma as n — o0,

since 1, converges strongly in X. O

4 (PS) Condition and Proof of the Theorem

In this last section, we will prove Theorem 1.1. First, we need the (PS) condition.
Lemma 4.1 J. satisfies the (PS) condition in {w € ¥, : J.(w) < ¥ c>}.

Proof. Tt is clear that {w € . : J.(w) < e¥¢™} is not empty because ¢ > ¢y
and by the results obtained in Lemma 2.5. Let {w,} be a (PS)-sequence at level
cfor 0 < ¢ < eVe>®. Then,

Je(wn) :C+5n; Je/

e (wn) = 511
with §,, — 0 as n — oco. By the Ekeland’s variational principle, we may assume
Je(wy) = ¢+ 8y, J(wy) = 6, 8, — 0

as n — o0o. By Lemma 3.2, we need only to rule out dichotomy, that is, we need
to show that for any § > 0 there exists R > 0 such that

/ lwh 5 da < 6, / |w,21\1+%dm < 0, (4.1)
{lz|=R} {lz|>=R}

which implies in a standard way that {w,} converges strongly in X.
Now, let us prove (4.1). By contradiction, suppose that there exist a subse-
quence {wg} of {w,} and ap > 0 such that

/ Wi dr > a0, Yk (4.2)
{l=|k}

From |(J!(wy),v)| < €||v||, we have for v = ((1 — xg)w},0), where yg is the

characteristic function for Bg, that

/ |w711|1+% dr < e||w711||1+; Jr/ wiTEw}L dx
{lz|>k} i {lz|>k}

< Nobles (e el lsa):
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Thus,

1
17 2
w <e+cllw 1 .
| ”HL”%({mzk})_ | "||L1+‘11({|w\2k})

Using (4.2) and the last inequality we obtain

i ) T
ag <et+c / lwi|' e da .
{lx]=k}

For e small and k large, there holds

(a+1)
q

oy — €

=ra; < / |wi|1+§ dz, Vk. (4.3)
¢ {lz|>k}

In particular, for n > 0 small there exists r(n) > 0 such that

/ wil e <0, [ Wi hde <n,  (44)
{r<lal<r+1} {r<lal<r+1}

for a subsequence still indexed by k. In fact, if it is not so, for any m > r there is
an index k,, such that

1
[ e
{m<z|<m+1}

for all k > k,,. Thus,
itz [ e ne g o0
RN {r<lz|<m}

if m — oo. This contradicts the fact that ||w}| < c. The same result is obtained
. 141 .
if f{mg\x\§m+1} |w2|'*9dr >n. Thus, we have achieved (4.4).
Let us prove that this contradicts to our assumption on the energy. For this
purpose we write ‘ ‘ '
wy, =v, + 25, =12,

where vl = pwi, 21 = (1 — p)wi, i =1,2 and p: RN — [0,1] is a cut-off function
such that
(z) = 1 if |z| <,
PREIZ0 i Jo > r +1,
and |Vp| < cin RM. Thus,

(e (wr), o) = (JE(vr), k)| < O(n).

and
[(Je(wr), zi) = (Ti(2), 2) ] < O(n).
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Therefore, we can split the derivative as
(Ji(vr), vk) = O(n) + 0 = (J{(2k), 2)-

We also have
Je(wi) > Je(vr) + Je(z) + O(n).

But
Je() = c(llogll 2 + 0Rll112) + O() + 6k > 6,

for k large. Thus,
Je(wr) = Je(2k) +O(n) + 6.

From (4.2) and (4.3), we have
/ hp 2 1+Pdm+/ hql2i 1+de>ozo—|—oq—|—0( ).
{lz|=R} {lzI=R}

Let tx be such that tgz; € Xc. From (4.5), we have
ty =1+ 0(n) + dk,

in particular

Je(tpzr) = Je(zx) + O(n) + 0.
Define Z, = tyzp(ex). Let 3 be such that £;%; belongs to the set

Ly = {w 5 =l 0 = )
= / (wlng + ’LUQTU)l)dLU}
RN
Then,

114l oo o141
N (/ ol [ g —n>|z,%|”«dx)
RN RN
= / (h;o—n)|tkz,£\1+%dx+/ (hg® — n)|trz? 3 dg
RN RN

/ h |tkzl 1+pdx+/ hq|tkz,€|1+%d:ﬂ

RN

/ (tezp)Te(tr22)d / (tp22)T.(tr2t)de
RN

=Y (/RN( / T( dx)dx.

IN

NoDEA
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We conclude that #, < 1. Finally, taking 1 small and R(n) large enough
such that ho® —n < hy° < hyp(x) and hy® —n < hg® < hy(z) if |z| > R(n), then
one has

N p
e, < J, = ——
n —=n p+1 RN

_ / (B E)) T (122 — / (B 2T (12 ) da
RN RN

< oo (trZk) < Joo(Zk) < Je(trzr) = Je(2zx) + O(n) + g,

~ 1 oo ~ 1
05 =l e+ iy [0 =l

where ¢, = infg77 Jp. We obtain the estimate
Ne, <c+0(n) + . (4.6)

From the characterization of the critical value, for 1 small, we can define a
test function based on the ground state for ¢> and prove that ¢> —O(n) > ¢,. If
lim,, g ¢, = ¢ < ¢, for a ground state z, of c¢,, we have

In(2y) < Joo(2n) — O(n) < ™.

For n, = %, {#n, } is a bounded positive radial sequence. By the Sobolev inclusions,
Zn, — 2. Taking limits in the last inequality we obtain that ¢ < J(2) < ¢*°,
which is a contradiction. Thus,

lim ¢, = ™.
n—0

Letting k — 400 and using (4.6) we conclude that
Ne>@ <e

— )

which contradicts the assumption on the level set. O

Proof of Theorem 1.1. Choose h(e) > 0 such that h(e) — 0 as ¢ — 0 and
eV{car + h(e)} is not a critical value of J.. Let Y. be as above with h(e) <
eV (c>® — cpr). Lemma 4.1 shows that J. satisfies (PS) in 3.. By Lemma 3.3,

5
inf _¢< 2 v
525 on 5|ﬂ(w) ¢l < 5 €< €

for some €y > 0. By Lemma 2.5, J(®(€)) < € (car + h(e)) < Ve, for € € M,
0 < e <€ Thus (M) C X.. Then, we may assume that

) -
dist(B(w), Ms) < 2 Ve < €9, w € Xe.

Thus, A(3.) C M.
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The map S o @, is homotopic to the inclusion j : M — M;s. Set ij =
YeN{w € X : w > 0}. If w changes in sign, we have that w* = max{w,0} # 0
and w~ = min{w,0} # 0. Using the maximum principle we can prove that
Jrw (w Towy + wi Tewy )dr < 0 Thus, for some positive numbers ¢+ and ¢, we
have that ttw" and ¢t~ w™ belong to %.. We obtain

N (ear + h(e)) = Je(w)
> J(tTwt) + J (T |w]) — t+t’/ (w Towy +wy Tow] )dz
RN

> J(ttwt) + J(t w])
> Ty (Tt + Tyt o7 |) > 2N e,

where w(xz) = w(ex). This is a contradiction for e small. Thus, the solutions
obtained does not change in sign. If the solution w satisfies w < 0, then w = —w
is also a positive solution. Therefore, in any case we may obtain positive solutions.
By Lemma 1.1,

catge(fle) = cati‘(ij) > cat g, (M).

We deduce by Theorem 1.2 that J, has at least catpz, (M) positive solutions.
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