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Abstract. We consider here a class of nonlinear Dirichlet problems, in a
bounded domain Ω, of the form{

−div(a(x, u)∇u) + div(Φ(u)) = f in Ω,
u = 0 on ∂Ω,

investigating the problem of uniqueness of solutions. The functions Φ(s) and
s �→ a(x, s) satisfy rather general assumptions of locally Lipschitz continuity
(with possibly exponential growth) and the datum f is in L1(Ω). Uniqueness
of solutions is proved both for coercive a(x, s) and for the case of a(x, s)
degenerating for s large.
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1 Introduction

In this work we are concerned with the problem of uniqueness of solutions for a
class of elliptic equations. Precisely, we consider the following Dirichlet problem
in a bounded open set Ω ⊂ RN (N ≥ 1):{

−div(a(x, u)∇u) + div(Φ(u)) = f in Ω,
u = 0 on ∂Ω. (1.1)

We let the second order operator A(u) = −div(a(x, u)∇u) satisfy suitable
coercivity conditions, and we assume that Φ belongs to C(R,RN ) and f belongs
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to L1(Ω). Unless a(x, s) is constant with respect to s, A is a very simple example
of nonmonotone operator, so that, even if Φ = 0 and f is smooth, uniqueness can
not be obtained through standard monotonicity arguments.

In fact, for smooth data f , N. Trudinger proved in [18] the uniqueness of
smooth solutions of (1.1) if a(x, s) and Φ(s) are Lipschitz continuous with respect
to s. In case f belongs to H−1(Ω), uniqueness in the class of weak solutions in
H1

0 (Ω) was proved in [1] if Φ = 0, and then in [7], where Φ is still assumed to be
Lipschitz continuous. Recent further generalizations on the growth conditions on
a(x, s) as a function of s can be found in [4], [15]. Other uniqueness results for
equations as in (1.1) can be found in [10], [11], [12].

These results are always in the context of finite energy solutions, that is for
solutions u such that a(x, u)|∇u|2 belongs to L1(Ω). With respect to the datum f ,
this means, roughly speaking, that f can be taken in Lm(Ω), with m ≥ 2N

N+2 . In
this paper we obtain two main extensions of the results previously mentioned. In
fact, we allow both the datum f to belong to L1(Ω) and the functions s �→ a(x, s)
and Φ(s) to satisfy fairly general assumptions of locally Lipschitz continuity, so
that our results are new even in the case that f belongs to H−1(Ω).

Let us recall that assuming f to be in L1(Ω) implies that the solutions of
(1.1) may have infinite energy and the weak formulation is not appropriate for
the uniqueness problem. In fact, even if Φ = 0 and a(x, s) does not depend
on s, it has been shown (see [16], [17]) that the distributional formulation is not
strong enough to give uniqueness in case of L1 data. For this reason, in [3] it
was introduced the notion of entropy solution (which we will recall later), and
the authors proved that, for a nonlinear monotone operator, which only depends
on ∇u, the Dirichlet problem in L1 is well-posed in the formulation of entropy
solutions. Following this approach, here we prove uniqueness of entropy solutions
of (1.1), extending then the results proved in [3] (see also [8], [13]) to a class of
nonmonotone operators.

On the other hand, since we do not assume that Φ is globally Lipschitz
continuous (hence Φ does not need to grow linearly at infinity), the term Φ(u)
may not belong to L1(Ω) even if f belongs toH−1(Ω). Thus in this general context
the distributional formulation can not even be applied, in fact existence results
for (1.1) have been proved in the framework of so-called renormalized solutions
or of entropy solutions both if f is in H−1(Ω) (see [6]) and if f is in L1(Ω) (see
[5], [14]). Here we prove the uniqueness of the solutions found in these papers, in
presence of L1 data and only assuming that Φ is locally Lipschitz continuous and
has at most an exponential growth at infinity.

As an example, we prove that there exists a unique entropy solution of the
problem {

−div((1 + a(x)e|u|)∇u) + div(eΛu) = f in Ω,
u = 0 on ∂Ω,

where Λ ∈ RN , a(x) is a nonnegative bounded function (for instance, a = χE , the
characteristic function of a set E ⊂ Ω) and f is in L1(Ω).
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To obtain our results, we take great advantage from the unifying framework
of so-called entropy solutions introduced in [3], which allow to handle the cases
where the dependence on u of the operator is of possibly different types. Actually,
the only regularity asked on entropy solutions is that u is almost everywhere finite
and the truncations Tk(u) = max(−k,min(u, k)) belong to H1

0 (Ω) for every k > 0.
Of course, the notion of entropy solution coincides with that of weak solution for
solutions in H1

0 (Ω). This definition also needs a new functional setting introduced
in [3].

Definition 1.1 We define T 1,2
0 (Ω) as the set of measurable functions u : Ω → R

almost everywhere finite and such that Tk(u) belongs to H1
0 (Ω) for every k > 0.

With very easy examples it can be checked that T 1,2
0 (Ω) is not a vector

space. However, if u is in T 1,2
0 (Ω) and ϕ is in H1

0 (Ω) ∩L∞(Ω) then u+ϕ belongs
to T 1,2

0 (Ω). It is also proved in [3], Lemma 2.1, that it is possible to extend the
notion of gradient to this class of functions, by setting

∇u(x) = ∇Tk(u)(x) a.e. in {x : |u(x)| < k} ∀k > 0. (1.2)

In fact, it is proved that there is only one function (up to almost everywhere
equivalence) ∇u satisfying (1.2) for every k > 0 and which we will call the gradient
of u (it coincides with the gradient defined as a distribution if u ∈ W 1,1

0 (Ω)).
Henceforth, the gradient appearing in the equation will always be the gradient as
defined above.

Definition 1.2 A function u in T 1,2
0 (Ω) is an entropy solution of (1.1) if it satisfies∫

Ω
a(x, u)∇u∇Tk(u− ϕ) dx−

∫
Ω

Φ(u)∇Tk(u− ϕ) dx =
∫

Ω
f Tk(u− ϕ) dx,

∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), ∀k > 0. (1.3)

Remark 1.3 Every term in (1.3) has a meaning since Tk(u − ϕ) is bounded
(hence the right hand side is well defined) and since ∇Tk(u−ϕ) = 0 if |u| > M =
k+‖ϕ‖L∞(Ω), so that a(x, u)∇u∇Tk(u−ϕ) = a(x, TM (u))∇TM (u)∇Tk(TM (u)−ϕ)
and Φ(u)∇Tk(u−ϕ) = Φ(TM (u))∇Tk(TM (u)−ϕ) and both these expressions are
in L1(Ω) due to u ∈ T 1,2

0 (Ω).
Note also that in the original formulation of entropy solution given in [3] the

equality sign in (1.3) is replaced by an inequality and would read as follows in our
context:∫

Ω
a(x, u)∇u∇Tk(u− ϕ) dx−

∫
Ω

Φ(u)∇Tk(u− ϕ) dx ≤
∫

Ω
f Tk(u− ϕ) dx. (1.4)

On the other hand, using similar arguments to those of Lemma 2.1 below (in
particular, as to prove (2.5), choosing ϕ = Th(u) + Tk(u − ψ) in (1.4) with ψ ∈
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H1
0 (Ω) ∩ L∞(Ω), h > k + ‖ψ‖L∞(Ω), writing Tk(u − Th(u) − Tk(u − ψ)) = T2k

(u−Th(u))−Tk(u−ψ) and using estimate (2.2)), one can prove that (1.4) implies
(1.3), so that the inequality and the equality sign in the entropy equation are
equivalent (see also [9]).

The main result we obtain on (1.1) is the following one.

Theorem 1.4 Let N ≥ 1, and let f belong to L1(Ω). Assume that a(x, s) is a
Carathéodory function, Φ ∈ C(R,RN ) and that there exist constants α, µ > 0
such that a(x, s) and Φ(s) satisfy:

α ≤ a(x, s) ≤ µeµ|s|, ∀ s ∈ R, a.e. x ∈ Ω,
|a(x, s) − a(x, t)| ≤ µ(eµ|s| + eµ|t|)|s− t|, ∀ s , t ∈ R, a.e. x ∈ Ω, (1.5)
|Φ(s) − Φ(t)| ≤ µ(eµ|s| + eµ|t|)|s− t| , ∀ s , t ∈ R, a.e. x ∈ Ω.

Then there exists a unique entropy solution of (1.1).

Note that a large number of examples fit the assumptions of the previous
theorem, including the classical case that a(x, s) is bounded and Lipschitz conti-
nuous with respect to s and Φ(s) is Lipschitz continuous as well. Rapidly oscil-
lating functions like a(x, s) = (1 + a(x)e|s| sin2(e|s|)) are also allowed as well as
nonlinear local perturbations of the Laplacian, if a(x, s) = 1 + a(x)|s|m + b(x)es

for nonnegative bounded functions a(x) and b(x).
Since the proof of Theorem 1.4 will be achieved after several steps, let us

explain first the idea of our work. In order to handle the difficulty of having infinite
energy solutions, we review the method used in [7] for finite energy solutions,
showing how it can be adapted to possibly different problems which also lead
to consider the case of s �→ a(x, s) only locally Lipschitz continuous. Roughly
speaking, this method consists in using that the difference of two solutions u1, u2
of (1.1) satisfies the elliptic equation


−div(a(x, u1)∇(u1 − u2)) = div(Φ(u2) − Φ(u1)

+ [a(x, u1) − a(x, u2)]∇u2) in Ω,
u1 − u2 = 0 on ∂Ω

(1.6)

Then u1 − u2 is proved to be zero by using the Lipschitz continuity of a(x, s) and
Φ(s) and the fact that ∇u2 lies in L2(Ω). This method fails to work for singular
data since the right hand side of (1.6) lacks of regularity and in particular ∇u2 is
no longer in L2(Ω). We first remark that this obstacle can be overcome at least
for those Lipschitz functions whose derivative rapidly goes to zero at infinity, for
which we can recover the fact that a(x,u1)−a(x,u2)

u1−u2
∇u2 and Φ(u1) − Φ(u2) belong

to L2(Ω). Then we show that problem (1.1) can always be reduced to this case
by performing a suitable change of unknown. Indeed, setting u = ϕ(v), with ϕ an
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unbounded increasing function on R such that ϕ(0) = 0, (1.1) can be transformed
into the following problem:{

−div(ã(x, v)∇v) + div(Φ̃(v)) = f in Ω,
v = 0 on ∂Ω,

(1.7)

where ã(x, s) = a(x, ϕ(s))ϕ′(s), Φ̃(s) = Φ(ϕ(s)), and the function ϕ can be chosen
in such a way that the modulus of Lipschitz continuity of s �→ ã(x, s) and Φ̃(s)
rapidly goes to zero at infinity. On the other hand, it can be easily seen that
a similar change of unknown affects the coercivity properties of the equation, so
that problem (1.7) may be no longer uniformly elliptic. The main novelty in
the technique we use is an extension of the method of [7] which allows to work
under possibly degenerate coercivity conditions and only using a locally Lipschitz
continuity of a(x, s) and Φ(s). The main results we obtain on (1.1) are in fact
derived from those we can prove on (1.7) where ϕ is a logarithmic function.

In order to perform this program, the paper is planned in the following way.
Some basic properties of entropy solutions will be recalled in Section 2, where
we also prove the equivalence of problems (1.1) and (1.7) in terms of entropy
solutions. Next we will prove a general uniqueness result which can be obtained
through the method developed in [7] both for a coercive and for a non coercive
operator. The proof of Theorem 1.4 will then follow as an easy corollary from the
study of (1.7) and is left to Section 3, together with an extension to more general
operators satisfying a possibly degenerate ellipticity condition.

Finally, let us stress that the quasilinear structure of the operator A in
(1.1) is not necessary but it has been chosen to allow a simpler presentation
(see Remark 3.4), and that the same method used to get uniqueness also
provides a comparison principle with respect to possibly different data f1, f2 (see
Corollary 3.3).

2 The basic uniqueness argument

Let us first set our assumptions in a more general framework. Precisely, let a(x, s)
be a Carathéodory function (that is a(·, s) is measurable for every s in R and
a(x, ·) is continuous for almost every x in Ω) and let Φ belong to W 1,∞

loc (R,RN ),
the space of locally Lipschitz functions from R into RN . There is no loss of
generality in assuming, henceforth, the normalization condition

Φ(0) = 0.

Setting R+ = (0,+∞) and C(R,R+) the space of continuous functions from R
into R+, we assume that for every s ∈ R and almost every x in Ω:

a(x, s) ≥ α(s) > 0 α(s) ∈ C(R,R+). (2.1)

The first step in the proof of our uniqueness results is the following lemma which
collects some fundamental properties of entropy solutions.
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Lemma 2.1 Assume that (2.1) holds true. Let u be an entropy solution of (1.1)
and let f belong to L1(Ω). Then we have:

lim
h→+∞

∫
{h≤|u|≤h+k}

a(x, u)|∇u|2 dx = 0 ∀ k > 0, (2.2)∫
Ω
g(u)|∇u|2 < +∞,

for any g ∈ C(R,R+) such that
∫ +∞

−∞

g(s)
α(s)

ds < +∞, (2.3)∫
Ω
a(x, u)∇u∇Tk(ψ(u) − ϕ)dx−

∫
Ω

Φ(u)∇Tk(ψ(u) − ϕ)dx

=
∫

Ω
f Tk(ψ(u) − ϕ)dx,

∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) ,∀k > 0, (2.4)

for any ψ ∈ C1(R) such that ψ(0) = 0, lims→±∞ ψ(s) = ±∞ and ψ′(s) > 0 ∀s ∈ R.∫
Ω
a(x, u)∇u∇(ψ(u)ϕ) =

∫
Ω

∇ϕ
(∫ u

0
Φ′(s)ψ(s) ds

)
dx+

∫
Ω
f ψ(u)ϕ, (2.5)

for any ψ ∈ W 1,∞(R) with compact support and for any ϕ ∈ H1
0 (Ω) ∩ L∞(Ω).

Proof. To prove (2.2), we take ϕ = Th(u) in (1.3). Since we have:∫
Ω

Φ(u)∇Tk(u− Th(u)) dx =
∫

Ω
Φ(Th+k(u))∇Th+k(u)χ{h≤|u|<h+k} dx

=
∫

Ω
div

[∫ Th+k(u)

0
Φ(s)χ{h≤|s|<h+k} ds

]
dx,

from the divergence theorem in Sobolev spaces and since Th+k(u) ∈ H1
0 (Ω) we

conclude that ∫
Ω

Φ(u)∇Tk(u− Th(u)) dx = 0.

Then we get: ∫
{h≤|u|≤h+k}

a(x, u)|∇u|2 dx ≤ k

∫
{|u|≥h}

|f |,

and (2.2) follows from Lebesgue’s theorem since f is in L1(Ω) and u is almost
everywhere finite.

To prove (2.3), we choose Th(u)−ψh(u) as test function in (1.3), where now
ψh(u) =

∫ Th(u)
0

g(t)
α(t) dt. Then we have:∫

Ω
a(x, u)∇u∇Tk(u− Th(u) + ψh(u)) dx
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−
∫

Ω
Φ(u)∇Tk(u− Th(u) + ψh(u)) dx (2.6)

=
∫

Ω
f Tk(u− Th(u) + ψh(u)) dx.

Now, setting M = h+k+
∫ +∞

−∞
g(t)
α(t) dt and Γ(s) = s−Th(s)+ψh(s), we have that∫

Ω
Φ(u)∇Tk(u− Th(u) + ψh(u))dx

=
∫

Ω
Φ(TM (u))∇TM (u)Γ′(TM (u))χ{|Γ(u)|≤k}dx

=
∫

Ω
div

[∫ TM (u)

0
Φ(s)Γ′(s)χ{|Γ(s)|≤k} ds

]
dx = 0,

so that, choosing k =
∫ +∞

−∞
g(t)
α(t) dt we obtain from (2.6):∫

{|u|≤h}
a(x, u)|∇u|2 g(u)

α(u)
dx ≤ k‖f‖L1(Ω),

which yields, using (2.1), ∫
{|u|≤h}

g(u)|∇u|2 dx ≤ C.

Letting h tend to infinity, we can easily conclude using Fatou’s lemma.
We deal now with (2.4). Let ψ ∈ C1(R) be such that ψ(0) = 0,

lims→±∞ ψ(s) = ±∞ and ψ′(s) > 0 ∀ s ∈ R. First observe that the function
ũ = ψ(u) is almost everywhere finite and its truncations belong to H1

0 (Ω). This
is easy to establish, in fact ũ is almost everywhere finite since such is u and ψ
is unbounded. Moreover we have, for every k > 0, that Tk(ũ) = Tk(ψ(u)) =
Tk(ψ(TM (u))), with M = max(ψ−1(k),−ψ−1(−k)). Since TM (u) is in H1

0 (Ω) ∩
L∞(Ω) and ψ is C1(R) and ψ(0) = 0, we deduce that Tk(ũ) belongs to H1

0 (Ω) for
every k > 0.

Thus ψ(u) belongs to T 1,2
0 (Ω), and moreover note that by definition of ∇ũ

given by (1.2) we have:

∇ũ(x)χ{|ũ(x)|<k} = ∇Tk(ũ(x))χ{|ũ(x)|<k}
= (ψ)′(TM (u))∇TM (u)χ{|ψ(TM (u(x)))|<k} χ{|ũ(x)|<k},

so that by definition of ũ and ∇u we get:

∇ũ(x)χ{|ũ(x)|<k} = ψ′(u(x))∇uχ{|ũ(x)|<k} ∀k > 0,

which yields that (recall that ∇u and ∇ũ are unique up to almost everywhere
equivalence)

∇ũ = ψ′(u)∇u a.e. in Ω,
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which proves that the well-known chain rule for gradients also holds for these
“new” gradients. Since we have proved that ψ(u) ∈ T 1,2

0 (Ω), we can take
Th(u) − TM (ψ(u)) + ϕ as test function in (1.3), with ϕ ∈ H1

0 (Ω) ∩ L∞(Ω),
M = k + ‖ϕ‖L∞(Ω), to get

∫
Ω
a(x, u)∇u∇Tk(u− Th(u) + TM (ψ(u)) − ϕ) dx

−
∫

Ω
Φ(u)∇Tk(u− Th(u) + TM (ψ(u)) − ϕ) dx

=
∫

Ω
f Tk(u− Th(u) + TM (ψ(u)) − ϕ) dx.

Note that for h > max(−ψ−1(−M), ψ−1(M)), we have that in the set {|u| > h}
either u > h so that ψ(u) > M = k + ‖ϕ‖L∞(Ω), hence u − Th(u) + TM (ψ(u)) −
ϕ = u − h + k + ‖ϕ‖L∞(Ω) − ϕ > k; or u < −h, so that ψ(u) < −M and
u−Th(u)+TM (ψ(u))−ϕ = u+h−k−‖ϕ‖L∞(Ω) −ϕ < −k. In both cases we can
deduce that ∇Tk(u − Th(u) + TM (ψ(u)) − ϕ) = 0 in the set {|u| > h} provided
h is large enough. Then we have:∫

{|u|≤h}
a(x, u)∇u∇Tk(TM (ψ(u)) − ϕ) dx

−
∫

{|u|≤h}
Φ(u)∇Tk(TM (ψ(u)) − ϕ) dx

=
∫

Ω
f Tk(u− Th(u) + TM (ψ(u)) − ϕ) dx.

Since Tk(TM (ψ(u)) − ϕ) = Tk(ψ(u) − ϕ), letting h tend to infinity and using
Lebesgue’s theorem we get (2.4).

Note that we also proved that the function ũ = ψ(u) satisfies the entropy
formulation∫

Ω
ã(x, ũ)∇ũ∇Tk(ũ− ϕ) dx−

∫
Ω

Φ̃(ũ)∇Tk(ũ− ϕ) dx

=
∫

Ω
f Tk(ũ− ϕ) dx, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω), ∀k > 0,

where

ã(x, s) =
a(x, ψ−1(s))
ψ′(ψ−1(s))

and Φ̃(s) = Φ(ψ−1(s)).
Finally, we are left with the proof of (2.5). Let then ψ ∈ W 1,∞(R) have

compact support, namely assume that ψ(s) ≡ 0 if |s| ≥ L.
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Choosing k = ‖ϕ‖L∞(Ω) ‖ψ‖L∞(R) we have from (1.3):∫
Ω
a(x, u)∇u∇Tk(u− Th(u) + ψ(u)ϕ) dx

−
∫

Ω
Φ(u)∇Tk(u− Th(u) + ψ(u)ϕ) dx =

∫
Ω
f Tk(u− Th(u) + ψ(u)ϕ) dx.

Note that for every h > L since k = ‖ϕ‖L∞(Ω) ‖ψ‖L∞(R) we have Tk(u− Th(u) +
ψ(u)ϕ) = Tk(u− Th(u)) + ψ(u)ϕ, so that we get∫

{h≤|u|≤h+k}
a(x, u)|∇u|2 dx+

∫
Ω
a(x, u)∇u∇(ψ(u)ϕ) dx

−
∫

Ω
Φ(u)∇Tk(u− Th(u)) dx−

∫
Ω

Φ(u)∇(ψ(u)ϕ) dx

=
∫

Ω
f Tk(u− Th(u)) dx+

∫
Ω
f ψ(u)ϕdx.

Since∫
Ω

Φ(u)∇Tk(u− Th(u)) dx =
∫

Ω
div

[∫ Th+k(u)

0
Φ(s)χ{h≤|s|≤h+k} ds

]
dx = 0,

it follows that:∫
{h≤|u|≤h+k}

a(x, u)|∇u|2 dx+
∫

Ω
a(x, u)∇u∇(ψ(u)ϕ) dx

=
∫

Ω
Φ(u)∇(ψ(u)ϕ) dx+

∫
Ω
f Tk(u− Th(u)) dx+

∫
Ω
f ψ(u)ϕdx.

Letting h tend to infinity we deduce from Lebesgue’s theorem and (2.2):∫
Ω
a(x, u)∇u∇(ψ(u)ϕ) dx =

∫
Ω

Φ(u)∇(ψ(u)ϕ) dx+
∫

Ω
f ψ(u)ϕdx. (2.7)

On the other hand, since Supp(ψ(s)) ⊂ [−L,L] and ϕ ∈ H1
0 (Ω) we have:∫

Ω
Φ(u)∇(ψ(u)ϕ) dx =

∫
Ω

div
(∫ u

0
Φ(s)ψ′(s) ds

)
ϕdx

+
∫

Ω
Φ(u)ψ(u)∇ϕdx =

∫
Ω

[
Φ(u)ψ(u) −

(∫ u

0
Φ(s)ψ′(s) ds

)]
∇ϕdx.

Since Φ(s) ∈ W 1,∞
loc (R) and ψ(s) ∈ W 1,∞(R) we have

Φ(t)ψ(t) −
∫ t

0
Φ(s)ψ′(s) ds =

∫ t

0
Φ′(s)ψ(s) ds ∀ t ∈ R,
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so that we deduce∫
Ω

Φ(u)∇(ψ(u)ϕ) dx =
∫

Ω

(∫ u

0
Φ′(t)ψ(t) dt

)
∇ϕdx,

and then (2.5) follows from (2.7). �

As a consequence of (2.4) of Lemma 2.1 we obtain the following important
result.

Corollary 2.2 Let f belong to L1(Ω), and let ψ ∈ C1(R) be such that ψ(0) = 0,
lims→±∞ ψ(s) = ±∞ and ψ′(s) > 0 for any s ∈ R. Then u is an entropy solution
of (1.1) if and only if ũ = ψ(u) is an entropy solution of{

−div(ã(x, ũ)∇ũ) + div(Φ̃(ũ)) = f in Ω,
ũ = 0 on ∂Ω,

(2.8)

where ã(x, s) = a(x,ψ−1(s))
ψ′(ψ−1(s)) and Φ̃(s) = Φ(ψ−1(s)).

Our next purpose is to see how suitable Lipschitz type assumptions on Φ(s) and
s �→ a(x, s) may yield a uniqueness result for solutions of (1.1). To this aim, we
assume henceforth that there exist δ, γ > 0 and functions L, L1 ∈ C(R,R+) such
that:

|a(x, s) − a(x, t)| ≤ [L(s) + L(t)] |s− t| ∀s , t : |s− t| ≤ δ, (2.9)

|Φ(s) − Φ(t)| ≤ [L1(s) + L1(t)] |s− t| ∀s , t : |s− t| ≤ δ, (2.10)

γ−1 ≤ L(s+ θ)
L(s)

≤ γ ∀s ∈ R , ∀θ ∈ [0, 1]. (2.11)

γ−1 ≤ L1(s+ θ)
L1(s)

≤ γ ∀s ∈ R , ∀θ ∈ [0, 1]. (2.12)

Clearly, the functions L(s), L1(s) are meant to play the role of the modulus of
locally Lipschitz continuity of the functions s �→ a(x, s) and Φ(s) respectively. In
fact, (2.9)–(2.10) are equivalent to assuming that s �→ a(x, s) and Φ(s) belong
to W 1,∞

loc (R) and that their weak derivatives are bounded (uniformly on x in Ω)
by two continuous functions L, L1 satisfying (2.11)–(2.12). In particular, if Φ′(s)
denotes the weak derivative of Φ in W 1,∞

loc (R), (2.10) implies that |Φ′(s)| ≤ 2L1(s)
for every s. Note also that the function L(s) contains some informations on the
growth assumptions from above on a(x, s) (take t = 0 in (2.9)). However, we do
not assume that L(s) is nondecreasing, since for our argument it will be essential
to admit Lipschitz functions with rapidly decreasing derivatives, for instance,
a(x, s) = b(x) + log(1 + |s|), with α ≤ b(x) ≤ β (in this case, we can take
δ = 1

2 and L(s) = min(1, 1
|s| )). Further examples of a(x, s), Φ(s) satisfying (2.9)–

(2.12) are given by a(x, s) = 1 + a(x)|s|m + b(x) sin2(|s|) |s|q with m, q ≥ 1
(here L(s) ∼ c |s|max(q,m−1)), or similarly a(x, s) = 1 + a(x)|s|m + b(x)es, where
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a(x) and b(x) are nonnegative bounded functions, and Φ(s) = e|s| sin2(e|s|)) (here
L1(s) = ce2|s|).

Finally, note that assumptions (2.11) and (2.12) imply that

1
γ

≤ L(s)
L(t)

≤ γ ,
1
γ

≤ L1(s)
L1(t)

≤ γ ∀s , t ∈ R : |s− t| ≤ 1, (2.13)

and moreover that L as well as L1 have at most an exponential growth at infinity;
indeed, writing s = [s] + s − [s], where [s] is the highest integer smaller or equal
to s, we have L(s) ≤ γL([s]) ≤ γ[s]+1L(0) ≤ L(0)γs+1.

The conclusion of Corollary 2.2 says that, in order to obtain uniqueness for
problem (1.1), we can decide to replace it with problem (2.8) with a suitable
change of variable ũ = ψ(u). Of course, performing this change of unknown both
the coercivity function α(s) and the Lipschitz modulus functions L(s) and L1(s) of
problem (1.1) are changed into different functions α̃, L̃ and L̃1(s) of problem (2.8).
It may happen, for instance, that the new problem (2.8) is no longer uniformly
elliptic, so that, in order to keep a higher number of possibilities to transform
our problem (1.1) into (2.8), it is essential for us to obtain uniqueness results
even in the case that α(s) goes to zero as s tends to infinity. For instance, the

change of unknown ũ = (e|u| − 1) u
|u| gets α(s) into α̃(s) =

α( s
|s| log(1+|s|))

1+|s| , so that
if α(s) ≥ α0 > 0 we find α̃(s) ≥ α0

1+|s| , which means that ũ is solution of a non
uniformly elliptic problem. The aim of the next propositions is to refine, in this
general context, the uniqueness argument presented in [7] for weak solutions.

Proposition 2.3 Assume (2.1), (2.9)–(2.12) and let u, v be two entropy solutions
of (1.1) such that L(u)2

α(u) |∇u|2, L(v)2

α(v) |∇v|2, L1(u)2

α(u) and L1(v)2

α(v) belong to L1(Ω). Then
we have:

lim
ε→0

1
ε2

∫
Ω
a(x, u)|∇Tε(u− v)|2 dx = 0.

Proof. Let us introduce the function:

ψh(s) =




1 if 0 ≤ s ≤ h,
h+ 1 − s if h ≤ s ≤ h+ 1,
0 if s > h+ 1,
h(−s) if s ≤ 0.

Note that ψh ∈ W 1,∞(R), Supp(ψh) ⊂ [−h−1, h+1], 0 ≤ ψh ≤ 1 and ψh tends to
1 as h tends to infinity. We take ψ = ψh and ϕ = Tε(Th+1(u)− v) in (2.5) written
for u and for v, with ε ≤ min(δ, 1) (δ appears in (2.9)–(2.10)). Subtracting the
two equations we get:∫

Ω
a(x, u)ψh(u) ∇u∇Tε(Th+1(u) − v)dx

+
∫

Ω
a(x, u)|∇u|2ψ′

h(u)Tε(Th+1(u) − v)dx
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+
∫

Ω
a(x, v)ψh(v)∇v∇Tε(v − Th+1(u))dx

+
∫

Ω
a(x, v)|∇v|2ψ′

h(v)Tε(v − Th+1(u))dx

=
∫

Ω

(∫ u

v

Φ′(t)ψh(t)dt
)

∇Tε(Th+1(u) − v)dx

+
∫

Ω
f(ψh(v) − ψh(u))Tε(v − Th+1(u))dx.

which yields, by definition of ψh,∫
Ω
a(x, u)ψh(u) |∇Tε(u− v)|2 dx

≤
∫

Ω
[a(x, u)ψh(u) − a(x, v)ψh(v)]∇v∇Tε(v − Th+1(u)) dx

+ ε

∫
{h≤|u|≤h+1}

a(x, u)|∇u|2 dx+ ε

∫
{h≤|v|≤h+1}

a(x, v)|∇v|2 dx (2.14)

+
∫

Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx

+
∫

Ω
f (ψh(v) − ψh(u))Tε(v − Th+1(u)) dx.

We will henceforth denote by ωε(h) those terms which converge to zero as h tends
to infinity for every fixed ε > 0 and by ω(ε) those which do not depend on h and
converge to zero as ε tends to zero. Moreover we denote with C possibly different
constants which do not depend on ε or on h.

Clearly, by Lebesgue’s theorem we have that for every ε > 0

lim
h→∞

∫
Ω
f (ψh(v) − ψh(u))Tε(v − Th+1(u)) dx = 0,

so that from (2.14) we obtain, using also (2.2),∫
Ω
a(x, u)ψh(u) |∇Tε(u− v)|2 dx

≤
∫

Ω
[a(x, u)ψh(u) − a(x, v)ψh(v)]∇v∇Tε(v − Th+1(u)) dx (2.15)

+
∫

Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx+ ωε(h),

and then ∫
Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx

≤
∫

Ω
ψh(u) |a(x, u) − a(x, v)| |∇v| |∇Tε(v − Th+1(u))| dx
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+
∫

Ω
a(x, v)|ψh(u) − ψh(v)| |∇v| |∇Tε(v − Th+1(u))| dx (2.16)

+
∫

Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx+ ωε(h).

Using (2.9) and (2.1), and since ψh(u) ≡ 0 if |u| > h+ 1, we have:∫
Ω
ψh(u) |a(x, u) − a(x, v)| |∇v| |∇Tε(v − Th+1(u))| dx

≤ ε

∫
{0<|u−v|≤ε}

|∇v| |∇Tε(v − u)|ψh(u) [L(u) + L(v)] dx

≤ ε

∫
{0<|u−v|≤ε}

|∇v| a(x, v) 1
2 |∇Tε(v − u)|ψh(u)

L(u) + L(v)
α(v)

1
2

dx.

Note that thanks to assumption (2.9) and to (2.13) we have that if |u − v| ≤ ε

then a(x, v) ≤ a(x, u) + ε[L(u) +L(v)] and also 1
γ ≤ L(v)

L(u) ≤ γ almost everywhere,
so that we obtain:∫

Ω
ψh(u) |a(x, u) − a(x, v)| |∇v| |∇Tε(v − Th+1(u))| dx

≤ Cε

∫
{0<|u−v|≤ε}

|∇v| a(x, u) 1
2 |∇Tε(v − u)|ψh(u)

L(v)
α(v)

1
2
dx

+Cε

∫
{L(u)≥ a(x,u)

ε ,0<|u−v|≤ε}
|∇v| (εL(u))

1
2 ψh(u) |∇Tε(v − u)| L(v)

α(v)
1
2
dx.

By Young’s inequality we finally get:∫
Ω
ψh(u) |a(x, u) − a(x, v)| |∇v| |∇Tε(v − Th+1(u))| dx

≤ 1
2

∫
Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx (2.17)

+ ε2 C

∫
{0<|u−v|≤ε}

|∇v|2 L(v)2

α(v)
dx

+ εC

∫
{L(u)≥ a(x,u)

ε ,|u−v|≤ε}
L(u)|∇Tε(v − u)|2 dx.

Let us consider last integral in (2.17). Using (2.13) we have:∫
{L(u)≥ a(x,u)

ε ,|u−v|≤ε}
L(u)|∇Tε(u− v)|2 dx

≤ C

∫
{L(u)≥ a(x,u)

ε , |u−v|≤ε}
(L(u)|∇u|2 + L(v)|∇v|2) dx,
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and since in the set {L(u) ≥ a(x,u)
ε , |u − v| ≤ ε} we have that L(v) ≥ 1

γL(u) ≥
1
γ
a(x,u)
ε ≥ [a(x,v)γε − 2L(v)] we deduce, using also (2.1),

ε

∫
{L(u)≥ a(x,u)

ε ,|u−v|≤ε}
L(u)|∇Tε(v − u)|2 dx ≤ Cε

∫
{L(u)≥ a(x,u)

ε }
L(u)|∇u|2 dx

+ Cε

∫
{L(v)≥C a(x,v)

ε }
L(v)|∇v|2 dx

≤ ε2C

∫
{L(u)≥ a(x,u)

ε }

L(u)2

α(u)
|∇u|2 dx+ ε2C

∫
{L(v)≥C a(x,v)

ε }

L(v)2

α(v)
|∇v|2 dx.

Therefore (2.17) becomes:∫
Ω
ψh(u) |a(x, u) − a(x, v)| |∇v| |∇Tε(v − Th+1(u))| dx

≤ 1
2

∫
Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx

+ ε2C

∫
{0<|u−v|≤ε}

|∇v|2 L(v)2

α(v)
dx (2.18)

+ ε2 C

∫
{L(u)≥ a(x,u)

ε }

L(u)2

α(u)
|∇u|2 dx

+ ε2 C

∫
{L(v)≥C a(x,v)

ε }

L(v)2

α(v)
|∇v|2 dx.

Since L(u)2

α(u) |∇u|2 and L(v)2

α(v) |∇v|2 belong to L1(Ω), and since χ{L(v)≥C a(x,v)
ε } and

χ{L(u)≥ a(x,u)
ε } almost everywhere converge to zero, being a(x, s) > 0 for every

s ∈ R and almost every x ∈ Ω, from (2.18) and (2.16) we deduce:

1
2

∫
Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx ≤ ε2C

∫
{0<|u−v|≤ε}

|∇v|2 L(v)2

α(v)
dx

+
∫

Ω
a(x, v)|ψh(u) − ψh(v)| |∇v| |∇Tε(v − Th+1(u))| dx (2.19)

+
∫

Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx+ ωε(h) + ε2ω(ε).

Let us recall that assumption (2.10) implies that |Φ′(t)| ≤ 2L1(t) for almost every
t in R, and since by (2.12) L1(t) ≤ γL1(s) if |t− s| ≤ ε we have:

∫
Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx
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≤ 2ε γ
∫

{|u|≤h+1}
L1(u) |∇Tε(u− v) | dx

+2ε γ
∫

{h+1−ε≤|v|≤h+1+ε}
L1(v) |∇v| dx,

which yields by Young’s inequality and (2.1),

∫
Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx

≤ ε2 C

∫
{0<|u−v|≤ε}

L1(u)2

α(u)
dx

+ ε2 C

∫
{h+1−ε≤|v|≤h+1+ε}

a(x, v)|∇v|2 dx (2.20)

+
∫

{|v|>h+1−ε}

L1(v)2

α(v)
dx+

1
4

∫
{|u|≤h+1}

a(x, u) |∇Tε(u− v)|2 dx.

Using (2.13), last integral in (2.20) can be estimated as follows:

∫
{|u|≤h+1}

a(x, u) |∇Tε(u− v)|2 dx

≤
∫

Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx

+
∫

{h≤|u|≤h+1 ,|u−v|≤ε}
a(x, u)|∇Tε(u− v)|2 dx

≤
∫

Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx+

∫
{h≤|u|≤h+1}

a(x, u)|∇u|2 dx

+ C

∫
{h≤|u|≤h+1 ,|u−v|≤ε}

[a(x, v) + εL(v)] |∇v|2 dx.

Using that, by means of (2.1), we have:

∫
{h≤|u|≤h+1 ,|u−v|≤ε}

[a(x, v) + εL(v)] |∇v|2 dx

≤ C

∫
{h−ε≤|v|≤h+1+ε}

a(x, v)|∇v|2 dx+ C

∫
{|u|>h ,L(v)>a(x,v)}

L(v) |∇v|2 dx

≤ C

∫
{h−ε≤|v|≤h+1+ε}

a(x, v)|∇v|2 dx+ C

∫
{|u|>h}

L(v)2

α(v)
|∇v|2 dx,
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we can conclude:∫
{|u|≤h+1}

a(x, u) |∇Tε(u− v)|2 dx ≤
∫

Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx

+
∫

{h≤|u|≤h+1}
a(x, u)|∇u|2 dx+ C

∫
{h−ε≤|v|≤h+1+ε}

a(x, v)|∇v|2 dx

+ C

∫
{|u|>h}

L(v)2

α(v)
|∇v|2 dx.

(2.21)

From (2.20) and (2.21) we obtain, using (2.2) and the fact that L(v)2

α(v) |∇v|2 and
L1(v)2

α(v) belong to L1(Ω):

∫
Ω

(∫ Th+1(u)

v

Φ′(t)ψ(t) dt

)
∇Tε(Th+1(u) − v) dx

≤ ε2 C

∫
{0<|u−v|≤ε}

L1(u)2

α(u)
dx

+
1
4

∫
Ω
a(x, u)ψh(u)|∇Tε(u− v)|2 dx+ ωε(h).

(2.22)

By the properties of ψh we also have:∫
Ω
a(x, v)|ψh(u) − ψh(v)| |∇v| |∇Tε(Th+1(u) − v)| dx

≤
∫

{|u|≤h ,|v|>h ,|u−v|≤ε}
a(x, v)|∇v| |∇Tε(u− v)| dx

+
∫

{h≤|u|≤h+1 , |u−v|≤ε}
a(x, v)|∇v| |∇Tε(u− v)| dx

+
∫

{|u|>h+1 , |v|≤h+1 , |Th+1(u)−v|≤ε}
a(x, v)|∇v|2 dx.

The same arguments used before (in particular, using (2.9), (2.13), (2.2) and the
fact that L(v)2

α(v) |∇v|2 and L(u)2

α(u) |∇u|2 belong to L1(Ω)) allow to prove that

lim
h→∞

∫
Ω
a(x, v)|ψh(u) − ψh(v)| |∇v| |∇Tε(Th+1(u) − v)| dx = 0.

Therefore, by means of (2.22) and (2.19) we finally get:∫
Ω
a(x, u)ψh(u)|∇Tε(v − u)|2 dx ≤ ε2 C

∫
{0<|u−v|≤ε}

L1(u)2

α(u)
dx

+ ε2C

∫
{0<|u−v|≤ε}

|∇v|2 L(v)2

α(v)
dx+ ωε(h) + ε2ω(ε).

(2.23)
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Then letting h tend to infinity, by means of Fatou’s lemma we find:∫
Ω
a(x, u)|∇Tε(u− v)|2 dx ≤ ε2C

∫
{0<|u−v|≤ε}

|∇v|2 L(v)2

α(v)
dx

(2.24)

+ ε2 C

∫
{0<|u−v|≤ε}

L1(u)2

α(u)
dx+ ε2ω(ε).

Using the fact that meas{x : 0 < |u− v| ≤ ε} converges to zero as ε tends to zero
we have that∫

{0<|u−v|≤ε}
|∇v|2 L(v)2

α(v)
dx+

∫
{0<|u−v|≤ε}

L1(u)2

α(u)
dx = ω(ε),

since L(v)2

α(v) |∇v|2 and L1(u)2

α(u) belong to L1(Ω). Then we obtain from (2.24):

1
ε2

∫
Ω
a(x, u)|∇Tε(u− v)|2 dx ≤ ω(ε),

which concludes the proof. �

From Proposition 2.3 we deduce the first uniqueness result for entropy solu-
tions of (1.1) satisfying the condition that L(u)2

α(u) |∇u|2 and L1(u)2

α(u) belong to L1(Ω).
Later we investigate the assumptions which imply this regularity for every
solution.

Theorem 2.4 Assume (2.1), (2.9)–(2.12), and that the function α(s) appearing
in (2.1) is such that min[−k,k] α(s) = α(k) for every k > 0 and

∃c0 > 0 : lim inf
|k|→+∞

|k|α(k) ≥ c0.

Then there exists a unique entropy solution u of (1.1) such that L(u)2

α(u) |∇u|2 and
L1(u)2

α(u) belong to L1(Ω).

Proof. Let us take a function ζ ∈ C1(R) such that 0 ≤ ζ ≤ 1, ζ ≡ 0 if |s| ≥ 2 and
ζ ≡ 1 if |s| ≤ 1. Then, since ζ(uk ) ≤ 1 we have, from Proposition 2.3:∫

Ω
α(u)|∇Tε(u− v)|2ζ

(u
k

)2
dx ≤ ε2ω(ε),

where ω(ε) is a term going to zero as ε tends to zero. Since now the integral in
the left hand side is taken only in the set where |u| ≤ 2k we have, using that
min[−k,k] α(s) = α(k):

α(2k)
∫

Ω
|∇Tε(u− v)|2ζ

(u
k

)2
dx ≤ ε2ω(ε). (2.25)
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Applying Poincare’s inequality to the function Tε(u− v)ζ(uk ) and using (2.25) we
have

C

∫
Ω

|Tε(u− v)ζ
(u
k

)
|2 dx ≤

∫
Ω

|∇Tε(u− v)|2ζ
(u
k

)2
dx

+
1
k2

∫
Ω
Tε(u− v)2ζ ′

(u
k

)2
|∇u|2 dx

≤ 1
α(2k)

ε2ω(ε) + ε2
C

k2

∫
{k≤|u|≤2k}

|∇u|2 dx.

Since, by the properties of ζ we have, for every δ > 0:

meas{|u− v| ≥ ε+ δ, |u| ≤ k} ≤ 1
ε2

∫
Ω

∣∣∣Tε(u− v)ζ
(u
k

)∣∣∣2 dx,
we deduce:

meas{|u− v| ≥ ε+ δ , |u| ≤ k} ≤ C

α(2k)
ω(ε) +

C

k2

∫
{k≤|u|≤2k}

|∇u|2 dx,

and letting ε go to zero

meas{|u− v| > δ , |u| ≤ k} ≤ C

k2

∫
{k≤|u|≤2k}

|∇u|2 dx. (2.26)

On the other hand, by definition of entropy solution we have:∫
Ω
a(x, u)∇u∇Tk(u− Tk(u)) dx−

∫
Ω

Φ(u)∇Tk(u− Tk(u)) dx

=
∫

Ω
fTk(u− Tk(u)) dx. (2.27)

Since ∫
Ω

Φ(u)∇Tk(u− Tk(u)) dx =
∫

Ω
Φ(T2k(u))∇T2k(u)χ{k≤|u|≤2k} dx

=
∫

Ω
div

(∫ T2k(u)

0
Φ(s)χ{k≤|s|≤2k} ds

)
dx = 0,

we deduce from (2.27):∫
{k≤|u|≤2k}

a(x, u)|∇u|2 dx ≤ k

∫
{|u|≥k}

|f | dx.

Using that min[−k,k] α(s) = α(k) we get:

1
k2

∫
{k≤|u|≤2k}

|∇u|2 dx ≤ 1
kα(2k)

∫
{|u|≥k}

|f | dx.
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Since lim infk→+∞ kα(k) ≥ c0 > 0 and using that f is in L1(Ω) we deduce that

lim
k→+∞

1
k2

∫
{k≤|u|≤2k}

|∇u|2 dx = 0.

Thus from (2.26) we obtain, letting k tend to infinity,

meas{|u− v| > δ} = 0 ∀δ > 0,

so that u = v. �

Let us see how a first partial uniqueness result follows from Theorem 2.4.

Theorem 2.5 Let f belong to L1(Ω), and assume (2.1), (2.9)–(2.12), and that
the function α(s) appearing in (2.1) is such that min

[−k,k]
α(s) = α(k) and

∃c0 > 0 : lim inf
|k|→+∞

|k|α(k) ≥ c0.

Moreover assume that L1(s)2

α(s) ∈ L∞(R) and that L(s)2

α(s)2 ∈ L1(R). Then there exists
a unique entropy solution of (1.1).

Proof. Since L1(u)2

α(u) ∈ L∞(Ω), in virtue of Theorem 2.4 we are only left with the

proof that if u is an entropy solution then L(u)2

α(u) |∇u|2 belongs to L1(Ω). Indeed,

this follows directly from (2.3) and the assumption that L(s)2

α(s)2 ∈ L1(R). �

Remark 2.6 The conclusion of the previous theorem underlines how the method
used in Proposition 2.3 and introduced in [7] essentially relies on the regularity we
have on our solutions u and v. If for instance α(s) is a positive constant α0 > 0,
this method gives uniqueness of solutions u such that L(u)|∇u|2 belongs to L1(Ω).
This shows that the conditions on L(s) may be improved in dependence on the
regularity of the right hand side, so that, as a limit case, if f lies in H−1(Ω), which
implies that u belongs to H1

0 (Ω), we can afford to have L bounded, which is the
content of the result in [1]. In fact, we are going to prove that the conclusion of the
previous theorem is far from optimal, and that the differences between the cases
with finite or infinite energy solutions disappear once we transform our problem
through a suitable change of unknown.

3 Proof of Theorem 1.4

Let us deal now with the proof of Theorem 1.4, which relies on the fact that the
assumptions to get uniqueness found in Theorem 2.5 can be weakened if we trans-
form our original problem (1.1) into a new problem with a degenerate coercivity
condition.
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Proof of Theorem 1.4

Let us define

ã(x, s) =
a(x, 1

λ log(1 + |s|)sign(s))
λ(1 + |s|) , Φ̃(s) = Φ

(
1
λ

log(1 + |s|)sign(s)
)
,

where λ > 0 is to be chosen later, and consider the problem{
−div(ã(x, v)∇v) + div(Φ̃(v)) = f in Ω,
v = 0 on ∂Ω.

(3.1)

We know from Corollary 2.2 that u is an entropy solution of (1.1) if and only if
v = (eλ|u| − 1)sign(u) is an entropy solution of (3.1). We are going to prove that
(3.1) admits only one solution. Indeed, we have that ã(x, s) satisfies:

ã(x, s) ≥ α

λ(1 + |s|) . (3.2)

Moreover, for every s, t we have, using (1.5) and the properties of locally Lipschitz
continuity of log(1 + |s|) and 1

1+|s| :

|ã(x, s) − ã(x, t)| ≤ C

[
1

(1 + |s|)2− µ
λ

+
1

(1 + |t|)2− µ
λ

]
|s− t|,

where C only depends on λ and µ. Thus the function ã(x, s) has a modulus
of locally Lipschitz continuity which is L̃(s) = C 1

(1+|s|)2− µ
λ

. Moreover, a similar

calculation shows that, for |s− t| < c

|Φ̃(s) − Φ̃(t)| ≤ C

[
1

(1 + |s|)1− µ
λ

+
1

(1 + |t|)1− µ
λ

]
|s− t|,

so that ã(x, s) satisfies assumptions (2.9)–(2.12) with L̃(s) = C 1
(1+|s|)2− µ

λ
and

L̃1(s) = C 1
(1+|s|)1− µ

λ
.

Moreover, since the coercivity modulus of ã(x, s) is α̃(s) = α
λ(1+|s|) , if λ > 2µ

it follows that L̃(s)2

α̃(s)2 belongs to L1(R) and also L̃1(s)2

α̃(s) ∈ L∞(R). We are then in
the conditions to apply Theorem 2.5 to (3.1) so that we conclude that v is the
unique solution of (3.1). �

Of course, our results can also be applied to operators satisfying different
coercivity conditions. The proof of Theorem 1.4 suggests the assumptions we can
allow to have in these situations.

Corollary 3.1 Assume that f belongs to L1(Ω), a(x, s) is a Carathéodory func-
tion and Φ belongs to C(R,RN ). Let α ∈ C(R,R+) be such that

∃c0 > 0 : lim inf
|k|→+∞

|k|α(k) ≥ c0. (3.3)
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Setting A(s) =
∫ s
0 α(t) dt, assume that there exists a positive constant µ > 0 such

that a(x, s) and Φ(s) satisfy:

α(s) ≤ a(x, s) ≤ µ eµ|A(s)|, ∀ s ∈ R, a.e. x ∈ Ω,∣∣∣∣a(x, s)α(s)
− a(x, t)

α(t)

∣∣∣∣ ≤ µ(eµ|A(s)| + eµ|A(t)|)|s− t|,∀ s, t ∈ R,

(3.4)
a.e. x ∈ Ω,

|Φ(s) − Φ(t)| ≤ µ(eµ|A(s)| + eµ|A(t)|)|s− t|, ∀ s, t ∈ R, a.e. x ∈ Ω.

Then there exists a unique entropy solution of (1.1).

Proof. Let us set v = A(u). Note that (3.3) implies that lims→±∞A(s) = ±∞,
then from Corollary 2.2 we have that u is an entropy solution of (1.1) if and only
if v is an entropy solution of the Dirichlet problem{

−div(ã(x, v)∇v) + div(Φ̃(v)) = f in Ω,
v = 0 on ∂Ω,

(3.5)

with ã(x, s) = a(x,A−1(s))
α(A−1(s)) and Φ̃(s) = Φ(A−1(s)). From (3.3) we also deduce that

there exists a constant c1 such that |A(s)| ≥ c1(1 + log(|s|)) for |s| large enough,
so that, for a possibly different constant c2 we have that |A−1(s)| ≤ c2e

c2|s| for
every s in R. Since by (3.3) 1

α(A−1(s)) ≤ 1
c0

|A−1(s)| if |s| is large, we deduce that
1

α(A−1(s)) has at most an exponential growth at infinity. Together with (3.4) this
implies that there exists λ > 0 such that:

ã(x, s) ≤ λeλ|s| ∀s ∈ R.

Moreover we also have by (3.4) that

|ã(x, s) − ã(x, t)| ≤ µ[eµ|s| + eµ|t|]|A−1(s) −A−1(t)|

≤ µ[eµ|s| + eµ|t|]
1

α(A−1(ξ))
|s− t|, ξ ∈ (s, t),

so that, using again that 1
α(A−1(s)) ≤ c3e

c3|s| for a positive constant c3, we conclude
that there exists γ > 0 such that:

1 ≤ ã(x, s) ≤ γeγ|s|, ∀ s ∈ R, a.e. x ∈ Ω,

|ã(x, s) − ã(x, t)| ≤ γ(eγ|s| + eγ|t|)|s− t|, ∀ s, t ∈ R, a.e. x ∈ Ω .

Similarly we have that there exists δ > 0 such that:

|Φ̃(s) − Φ̃(t)| ≤ δ(eδ|s| + eδ|t|)|s− t|, ∀ s, t ∈ R, a.e. x ∈ Ω.

Thus ã(x, s) and Φ̃(s) satisfy the assumptions of Theorem 1.4, so that v is unique.
This implies that u is also unique by means of Corollary 2.2. �
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Remark 3.2 A particular case treated by Corollary 3.1 is when α(s) = (1+|s|)m,
with m ≥ −1. If m > 0, this case has been considered in [4], for instance, with f
in H−1(Ω). Here we extend these results both to the L1 data and to the class of
locally Lipschitz functions s �→ a(x, s). In fact, our assumptions allow to consider
the case that both a(x, s) and its modulus of locally Lipschitz continuity grow
like exp(|s|m+1) at infinity. We also extend the results proved in [15] in case that
−1 < m < 0. Note that the limit example m = −1 is also considered here, in this
case we are assuming in (3.4) that s �→ a(x, s) and its modulus of locally Lipschitz
continuity may grow at infinity like the power |s|β , for any β > 0.

Together with the uniqueness result, the method used for the proof of
Theorem 1.4 and Corollary 3.1 also provides a comparison result.

Corollary 3.3 Assume that Φ belongs to C(R,RN ) and a(x, s) is a Carathéodory
function. Let α ∈ C(R,R+) be such that

∃c0 > 0 : lim inf
|k|→+∞

|k|α(k) ≥ c0.

Setting A(s) =
∫ s
0 α(t) dt, assume that there exists a positive constant µ > 0 such

that a(x, s) and Φ(s) satisfy (3.4). Let f1, f2 belong to L1(Ω) and let u1, u2 be
the entropy solutions of (1.1) with data respectively f1, f2. Then if f1 ≤ f2 we
have that u1 ≤ u2 (almost everywhere in Ω).

Proof. In fact, this can be proved by simply replacing Tε(Th+1(u1) − u2) with
Tε(Th+1(u1) − u2)+ in the proof of Proposition 2.3. In that case the conclusion
obtained is that

lim
ε→0

1
ε2

∫
Ω
a(x, u)|∇Tε(u1 − u2)+|2 dx = 0,

then like in Theorem 2.4 it follows that u1 ≤ u2. As in Corollary 3.1, this argument
can be applied after a suitable change of unknown in the problem.

An alternative proof of this comparison result can be done using the result
of Corollary 3.1. Indeed, if f1 ≤ f2, we can consider problem (1.1) with data f1n,
f2n respectively, where f1n, f2n ∈ L∞(Ω), f1n ≤ f2n and fin strongly converges to
fi in L1(Ω), i = 1, 2. By classical results we have that the corresponding solutions
uin (which are unique) are bounded and u1n ≤ u2n for every n. The compactness
results proved in [3], [14], [5] imply that uin almost everywhere converges to an
entropy solution ūi of (1.1) with datum fi. The uniqueness result implies that
ūi = ui so that u1 ≤ u2. �

Remark 3.4 The proofs of our results would not change replacing the principal
part −div(a(x, u)∇u) with operators in the form −div(a(x, u,∇u)) with similar
structure of strong monotonicity with respect to ∇u and Lipschitz continuity with
respect to u and ∇u. In particular, under the following assumptions:

(a(x, s, ξ) − a(x, s, η)) · (ξ − η) ≥ α |ξ − η|2, α > 0,
|a(x, s, ξ) − a(x, s, η)| ≤ β|ξ − η|, β > 0
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|a(x, s, ξ)| ≤ µ eµ|s| |ξ|, µ > 0
|a(x, s, ξ) − a(x, t, ξ)| ≤ µ (eµ|s| + eµ|t|) |ξ||s− t|

for every s, t ∈ R, every ξ, η ∈ RN and almost every x in Ω the result of
Theorem 3.1 still holds true.

Remark 3.5 The results of Theorem 1.4 and Corollary 3.1 still hold true if
f is a measure which does not charge the sets of zero harmonic capacity (the
standard notion of capacity in H1

0 (Ω)). In fact, in this case we have that f
belongs to L1(Ω) +H−1(Ω) by the results in [8], and the proofs of Lemma 2.1, of
Proposition 2.3 and of Theorem 2.4 may be applied with very few modifications.
In fact, the main difference is that in this case we have to use that if f is a measure
which does not charge the sets of zero capacity then the entropy solutions of (1.1)
are cap-quasi everywhere finite, precisely the cap-quasi continuous representative
of an entropy solution is finite up to a set of zero capacity. This allows to get
Lemma 2.1 and Corollary 2.2 and then the other proofs remain unchanged.

Note added in proof. We refer the reader to a forthcoming paper for similar
uniqueness results including a refinement of the exponential growth condition
(1.5), used here.

D. Blanchard, F. Désir, O. Guibé, Quasi-linear degenerate elliptic problems
with L1-data, preprint.
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Un. Mat. Ital. B 5, (6) (1986), 51–70.

[2] M. ARTOLA, Existence and uniqueness for a diffusion system with coupling.
Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988),
123–138, Pitman Res. Notes Math. Ser. 208, Longman Sci. Tech., Harlow,
1989.

[3] P. BENILAN, L. BOCCARDO, T. GALLOUËT, R. GARIEPY, M. PIERRE,
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elliptiques avec de termes de transport non linéaires, C.R. Acad. Sci. Paris
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