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Trace formula in noncommutative geometry and the zeros of
the Riemann zeta function
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Abstract. We give a spectral interpretation of the critical zeros of the Riemann zeta function
as an absorption spectrum, while eventual noncritical zeros appear as resonances. We give a
geometric interpretation of the explicit formulas of number theory as a trace formula on the
noncommutative space of Adele classes. This reduces the Riemann hypothesis to the validity of
the trace formula and eliminates the parameter § of our previous approach.
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Introduction

We shall give in this paper a spectral interpretation of the zeros of the Riemann
zeta function and a geometric framework in which one can transpose the ideas of
algebraic geometry involving the action of the Frobenius and the Lefchetz formula.
The spectral interpretation of the zeros of zeta will be as an absorption spectrum,
i.e., as missing spectral lines. All zeros will play a role in the spectral side of the
trace formula, but while the critical zeros will appear perse, the noncritical ones
will appear as resonances and enter in the trace formula through their harmonic po-
tential with respect to the critical line. Thus the spectral side is entirely canonical,
and by proving positivity of the Weil distribution, we shall show that its equality
with the geometric side, i.e., the global trace formula, is equivalent to the Riemann
Hypothesis for all L-functions with Grossencharakter.

We shall model our discussion on the Selberg trace formula, but it differs from
the latter in several important respects. We shall first explain in particular why
a crucial negative sign in the analysis of the statistical fluctuations of the zeros of
zeta indicates that the spectral interpretation should be as an absorption spectrum,
or equivalently should be of a cohomological nature. As it turns out, the geometric
framework involves an innocent looking space, the space X of Adele classes, where
two adeles which belong to the same orbit of the action of GL; (k) (k a global field),
are considered equivalent. The group Cx, = GL1(A)/GL1 (k) of Idele classes (which
is the class field theory counterpart of the Galois group) acts by multiplication on X.

Our first preliminary result (Theorem 1 of Section III) gives a spectral inter-
pretation of the critical zeros of zeta and L functions on a global field k from the
action of the Idele class group on a space of square integrable functions on the space
X = A/k* of Adele classes. Corollary 2 gives the corresponding computation of
the spectral trace. This result is only preliminary because it requires the use of an
unnatural parameter § which plays the role of a Sobolev exponent and allows us
to see the absorption spectrum as a point spectrum.

Our second preliminary result is a formal computation (Section VI) of the char-
acter of the representation of the Idele class group on the above L? space. This
formal computation gives the Weil distribution which is the essential ingredient of
the Riemann-Weil explicit formula. At this point (which was the situation in [Co]),
the main problems are to give a rigorous meaning to the formal trace computation
and to eliminate the unwanted parameter J.

These two problems will be solved in the present paper. We first prove a trace
formula (Theorem 3 of Section V) for the action of the multiplicative group K* of
a local field K on the Hilbert space L?(K), and (Theorem 4 of Section VII) a trace
formula for the action of the multiplicative group Cg of Idele classes associated to
a finite set S of places of a global field k, on the Hilbert space of square integrable
functions L?(Xg), where Xg is the quotient of [I.cg kv by the action of the group
O% of S-units of k. In both cases we obtain exactly the terms of the Weil explicit
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formulas which belong to the finite set of places. This result is quite important
since the space Xg is highly nontrivial as soon as the cardinality of S is larger or
equal to 3. Indeed this quotient space is nontype I in the sense of Noncommutative
Geometry, and it is reassuring that the trace formula continues to hold there.

We check in detail (Theorem 6 of Appendix II) that the rewriting of the Weil
explicit formulas which is predicted by the global trace formula is correct.

Finally, we eliminate in Section VIII using ideas that are common both to the
Selberg trace formula and to the standard explanation of the absorption lines in
physics, the unpleasant parameter § which appeared as a label of the function spaces
of Section ITI. We write the global trace formula as an analogue of the Selberg trace
formula. The validity of the trace formula for any finite set of places follows from
Theorem 4 of Section VII, but in the global case is left open and shown (Theorem 5
of Section VIII) to be equivalent to the validity of the Riemann Hypothesis for all L
functions with Grossencharakter. This equivalence, together with the plausibility
of a direct proof of the trace formula along the lines of Theorem 4 (Section VII)
constitute the main result of this paper. The elimination of the parameter ¢ is the
main improvement of the present paper with respect to [Co].

It is an old idea, due to Pélya and Hilbert, that in order to understand the
location of the zeros of the Riemann zeta function, one should find a Hilbert space
‘H and an operator D in ‘H whose spectrum is given by the nontrivial zeros of the
zeta function. The hope then is that suitable selfadjointness properties of D (of
1 (D - %) more precisely) or positivity properties of A = D(1 — D) will be easier
to handle than the original conjecture. The main reasons why this idea should be
taken seriously are first the work of A. Selberg ([Se]) in which a suitable Laplacian
A is related in the above way to an analogue of the zeta function, and secondly the
theoretical ([M] [B] [KS]) and experimental evidence ([O] [BG]) on the fluctuations
of the spacing between consecutive zeros of zeta. The number of zeros of zeta whose
imaginary part is less than E > 0,

N(E)=4# of zeros p, 0< Im p< FE (1)
has an asymptotic expression ([R]) given by

N(E) = o <10g (%) - 1) + g + o(1) + Now (E) @)

where the oscillatory part of this step function is
1 1 .
Nose (E) = ; Im log C (5 + ZE) (3)

assuming that E is not the imaginary part of a zero and taking for the logarithm
the branch which is 0 at +oc.
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One shows (cf. [Pat]) that N (E) is O(log EY). In the decomposition (2) the
two terms (N(E)) = N(E)— Nogs (F) and N s (E) play an independent role. The
first one (IN(E)) which gives the average density of zeros just comes from Stirling’s
formula and is perfectly controlled. The second N s (E) is a manifestation of the
randomness of the actual location of the zeros, and to eliminate the role of the
density, one returns to the situation of uniform density by the transformation

z; = (N(E;)) (E; the j* imaginary part of zero of zeta). (4)

Thus the spacing between two consecutive x; is now 1 on average and the only
information that remains is in the statistical fluctuation. As it turns out ([M] [O])
these fluctuations are the same as the fluctuations of the eigenvalues of a random
hermitian matrix of very large size.

H. Montgomery [M] proved (assuming RH) a weakening of the following con-
jecture (with «, 8 > 0),

Card {(i,j);i,jel,...,M;xi—xje[oz,ﬂ]}

[ (1= (22 ?

This law (5) is precisely the same as the correlation between eigenvalues of hermit-
ian matrices of the gaussian unitary ensemble ([M]). Moreover, numerical tests due
to A. Odlyzko ([O] [BG]) have confirmed with great precision the behaviour (5)
as well as the analogous behaviour for more than two zeros. In [KS], N. Katz
and P. Sarnak proved an analogue of the Montgomery-Odlyzko law for zeta and
L-functions of function fields over curves.

It is thus an excellent motivation to try and find a natural pair (H, D) where
naturality should mean for instance that one should not even have to define the
zeta function, let alone its analytic continuation, in order to obtain the pair (in
order for instance to avoid the joke of defining H as the 2 space built on the zeros
of zeta).

I. Quantum chaos and the hypothetical Riemann flow

Let us first describe following [B] the direct attempt to construct the Pélya-Hilbert
space from quantization of a classical dynamical system. The original motivation
for the theory of random matrices comes from quantum mechanics. In this theory
the quantization of the classical dynamical system given by the phase space X
and hamiltonian h gives rise to a Hilbert space H and a selfadjoint operator H
whose spectrum is the essential physical observable of the system. For complicated
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systems the only useful information about this spectrum is that, while the average
part of the counting function,

N(E) = # eigenvalues of H in [0, E] (1)

is computed by a semiclassical approximation mainly as a volume in phase space,
the oscillatory part,
Nosc (E) = N(E) — (N(E)) (2)

is the same as for a random matrix, governed by the statistic dictated by the
symmetries of the system.
In the absence of a magnetic field, i.e., for a classical hamiltonian of the form,

1
h=—p>4+V 3
o+ V() 3)
where V' is a real-valued potential on configuration space, there is a natural sym-
metry of classical phase space, called time reversal symmetry,

which preserves h, and entails that the correct ensemble on the random matrices is
not the above GUE but rather the gaussian orthogonal ensemble: GOE. Thus the
oscillatory part N s (E) behaves in the same way as for a random real symmetric
matrix.

Of course H is just a specific operator in H and, in order that it behave generi-
cally, it is necessary (cf. [B]) that the classical hamiltonian system (X, h) be chaotic
with isolated periodic orbits whose instability exponents (i.e., the logarithm of the
eigenvalues of the Poincaré return map acting on the transverse space to the orbits)
are different from 0.

One can then ([B]) write down an asymptotic semiclassical approximation to
the oscillatory function N s (E)

Nose (E) = % Im /OOO Trace (H — (E + 1)) 'idn (5)

using the stationary phase approximation of the corresponding functional integral.
For a system whose configuration space is 2-dimensional, this gives ([B] (15)),

Nose (E) =~ %Z 3 1 ﬁ sin(Spm (£)) (6)

mA
p m=1 p) =

where the 7, are the primitive periodic orbits, the label m corresponds to the
number of traversals of this orbit, while the corresponding instability exponents
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are £\,. The phase Spm (E) is up to a constant equal to m ET# where Tjﬁ is the
period of the primitive orbit 7.

The formula (6) gives very precious information ([B]) on the hypothetical “Rie-
mann flow” whose quantization should produce the Pélya-Hilbert space. The point
is that the Euler product formula for the zeta function yields (cf. [B]) a similar as-
ymptotic formula for Nes. (E) (3),

I 1 1
NOSC(E):?ZZEWSID(mElOgP)' (7)

p m=1

Comparing (6) and (7) gives the following information,

(A) The periodic primitive orbits should be labelled by the prime numbers
p = 2,3,5,7,..., their periods should be the logp and their instability
exponents A, = *logp.
Moreover, since each orbit is only counted once, the Riemann flow should not
possess the symmetry T of (4) whose effect would be to duplicate the count of
orbits. This last point excludes in particular the geodesic flows since they have the
time reversal symmetry 7. Thus we get

(B) The Riemann flow cannot satisfy time reversal symmetry.

However there are two important mismatches (cf. [B]) between the two formulas (6)
and (7). The first one is the overall minus sign in front of formula (7), the second

one is that though 2sh (mQ’\P) ~ p™/2 when m — 0o, we do not have an equality

for finite values of m.

These are two fundamental difficulties, and in order to overcome them we shall
use the well known strategy of extending the problem to the case of arbitrary global
fields. By specializing to the function field case, we shall then obtain additional
precious information.

I1. Algebraic Geometry and global fields of nonzero characteristic

The basic properties of the Riemann zeta function extend to zeta functions associ-
ated to an arbitrary global field, and it is unliquely that one can settle the problem
of the spectral interpretation of the zeros, let alone find the Riemann flow, for the
particular case of the global field Q of rational numbers without at the same time
settling these problems for all global fields. The conceptual definition of such fields
k, is the following:

A field k is a global field iff it is discrete and cocompact in a (nondiscrete) locally
compact semisimple abelian ring A.

As it turns out, A then depends functorially on k£ and is called the Adele ring of
k, often denoted by k4. Thus though the field k itself has no interesting topology,
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there is a canonical and highly nontrivial topological ring which is canonically
associated to k. When the characteristic p of a global field k is > 0, the field & is
the function field of a nonsingular algebraic curve ¥ defined over a finite field I,
included in k as its maximal finite subfield, called the field of constants. One can
then apply the ideas of algebraic geometry, first developed over C, to the geometry
of the curve ¥ and obtain a geometric interpretation of the basic properties of the
zeta function of k; the dictionary contains in particular the following lines

Spectral interpretation of Eigenvalues of action
the zeros of Frobenius on ¢-adic cohomology
Functional equation Riemann Roch theorem

(Poincaré duality)

Explicit formulas of Lefchetz formula
number theory for the Frobenius
Riemann hypothesis Castelnuovo positivity

Since I, is not algebraically closed, the points of ¥ defined over F, do not
suffice and one needs to consider ¥, the points of ¥ on the algebraic closure I_Fq of
4, which is obtained by adjoining to F, the roots of unity of order prime to q.
This set of points is a countable union of periodic orbits under the action of the
Frobenius automorphism; these orbits are parametrized by the set of places of k
and their periods are indeed given by the analogues of the logp of (A). Being a
countable set it does not qualify as an analogue of the Riemann flow and it only
aquires an interesting structure from algebraic geometry. The minus sign which
was problematic in the above discussion admits here a beautiful resolution since
the analogue of the Pdélya-Hilbert space is given, if one replaces C by Q, the field
of ¢-adic numbers ¢ # p, by the cohomology group

HL (2,Q)) (2)

which appears with an overall minus sign in the Lefchetz formula

Z(fl)j Trace ¢*/H? = Z 1. (3)

p(z)=u

For the general case this suggests
(C) The Pélya-Hilbert space H should appear from its negative OH.

In other words, the spectral interpretation of the zeros of the Riemann zeta function
should be as an absorption spectrum rather than as an emission spectrum, to
borrow the language of spectroscopy.
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The next thing that one learns from this excursion in characteristic p > 0 is that
in that case one is not dealing with a flow but rather with a single transformation.
In fact taking advantage of abelian covers of ¥ and of the fundamental isomorphism
of class field theory, one finds that the natural group that should replace R for the
general Riemann flow is the Idele class group:

O = GL1(A)/k" . (D)

We can thus collect the information (A) (B) (C) (D) that we have obtained so far
and look for the Riemann flow as an action of C on an hypothetical space X.

ITI. Spectral interpretation of critical zeros

There is a third approach to the problem of the zeros of the Riemann zeta function,
due to G. Pélya [P] and M. Kac [K] and pursued further in [J] [BC]. It is based on
statistical mechanics and the construction of a quantum statistical system whose
partition function is the Riemann zeta function. Such a system was naturally
constructed in [BC|] and it does indicate using the first line of the dictionary of
Noncommutative Geometry (namely the correspondence between quotient spaces
and noncommutative algebras) what the space X should be in general:

X = A/E" (1)

namely the quotient of the space A of adeles, A = k4 by the action of the multi-
plicative group k*,
a€A, qek*—aqe A (2)

This space X already appears in a very implicit manner in the work of Tate and
Iwasawa on the functional equation. It is a noncommutative space in that, even
at the level of measure theory, it is a tricky quotient space. For instance at the
measure theory level, the corresponding von Neumann algebra,

Ro1 = L (A) >1k* (3)

where A is endowed with its Haar measure as an additive group, is the hyperfinite
factor of type II .
The idele class group Cj acts on X by

(j,a) —ja VjeCr aeX (4)

and it was exactly necessary to divide A by k* so that (4) makes good sense.
We shall come back later to the analogy between the action of C on Ry and
the action of the Galois group of the maximal abelian extension of k.
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What we shall do now is to construct the Hilbert space L§ of functions on X
with growth indexed by § > 1. Since X is a quotient space we shall first learn in the
usual manifold case how to obtain the Hilbert space L?(M) of square e integrable
functions on a manifold M by working only on the universal cover M with the
action of I' = 1 (M). Every function f € C®(M M) gives rise to a function f on M

by
> @ (5)

m(T)=x

and all g € C°(M) appear in this way. Moreover, one can write the Hilbert
space inner product [,, f1(z) f2(2) dz, in terms of fi and f; alone. Thus [|f|* =

J ’Zver f ('yx)’ dx where the integral is performed on a fundamental domain for

I acting on M. This formula defines a pre-Hilbert space norm on C°(M ) and
L?(M) is just the completion of C°(M ) for that norm. Note that any function
of the form f — f, has vanishing norm and hence disappears in the process of
completion. In our case of X = A/k*, we thus need to define the analogous norm
on the Bruhat-Schwartz space S(A) of functions on A (cf. Appendix I for the
general definition of the Bruhat-Schwartz space). Since 0 is fixed by the action of
k*, the expression Zve o J(yz) does not make sense for x = 0 unless we require
that f(0) = 0. Moreover, when || — 0, the above sums approximate, as Riemann
sums, the product of |Jc|71 by [ fdz for the additive Haar measure; thus we also
require f fdz =0. We can now define the Hilbert space L§ (X)o as the completion
of the codimension 2 subspace

S(A)o = {feS( ) =0, /fdm—O (6)

for the norm || ||s given by

1913 = [| 3 #tao)|” 1+ 10g? a2 o] 7)

qEk*

where the integral is performed on A*/k* and d*x is the multiplicative Haar mea-
sure on A*/k*. The ugly term (1 + log? [2])%/2 is there to control the growth of
the functions on the noncompact quotient. We shall see how to remove it later in
Section VII. Note that |gz| = |z| for any ¢ € k*.

The key point is that we use the measure |z| d*z instead of the additive Haar
measure dz. Of course for a local field K, one has dx = |z|d*z, but this fails in
the above global situation. Instead one has,

dx = liH(l) e x|t e d*a. (8)
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One has a natural representation of Cj, on L%(X)o given by

UG @) =fG""e)  VYeed jeC 9)

and the result is independent of the choice of a lift of j in J, = GL1(A) because
the functions f — f, are in the kernel of the norm. The conditions (6) which define
S(A)p are invariant under the action of Cy and give the following action of Cj on
the 2-dimensional supplement of S(A)y C S(A); this supplement is C& C(1) where
C is the trivial Cy, module (corresponding to f(0)) while the Tate twist C(1) is the
module

(4 A) = 13 A (10)

coming from the equality

[0y da =il [ sia)d, (11)

In order to analyze the representation (9) of C on L2(X)o, we shall relate it to the
left regular representation of the group Cj on the Hilbert space L2(Cy) obtained
from the following Hilbert space square norm on functions,

)2 = / ()P (1 + 102 |g)* d*g. (12)

Cy

Here we have normalized the Haar measure of the multiplicative group Cj, with
module
||:Cr — RYL (13)

in such a way that (cf. [W3])
/ d*g ~logA when A — +o0. (14)
lgl€[1,A]

The left regular representation V of Cy on L3(Cy) is

(V(@)§) (9) =¢&a™tg)  Vg.a€Ch. (15)

Note that because of the weight (14 log?|z|)%/2, this representation is not unitary
but it satisfies the growth estimate

IV(9)ll = 0 (logg])*’®  when |g| — oo (16)

which follows from the inequality (valid for u,v € R)

plutv) <272 p(u) p(v),  plu) = (1+u?)2. (17)
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We let E be the linear isometry from L%(X)o into L3(Cy) given by the equality,

E(f)(9)=19I"* > flag) Vg€ Cy. (18)

qgek*

By comparing (7) with (12) we see that E is an isometry and the factor [g|'/? is
dictated by comparing the measures |g| d*g of (7) with d*g of (12).

One has E(U(a) f) (9) = |g]'* 3. (U(a) f) (ag) = |gI'* 3oy fla™" qg) =
a2 |a" g|'/? 250 flga™" g) =[al'/? (V(a) E(f)) (g). Thus,

EU(a) = |a|*?V(a) E. (19)

This equivariance shows that the range of F in L(Qs (Cy) is a closed invariant subspace
for the representation V.

The following theorem and its corollary show that the cokernel H = L2(Cy)/
Im (E) of the isometry F plays the role of the Pélya-Hilbert space. Since Im F is
invariant under the representation V', we let W be the corresponding representation
of Cj on H.

The abelian locally compact group Cj, is (noncanonically) isomorphic to K x N
where

K={geCy;lg|=1}, N = range ||CR}. (20)

For number fields one has N = R* , while for fields of nonzero characteristic N ~ Z
is the subgroup ¢% C R (where ¢ = p’ is the cardinality of the field of constants).
We choose (noncanonically) an isomorphism

Ck ~ K x N. (21)
By construction the representation W satisfies (using (16)),
IW (9)ll = 0(log |g1)*/? (22)

and its restriction to K is unitary. Thus H splits as a canonical direct sum of
pairwise orthogonal subspaces,

H= @ Hy, Hy=1{6; W(9)é=x(9)¢ VYgeK} (23)
xeK

where y runs through the Pontrjagin dual group of K, which is the discrete abelian
group K of characters of K. Using the noncanonical isomorphism (21), i.e., the
corresponding inclusion N C Cj, one can now restrict the representation W to
any of the sectors H,. When char (k) > 0, then N ~ Z and the condition (22)
shows that the action of N on H, is given by a single operator with wunitary
spectrum. (One uses the spectral radius formula | Spec w| = Lim || w™||*/™.) When
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Char (k) = 0, we are dealing with an action of R} ~ R on H, and the condition
(22) shows that this representation is generated by a closed unbounded operator
D, with purely imaginary spectrum. The resolvent Ry = (D, — \)~! is given, for
Re A > 0, by the equality

RA:/ W, (e¥) e ™ ds (24)
0

and for Re A < 0 by,
R :/ W, (e™*) e ds (25)
0

while the operator D, is defined by

D= lim (W () ~ )& (26)
Theorem 1. Let x € IA(, 0 > 1, Hy and D, be as above. Then D, has discrete
spectrum, Sp D, C iR is the set of imaginary parts of zeros of the L function with
Grdssencharakter X which have real part equal to %; peESp DL ()z, % + p) =0
and p € iR, where X is the unique extension of x to Cy which is equal to 1 on N.
Moreover the multiplicity of p in Sp D is equal to the largest integer n < %‘S ,
n < multiplicity of % + p as a zero of L.

Theorem 1 has a similar formulation when the characteristic of £ is nonzero.
The following corollary is valid for global fields k of arbitrary characteristic.

Corollary 2. For any Schwartz function h € S(Cy) the operator W(h) =
JW(g)h(g)d* g in H is of trace class, and its trace is given by

Trace W (h) = Z n(X.p)
L(X.1+s)=0

peiR/N-L

where the multiplicity is counted as in Theorem 1 and where the Fourier transform
h of h is defined by,

o~

Mzmzjimmawwvww

Ch

Note that we did not have to define the L functions, let alone their analytic
continuation, before stating the theorem, which shows that the pair

(R Dy) (27)

certainly qualifies as a Pdlya-Hilbert space.
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The case of the Riemann zeta function corresponds to the trivial character y = 1
for the global field £ = Q of rational numbers.

In general the zeros of the L functions can have multiplicity but one expects
that for a fixed Grossencharakter y this multiplicity is bounded, so that for a large
enough value of § the spectral multiplicity of D will be the right one. When the
characteristic of k£ is > 0 this is certainly true.

If we modify the choice of noncanonical isomorphism (21) this modifies the
operator D by

D' =D —is, (28)

where s € R is determined by the equality

=/

X'(9) =x(9) gl Vg€l (29)
The coherence of the statement of the theorem is insured by the equality
L(X',2)=L(x,z+is) VzeC. (30)

When the zeros of L have multiplicity and ¢ is large enough, the operator
D is not semisimple and has a nontrivial Jordan form (cf. Appendix I). This is
compatible with the almost unitary condition (22) but not with skew symmetry
for D.

The proof of Theorem 1, explained in Appendix I, is based on the distribution
theoretic interpretation by A. Weil [W2] of the idea of Tate and Iwasawa on the
functional equation. Our construction should be compared with [Bg] and [Z].

As we expected from (C), the Pdélya-Hilbert space H appears as a cokernel.
Since we obtain the Hilbert space L§(X )o by imposing two linear conditions on
S(4),

0 S(A) = 8(4) » CeC(1) -0 (31)

we shall define L2(X) so that it fits in an exact sequence of Cj-modules
0— L3(X)o — L3(X) = Ca C(1) — 0. (32)
We can then use the exact sequence of C-modules
0— L3(X)g — L3(Cy) = H —0 (33)

together with Corollary 2 to compute in a formal manner what the character of
the module LZ(X) should be. Using (32) and (33) we obtain,

“Trace” (U(h)) = h(0)+h(1) — > h(x,p) +ocoh(1) (34)

L(x,p)=0
Rep:%
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where ﬁ(x, p) is defined by Corollary 2 and
v = [ Ve g (35)
k

while the test function A is in a suitable function space. Note that the trace on
the left hand side of (34) only makes sense after a suitable regularization since
the left regular representation of C}, is not of trace class. This situation is similar
to the one encountered by Atiyah and Bott ([AB]) in their proof of the Lefchetz
formula. We shall first learn how to compute in a formal manner the above trace
from the fixed points of the action of Cx on X. In Section VII, we shall show how
to regularize the trace and completely eliminate the parameter §.

IV. The distribution trace formula for flows on manifolds

In order to understand how the left hand side of III(34) should be computed, we
shall first give an account of the proof of the usual Lefchetz formula by Atiyah-
Bott ([AB]) and describe the computation of the distribution theoretic trace for
flows on manifolds, which is a variation on the theme of [AB] and is due to
Guillemin-Sternberg [GS]. We refer to Appendix III for a more detailed coordi-
nate independent treatment following [GS].

Let us start with a diffeomorphism ¢ of a smooth compact manifold M and
assume that the graph of ¢ is transverse to the diagonal in M x M. One can
then easily define and compute the distribution theoretic trace of the operator
U:C>®(M)— C>(M),

(U)(z) = &(p(x)). (1)

Indeed let k(x,y) be the Schwartz distribution on M x M such that

W) = [ k) €0 . )
The distributional trace of U is simply
“Trace” (U) = /k(x,x) dx, (3)

Near the diagonal and in local coordinates one gets

k(x,y) = 0(y — p(z)) (4)

where ¢ is the Dirac distribution.
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Since, by hypothesis, the fixed points of ¢ are isolated, one can compute the
trace (3) as a finite sum and get the contribution of each fixed point
x €M, p(x) =, as

z,p(z)=x
1
T—¢@)

where ¢'(x) is the Jacobian of ¢ and |A| = |det A|. One just uses the invertibility
of id — ¢/(z) to change variables in the integral,

()

/ 5y — p(y) dy. (6)

One thus gets (cf. [AB]),

« 9 1
Trace (U) = Z m
z,p(x)=x

(7)
This computation immediately extends to the action of ¢ on sections of an equi-
variant vector bundle E such as the bundle A¥T* whose sections, C*(M, E) are
the smooth forms of degree k. The alternate sum of the corresponding distribution
theoretic traces is the ordinary trace of the action of ¢ on the de Rham cohomology,
thus yielding the usual Lefchetz formula,

Z(—l)j Trace ¢*/H’ = Z sign det(1 — ¢'(z)) . (8)
e(z)=z

Let us refer to the appendix for more pedantic notations which show that the
distribution theoretic trace is coordinate independent.

We shall now write down the analogue of formula (7) in the case of a flow
F; = exp(tv) of diffeomorphisms of M, where v € C*(M,T) is a vector field
on M. We get a one parameter group of operators acting on C*°(M),

Ui &)(x) = &(Fi(x) VEeC¥(M), ve M, teR, 9)

and we need the formula for,

p(h) = “Trace” ( / h(t) Uy dt) . heCo(R), h(0) = 0. (10)

The condition ~(0) = 0 is required because we cannot expect that the identity map
Fy be transverse to the diagonal. In order to define p as a distribution evaluated
on the test function A, we let f be the following map:

f:X=MxR->Y =M, f(zt)=F(). (11)
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The graph of f is the submanifold Z of X x Y,
Z={(z,t,y) s y=F(x)}. (12)
One lets ¢ be the diagonal map,
o(z,t) = (x,t,2), ¢: MxR—->XxY (13)

and one assumes the transversality ¢ M Z outside M x (0).
Let 7 be the distribution,

T=¢"(6(y — Fi(z))dy), (14)
and let ¢ be the second projection,
q(z,t) =t eR. (15)

Then by definition p is the pushforward ¢.(7) of the distribution 7. One checks
(cf. Appendix IIT) that ¢.(7) is a generalized function.

Exactly as in the case of a single transformation, the contributions to (10) will
come from the fixed points of F;. The latter will come either from a zero of the
vector field v, (i.e., z € M such that v, = 0) or from a periodic orbit v of the flow
and we call T7# the length of such a periodic orbit. Under the above transversality
hypothesis, the formula for (10) is (cf. [GS], [G] and the Appendix III),

“Trace” </ h(t) U dt)

B h(t) 4 1
-2 /|1—<Ft>*|d”;;% =@

x,0,=0

(16)

where in the second sum < is a periodic orbit with length Tj&, and T varies in Z Tj&
while (F'p/)« is the Poincaré return map, i.e., the restriction of the tangent map to
the transversal of the orbit.

One can rewrite (16) in a better way as,

“Trace” (/ h(t) U dt) = ;/lw % d*u, (17)

where the zeros z € M, v, = 0, are considered also as periodic orbits v, while
I, C R is the isotopy subgroup of any x € v, and d*u is the unique Haar measure
in I, such that the covolume of I, is equal to 1, i.e., such that for the unique Haar
measure du of total mass 1 on R/I and any f € C*(R),

[rwa= | ; ([ sdu) o (1)
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Also we still write (Fy, ). for the restriction of the tangent map to F, to the
transverse space of the orbits.

To understand what (F}). looks like at a zero of v we can replace v(z) for x
near x( by its tangent map. For simplicity we take the one dimensional case, with
v(z) =2 2, acting on R = M.

One has F;(z) = e’ z. Since F} is linear the tangent map (F}). is

(Fy)w =¢ (19)

“Trace” ( / h(t) Uy dt) - / |1h(’2t| dt. (20)

Thus, for this flow, the distribution trace formula is

and (12) becomes

“Trace” (U(h)) = / |1h(ul| d*u (21)

where we used the multiplicative notation so that R’} acts on R by multiplication,
while U(h) = [U(v)h(v) d*v and d*v is the Haar measure of the group R*.

One can treat in a similar way the action, by multiplication, of the group of
nonzero complex numbers on the manifold C.

We shall now investigate the more general case of an arbitrary local field.

V. The action (\,z) — Az of K* on a local field K

We let K be a local field and consider the map,
fKxK"— K, f(z,\)=\x (1)
together with the diagonal map,
p: KXK' KxK*"xK, ¢\ =\2x) (2)

as in IV(11) and (12) above.
When K is Archimedean we are in the framework of manifolds and we can
associate to f a d-section with support Z = Graph (f),

0z =0(y — Az)dy. (3)

Using the projection ¢(z,\) = X from K x K* to K*, we then consider as above
the generalized function on K* given by

g+ (" 0z2). (4)
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The formal computation of this generalized function of \ is
/5(35 CAz)dr = /5((1 ~ N)2)da = /5(y) d((1—2)"1y)
—p1= A [ o) dy =1 x

We want to justify it by computing the convolution of the Fourier transforms of
0(x —y) and §(y — A z) since this is the correct way of defining the product of two
distributions in this local context. Let us first compute the Fourier transform of
§(ax + by) where (a,b) € K%(# 0). The pairing between K2 and its dual K? is
given by

((@,9), (&m) =alz&+yn) € U(1), (5)

where « is a fixed nontrivial character of the additive group K.
Let (c,d) € K? be such that ad — bc = 1 and consider the linear invertible

transformation of K?2,
x a b| |z
A 0

The Fourier transform of ¢ o L is given by
(po L) =|det LI §o (L. (7)

Here one has det L = 1 and (L™1)! is
=4 ] 5)

One first computes the Fourier transform of §(x), the additive Haar measure dx
is normalized so as to be selfdual, and in one variable, d(z) and 1 are Fourier
transforms of each other. Thus

(1) =104 (9)

Using (7) one gets that the Fourier transform of §(azx + by) is §(—=b& + an). Thus
we have to compute the convolution of the two generalized functions 6(£ + 7) and
5+ An). Now

/ F(€m) 6(¢ +n) de dn = / f(6—€) de
and

/ F(6,m) 8(E + A) de dn = / F(=Na, ) di.

Thus we are dealing with two measures carried respectively by two distinct lines.
Their convolution evaluated on f € C*(K?) is [ fla + B)du(a)dv(B) =
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JTFE =€) + (SAnm)dgdn = [ [ 1€ = n,—¢ + n)dedn = ([ [ (&)
dg’ dn’) x|J|~! where J is the determinant of the matrix [711 _1’\} = L, so that

[57:] =J [ﬂ One has J = 1 — XA and thus the convolution of the generalized

functions 6(£ + ) and §(£ + An) gives as expected the constant function
|1 — At (10)

Correspondingly, the product of the distribution §(z — y) and d(y — Ax) gives
|1 — |71 & so that

/5($—y)5(y—/\x)dmdy:|1—/\|71. (11)

In this local case the Fourier transform alone was sufficient to make sense of the
relevant product of distributions. In fact this would continue to make sense if we
replace §(y — Ax) by [h(A™!)d(y — Ax) d* X where h(1) = 0.

We shall now treat in detail the more delicate general case where h(1) is arbi-
trary.

We shall prove a precise general result (Theorem 3) which handles the lack
of transversality when h(1) # 0. We deal directly with the following operator in
L3(K),

Uh) = /h(/\) U d* ), (12)
where the scaling operator U(\) is defined by
UNE@)=EN"a)  VrzekK (13)

and where the multiplicative Haar measure d*\ is normalized by
/ d* X ~ log A when A — oo. (14)
IA[€[1,A]

To understand the “trace” of U(h) we shall proceed as in the Selberg trace for-
mula ([Se]) and use a cutoff. For this we use the orthogonal projection Py onto the
subspace
Py={¢€ L*(K); &x) =0  Vaz, |z| > A} (15)
Thus, Py is the multiplication operator by the function pa, where pp(x) = 1
if |x| < A, and p(z) = 0 for |z| > A. This gives an infrared cutoff, and to get an
ultraviolet cutoff we use 131\ = FPyF~! where F is the Fourier transform (which
depends upon the basic character o). We let

Ry = Py Py. (16)

The main result of this section is then
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Theorem 3. Let K be a local field with basic character a. Let h € S(K*) have
compact support. Then Rp U(h) is a trace class operator and when A — oo, one

has

™) e
|1_u|d +o(1)

Trace (Ra U(h)) = 2h(1)log’ A + /

where 2log’ A = f/\eK*, IAE[A-1,A] d* A, and the principal value f’ is uniquely deter-

mined by the pairing with the unique distribution on K which agrees with |1‘i“u| for
u # 1 and whose Fourier transform vanishes at 1.

Proof. We normalize as above the additive Haar measure to be the selfdual one
on K. Let the constant p > 0 be determined by the equality

d\
/ — ~plogA when A — o (17)
1<ia<a Al
so that d*\ = p_lld—)\)“. Let L be the unique distribution, extension of p~! \ﬁiu\

whose Fourier transform vanishes at 1, E(l) = 0. One then has by definition

// h(uli d*u = <L, h(u1)>, (18)

[1—u |ul

where h(uuil) =0 for u~! outside the support of h.
Let T = U(h). We can write the Schwartz kernel of T as

k(2 y) = /h(xl) 5y — Az) d*A. (19)
Given any such kernel k we introduce its symbol,
7(0.6) = [ blaa+ ) aug) du (20)

as its partial Fourier transform. The Schwartz kernel 7, (x,y) of the transpose R}
is given by

rh(z,y) = pa(e) (pr) (z — y). (21)
Thus, the symbol o of RY is simply
oa(x, &) = pa() pa(8)- (22)

The operator Ry is of trace class and one has

Trace (RAT) = /k(x, y) i (2, y) dz dy. (23)
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Using the Parseval formula we thus get

Trace (RAT) = / relen o(z,&) dx d€. (24)

Now the symbol o of T is given by

o, &) = /h(A—l) (/ 5z + u — Az) aluf) du> d* A, (25)
One has
/6(m+uf)\x)a(uf) du = a((A —1)xf); (26)
thus (25) gives
o€ =p™" [ 9N auag)dx (27)
K
where
g\ =h(A+ 1) A+ 17 (28)

Since h is smooth with compact support on K*, the function g belongs to C°(K).
Thus o(z, &) = p~t g(x€) and

Trace (RAT) = p_l/l < elen g(x&) dx d€. (29)

With u = € one has dz dé = du % and, for |u| < A2,

||

d
pfl/ a_ 21og’ A — log |u| (30)
Ll <jz<a 2]

(using the precise definition of log’ A to handle the boundary terms). Thus we can
rewrite (29) as

Trace (Ry T) = / G(u) (21og’ A — log |u]) du. (31)
lul<A2

Since g € C°(K), one has
/ [g(u)|du=0A"N) VN (32)
lu|>A2
and similarly for |g(u) log|u||. Thus

Trace (RaT) = 2g(0) log’ A — /ﬁ(u) log |u| du + o(1). (33)
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Now for any local field K and basic character «, if we take for the Haar measure
da the selfdual one, the Fourier transform of the distribution p(u) = —log|u| is

given outside 0 by
1
-t (34)

Pla)=p al

with p determined by (17). To see this one lets P be the distribution on K given
by

e—0
e€ Mod (K)

P(f)= lim </||> f(:v)d*x—f—f(O)loga). (35)

One has P(f,) = P(f) —log|a| f(0) which is enough to show that the function
P(z) is equal to — log|z|+ cst, and @ differs from P by a multiple of d.
Thus the Parseval formula gives, with the convention of Theorem 3,

N _1 ! ada
- / ) log ful du = / o(a) (36)

lal*
Replacing a by A — 1 and applying (28) gives the desired result. O

We shall show in Appendix II that the privileged principal value, which depends
upon the basic character «, is the same as in Weil’s explicit formulas.

VI. The global case and the formal trace computation

We shall now consider the action of Cy, on X and write down the analogue of IV(17)
for the distribution trace formula.
Both X and C} are defined as quotients and we let

7:A—= X, c¢:GL1(4) = Ck (1)

be the corresponding quotient maps.
As above we consider the graph Z of the action

f:XxCr— X, flz,\)=Xx (2)
and the diagonal map
0: XxCp—>XxCpxX olx,\) = (x,\ z). (3)

We first investigate the fixed points, ¢~1(Z), i.e., the pairs (z,\) € X x Cg
such that Az = z. Let © = 7(Z) and A = ¢(j). Then the equality Az = x means
that 7(jZ) = m(Z). Thus there exists ¢ € k* such that with j = ¢j, one has

JE=7. (4)
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Recall now that A is the restricted direct product A = II k, of the local fields k,

res

obtaiPed by completion of k with respect to the place v. The equality; (4) means
that j, &, = Z,; thus, if £, # 0, for all v it follows that j, = 1 Vv and j = 1. This
shows that the projection of ¢~1(Z)NCi\{1} on X is the union of the hyperplanes

UH,; H, =n(H,), H,={z; z, =0} (5)

Each H, is closed in A and is invariant under multiplication by elements of k*.
Thus each H, is a closed subset of X and one checks that it is the closure of the
orbit under Cj, of any of its generic points

T, Xy =0 <<= u=w. (6)

For any such point x, the isotropy group I, is the image in C}, of the multiplicative
group k,
I =k (7)

by the map A € k! — (1,...,1,\ 1,...). This map already occurs in class field
theory (cf. [W1]) to relate local Galois theory to the global one.

Both groups k;; and Cj are commensurable to R%} by the module homomor-
phism, which is proper with cocompact range,

G-LLRe. (8)
Since the restriction to k;; of the module of C}, is the module of k3, it follows that
I, is a cocompact subgroup of C. (9)

This allows us to normalize the respective Haar measures in such a way that the
covolume of I, is 1. This is in fact insured by the canonical normalization of the
Haar measures of modulated groups ([W3]),

/ d*g ~logA when A — +oo. (10)
lgle[1,A]

It is important to note that though I, is cocompact in Cj, the orbit of z is not
closed and one needs to close it, the result being H,. We shall learn how to justify
this point later in Section VII, in the similar situation of the action of C's on Xg.
We can now in view of the results of the two preceding sections, write down the
contribution of each H, to the distributional trace.
Since H, is a hyperplane, we can identify the transverse space N, to H, at x
with the quotient
N, =A/H, = k,, (11)
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namely the additive group of the local field k,. Given j € I, one has j, = 1 Vu # v,
and j, = A € k. The action of j on A is linear and fixes x; thus the action on the
transverse space N, is given by

(M\a) = Aa Va€k,. (12)

We can thus proceed with some faith and write down the contribution of H,, to the
distributional trace in the form
h(A
/ G (13)
k

RATRpY

where h is a test function on C} which vanishes at 1. We now have to take care
of a discrepancy in notation with the third section (formula 9), where we used the
symbol U(j) for the operation

UG ) (@) = FG "), (14)

whereas we use j in the above discussion. This amounts to replacing the test
function h(u) by h(u~!), and we thus obtain as a formal analogue of IV(17) the
following expression for the distributional trace

“Trace” (U(h) = 3 / * Tl(“_uf d*u. (15)

Now the right-hand side of (15) is, when restricted to the hyperplane h(1) = 0, the
distribution obtained by André Weil [W3] as the synthesis of the explicit formulas
of number theory for all L-functions with Gréssencharakter. In particular we can
rewrite it as

BO)+h(1) = 3 hlxp) + 00 h(1) (16)
L(x,p)=0

where this time the restriction Re (p) = % has been eliminated.

Thus, equating (34) of Section IIT and (16) for h(1) = 0 would yield the desired
information on the zeros. Of course, this do requires first eliminating the role of §,
and (as in [AB]) to prove that the distributional trace coincides with the ordinary
operator theoretic trace on the cokernel of E. This is achieved for the usual setup
of the Lefchetz fixed point theorem by the use of families.

A very important property of the right hand side of (15) (and of IV(17) in
general) is that if the test function h, h(1) = 0 is positive,

h(u) >0 VueCC (17)

then the right-hand side is positive. This indicated from the very start that in order
to obtain the Pélya-Hilbert space from the Riemann flow, it is not quantization that
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should be involved but simply the passage to the L? space, X — L?(X). Indeed the
positivity of IV(17) is typical of permutation matrices rather than of quantization.
This distinction plays a crucial role in the above discussion of the trace formula, in
particular the expected trace formula is not a semi-classical formula but a Lefchetz
formula in the spirit of [AB].

The above discussion is not a rigorous justification of this formula. The first
obvious obstacle is that the distributional trace is only formal and to give it a
rigorous meaning tied up to Hilbert space operators, one needs as in Section V, to
perform a cutoff. The second difficulty comes from the presence of the parameter
0 as a label for the Hilbert space, while ¢ does not appear in the trace formula. As
we shall see in the next two sections, the cutoff will completely eliminate the role
of 4, and we shall nevertheless show (by proving positivity of the Weil distribution)
that the validity of the (0 independent) trace formula is equivalent to the Riemann
Hypothesis for all Grossencharakters of k.

VII. Proof of the trace formula in the S-local case

In the formal trace computation of Section VI, we skipped over the difficulties
inherent in the tricky structure of the space X. In order to understand how to
handle trace formulas on such spaces, we shall consider the slightly simpler situation
which arises when one only considers a finite set S of places of k. As soon as the
cardinality of S is larger than 3, the corresponding space Xg do shares most of the
tricky features of the space X. In particular it is no longer of type I in the sense
of Noncommutative Geometry.

We shall nevertheless prove a precise general result (Theorem 4) which shows
that the above handling of periodic orbits and of their contribution to the trace is
the correct one. It will in particular show why the orbit of the fixed point 0, or of
elements = € A, such that x, vanishes for at least two places do not contribute to
the trace formula.

At the same time, we shall handle as in Section V, the lack of transversality
when h(1) # 0.

Let us first describe the reduced framework for the trace formula. We let k be
a global field and S a finite set of places of k containing all infinite places. The
group O% of S-units is defined as the subgroup of £*,

O ={qek”, |g@l=1, Yv¢gS} (1)

It is cocompact in J é where
Js=TI* 2)
vES

and,
Ji={jeJs, l|jl=1} (3)
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Thus the quotient group Cs = Js/O% plays the same role as Cj, and acts on the
quotient Xg of Ag = [],cg kv by OF.

To keep in mind a simple example, one can take k = Q, while S consists of the
three places 2, 3, and oo. One checks in this example that the topology of Xg is
not of type I since for instance the group O§ = {£2"3™; n,m € Z} acts ergodically
on {0} xR C Ag.

We normalize the multiplicative Haar measure d*A of C's by

/ d*A ~logA when A — oo, (4)
IAl€[1,A]

and normalize the multiplicative Haar measure d*\ of Jg so that it agrees with the
above on a fundamental domain D for the action of O% on Js.

There is no difficulty in defining the Hilbert space L?(Xg) of square integrable
functions on Xg. We proceed as in Section III (without the §), and complete (and
separate) the Schwartz space S(Ag) for the pre-Hilbert structure given by

1912 = [| S s el s 5)

qe0%

where the integral is performed on Cg or equivalently on a fundamental domain
D for the action of O% on Jg. To show that (5) makes sense, one proves that for
f € S8(Ag), the function Ey(f)(z) = quog f(gx) is bounded above by a power of
Log |x| when |z| tends to zero. To see this when f is the characteristic function of
{x € Ag, |z, < 1,Yv € S}, one uses the cocompactness of O in J&, to replace
the sum by an integral. The latter is then comparable to

u; >0,> u;=— Log |z|

where the index ¢ varies in S. The general case follows.
The scaling operator U()) is defined by

UNE (@) =¢A o) Voeds (7)

and the same formula, with z € Xg, defines its action on L?(Xg). Given a smooth
compactly supported function h on Cs, U(h) = [ h(g9)U(g)dg makes sense as an
operator acting on L?(Xg).

We shall now show that the Fourier transform F on S(Ag) does extend to a
unitary operator on the Hilbert space L?(Xg).

Lemma 1.
a) For any f; € S(Ag) the series ZO; (f1,U(q) f2) 4 of inner products in
L?(Ags) converges geometrically on the abelian finitely generated group O%.
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Moreover its sum is equal to the inner product of f1 and fo in the Hilbert
space L*(X5s).

b) Let a = [[ay be a basic character of the additive group As and F the
corresponding Fourier transformation. The map f — F(f), f € S(As)
extends uniquely to a unitary operator in the Hilbert space L*(Xs).

Proof. The map L : O% — R¥, given by L(u), = log |u,|, has a finite kernel and
its range is a lattice in the hyperplane H = {(y),> ¢ %>, = 0}. On H one has
Supg ¥y > 1/2n>" |y,|, where n = card (S). Thus one has the inequality

Supg |¢v| > exp(d(q,1) Vg € O% (8)

for a suitable word metric d on O%.
Let K, = {z € Ag; |z»] < n Vv € S} and k, be the characteristic function of
K,. Let (A,) be a sequence of rapid decay such that

|fi(z)| < an kn(z) Ve Ag. 9)
One has for a suitable constant c,

| (ks Uq™") bn) | < en™(Supgg [qu]) ™! (10)

where m = Card (5).
Using (9) we thus see that (f1,U(q) f2) 4 decays exponentially on O§. Applying
Fubini’s theorem yields the equality,

/} > f(qﬂﬁ)}2 @l d*z =" (f,U(q) f)a- (11)

q€05% o3
This proves a).

To prove b), one just uses (11) and the equalities (F'f, Ff), = (f, f), and
F(U(q) f) = Ulg (). 0

Now exactly as above for the case of local fields (Theorem V.3), we need to use
a cutoff. For this we use the orthogonal projection Py onto the subspace,

Py={6€ L*(Xs); &(x) =0  Va, |z] > A} (12)

Thus, Py is the multiplication operator by the function pa, where pa(xz) = 1 if
|z] < A, and p(x) = 0 for |z| > A. This gives an infrared cutoff and to get
an ultraviolet cutoff we use 13/\ = FP\F~! where F is the Fourier transform
(Lemma 1) which depends upon the choice of the basic character o = [[a,. We
let R

RA = Py Pa. (13)

The main result of this section is then



56 A. Connes Sel. math., New ser.

Theorem 4. Let Ag be as above, with basic character a = [[a. Let h € S(Cs)
have compact support. Then when A — oo, one has

Trace (Ry U(h)) = 2h(1)1log’ A + Z /* u—+o(1)

veS |1 7u|

where 210g'A = f)\GC& IAE[A-1,A] d* X, each K is embedded in Cg by the map u —
(1,1,... ..., 1) and the principal value f’ is umquely determined by the pairing
with the umque distribution on k, which agrees with for w # 1 and whose
Fourier transform relative to o, vanishes at 1.

\1 U\

Proof. We normalize as above the additive Haar measure dz to be the selfdual one
on the abelian group Ag. Let the constant p > 0 be determined by the equality,
(where the fundamental domain D is as above),

/ @NplogA when A — oo.
reD,1<A <A Al

so that d*\ = p‘lld—)\)“.

We let f be a smooth compactly supported function on Jg such that

> flag) =hlg) VgeCs. (14)

qe0y

The existence of such an f follows from the discreteness of O¢ in Js. We then have
the equality U(f) = U(h), where

U f):/f()\)U()\)d*)\. (15)

To compute the trace of U(h) acting on functions on the quotient space Xg, we
shall proceed as in the Selberg trace formula ([Se]). Thus for an operator T', acting
on functions on Ag, which commutes with the action of O% and is represented by
an integral kernel,

/k x,y)€¢(y) dy, (16)

the trace of its action on L?(Xg) is given by
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where D is as above a fundamental domain for the action of O% on the subset Jg

of Ag, whose complement is negligible. Let T'= U(f). We can write the Schwartz
kernel of T' as

Ha) = [ FN) 8y = A0y do (18)

By construction one has

k(qr,qy) = k(z,y) ¢ € O5. (19)

For any ¢ € O%, we shall evaluate the integral,
1, =/ k(qz,y)ry (a,y) dy dx (20)
zeD

where the Schwartz kernel 4 (z,y) for the transpose R} is given by

ra(z,y) = pa(e) (o3) (= — ). (21)

To evaluate the above integral, we let y = = + a and perform a Fourier transform
in a. For the Fourier transform in a of r} (z,z + a), one gets,

oa(x, &) = pa(z) pa(§). (22)

For the Fourier transform in a of k(qz,z + a), one gets

oz, ) = / O ( / 5(x + a— Agz) alag) da> A (23)

One has
/5(x+a—/\qx) a(a&) da = a((Ag — 1) x2€); (24)
thus (23) gives
o(x =p ! u) a(ux U
@0 = [ i) aur)d (25)
where
gq(w) = flg(u+1)"") fu+ 17" (26)

Since f is smooth with compact support on A%, the function g, belongs to C°(Ag).
Thus o(z,£) = p~! gy(x€) and, using the Parseval formula we get

I, - / o, €) da dE. (27)
2€D, 2] <A JE[<A
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This gives
L=t Gult) do d. (28)
z€D, |[z|<A|EI<A

With u = z£ one has dx d§ = du % and, for |u| < A?,

d
pt / 22— 2log/ A — log |ul (29)
zeD, %§|m|§A |:L'|

(using the precise definition of log’ A to handle the boundary terms). Thus we can
rewrite (28) as

Trace (RAT) = 3 / Gu(w) (210’ A — log ul) du. (30)
qe0} [u|<A2

Now log|u| = >, g log|uy|, and we shall first prove that

veS

while for any v € S,

> [ Guta) (- toglusdu = [ ) (32)

€0 k ul

¢
v

In fact all the sums in ¢ will have only finitely many nonzero terms. It will then
remain to control the error term, namely to show that,

> [ Gutu) (g ul — 2108’ A)* du = 0(4~) (33)

qe0y

for any N, where we used the notation 2+ = 0 if x <0 and z+ = z if z > 0. Now
recall that

9q(u) = flglu+1)"") Ju+ 1|7,

so that [ Gg(u)du = g4(0) = f(g). Since f has compact support in A%, the
intersection of OF with the support of f is finite and by (14) we get the equality (31).

To prove (32), we consider the natural projection pr, from [[,c¢ k; to Hz;e@ k.
The image pr,(O%) is still a discrete subgroup of [[,, k7', (since kj is cocompact
in Cg); thus there are only finitely many ¢ € O% such that k) meets the support
of fq, where fy(a) = f(qa) for all a.
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For each ¢ € O% one has, as in Section V,

/ Ga(s) (= log Juy ) du = (34)

and from what we have just seen, this vanishes except for finitely many ¢’s, so that
by (14) we get the equality (32). Let us prove (33). Let ex(u) = (log |u|—2log" A)™T,
and let

5,8 = [ Gulw)eawdu (35)

be the error term. We shall prove

Lemma 2. For any A the series Zog dq(A)| converges geometrically on the abelian

finitely generated group O%. Moreover its sum o(A) is O(A=N) for any N.

Proof. Let (cf. (8)), d be a suitable word metric on O such that
Supg |¢»| > exp(d(q,1)) Vq € O5. (36)

Let £ € S(Ag) be defined by &(z) = f(z71)|z7! for all z € A% and ex-
tended by 0 elsewhere. One has g,(z) = &(¢71(1 + x)) for all x € AS, so that

~

*fgq uxdo:—a( )(q) Now, 6,(A) = [ Go(w)en(u)du =
f 5 qu)a(—u) ex(u)du = [ &(y) a(—q' y)ealy) dy, since ea(qu) —EA( )for all
u

Thus we get, using the symbol Fn for the inverse Fourier transform of 7, the
equality,

54(A) = Flead)(a ™) (37)
Let a €]0,1/2[ and consider the norm

10l = Supyeaq [F(n)(x) Supg |, |®|. (38)

In order to estimate (38), we fix a smooth function % on R, equal to 1 in a neigh-
borhood of 0 and with support in [—1, 1], and introduce the convolution operators

(Cowen)@) = [ B +9) =) i (3)

and the norms,
170l = 1Caw 71, (40)

where || ||; is the L! norm.
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The Fourier transform on k, of the distribution C, , behaves like |z,|* for
|z,| — oo . Thus, using the equality F(Cqy ., * 1) = F(Cqa,) F(n), and the control
of the sup norm of F(g) by the L' norm of g, we get an inequality of the form

Supseas |F (1) (@) Sups ][ < ca Y Inllg,a0)- (41)
5

Let us now show that for any n € S(As), and a < 1/2, one has

leanll a0 = OA™Y), (42)

for any V.
One has |(ea(z + e)n(z + ¢) — ea(@)n(x)) — ea(@)(n(x + &) — @) <
[(ea(z + &) — ea(x))|In(x + €)]. Moreover using the inequality

o =" < a0, (43)
we see that |(ex(z +¢) —ea(2))| < |log|zy + €| —log |xy]|, for € € k. Let then
dy
e, = / log |1 + y|——. 44
o . gl y||y|1+a ( )

It is finite for all places v € S provided « < 1/2, and one has
de —a
/k ¥(lel)([log |z + € *10g|ﬂf||)|g|m < cqlal™ (45)
Thus one obtains the inequality

|Cav ¥ ean —en (Cowxn)|(z) < Cix|$v|7a SuPeekv,\aKl [n(z +¢)]. (46)

Since the function |x,|~% is locally integrable, for o < 1, one has for n € S(Ag),
and any N,

/X [0~ Sup.er, i< 0@ +€)ldz = O(AN), (47)
A

where Xp = {y+e;[y[ = A, e €k, [e] <1}
Moreover one has for any IV,

llea (Caw xm)llL = O(A™Y). (48)
Thus, using (46), we obtain the inequality (42).

Taking n = gand using (41), we thus get numbers &5, such that 64 = O(A=Y)
for all N and L
|F(eA€) Supg |x,|“|| < 0a Vr e As VA. (49)
Taking z = ¢ € O%, and using (36) and (37), we thus get
|0g(A)| < 0xexp(—d(q,1)) Vg€ O, (50)

which is the desired inequality. O
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VIII. The trace formula in the global case, and elimination of §

The main difficulty created by the parameter § in Theorem 1 is that the formal trace
computation of Section VI is independent of §, and thus cannot give in general the
expected value of the trace of Theorem 1, since in the latter each critical zero p is
counted with a multiplicity equal to the largest integer n < %‘5, n < multiplicity
of p as a zero of L. In particular for L functions with multiple zeros, the J-
dependence of the spectral side is nontrivial. It is also clear that the function space
L%(X) artificially eliminates the noncritical zeros by the introduction of the 4.

As we shall see, all these problems are eliminated by the cutoff. The latter will
be performed directly on the Hilbert space L?(X) so that the only value of § that we
shall use is § = 0. All zeros will play a role in the spectral side of the trace formula,
but while the critical zeros will appear perse, the noncritical ones will appear
as resonances and enter in the trace formula through their harmonic potential
with respect to the critical line. Thus the spectral side is entirely canonical and
independent of §, and by proving positivity of the Weil distribution, we shall show
that its equality with the geometric side, i.e., the global analogue of Theorem 4, is
equivalent to the Riemann Hypothesis for all L-functions with Grossencharakter.

The abelian group A of adeles of k is its own Pontrjagin dual by means of the
pairing

(a,b) = a(ab) (1)

where o : A — U(1) is a nontrivial character which vanishes on k& C A. Note that
such a character is not canonical, but that any two such characters a and o are
related by k*

a'(a) = afqa) Va€ A (2)

It follows that the corresponding Fourier transformations on A are related by

f/ :fq- (3)

This is yet another reason why it is natural to mod out by functions of the form
f — fq, i.e., to consider the quotient space X.
We fix the additive character o as above, @ = [[ a, and let d be a differental
idele
a(z) = ag(dz) V€ A, (4)

where ap = [[ao, is the product of the local normalized additive characters
(cf. [W1]). We let Sp be the finite set of places where «, is ramified.

We shall first concentrate on the case of positive characteristic, i.e., of function
fields, both because it is technically simpler and also because it allows us to keep
track of the geometric significance of the construction (cf. Section II).

In order to understand how to perform in the global case, the cutoff Ry = ﬁA P
of Section VII, we shall first analyze the relative position of the pair of projections
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ﬁA, Py, when A — oo. Thus, we let § D Sy be a finite set of places of k, large
enough so that mod (Cs) = mod (Cy) = ¢% and that for any fundamental domain
D for the action of OF on Jg, the product D x [[ R} is a fundamental domain for
the action of k* on Jj.

Both Py and Py commute with the decomposition of LZ(X 5) as the direct sum
of the subspaces, indexed by characters xo of Cg 1,

L2 ={¢e L*(Xs); &(a™'w) = xo(a) (z), VYaoeXs,aeCsi}  (5)

which corresponds to the projections Py, = [Xo(a)U(a)d; a, where d; a is the
Haar measure of total mass 1 on Cg ;.

Lemma 1. Let xo be a character of Cs 1. Then for A large enough Py and Py
commute on the Hilbert space Lio

Proof. Let Ug be the image in Cg of the open subgroup [] R}. It is a subgroup of
finite index [ in Cg,1. Let us fix a character x of Us and consider the finite direct
sum of the Hilbert spaces Li , Where xq varies among the characters of Cs; whose
restriction to Ug is equal to x,

L*(Xs)y = {6 € L*(Xs); £(a”'2) = x(a) é(z), Ve Xs, aclUsy.  (6)
The corresponding orthogonal projection is U(h, ), where h, € §(Cs) is such that
Supp (hy) = Us hy(z) = Ax(x) Yz els, (7)

and the constant A = [/log(q) corresponds to our standard normalization of the
Haar measure on Cg. Let as in Section VII, f € S(Jg) with support [] R} be such
that U(f) = U(h) and let £ € S(As) be defined by ¢(z) = f(z71)|z~! for all
x € A% and extended by 0 elsewhere.

Since £ is locally constant, its Fourier transform has compact support and the
equality (37) of Section VII shows that for A large enough, one has the equality

Trace (Py Py U(hy)) = 1log' A+ )" / * (8)

veS |1 N u|
With A = ¢, one has 21log’ A = (2N + 1) log(q) so that
2hy(1)log' A = (2N + 1)L. 9)

The character x of [[ R} is a product, x = []x» and if one uses the standard
additive character «y to take the principal value one has, (cf. [W1] Appendix IV),

/R >1<”_(12| d'u = —f,log(q) (10)
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where f, is the order of ramification of y,. We thus get

Py log(|dy|)

where ¢, = ¢9°8(") | and since we use the additive character o, we had to take into
account the shift log(|d,|) hy (1) in the principal value.
Now one has |d| = []|d,| = ¢>~29, where g is the genus of the curve. Thus we
get
Trace (PA PAU(hy)) = QN+ 1)l — fi+(2—-2g) (12)

where f = ) ¢ f, deg(v) is the order of ramification of x, i.e., the degree of its
conductor. R

Let By = Im (Py)N Im (Pa) be the intersection of the ranges of the projections
Py and ﬁ/\, and let BX be its intersection with L?(Xg),. We shall exhibit for each
character x of Us a vector n, € L?(Xs), such that

U(9)n) € Bx Vg€ Cs,lgl <A lg7 < * 27 A, (13)

while the vectors U(g)(n,) are linearly independent for g € Dg, where Dg is the
quotient of C's by the open subgroup Us.

With A = ¢V as above, the number of elements g of Dg such that |g| <
A, g7 < ¢?7297F A is precisely equal to (2N + 1)I — f1+4 (2 —2g) [, which allows
us to conclude that the projections ﬁA and Py commute in L2 (Xs)y and that the
subspace B} is the linear span of the U(g)(ny).

Let us now construct the vectors n, € L*(Xg)y. With the notations of [W1]
Proposition VII.13, we let

x = H¢v (14)
S

be the standard function associated to x = [] x» so that for unramified v, ¢, is the
characteristic function of R,, while for ramified v it vanishes outside R}, and agrees
with X, on R}. By construction the support of 7, is contained in R = [[ R,. Thus
one has U(g)(ny) € Im(Pyp) if |g| < A. Similarly by [W1] Proposition VII.13,
we get that U(g)(ny) € Im (Py) as soon as |g7!| < ¢2729=/ A. This shows that
7, satisfies (13) and it remains to show that the vectors U(g)(ny) are linearly
independent for g € Dg.
Let us start with a nontrivial relation of the form

| Av@m] =0 (15)

where the norm is taken in L?(Xg), (cf. VIL 5). Let then &, = [[g ¢» ® 1g where
R= Hygs R,. Let us assume first that y # 1. Then &, gives an el