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0. Introduction

In the work [D-cal] we introduced differential operators on noncommutative rings
and showed that they enjoy some nice properties (for example compatibility with
localizations). We proved that if the enveloping algebra U(g) of a Lie algebra g

acts as a Hopf algebra on a ring, then it acts by differential operators.
Let g be semisimple and let U = Uq(g) be the quantized enveloping algebra or

the quantum group corresponding to g. Let U0 be its “Cartan” part. We would
like to consider (noncommutative) schemes with the action of the quantum group
U . It was one of our first conclusions that such schemes should be “defined over
SpecU0”. That is, one should be working in the category of objects (say rings)
which are graded by a fixed abelian group Γ (in our case Γ = Q — the root
lattice). This leads us to the definition of quantum differential operators, which
naturally includes the “grading” action of Γ. These differential operators also have
the same nice properties, and one of our results in [D-cal] is the following: As-
sume that the quantum group acts as a Hopf algebra on a ring R so that R is a
diagonalizable U0-module. Then U acts by quantum differential operators.

In this paper we want to illustrate our theory by constructing the localization
for the quantum group U which is parallel to the Beilinson-Bernstein localization
construction for the enveloping algebra U(g). Namely, we construct the quantum
flag variety X with a “sheaf” of quantum differential operators and a natural ho-
momorphism from the quantum group to the global differential operators on X .
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We also prove that the functor of global sections is exact on the category of Df -
modules, if f is dominant. In this paper we work out the “generic case”, (q generic)
and we plan to treat the root of unity case in the near future.

Let us point out some features of our construction. First of all, the “structure
sheaf” of X consists of noncommutative rings. Also rings of “functions” on dif-
ferent shifts of the “big cell” in X appear to be nonisomorphic (whereas in the
classical case they are all polynomial rings). Moreover, we don’t hope to be able
to write down these rings (or quantum differential operators on them) in terms
of generators and relations. However, we believe that Bernstein’s theorem on the
dimension of a D-module still holds for quantum D-modules. Some evidence for
this was produced in [D-cal] and it is true in the (already nontrivial) case of sl2.
Hence, we expect to have a nice category of holonomic quantum D-modules.

Let us briefly describe the contents of the paper. In Section I we recall some
facts about the quantum group. In Section II we construct the deformation of the
classical “base affine space” G/u (u is the unipotent radical of a Borel subgroup
B in G). In Section III we use the above deformation to construct the desired
deformation X of the flag variety G/B. More precisely, we construct the category
(ProjR) of “quasicoherent sheaves” on X . This is a “projective variety” and we de-
fine the category of quasicoherent sheaves on it. There is a natural functor of global
sections Γ and we define the cohomology as the derived functor of this left exact
functor Γ. We define the covering of X by “shifts uw of the big cell”. This gives rise
to the Čech cohomology which coincides with the one defined above. By comparing
the Čech complex of a coherent sheaf with its classical specialization, we are able
to prove a weak ampleness result for the line bundles (Theorem 4), which suffices
for the applications to D-modules. In Section IV we define Df -modules on X and
prove that Df -modules have no higher cohomology if f is dominant (Theorem 5.2
and Proposition 7.1). We then state a conjecture that the global sections of Df are
“the right ones”. The Borel-Weil theorem is proved along the way (Theorem 8).

We should mention that the localization for the quantum group sl2 was con-
structed “by hand” in [H]. The construction in the general case was attempted by
Joseph ([Jo]). His definition of differential operators, however, is not satisfactory.
In particular there is no homomorphism from the quantum group to his differential
operators. Nevertheless, we were inspired by papers [Jo], [JL1], [JL2], [JL3] and
use some of the results from [Jo]. We thank Vinay Deodhar, Alexander Beilinson,
Vladimir Drinfeld and Uma Iyer for useful conversations.

I. Preliminaries on quantum groups

1. The quantum group U

Notation: A = Q[q, q−1], where q is an indeterminate, A = A(q−1), k = Q(q),
k ⊂ K — any field.
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Let (aij)i,j=1,...,n be a Cartan matrix of finite type (i.e., the corresponding
Lie algebra g is finite dimensional) and choose di ∈ {1, 2, 3} such that (diaij) is
symmetric. Consider the k-algebra U with generators

Ei, Fi,Ki,K
−1
i , i = 1, . . . , n

and relations

KiKj = KjKi, KiK
−1
i = 1, i, j = 1, . . . , n

KiEjK
−1
i = qdiaijEj , KiFjK

−1
i = q−diaijFj , i, j = 1, . . . , n

EiFj − FjEi = δij
Ki −K−1

i

qdi − q−di , i, j = 1, . . . , n

∑
r+s=1−aij

(−1)s
[

1− aij
s

]
di

EriEjE
s
i = 0, i 6= j

∑
r+s=1−aij

(−1)s
[

1− aij
s

]
di

F ri FjF
s
i = 0, i 6= j.

In the last two relations we used brackets to denote Gaussian binomial coeffi-
cients. Specifically, we have for m ∈ Z, d, t ∈ N,

[m]d =
qmd − q−md
qd − q−d , [t]d! = [t]d[t− 1]d · · · [2]d[1]d

and [
m
t

]
d

=
[m]d[m− 1]d · · · [m− t+ 1]d

[t]d!
∈ A.

In fact U is a Hopf algebra with the comultiplication ∆, the coidentity ε, and
the antipode S defined as follows:

∆(Ei) = Ei ⊗ 1 +Ki ⊗Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi

∆(Ki) = Ki ⊗Ki, i = 1, . . . , n

ε(Ei) = 0 = ε(Fi), ε(Ki) = 1, i = 1, . . . , n

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i .

The algebra U has a triangular decomposition. Namely, let U−, U◦ and U+ be
the subalgebras of U generated by Fi (resp. Ki,K

−1
i , resp. Ei), i = 1, . . . , n. Then

the multiplication map defines the isomorphism

U− ⊗ U◦ ⊗ U+ ∼−→ U.
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2. The integral form UA and the Frobenius homomorphism

Put

E
(m)
i =

Emi
[m]di !

, F
(m)
i =

Fmi
[m]di !

, i = 1, . . . n, m ∈ N,

and[
Ki; c
t

]
=

t∏
s=1

qdi(c−s+1)Ki − q−di(c−s+1)K−1
i

qdis − q−dis , i = 1, . . . , n, c ∈ Z, t ∈ N.

Let UA be the A-subalgebra of U generated by E
(m)
i , F (m)

i , Ki, K−1
i , i =

1, . . . , n, m ∈ N. It is known ([Lu]) that UA is a Hopf subalgebra of U . Let U−A ,

U0
A, U+

A be the A-subalgebras of UA generated by F
(m)
i (resp. Ki, K

−1
i ,

[
Ki;0
t

]
,

resp. E(m)
i ). Then we have the triangular decomposition

UA = U−A ⊗ U0
A ⊗ U+

A .

Let 0 6= λ ∈ C. Let Aλ be the image of A under the homomorphism of Q-
algebras A→ C defined by q → λ. Put

Uλ := UA ⊗A Aλ.

It is known ([Lu]) that Uλ is a Hopf algebra and that the specialization map
UA → Uλ is a Hopf algebra homomorphism. In particular we obtain the Hopf
algebra U1 which turns out to be closely related to the universal enveloping algebra.

2.1. Let g = gQ be the split semisimple Lie algebra corresponding to the Cartan
matrix (aij). Let h ⊂ g be a Cartan subalgebra, Q ⊂ P ⊂ h∗ the root lattice
and the weight lattice respectively. Let π = {α1, . . . , αn} ⊂ Q be a set of simple
roots, R+ the set of positive roots, {Hα}α∈R+ ⊂ h the corresponding coroots,
Q+ = ΣZ+αi the semigroup of weights that are ≥ 0. Let ω1, . . . , ωn ∈ P be the
fundamental weights and P+ = ΣZ+ωi the semigroup of dominant weights. Let
P (λ) ⊂ P be the multiset of weights in the finite dimensional g-module with the
highest weight λ ∈ P+.

Define the nondegenerate symmetric pairing

( , ) : P × P → Q

by
(αi|αj) := diaij .
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Let h ⊂ b ⊂ g be the Borel subalgebra corresponding to π. Let fi, hi, ei i =
1, . . . , n be the standard generators of g (so that ei ∈ b). Let

f
(r)
i := fr/r!, e(r)

i := er/r!

be the corresponding divided powers in the enveloping algebra U(g) = UQ(g).
According to [Lu] we have the following surjective homomorphism of Hopf algebras,
called the Frobenius map

F : U1 → U(g), F (E(r)
i ) = e

(r)
i , F (F (r)

i ) = f
(r)
i , F (Ki) = F (K−1

i ) = 1.

The kernel of F is generated by the central (in U1) elements Ki − 1.

3. The center of U and the Harish-Chandra homomorphism

3.0. Let τ : U0 → k[P ] be the homomorphism defined by τ(Ki) = αi. Thus τ is
an isomorphism of U0 onto the group ring k[Q]. Let W be the Weyl group. Since
it acts on k[Q], it also acts on U0 via τ . Let ρ be the half sum of positive roots
and let φ : U0 → U0 be the automorphism defined by φ(Ki) = q−(αi|ρ)Ki.

Using the triangular decomposition U = U−U0U+, consider the projection
p : U → U0. Let Z ⊂ U be the center and denote the restriction

ξ := φ · p|Z : Z → U0.

As in the case of enveloping algebras, one easily checks that ξ is a ring homomor-
phism.

Theorem ([Ta], [JL1]). The map ξ is injective and its image is τ−1(k[2P ] ∩
k[Q])W .

3.1. Fix a field k ⊂ K. Put

k[P ]∗ := Hom k−alg(k[P ],K).

We call a character f ∈ k[P ]∗ linear if f(ωi) = q(λ|ωi) for some λ ∈ h∗ (the k-dual).
We say that a linear f is integral if λ ∈ P .

The Weyl group W acts on k[P ]∗ via its action on k[P ]. Consider the P -action
on k[P ]∗ defined by

(f + β)(ωi) = q(β|ωi)f(ωi), f ∈ k[P ]∗, β ∈ P.

Given f ∈ k[P ]∗ we denote the corresponding central character by

χf := f · τ · ξ : Z → K.
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3.2. Definition. A character f ∈ k[P ]∗ is called dominant if χf 6= χf+β for all
0 6= β ∈ Q+. We call f regular dominant if for all γ ∈ P+ and all θ ∈ P (γ), θ 6= γ
we have χf+γ 6= χf+θ.

Recall that λ ∈ h∗ is dominant if λ(Hα) 6= −1,−2, . . . for i = 1, . . . , n, α ∈ R+.

3.3. Lemma. Let f be a linear character corresponding to λ ∈ h∗. Then f
is dominant (resp. regular dominant) if and only if λ is dominant (resp. regular
dominant) (cf. [BB2]).

4. The R-matrix

For U -modules M , N their tensor product, M⊗N is naturally a U -module via the
comultiplication ∆ : U → U ⊗ U . Since U is not a cocommutative Hopf algebra,
the linear isomorphism

′ : M ⊗N → N ⊗M, m⊗ n 7→ n⊗m

is not a map of U -modules. However, we have the following structure ([CP],
Cor. 10.1.20). For any locally finite U -modules V , M there is defined a natural
isomorphism of U -modules

RM,V : M ⊗ V ∼−→ V ⊗M.

In this work we will use the following property of R: Given locally finite U -
modules V , M , N , the isomorphism

RM⊗N,V : M ⊗N ⊗ V ∼−→ V ⊗M ⊗N

is the product of the isomorphisms

idM ⊗RN,V : M ⊗N ⊗ V ∼−→M ⊗ V ⊗N,

and
RM,V ⊗ idN : M ⊗ V ⊗N ∼−→ V ⊗M ⊗N.

5. The highest weight modules

5.0. For a U -module M and g ∈ k[P ]∗, denote by Mg the subspace of M on which
U0 acts by the character g (more precisely by g · τ). Nonzero elements of Mg are
called vectors of weight g or of weight λ if g is linear corresponding to λ ∈ h∗.
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Let f ∈ k[P ]∗ and denote by Kf the one-dimensional (over K) U0U+-module
on which U+ acts trivially and U0 acts by the character f . The U -module

M(f) := U ⊗U0U+ Kf

is called the Verma module with the highest weight f . Note that Z acts on M(f)
by the central character χf+ρ. In case k 6= K we will extend the scalars from k
to K, i.e., we will consider M(f) as a module over the quantum group U ⊗k K
instead of U . However to simplify the notation we will denote this bigger algebra
again by U . Note that M(f) is a direct sum of K-subspaces

M(f) =
⊕
β∈Q+

M(f)f−β .

It has a unique simple quotient L(f). If f is a linear character corresponding to
λ ∈ h∗, we also write M(λ) = M(f), L(λ) = L(f).

5.1. In case λ ∈ P+, we take k = K and denote R(λ) = L(λ). It is a finite
dimensional U -module, that satisfies the Weyl character formula. In particular, for
each w ∈ W there exists a unique (up to a nonzero scalar) vector ewλ ∈ R(λ) of
weight wλ.

The category of finite dimensional U -modules is semisimple. It follows that
there exists a unique (up to a nonzero scalar) surjective map of U -modules

R(λ)⊗R(µ)→ R(λ+ µ). (1)

We would like to choose these maps in such a way that the P -graded U -module

R := ⊕λ∈P+R(λ)

is a P -graded associative algebra. The following theorem is essentially due to
Joseph and Letzter ([JL2]) and it is proved in [Jo], 2.2–2.5.

5.1.1. Theorem. There exists a choice of maps (1) above that makes R a P -
graded associative algebra. Moreover, for this algebra structure on R, there exists
a choice of highest weight vectors eλ ∈ R(λ) such that eλeµ = eλ+µ in R. In
particular, eλeµ = eµeλ.

5.1.2. Remark.
1) By definition U acts on R as a Hopf algebra (that is R is a U -ring), i.e.,

u(ab) = u(1)au(2)b,

where a, b ∈ R, u ∈ U and ∆(u) = u(1) ⊗ u(2) ∈ U ⊗ U .
2) It is not difficult to show (see for example Lemma 1.7 below) that the

algebra R as in above theorem is unique up to an isomorphism.
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II. Deformation of G/u

Let G be the simply connected group corresponding to the Lie algebra g, u ⊂ G
the maximal unipotent subgroup, and G/u the corresponding “base affine space”.
It is well known that G/u is a quasi-affine variety with the ring of regular functions
being the representation ring R̄ of g. Namely, let R̄(λ) be the irreducible finite
dimensional g-module with the highest weight λ ∈ P+. Put

R̄ :=
⊕
λ∈P+

R̄(λ).

Then this U(g)-module is isomorphic to the (commutative) ring of regular func-
tions on G/u. We fix one such isomorphism and thus consider R̄ as a P -graded
commutative ring with the multiplication given by a projection

R̄(λ) ⊗ R̄(µ)→ R̄(λ+ µ).

In the previous section I,5.1 we introduced the analogous representation ring R
of the quantum group U (Thm. 5.1.1). This last ring R is a k-algebra that is no
longer commutative. Our next goal is to construct a deformation RA of R̄ over A
such that the fibre over the generic point Speck of SpecA is the algebra R. We also
show that RA is naturally a UA-ring in such a way, that the specialization RA → R̄
is compatible with the specialization UA → U(g).

1. Construction of RA

1.0. Consider the representation ring R = ⊕λ∈P+R(λ) of U with the choice of
highest weight vectors eλ ∈ R(λ) as in Theorem I,5.1.1 above.

1.2. Fix λ ∈ P+. Define an A-submodule RA(λ) of R(λ) as follows. Let R(λ)µ be
the weight µ subspace of R(λ) for µ ∈ P (λ) (I,2.1). Then

RA(λ) = ⊕
µ
RA(λ)µ, where RA(λ)µ = RA(λ) ∩R(λ)µ,

and we define RA(λ)µ by the descending induction on the natural partial order
on µ.

RA(λ)λ := A · eλ

RA(λ)µ =

x ∈ R(λ)µ | E(M)
i x ∈ ⊕

ν>µ
RA(λ)ν for all i = 1, . . . , n

M ≥ 1

 .
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Proposition.
(a) RA(λ) is a UA-submodule of R(λ).
(b) RA(λ)µ ⊂ RA(λ) is a free A-module of rank equal to dimk R(λ)µ.

Proof of proposition. (a) Let x ∈ RA(λ)µ, µ =
∑
niωi. Then E

(N)
i x ∈ RA(λ) by

definition. Also Kix = qnidix ∈ Ax ⊂ RA(λ). It remains to show that F (M)
i x ∈

RA(λ). We will prove this by induction on M and by the descending induction on
the weight µ. We need to show that

E
(N)
j · F (M)

i x ∈ RA(λ), for N ≥ 1.

We use the following formula ([Lu]):

E
(N)
i F

(M)
i =

∑
t≥0

t≤N,t≤M

F
(M−t)
i ·

[
Ki; 2t−N −M

t

]
·E(N−t)

i

If µ = λ, then E(N)
i F

(M)
i x = F

(M−N)
i ·

[
Ki;N−M

t

]
x. It follows from the lemma

below that [
Ki;N −M

t

]
x ∈ Ax.

Hence by induction on M we conclude that

F
(M−N)
i

[
Ki;N −M

t

]
x ∈ RA(λ).

Thus F (M)
i x ∈ RA(λ) if µ = λ. If µ < λ, then we argue by the descending

induction on µ using the same formula and the same lemma. This proves (a) in
the proposition.

(b) Notice that U− · eλ = R(λ). Hence U−A · eλ will generate R(λ) over k. Since
U−A · eλ ⊂ RA(λ) and RA(λ) = ⊕µRA(λ)µ we conclude that RA(λ)µ generates
R(λ)µ over k.

Consider the map

RA(λ)µ
⊕Ei−→ ⊕

i

(
⊕
ν>µ

RA(λ)ν

)
.

This map is injective (if µ ≤ λ). By descending induction on µ we may assume
that each RA(λ)ν , ν > µ is a finitely generated A-module. Since A is noetherian,
the same is true for RA(λ)µ. This proves that each RA(λ)µ is a finite A-module.

We proved that RA(λ)µ is a finite torsion-free A-module. Hence it is free since
A is a PID. It also has the right rank. This proves (b) of the proposition.
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Lemma. The expression
[
Ki;c
t

]
when evaluated by Ki 7→ qdim, m ∈ Z gives an

element in A.

1.3. We have constructed a graded UA-submodule

RA := ⊕RA(λ)

of the U -ring R.

Proposition. RA is an A-subalgebra of R, and hence a UA-subring of the U -
ring R.

Proof of proposition. Let x ∈ RA(λ), y ∈ RA(µ). We need to show that

E
(N)
i (xy) ∈ RA(λ+ µ)

for all N ≥ 1 i = 1, . . . , n. We will do this by descending induction on the weights
of x, y. If x = eλ, y = eµ, then eλ+µ = xy ⊂ RA(λ + µ) by definition. Otherwise
recall that R is a U -ring, hence a UA-ring, that is

u(xy) = u(1)(x)u(2)(y)

where
∆u = u(1) ⊗ u(2)

is the comultiplication.
We have ([Lu])

∆E(N)
i =

N∑
b=0

qdib(N−b)E
(N−b)
i Kb

i ⊗E
(b)
i

Thus E(N)
i (xy) =

∑N
b=0 q

dib(N−b)E
(N−b)
i Kb

i (x)E(b)
i (y) and for every b = 0, . . . , N ,

the pair E(N−b)
i Ki(x), E(b)

i (y) will have higher weights than the pair x, y. Hence
by induction the product belongs to RA. This proves the proposition.

1.4. Let 0 6= λ ∈ C. Consider the homomorphism of Q-algebras

A→ C, q 7→ λ.

Let Aλ be the image of A in C. Consider the algebras

Rλ := RA ⊗A Aλ
Uλ := UA ⊗A Aλ.

Then Uλ acts naturally on Rλ. Recall that UA is a Hopf subalgebra of U and that
the specialization map UA → Uλ is a map of Hopf algebras. Thus Rλ is a Uλ-ring.
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1.5. Consider the special case when λ = 1. We will denote elements x ⊗ 1 ∈ U1
by x. In U1 we have

0 = (1− 1)(EiF i − F iEi) = Ki −K
−1
i .

Hence Ki = K
−1
i or K

2
i = 1. Elements Ki are obviously central in U1 and it is

known ([Lu]) that
U1/ΣiU1(Ki − 1) ' U(g).

Moreover, Ki acts trivially on R1, hence R1 is a U(g)-ring.

1.6. Proposition. R1 as a U(g)-ring is isomorphic to the representation ring R̄
of U(g). In particular the ring R1 is commutative.

This follows from the following lemma.

1.7. Lemma. Let V = ⊕λ∈P+ V (λ) be a P -graded U(g)-ring such that
(i) U(g) preserves each V (λ) and V (λ) ' R̄(λ) as U(g)-modules.
(ii) There exists a choice of highest weight vectors tλ ∈ V (λ) such that tλ · tµ =

tλ+µ. Then V ' R̄ as U(g)-rings.

Proof of lemma. Let {vλ ∈ R̄(λ)} be a collection of highest weight vectors such
that vλ · vµ = vλ+µ. There exists a unique U(g)-module isomorphism

ϕλ : V (λ) ∼−→ R̄(λ), tλ 7→ vλ.

Put
ϕ := ⊕ϕλ : V ∼−→ R̄.

We claim that ϕ is a ring homomorphism. Indeed, consider the multiplication map
in V :

mV : V (λ)⊗ V (µ)→ V (λ+ µ).

U(g) acts naturally on V (λ)⊗ V (µ) and since V is a U(g)-ring, it follows that mV

is a U(g)-map. But such a U(g)-map is unique up to a scalar, and is specified
completely by the image of tλ ⊗ tµ. The same considerations apply to the ring R̄.
The diagram

V (λ)⊗ V (µ) mV−−−−→ V (λ+ µ)

ϕλ⊗ϕµ
y yϕλ+µ

R̄(λ)⊗ R̄(µ)
mR̄−−−−→ R̄(λ+ µ)

consists of morphisms of U(g)-modules such that

ϕλ+µ ·mV (tλ ⊗ tµ) = mR̄ · ϕλ ⊗ ϕµ(tλ ⊗ tµ).

It follows that the diagram is commutative, i.e., that ϕ is a homomorphism of
rings.
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1.8. Corollary. RA is an integral domain.

Proof. Indeed, RA is a free A-module. Hence the result follows from the fact that
R1 ' R is an integral domain.

2.0. Let M be an A-module. Consider the (q − 1)-adic Z−-filtration F on M :

F−nM := (q − 1)nM, n ≥ 0.

Let grM = ⊕FnM/Fn−1M be the associated graded Q-vector space. If M = A
then grA ' Q[t] as a ring, where t is the symbol of q − 1 in F−1A/F−2A.

For an A-module M , grM is therefore a Q[t]-module. If M is a free A-module,
then grM ' Q[t]⊗Q gr0M — a free Q[t]-module. Take in particular the free
A-module M = RA. Then

grRA ' Q[t]⊗Q R̄

as a Q[t]-module. Notice that grRA is naturally a ring with Q[t] and R̄ being
subrings.

Proposition. The isomorphism grRA ' Q[t]⊗Q R̄ is in fact a ring isomorphism.
In particular grRA is a commutative ring (cf. Proposition 1.6 above).

Proof. Since A is in the center of RA, Q[t] is in the center of grRA. In particular
Q[t] commutes with R̄ in grRA. This proves the proposition.

2.1. Take M = UA as a free A-module. The same arguments show that we have
an isomorphism of (noncommutative) rings

grUA ' Q[t]⊗Q gr0 UA = Q[t]⊗Q U1.

The UA-action on RA induces the Q[t]-linear grUA-action on grRA ' Q[t]⊗Q R̄,
where U1 acts on R̄ as in 1.4 above.

2.2. Put RA := RA ⊗A A. Then RA has the same (q − 1)-adic filtration and
grRA = grRA.

2.3. Proposition. The rings RA, R are graded noetherian, i.e., every graded
ideal is finitely generated.

Proof. It suffices to prove the lemma for the ring RA. Indeed, given a graded ideal
I ⊂ R, we have

R⊗RA (I ∩RA) = I.

Hence, if I ∩RA is a finite RA-module, then I is a finite R-module.
Consider A-submodules of RA with the induced (submodule) filtration, so that

the functor gr is exact on the category of such submodules. Let I ⊂ J ⊂ RA,
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I 6= J be two graded ideals. In view of Proposition 2.0 above, it suffices to prove
that gr I 6= grJ .

Let λ ∈ P be such that Jλ/Iλ 6= 0, and assume that gr Iλ = grJλ. Notice that
Iλ and Jλ are finite A-modules. Hence, in order to obtain a contradiction it suffices
to prove that Iλ/(q − 1)Iλ = Jλ/(q − 1)Jλ and apply the Nakayama lemma. It
suffices to prove that Jλ = Iλ + (q − 1)Jλ.

By the Artin-Rees lemma ([AM], Thm. 10.11) the filtration on Jλ (as a sub-
module of RA(λ)) and its own (q − 1)-adic filtration have finite difference. In
particular, there exists d ∈ Z− such that for all j ∈ Jλ with the degree d(j) < d
we have j ∈ (q − 1)Jλ. Let j ∈ Jλ be an element with the lowest degree such that
j /∈ Iλ + (q− 1)Jλ. Since gr Iλ = grJλ there exists i ∈ Iλ such that d(i− j) < d(j).
By induction i−j ∈ Iλ+(q−1)Jλ. Hence also j ∈ Iλ+(q−1)Jλ. This contradiction
proves the proposition.

2.3.1. Remark. Joseph proved that R is noetherian by a different method
(see [Jo]).

3. Localization of filtered rings

3.1. Later on we will need some results on the compatibility of Ore localizations
with the passage to graded rings. Namely, let B be a unital ring with a Z-filtration

· · · ⊂ FnB ⊂ Fn+1B ⊂ . . . n ∈ Z
such that

⋃
FnB = B. Assume for simplicity that

⋂
FnB = 0. Let grB =

⊕FnB/Fn+1B be the associated graded ring. We assume that grB is a domain
(hence also B is a domain). For 0 6= b ∈ B define its degree d(b) = min{n ∈
Z|b ∈ Fn, b /∈ Fn−1}, deg 0 = −∞. Let b̄ denote the symbol of b in Fd(b)/Fd(b)−1.
Since grB is a domain, the symbol map B → grB is multiplicative, and d(ab) =
d(a) + d(b).

Let S be a left Ore set in B (0 /∈ S, 1 ∈ S). Let [S−1]B be the corresponding
localization. This is also naturally a Z-filtered fing. Namely, put

d(s, b) := d(b)− d(s)

(well defined since grB is a domain) and

Fn[S−1]B = {(s, b)|d(s, b) ≤ n}.
Notice that ∩Fn[S−1]B = 0. Let gr[S−1]B be the associated graded ring.

Lemma. Let S̄ ⊂ grB be the symbol image in grB of the Ore set S. Then S̄ is a
left Ore set in grB.

Using the lemma we can define the (graded) localization [S̄−1] grB. Define a
map

θ : gr[S−1]B → [S̄−1] grB, (s, b) 7→ (s̄, b̄).
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3.2. Proposition. The above map θ is well defined and is an isomorphism of
graded rings.

3.3. More generally assume that M is a filtered B-module, i.e., M is a B-module
with a Z-filtration

· · · ⊂ FnM ⊂ Fn+1M ⊂ . . . n ∈ Z,

such that
FmB · FnM ⊂ Fm+nM.

Then grM is a graded grB-module. Assume that
⋃
FnM = M and

⋂
FnM = 0.

Also assume that if 0 6= b̄ ∈ grB, 0 6= m̄ ∈ grM , then b̄m̄ 6= 0. Consider also the
localized [S−1]B-module [S−1]M = [S−1]B⊗BM . Givenm ∈M , (s,m) ∈ [S−1]M ,
we define d(m), d(s,m) exactly as in the ring case above. This again is well defined
and we obtain a filtered [S−1]B-module [S−1]M , such that

⋃
Fn[S−1]M = [S−1]M

and
⋂
Fn[S−1]M = 0. Again we have the natural map

θ : gr[S−1]M → [S−1] grM, (s,m) 7→ (s̄, m̄).

Proposition. The above map θ is well defined and is an isomorphism of graded
gr[S−1]B ' [S̄−1] grB-modules.

3.4. In Section III we will consider localizations of RA-modules M , which satisfy
the assumptions in 3.3 above with respect to the (q − 1)-adic filtration. We will
localize by Ore sets Si ⊂ RA consisting of elements of degree 0 with respect to
(q − 1)-adic filtration on RA. In fact, we will consider successive localizations

Mi1...ik := [S−1
ik

]RA ⊗RA [S−1
ik−1

]RA ⊗ · · · ⊗RA [S−1
i1

]RA ⊗RA M.

These are left [S−1
ik

]RA- modules. These modules have a natural (q−1)-adic filtra-
tion and we can consider the corresponding associated graded grMi1...ik .

On the other hand, we have the following graded analogue

M̄i1...ik = [S̄−1
ik

] grRA ⊗grRA · · · ⊗grRA [S̄−1
i1

] grRA ⊗grRA grM.

The following proposition is proved by induction on k using Proposition 3.3.

Proposition. There exists a natural isomorphism of graded gr [S−1
ik

]RA '
[S̄−1
ik

] grRA-modules
grMi1...ik ' M̄i1...ik .
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III. Deformation of G/B

0. In Section II we constructed the deformation RA of the P -graded ring R̄. Since
the commutative ring R̄ is the ring of regular functions on the quasiaffine variety
G/u, we consider RA as the (noncommutative) ring of regular functions on the
corresponding quantum deformation of G/u. In this work we will be interested in
the “generic case” (q an indeterminate). Hence from now on, we will work over A
or k. That is we will consider the algebras RA and R.

In the classical case the P -graded structure of the ring R̄ allows one to recon-
struct the abelian category of quasicoherent sheaves on X̄ = G/B – the flag variety
of G, namely,

QcohX̄ ' Proj R̄.

Thus it is natural to define the category QcohXA (resp. QcohX) of quasicoherent
sheaves on the deformation XA (resp. X) of the flag variety X̄ as ProjRA (resp.
ProjR). Moreover, we will think of XA, X as being the categories ProjRA, ProjR
respectively.

Unfortunately, there seems to be no good notion of the corresponding defor-
mation of the structure sheaf of the flag variety X̄. However there is an “affine
covering” of XA and therefore we have a local description of a quasicoherent sheaf
on XA in terms of its Čech complex (of nonalternating cochains) (3.4).

Since the category ProjRA is defined as the localization of the category Mod −
RA of graded RA-modules (see 1 below), it has a natural cohomology theory {Hi}.
The above mentioned Čech complex defines the Čech cohomology {Ȟi}. We show
that Hi ' Ȟi (3.8). We use the Čech cohomology to compare the cohomology of
coherent sheaves on XA with their classical specializations. This way we prove a
weak version of the usual ampleness result (Thm. 4.).

The same constructions and results hold for R instead of RA.
Our ultimate goal is to develop the theory of D-modules on X and to construct

the localization for quantum groups. This is done in the next Section IV.

1. The category ProjRA

Let Mod − RA be the abelian category of graded left RA-modules. That is, an
object in Mod −RA is a left P -graded R-module M = ⊕λ∈P Mλ, and morphisms
are homomorphisms of degree zero. The group P has a natural partial order.
Namely, if λ =

∑
aiωi, µ =

∑
biωi, then λ ≥ µ iff ai ≥ bi for all i.

Let M ∈ Ob Mod − RA, m ∈ M . We call m a torsion element if RA(λ)m = 0
for λ� 0. Let M tor ⊂M be the submodule consisting of torsion elements. We call
M a torsion module if M tor = M . Let Tor ⊂ Mod − RA be the full subcategory
consisting of torsion modules. This is a Serre subcategory and we denote the
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quotient category by

ProjRA := Mod −RA/Tor.

Let Mod f − RA be the full subcategory of Mod − RA consisting of finitely
generated modules. Since RA is noetherian (II,2.3), this is an abelian category.
Put

Proj fRA := Mod f −RA/Tor.

This is a full subcategory of ProjRA.
Note that the group P acts by autoequivalences of the categories Mod − RA,

Proj fRA, ProjRA. Namely for λ ∈ P , M ∈ Ob Mod − RA, define M [λ] ∈
Ob Mod −RA by

M [λ]µ := Mµ+λ.

We define categories Mod −R, ProjR, Proj fR similarly.

2. Ore localizations of the ring RA

Let A∗ ⊂ A be the multiplicative subset of invertible elements. Fix w ∈ W .
For λ ∈ P+ choose a nonzero w-extremal vector ewλ ∈ RA(λ). It spans the free
rank one A-submodule consisting of vectors of weight wλ. Put

ew := {A∗ewλ}λ ⊂ RA.

This follows from the Weyl character formula that ewλ · ewµ ∈ A∗ew(λ+µ). Hence
ew is a multiplicative subset in RA. It was proved by Joseph ([Jo]) that ew is a
(left and right) Ore subset in RA. (Actually Joseph proves the statement for the
ring R, but the same proof works for RA and even for RA.)

Let ēw ⊂ R̄ be the image of ew under the canonical specialization map RA → R̄.
Consider the localization ē−1

w R̄. This is a P -graded ring. It is easy to see that its
zero component (ē−1

w R̄)0 is the ring of regular functions on the w-translate uw of
the big cell in X̄ = G/B. (The whole ring ē−1

w R̄ is the ring of functions on the
preimage of uw under the projection G/u→ G/B.) Thus the graded localized ring
e−1
w RA and its zero graded part (e−1

w RA)0 should be considered as deformations
of the corresponding rings of functions. However, if we try to deform the ring of
functions on the intersection uw1 ∩ uw2 in terms of the rings (e−1

w1
RA)0, (e−1

w2
RA)0,

we run into difficulties since the product of Ore sets ew1ew2 is not an Ore set in
general. Our next definition of the standard complex (3.1) of M ∈ Ob ProjRA
is therefore the closest analogue of a quasicoherent sheaf on the deformed flag
variety XA.



Vol. 5 (1999) Localization for quantum groups 139

3. Cohomology of R-modules

3.0. Let us introduce some notation. Let

ϕ∗ : Mod −RA → ProjRA

denote the localization functor. Let {w1, . . . , wN} = W be the elements of the
Weyl group W . Let Mod −e−1

wiRA denote the category of left graded modules over
the P -graded ring e−1

wiRA. Let

g∗i : Mod −RA →Mod − e−1
wiRA

denote the obvious localization functor. Then g∗i factors though ProjRA, and thus
we obtain the localization functor

f∗i : ProjRA →Mod − e−1
wiRA,

such that g∗i = f∗i ϕ
∗.

Denote by ϕ∗, gi∗, fi∗ the corresponding right adjoint functors. Functors ϕ∗,
g∗i , f∗i are exact; ϕ∗, gi∗, fi∗ are left exact and fully faithful ([GZ]). We have

ϕ∗ϕ∗ = IdProjRA ,

f∗i fi∗ = IdMod−e−1
wiRA

= g∗i gi∗

and
gi∗ = ϕ∗fi∗.

Note that gi∗ is the functor of restrictions of scalars from e−1
wiRA to RA, hence

it is exact. Therefore, the functor

fi∗ = ϕ∗ϕ∗fi∗ = ϕ∗gi∗

is also exact.

3.1 The standard complex. Put `i := fi∗f
∗
i and consider the adjunction mor-

phism
σi : IdProjRA → `i.

Thus we get the diagram of functors

IdProjRA
τ1
0−→ ⊕

i
`i

τ1
1−→
−→
τ2
1

⊕
i,j
`i · `j

τ1
2−→
τ2
2−→
τ3
2−→
⊕
i,j,k

`i · `j · `k · · ·
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where τβα : `i1 · `i2 · · · · · `iα → ⊕j `i1 · · · · · `iβ−1 · `j · `iβ · · · · `iα is the morphism of
functors τβα := ⊕j `i1 · · · · `iβ−1 · σj · `iβ · · · `iα . Put dα := ⊕β(−1)β+1τβα .

Denote
Si−1 := ⊕

j1,...,ji
`j1 · . . . · `ji .

We obtain the functoral diagram

IdMod−RA
d0−→ S0 d1−→ S1 → · · ·

called the standard complex corresponding to the collection {f∗i }.

3.1.1. Claim. We have di+1 · di = 0, i.e. the standard complex is a complex.

Proof. This follows from the fact that all σi are morphisms of functors.

3.2. Theorem. The standard complex is exact.

Proof. By Proposition 1.4 in [R] we only have to check that the collection {fi∗} is
a covering of ProjRA, i.e., if for a morphism s in ProjRA each f∗i (s) is invertible
then s is invertible. This follows from the following lemma.

3.3. Lemma. Fix µ ∈ P+. Then for λ� 0 we have∑
w∈W

RA(λ)ewµ = RA(λ+ µ).

Similarly for R.

Proof of the lemma. It suffices to prove the lemma for RA. Since A is a local ring
and both sides of the desired equality are finitely generated A-modules, it suffices
to prove the equality of the residues∑

w∈W
R̄(λ)ēwµ = R̄(λ+ µ),

which follows from the classical fact that the shifts uw of the big cell cover the flag
variety X̄.

3.4. For M ∈ Ob ProjRA we put Ci(M) := ϕ∗Si(M) and call

Č(M) := C0(M) d1−→ C1(M)→ · · ·

the Čech complex of M . This is a complex in Mod −RA.
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3.5. Definition. Let M ∈ Ob ProjRA. Denote

ȟi(M) := Hi(Č(M))

and
Ȟi(M) := ȟi(M)0,

the zero component of the gradedRA-module ȟi(M). We call theA-module Ȟi(M)
the i-th Čech cohomology group of M . Note that the collection {ȟi} (resp. {Ȟi})
is a δ-functor from ProjRA to Mod −RA (resp. to A-modules). Also

Ȟi(M [λ]) = ȟi(M)λ.

3.6. Lemma. The category ProjRA has enough injectives.

Proof. The category Mod − RA is a Grothendieck category ([BD]). By Proposi-
tion 5.39 in [BD] a localization of a Grothendieck category is also a Grothendieck
category. By Corollary 6.32 in [BD] a Grothendieck category has enough injectives.

3.7. Definition. Consider the left exact functor ϕ∗ : ProjRA → Mod − RA.
The last lemma allows us to define its right derived functors Riϕ∗, i ≥ 0. For
M ∈ Ob ProjRA put

hi(M) := Riϕ∗(M)

and
Hi(M) := hi(M)0,

the zero component of hi(M).

3.8. Theorem. The functors ȟi and hi are isomorphic. In particular, the functors
Ȟi and Hi are isomorphic.

Proof. Since functors f∗i , fi∗ are exact, the collection {f∗i } is a finite biflat covering
of ProjRA (in the terminology of [R]). Moreover, the functors ϕ∗fi∗ = gi∗ are
exact. Therefore our theorem follows from Theorem 2.2 in [R]. More precisely, in
the proof of Theorem 2.2 in [R] it was established that for M ∈ Ob ProjR we have
hi(Sj(M)) = 0 for i > 0, j ≥ 0.

3.9. Remarks.
1. Since ϕ∗ is left exact we have ϕ∗ = ȟ0.
2. Take M ∈ Ob ProjRA. For i > 0, the graded RA-module ȟi(M) is torsion.

Indeed, apply the exact functor ϕ∗ to Č(M). Since ϕ∗ϕ∗ = IdProjRA we
get S·(M), which is exact (except at S0(M)) by Theorem 3.2.

3. For N ∈ Ob Mod −RA we will denote

ȟi(N) := ȟi(ϕ∗N), hi(N) := hi(ϕ∗N);
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Ȟi(N) := Ȟi(ϕ∗N), Hi(N) := Hi(ϕ∗N).

4. Let N ∈ Ob Mod − RA. Since ȟ0(N) = ϕ∗ϕ∗(N) we have the adjunction
morphism

N → ȟ0(N).

Its kernel is N tor.
5. All definitions and assertions of this section are valid for R instead of RA.
6. We also denote Γ(M) := H0(M).

4. Ampleness of RA[λ], for λ� 0

Theorem. Let 0 → K → M → N → 0 be an exact sequence in Proj fR. Then
for λ� 0 the sequence

0→ Γ (K[λ])→ Γ (M[λ])→ Γ (N [λ])→ 0

is also exact.

Proof. Consider a finite free R-module T ′ = ⊕R[λi]. It is enough to prove that
a surjective morphism p′ : T ′ → N ′ in Mod − R induces a surjection Γ(T ′[λ]) →
Γ(N ′[λ]) for λ� 0. Choose a free RA-submodule T ⊂ T ′ such that T ′ = k ⊗A T .
Put p := p′|T and N := im (p) ⊂ N ′. Thus we obtain a surjection p : T → N
in Mod − RA. It suffices to prove that for λ � 0 this map induces a surjection
Γ(T [λ]) → Γ(N [λ]). Let M = Ker(p) ∈ Mod f − RA. Thus we have an exact
sequence in Mod f −RA

0→M → T → N → 0.

We first study the cohomology of M .

4.1. Proposition. Let λ� 0. Then
a) α : Mλ → Ȟ0(M [λ]) is an isomorphism,
b) for i > 0 the A-module Ȟi(M [λ]), is a k-module.

Similarly for T instead of M .

It suffices to prove the proposition for M . The proof of the proposition will be
based on several lemmas.

4.1.1. Lemma. Consider the (q − 1)-adic filtration on M , so that grM is a
grRA-module. Let 0 6= b̄ ∈ grRA, 0 6= m̄ ∈ grM , then b̄m̄ 6= 0.

Proof. Since N is a torsion-free A-module, it follows that the (q−1)-adic filtration
on M coincides with the one induced from T . Hence grM ⊂ grT and the lemma
follows, because grRA is a domain (II,1.8).
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4.1.2. Corollary. The (q − 1)-adic filtration on M satisfies the assumptions
in II,3.3. In particular, Proposition II,3.3 (with B = RA) and Proposition II,3.4
hold for M .

4.1.3. Consider the Čech complex Č(M) with the (q−1)-adic filtration. It follows
from the last Corollary 4.1.2 that gr Č(M) ' Č(grM), where Č(grM) is the Čech
complex of grM considered as a grRA-module (where we consider localizations of
the ring grRA ' Q[t] ⊗Q R̄ (II,2.0) with respect to the symbols ēwi of Ore sets
ewi ⊂ RA). Note that ēwi ⊂ gr0RA ' R̄. Denote gr0M = M̄ . Since M is a free
A-module, grM ' Q[t]⊗Q M̄ . We get that Č(grM) = Q[t]⊗Q Č(M̄), where Č(M̄)
is the Čech complex of M̄ considered as an R̄ module. In particular, the residue
complex gr Č(M)/(q − 1) is isomorphic to Č(M̄). This last complex is P graded
and for λ ∈ P the subcomplex Č(M̄)λ computes the cohomology of the coherent
sheaf F̄ on the flag variety X̄, which corresponds to the graded R̄-module M̄ [λ].
In particular, for λ� 0 we have

M̄λ ' Ȟ0(M̄ [λ])

and
Ȟi(M̄ [λ]) = 0, i > 0.

4.1.4. Remark. Clearly, the A-module Č(M) has no torsion. In particular, the
(q − 1)-adic filtration on h0(Č(M)) coincides with the one induced from Č0(M).
Also

⋂
(q − 1)nČ(M) = 0.

4.1.5. Lemma. The A-module Č0(M) is free and the natural map M → Č0(M)
is a split injection of free A-modules.

4.1.6. Corollary. The map α : M → h0(Č(M)) is a split injection of free A-
modules.

Proof of Lemma 4.1.5. Fix w ∈ W . It suffices to prove that the natural map
M → e−1

w M is a split injection of free A-modules. Since

e−1
w M = ⊕µ(e−1

w M)µ,

it suffices to show that the map Mµ → (e−1
w M)µ is such. Fix µ ∈ P . For ν ∈ P de-

note by e−1
ν M(µ+ν) the span of fractions (ewν , x), x ∈Mµ+ν . The multiplication

by ewν′ defines a natural embedding

ewν′ : e−1
wνMµ+ν ↪→ e−1

w(ν+ν′)Mµ+ν+ν′ ,

which is a split embedding of freeA-modules. Notice that these embeddings identify

(e−1
w M)µ = lim

ν
e−1
wνMµ+ν .

Hence (e−1
w M)µ is a free A-module and the embedding M [µ]→ (e−1

w M)µ is split.
This proves the lemma.
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4.1.7. Lemma. Let λ� 0 . Then α : Mλ → Ȟ0(M [λ]) is an isomorphism.

Proof. Consider the diagram of maps

Mλ
α−−−−→ Ȟ0(M [λ])

s

y yt
M̄λ

β−−−−→ Ȟ0(M̄ [λ])

where α and β are the natural maps and β is an isomorphism (4.1.3). The maps
s, t are the residue maps modulo q− 1. It follows from 4.1.3,4 that this diagram is
commutative. By definition s is surjective. Hence α is a map of A-modules, which
induces a surjection of the residues. By Lemma 4.1.5, α is a split injection of free
A-modules. Hence α is an isomorphism. This proves the lemma.

4.1.8. Lemma. Let i > 0, λ � 0. Then the A-module Ȟi(M [λ]) is in fact a
k-module.

Proof. It suffices to prove that Ȟi(M [λ]) has no (q − 1)-torsion and is (q − 1)-
divisible. Recall (4.1.3) that the residue complex Č(M)λ/(q− 1) = Č(M̄)λ has no
cohomology in positive degrees if λ � 0. For a ∈ Č(M) we will denote by ā its
image in Č(M̄).

We first prove that Ȟi(M [λ]) is divisible. Let a ∈ Či(M)λ, di+1(a) = 0. By
Remark 4.1.4 we may assume that 0 6= ā ∈ Či(M̄). Hence a = di(b) + (q − 1)c
for some b and c. This proves that the A-module Ȟi(M)[λ] consists of elements
infinitely divisible by (q − 1).

Let a ∈ Či(M)λ, di+1(a) = 0, and (q−1)a = di(b). If b = (q−1)e then a = die.
So we may assume that the residue b̄ of b in Či−1(R̄) is not zero. Here we consider
two cases

1) i > 1. In this case b = di−1c+ (q − 1)f . Hence dib = di(q − 1)f . Therefore
a = dif .

2) i = 0. Since M̄λ ' Ȟ0(M̄ [λ]) there exists g ∈ Č0(M)λ such that ḡ = b̄ and
d1g = 0. It follows that g − b = (q − 1)s and hence again d1s = a.

This shows that Ȟi(M)[λ] has no (q−1)-torsion and completes the proof of the
lemma.

The last two lemmas prove Proposition 4.1.

4.1.9. Remark. The argument in the proof of Lemma 4.1.7 also proves the
following assertion:

R(λ) ∼−→ Ȟ0(R[λ]) for λ ∈ P+

and
Ȟ0(R[λ]) = 0 for λ /∈ P+.
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4.2. Recall that we have an exact sequence

0→M → T → N → 0

in Mod f −RA. We may and will assume that N tor = 0.

4.2.1. Corollary. For λ� 0 the image of the map δ : Ȟ0(N [λ])→ Ȟ1(M [λ]) is
a k-module.

Proof. We have an exact sequence of A-modules

Ȟ0(N [λ]) δ−→ Ȟ1(M [λ])→ Ȟ1(T [λ]),

where the last two terms are k-modules by Proposition 4.1. This implies that im (δ)
is also a k-module.

4.3. Consider the map of graded RA-modules

p̃ : h0(Č(T ))→ h0(Č(N))

induced by the surjection p : T → N . For λ � 0 we have Tλ = Ȟ0(T [λ]) (4.1)
and hence (Imp̃)λ is a finite A-submodule of h0(Č(N))λ. Consider the graded RA-
module C := Cokerp̃. By Corollary 4.2.1, Cλ is a k-module for λ � 0. Therefore
the next lemma proves Theorem 4.

4.3.1. Lemma. Let µ ∈ P be such that Cµ is a k-module. Then Cµ = 0.

Proof. Assume Cµ 6= 0. Fix 0 6= m1 ∈ Cµ and let Cm1 := km1 ⊂ Cµ. Let
m ∈ h0(Č(N))µ be the preimage of m1.

Since h0(Č(N)) is an RA-submodule of ⊕w∈W e−1
w N , there exists w ∈ W such

that ewνm 6= 0 for all ν ∈ P+. Fix one such w. Recall that C = Ctor is a torsion
RA-module (3.9 Remark 2). Thus ewνm ∈ (im p̃)µ+ν for ν � 0. But im p̃λ is a
finite A-module for λ� 0. It follows that the image of the multiplication map

ewν : Cm1 → Cµ+ν

is a nonzero torsion A-submodule for ν � 0. In particular the A-module Cµ+ν has
nonzero torsion for all ν � 0. This contradicts the fact that Cλ is a k-module for
λ� 0 and thus proves the lemma.

IV. D-modules

1. The q-differential operators D = Dq(R)

1.0. Let us recall some facts about quantum (or q-)differential operators from [D-
cal]. Let Γ be an abelian group with a bicharacter β : Γ × Γ → K∗. Let B =
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⊕a∈ΓBa be a Γ-graded K-algebra. In this situation we defined the ring of quantum
differential operators Dq(B) ⊂ EndK(B) with the canonical homomorphism of
algebras B → Dq(B) (B acts by left multiplication on B). This is a Γ-graded
K-algebra with the canonical filtration

D0
q(B) ⊂ D1

q(B) ⊂ · · · = Dq(B)

by the “order” of differential operator. The subalgebra D0
q(B) is generated by left

and right multiplication by elements of B and the “grading” action σ of Γ defined
by

σ(a)|Bb = β(a, b) · idBb , a, b ∈ Γ.

1.0.1. Assume that B is a domain. Let S ⊂ B be a left and right Ore set con-
sisting of Γ-homogeneous elements, and let [S−1]B be the corresponding Γ-graded
localization. Then the following holds.

1) The Dq(B)-action extends canonically to [S−1]B via a natural homomor-
phism of K-algebras

Dq(B)→ Dq([S−1]B).

2) Given a graded left Dq(B)-module M , consider it as a B-module. Let
[S−1]M be the localization of M with respect to the Ore set S. Then
[S−1]M is also a Dq(B)-module and the natural map M → [S−1]M is a
map of Dq(B)-modules.

1.1. Consider the root lattice Q with the bicharacter

β′ : Q×Q→ K∗, (a, b) 7→ q(a|b).

(I,2.1). Recall the isomorphism of K-algebras τ : U0 → K[Q]. Notice that the
quantum group U is Q-graded with

deg(Ki) = 0, deg(Ei) = αi, deg(Fi) = −αi,

and the corresponding grading action σ : Q → Aut(U) is the adjoint action of U0

on U :
σ(a)u = τ−1(a)u(τ−1(a))−1, a ∈ Q, u ∈ U.

Assume that Q is a subgroup of an abelian group Γ and β′ is the restriction to
Q×Q of a bicharacter β : Γ× Γ :→ K∗. Since U is Q-graded, it is also Γ-graded.
Let B be a Γ-graded K-algebra as in 1.0. Assume that U acts on B as a Hopf
algebra (i.e., B is a U -ring):

u(ab) = u(1)au(2)b,
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where a, b ∈ B, ∆u = u(1) ⊗ u(2) ∈ U . Denote this action by ρ : U → EndK(B).
Assume that this action is compatible with the grading, i.e.,

σ|Q = ρ · τ−1 : Q→ Aut(B).

Under these assumptions we established the following facts in [D-cal].

1. U acts on B by q-differential operators, i.e., we have the algebra homomor-
phism

U → Dq(B).

Let u ∈ U , a ∈ B. Considering a, u as elements in Dq(B) we have the relation

ua = u(1)(a)u(2).

2. Assume that B is a domain and let B → [S−1]B be an Ore localization as
in 1.0.1. Then the composition of the canonical homomorphisms

U → Dq(B)→ Dq([S−1]B)

makes [S−1]B a U -ring. In particular, for u ∈ U , a ∈ [S−1]B considered as elements
of Dq([S−1]B), we have

ua = u(1)(a)u(2).

1.2. We apply this theory to our main example B = R. Namely, let Γ = P × P
(P — the weight lattice) with the bicharacter

β((a, b), (c, d)) = q(a|c)+(b|d).

The algebra R is naturally Γ-graded. Namely, let vµ be a weight vector of weight
µ in R(λ). Then vµ has degree (µ, λ) ∈ Γ. The corresponding grading action of Γ
on R is defined by

σ((a, b))vµ = q(a|µ)+(b|λ)vµ.

Denote the corresponding q-differential operators Dq(R) simply by D.
Consider Q as a subgroup of Γ by Q = (Q, 0) ⊂ Γ. We know that U acts on R

as a Hopf algebra and notice that this action is compatible with the grading (1.1).
It follows that we have an algebra homomorphism

U → D.
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1.2.1. Consider the action of the group algebra K[P ] on R given by the grading
action of (0, P ) ⊂ Γ. This action is compatible with the action of the center Z ⊂ U
via the projection p : Z → U0 corresponding to the triangular decomposition
U = U−U0U+ (I,3). Namely, consider K[P ] as a Z-module via the projection

Z
p−→ U0 ' K[Q] ⊂ K[P ].

Then the ring homomorphism

U ⊗K K[P ]→ D

factors through

U ⊗Z K[P ]→ D.

From now on when we refer to R (or D) as a graded ring, we will always mean
its usual graded structure (with respect to the group (0, P )):

R = ⊕λ∈P+R(λ).

The meaning of a graded R-module is therefore the same as in Section III above. In
particular, D is a graded left R-module and we have the canonical homomorphism

U ⊗Z K[P ]→ D0.

2. Category ProjD

2.1. Let Mod − D be the abelian category of graded left D-modules. We call a
D-module M a torsion module if M is such when considered as a left R-module.
Let Tor be the full subcategory of Mod −D consisting of torsion D-modules. We
put

ProjD := Mod −D/Tor.

2.2. Let M ∈ Ob ProjD, λ ∈ P . Define M [λ] ∈ Ob ProjD by the formula

M [λ]µ := Mλ+µ

with the sameD-module structure. This defines an action ofP by auto-equivalences
of the category ProjD.
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3. Cohomology of D-modules

3.0. Let ψ∗ : Mod − D → ProjD be the exact localization functor and let ψ∗ :
ProjD → Mod − D be its fully faithful right adjoint ([GZ]). The functor ψ∗ is
left exact. Let ΣD (resp. ΣR) be the class of morphisms s in Mod − D (resp. in
Mod −R), such that ψ∗(s) (resp. φ∗(s)) is invertible.

Denote by F∗ : Mod −D → Mod − R the functor of restriction of scalars. By
definition, a morphism t in Mod −D is in ΣD if and only if F∗(t) is in ΣR. Hence
there exists a (unique) functor F̃∗ : ProjD → ProjR which makes the following
diagram commutative

Mod −D F∗−−−−→ Mod −R

ψ∗
y yφ∗

ProjD F̃∗−−−−→ ProjR .

Consider the functor F ∗ := D ⊗R · : Mod − R → Mod −D, which is the left
adjoint of F∗.

3.1. Proposition.

a) There exists a (unique) functor F̃ ∗ : ProjR → ProjD which makes the
following diagram commutative

Mod −D ←−−−−
F∗

Mod −R

ψ∗
y yφ∗

ProjD F̃∗←−−−− ProjR .

b) The functor F̃ ∗ is the left adjoint to F̃∗.

Proof. a) It suffices to show that F ∗(ΣR) ⊂ ΣD or, equivalently, that F∗F ∗(ΣR) ⊂
ΣR. Recall the localization functors

g∗i : Mod −R→Mod − e−1
wiR

from Section III,3.0. Let Σi be the class of morphisms s in Mod − R such that
g∗i (s) is invertible. It follows from Lemma 3.3 in Section III, that ΣR = ∩Σi. Hence
it suffices to prove that F∗F ∗(Σi) ⊂ Σi. But this follows from Proposition 4.2.1
in [D-cal].

b) Note that since

φ∗F̃∗ ' F∗ψ∗, F̃ ∗φ∗ ' ψ∗F ∗
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the functors F̃ ∗φ∗ and φ∗F̃∗ are adjoint. Hence there is an isomorphism of bifunc-
tors

Hom Mod−R(−, φ∗F̃∗(−)) ' Hom ProjD(F̃ ∗φ∗(−),−) (1)

from Mod − R × ProjD to K − mod. But φ∗φ∗ ' Id, hence the RHS in (1) is
isomorphic to Hom ProjD(F̃ ∗(−),−). Since φ∗ is fully faithful, the LHS in (1) is
isomorphic to Hom ProjR(−, F̃∗(−)).

3.2. Corollary. We have F∗ψ∗ ' φ∗F̃∗.
Proof. Indeed, we have the adjoint pairs (ψ∗F ∗, F∗ψ∗), (F̃ ∗φ∗, φ∗F̃∗) (Prop. 3.1,b),
and ψ∗F ∗ ' F̃ ∗φ∗.
3.1. Lemma. The category ProjD has enough injectives.

Proof. Same as that of Lemma 3.6 in Section III.

3.2. Definition. Consider the zero degree part D0 of the graded ring D and
denote by mod−D0 the category of leftD0-modules. Consider the left exact functor
ψ∗ : ProjD → Mod − D. The last lemma allows us to define its right derived
functors Riψ∗, i ≥ 0. For M ∈ Ob ProjD we put

hi(M) := Riψ∗(M) ∈ Ob Mod −D
Hi(M) := hi(M)0 ∈ mod−D0.

In particular, ψ∗(M) = h0(M).

3.3. Remark. Fix M ∈ Ob ProjD, and consider F̃∗M ∈ Ob ProjR (Prop. 3.1).
Then Corollary 3.2 implies that hi(M) considered as a graded R-module is isomor-
phic to hi(F̃∗M) (Section III,3.7). In particular, Hi(M) is isomorphic to Hi(F̃∗M)
as a K-vector space.

3.4. Definition. Let M ∈ Ob ProjD. Consider M as an R-module. For w ∈ W
consider the localization e−1

w M = e−1
w R⊗RM . This is a graded e−1

w R-module and
also a D-module; the natural morphism M → e−1

w M is a morphism of D-modules
(1.0.1,2). This shows that the standard complexM → S·(M) (3.2,3.4) is a complex
in the category ProjD. Hence the complex ψ∗S·(M) lies in Mod −D. We call it
the Čech complex of M and denote it by Č(M). We put

ȟi(M) := Hi(Č(M)) ∈ Ob Mod −D

and
Ȟi(M) := ȟi(M)0 ∈ Ob mod−D0.

We call Ȟi(M) the i-th Čech cohomology of M . Note that the collection {ȟi}
(resp. {Ȟi}) is a δ-functor from ProjD to Mod −D (resp. to mod−D0). Also

Ȟi(M [λ]) = ȟi(M)λ.
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3.5. Remark. Fix M ∈ Ob ProjD, and consider F̃∗ ∈ Ob ProjR (Prop. 3.1).
Then we have an isomorphism of graded R-modules F∗ȟi(M) ' ȟi(F̃∗(M)). In
particular, Ȟi(M) is isomorphic to Ȟi(F̃∗M) as a K-vector space.

3.6. Proposition. The functors hi and ȟi from ProjD to Mod − D are iso-
morphic. In particular, the functors Hi and Ȟi from ProjD to mod−D0 are
isomorphic.

Proof. Fix M ∈ Ob ProjD. The standard complex S·(M) is a resolution of the
identity functor IdProjD (Section III, Theorem 3.2). Thus it suffices to show that
hi(Sj(M)) = 0 for i > 0, j ≥ 0. But F∗hi(Sj(M)) = hi(F̃∗(Sj(M))) (Remark 3.3)
and so the statement follows from the fact that hi(F̃∗(Sj(M))) = hi(Sj(F̃∗(M))) =
0 for i > 0, j ≥ 0 (see the proof of Theorem 3.8 in Section III).

3.7. Remarks.
1. Since ψ∗ is left exact, we have ψ∗ = h0 = ȟ0.
2. For N ∈ Ob Mod −D we will denote

hi(N) := hi(ψ∗N),

Hi(N) := Hi(ψ∗N),

ȟi(N) := ȟi(ψ∗N)

Ȟi(N) := Ȟi(ψ∗N).

3. For M ∈ Ob ProjD, we also denote Γ(M) := H0(M).

4. The category Proj fD

Fix f ∈ K[P ]∗ (we identify P = (0, P ) ⊂ Γ(D0)). Consider the full subcategory
Mod f −D ⊂ Mod −D consisting of objects M such that K[P ] acts on Mµ by the
character f + µ− ρ (I,3.1), i.e.,

ωi
∣∣
Mµ

= q(ωi|µ−ρ)f(ωi) · idMµ

Note, that the center Z of U will act on Mµ by the central character χf+µ (I,3.1).
Put

Proj fD := Mod f −D/Tor.

This is a full subcategory of ProjD. For λ ∈ P the functor [λ] : ProjD → ProjD
induces an equivalence

[λ] : Proj fD
∼−→ Proj f+λD.

The Čech complex Č(M) of M ∈ Ob Proj fD also belongs to Mod f −D, and
the functor

h0(·) : Proj fD→Mod f −D, M 7→ h0(M)
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is the right adjoint to the localization functor

ψ∗ : Mod f −D→ Proj fD.

Note that K[P ] lies in the center of the ring D0 (1.2.1). Let Jf−ρ ⊂ K[P ] be
the kernel of the homomorphism f − ρ : K[P ]→ K. Put Df := D0/D0Jf−ρ. For
M ∈ Ob Proj fD, Γ(M) is a Df -module.

5. The localization functor L

5.0. Given a left D0-module N , consider the left graded D-module D⊗D0 N. This
defines a right exact localization functor

L : Mod −D0 → ProjD, L(N) := ψ∗(D ⊗D0 N).

Vice versa, given M ∈ Ob ProjD, its global sections Γ(M) is a D0-module.
This defines a left exact functor

Γ : ProjD→Mod −D0.

Remark. (L,Γ) is an adjoint pair.

5.1. The functors L and Γ above induce a pair of adjoint functors

L : Mod −Df → Proj fD

and
Γ : Proj fD→Mod −Df .

5.2. Theorem. Assume that the character f is dominant (I,3.2). Then the func-
tor

Γ : Proj fD→Mod −Df

is exact.

5.3. Conjectures.
1. The natural map D0 → Γ(D) is an isomorphism.
2. Let Ǔ be the “simply connected” version of the quantum group U , that is,

we replace U0 ' k[Q] by the bigger algebra k[P ]. Then Ǔ ⊗Z K[P ] ' D0.
Let f ∈ K[P ]∗. Then we expect the following.

3. The natural map Df → Γ(D/DJf−ρ) is an isomorphism.
4. Let If ⊂ Ǔ be the annihilator of the Verma module M(f − ρ). Then
Ǔ/If ' Df .

5. Assume that f is regular dominant. Then Γ(M) 6=0 if 0 6= M ∈Ob Proj fD.
We immediately obtain the following standard corollary.
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5.4. Corollary. Assume that the conjectures 3 and 5 above holds. Let f ∈ K[P ]∗

be regular dominant. Then the functors

L : Mod −Df → Proj fD

and
Γ : Proj fD→Mod −Df

are inverse equivalences of categories.

6. Proof of Theorem 5.2

6.1. The R-bimodule Fµ.

Fix µ ∈ P+ and consider the finite dimensional U -module R(µ). Consider the free
graded right R-module

Fµ := R(µ)⊗
K
R.

Let us define the structure of a left R-module on Fµ as follows. The R-matrix (I,4)
defines an isomorphism of U -modules

R = RR,R(µ) : R⊗R(µ) ∼−→ R(µ)⊗R.
Let m : R ⊗ R → R denote the multiplication in the ring R. Define the left
multiplication

R⊗ Fµ → Fµ

as the composition

R⊗R(µ)⊗R R⊗id−−−→ R(µ)⊗R⊗R id⊗m−−−−→ R(µ)⊗R.
The property of the R-matrix discussed in I,4 ensures that this is indeed a left R-
module structure on Fµ. The left and right R-multiplications obviously commute;
hence Fµ is an R-bimodule.

6.1.1. Remark. Notice that Fµ as a left R-module is also free. Indeed, the
R-matrix defines an isomorphism

R−1
R,R(µ) : R(µ)⊗R ∼−→ R⊗R(µ)

of the left R-module Fµ = R(µ)⊗R with the free left R-module R⊗R(µ).

6.1.2. Remark. Notice that Fµ has a natural structure of a U -module:

u(a⊗ b) := u(1)a⊗ u(2)b u ∈ U.
The left and right R-multiplications on Fµ are compatible with this U -module
structure on Fµ. Namely,

u(rf) = u(1)(r)u(2)(f), u(fr) = u(1)(f)u(2)(r),

where u ∈ U , r ∈ R, f ∈ Fµ.
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6.2 The filtration of Fµ

6.2.0. Let ν1, . . . , νk ∈ P+ be all different weights of R(µ) in the order, which is
compatible with the natural partial order on P determined by Q+. In particular,
νk = µ and ν1 is the lowest weight of R(µ). Let mi be the multiplicity of νi in
R(µ). It follows from the Weyl character formula that for, λ � 0, there is an
isomorphism of U -modules

R(µ)⊗K R(λ) ' ⊕i(⊕miR(λ+ νi)).

Thus for λ� 0
Fµλ ' ⊕i(⊕miR(λ+ νi))

as U -modules. For every i = 1, . . . , k, define a graded U -submodule F i ⊂ Fµ by

F iλ = ⊕j≤i(⊕miR(λ+ νj)) ⊂ Fµλ , if λ� 0 and F iλ = 0 otherwise.

It follows from Remark 6.1.2 above that F i is an R-subbimodule of Fµ.

6.2.1. Proposition. Fix 1 ≤ i ≤ k. Consider the R-bimodule R[νi] ⊗K Kmi =
⊕miR[νi].

a) There exists an isomorphism (in Proj )

α : R[νi]⊗K Kmi ∼−→ Fi/Fi−1

of graded right R-modules. This is an isomorphism of U -modules.
b) Under this isomorphism α the left R-module structures on Fi/Fi−1 and

R[νi] ⊗K Kmi compare as follows. There exists a representation σ : P →
Gl(Kmi) of the abelian group P such that

rα(f ⊗ v) = α(rf ⊗ σ(ν)v),

where r ∈ R(ν), f ⊗ v ∈ R[νi]⊗Kmi .

Proof. a). For λ� 0 U -modules (Fi/Fi−1)λ and R(λ+νi)⊗Kmi are isomorphic.
Denote by Hλ ⊂ (Fi/Fi−1)λ, Lλ ⊂ R[νi]λ⊗Kmi , the K-subspaces of highest weight
vectors, i.e., vectors of weight λ+ νi. Recall that for each ν ∈ P+ we have a choice
of a highest weight vector eν ∈ R(ν), such that eν1eν2 = eν1+ν2 in R. Clearly, the
right multiplication map

Lλ ⊗ eν → Lλ+ν

is an isomorphism. Since the right R-module Fµ is free, therefore F i is torsion
free, and so the right multiplication map

Hλ ⊗ eν → Hλ+ν
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is also an isomorphism. Fix λ0 � 0 and choose a linear isomorphism

βλ0 : Lλ0

∼−→ Hλ0 .

There exists a unique collection of linear isomorphisms

βλ : Lλ
∼−→ Hλ, λ ≥ λ0,

such that βλ’s commute with the right multiplication by eν for each ν ∈ P+.
The isomorphism βλ extends to a unique isomorphism of U -modules

αλ : R[νi]λ ⊗Kmi ∼−→ (Fi/Fi−1)λ, λ ≥ λ0.

The morphism of right multiplication

(Fi/Fi−1)λ ⊗R(λ)→ (Fi/Fi−1)λ+ν

is completely determined by the induced isomorphism

Hλ ⊗ eν → Hλ+ν .

Similarly for R[νi]λ⊗Kmi . It follows that the isomorphism (in Proj ) of U -modules

α := ⊕λ≥λ0αλ : R[νi]⊗Kmi → Fi/Fi−1

is an isomorphism of right R-modules. This proves a).

b). This is proved using similar arguments plus the fact that right and left
R-multiplications commute.

6.3. Fix M ∈ Ob Proj fD

6.3.0. Consider the left R-module Fµ ⊗R M . It has a natural U -action which
is compatible with the R-module structure. It follows that this U -action extends
to any localization of this R-module with respect to an Ore set in R (via the
comultiplication in U). In particular the Čech complex Č(Fµ⊗RM) has a natural
U -action.

6.3.1. Note that the R-module Fµ⊗RM is filtered by the bimodule filtration {F i}
of Fµ (6.2.0). We put

M i := F i/F i−1 ⊗RM.

The isomorphism α from Proposition 6.2.1,a) induces an isomorphism

τ : M i ∼−→M [νi]⊗Kmi
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of U -modules. Recall the representation σ : P → Gl(Kmi) (Proposition 6.2.1,b))
and consider the automorphism

δ : M [νi]⊗Kmi ∼−→M [νi]⊗Kmi

defined by
δ(m⊗ v) = m⊗ σ(λ)−1v

for m ∈M [νi]λ. Then by Proposition 6.2.1,b) the isomorphism of U -modules

δ · τ : M i ∼−→M [νi]⊗Kmi

is an isomorphism of left R-modules. It follows that the U - and the R-module
structures on M i extend to a D-module structure. Moreover,M i ∈ Ob Proj f+νiD.
Hence the Čech complex Č(M i) also belongs to Proj f+νiD (4). This implies the
following corollary.

6.3.2. Corollary. Consider the Čech complex Č(Fµ ⊗R M) with the filtration
by the subcomplexes Č(F i ⊗M). Consider the natural U -action on this filtered
complex (6.3.0,1) and in particular on its zero graded component Č(Fµ ⊗ M)0.
Then the center Z of U acts on Č(F i ⊗M/F i−1 ⊗M)0 ' Č(M i)0 by the central
character χf+νi .

6.4. We keep the notations of 6.2 and 6.3 above. Notice that M1 ' M [ν1] as
R- and U -modules (6.3.1), where ν1 is the lowest weight of R(µ). Hence we have
an embedding of left R-modules iµ : M ↪→ Fµ ⊗R M [−ν1], which induces the
corresponding embedding of Čech complexes

iµ : Č(M) ↪→ Č(Fµ ⊗RM [−ν1]).

Also Mk ' M [µ] (6.3.1). Hence we have a canonical surjection of left R-
modules pµ : Fµ ⊗R M → M [µ], which induces the corresponding surjection of
Čech complexes

pµ : Č(Fµ ⊗RM)→ Č(M [µ]).

Note that iµ and pµ are U -morphisms.
The following two lemmas are immediate consequences of Definition 3.2 in Sec-

tion I and of the previous Corollary 6.3.2.

6.4.1. Lemma. Let f ∈ K[P ]∗ be dominant and M ∈ Od Proj fD. Then the
embedding

iµ : Č(M)0 ↪→ Č(Fµ ⊗RM [−ν1])0.

of complexes has a canonical splitting. Namely, the image of iµ is the generalized
χf -eigenspace of Č(Fµ ⊗RM [−ν1])0 for the Z-action.
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6.4.2. Lemma. Let f ∈ K[P ]∗ be dominant and regular, M ∈ Ob Proj fD. Then
the surjection

pµ : Č(Fµ ⊗RM)0 → Č(M [µ])0

has a canonical splitting (again given by the eigenspace decomposition of the Z-
action).

6.5. Proof of Theorem 5.2. Let f ∈ K[P ]∗ be dominant. Let

M → N → 0 (1)

be an exact sequence in Mod f −D. Let a ∈ Γ(N). We will prove that a is in the
image of Γ(M). We can find an exact subsequence of (1)

M → N → 0 (2)

of finitely generated R-submodules and such that a ∈ Γ(N). Consider the finitely
generated left R-modules Fµ⊗(M) and Fµ⊗(N) (6.1). By Theorem 4 in Section III
there exists ν � 0 in P+ such that the map

Γ(Fµ ⊗M [ν])→ Γ(Fµ ⊗N [ν])

is surjective. Consider the commutative diagram

Γ(M) −−−−→ Γ(N)y y
Γ(M)

γ−−−−→ Γ(N) .

(3)

Let µ ∈ P+ be such that −ν is the lowest weight in R(µ). Then by 6.4 the diagram
(3) has a canonical embedding iµ in the commutative square

Γ(Fµ ⊗M [ν]) α−−−−→ Γ(Fµ ⊗N [ν])y y
Γ(Fµ ⊗M [ν])

β−−−−→ Γ(Fµ ⊗N [ν]) .

By our assumption iµ(a) ∈ Γ(Fµ ⊗ N [ν]) is in the image of α. Hence iµ(a) ∈
Γ(Fµ ⊗ N [ν]) is in the image of β. Since the splitting of iµ in Lemma 6.4.1 is
functorial, it follows that that a ∈ im (γ). This proves Theorem 5.2.

6.6. Remark. Let f ∈ K[P ]∗ be regular dominant. Let M ∈ Ob Proj fD be
such that Γ(M) = 0. Assume that M 6= 0. There exists µ � 0 in P+ such that
Γ(M(µ)) 6= 0. By Lemma 6.4.2 the surjection pµ : R(µ)⊗KM → M(µ) splits.
Hence Γ(R(µ)⊗KM) 6= 0. If we could derive from this that Γ(M) 6= 0, then we
would prove conjecture 5 in 5.3.
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7. Cohomology of objects in Proj fD

7.1. Proposition. Let f ∈ K[P ]∗ be dominant, M ∈ Proj fD. Then

Hi(M) = 0, for i > 0.

Proof. The cohomology Hi(M) can be computed using the Čech complex Č(M)
(prop. 3.6). But Č(M) lies in the category Mod f −D (4). Hence the proposition
follows from Theorem 5.2.

7.2. Corollary. Let λ ∈ P+ − ρ. Then

Hi(R[λ]) = 0 for i > 0.

Proof. Fix λ ∈ P+ − ρ. Let f ∈ K[P ]∗ be the corresponding character (Section I,
3.1). By Lemma 3.3 in Section I f + ρ is dominant. The D-module R[λ] belongs
to Mod f+ρ −D. Hence the corollary follows from Proposition 7.1.

8. Borel-Weil Theorem

Theorem. Fix λ ∈ P+. Then the U -module Γ(R[λ]) is isomorphic to R(λ).

Proof. See Remark 4.1.9 in Section III.
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