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Abstract. We present a formalism within which the relationship (discovered by Drinfel’d in
[Dr1], [Dr2]) between associators (for quasi-triangular quasi-Hopf algebras) and (a variant of)
the Grothendieck-Teichmuller group becomes simple and natural, leading to a simplification of
Drinfel’d’s original work. In particular, we reprove that rational associators exist and can be
constructed iteratively, though the proof itself still depends on the apriori knowledge that a not-
necessarily-rational associator exists.
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1. Introduction

1.1. Reminders about quasi-triangular quasi-Hopf algebras

A quasi-triangular quasi-Hopf algebra [Dr1] is an algebra A together with a not-
quite-cocommutative and not-quite-coassociative coproduct ∆, whose failure to be
cocommutative is “controlled” by some element R ∈ A⊗2 and whose failure to be
coassociative is “controlled” by some element Φ ∈ A⊗3 (for more details, see [Dr1]
or [Ka], [SS]). For the representations of A to form a tensor category, R and Φ have
to obey the so-called “pentagon” and “hexagon” ± equations (see section 3).
In [Dr1] Drinfel’d finds a “universal” formula (RKZ,ΦKZ) for a solution of and
± by considering holonomies of the so-called Knizhnik-Zamolodchikov connection.

The formula RKZ is very simple — RKZ is in a clear sense “an exponential”. The
formula ΦKZ is somewhat less satisfactory, as it requires analysis — differential
equations and/or iterated integrals whose values are most likely transcendental
numbers [Dr1], [LM1], [Za]. In [Dr2] Drinfel’d proves that there is an iterative

This article is available electronically at http://www.ma.huji.ac.il/∼drorbn, and at
http://xxx.lanl.gov/abs/q-alg/9606021



184 D. Bar-Natan Sel. math., New ser.

algebraic procedure for finding a universal formula for a solution (R,Φ) of , ±
(with R = RKZ), and that such a universal formula (called an associator) can be
found iteratively and over the rationals.

Associators (and the iterative procedure for constructing them) are important
in the theory of finite-type invariants of knots (Vassiliev invariants) [B-N5], [B-
N3], [Ca], [Ka], [LM1], [Pi] and of 3-manifolds [LMO], [Le]. Recently, Etingof and
Kazhdan [EK1], [EK2] used associators to show that any Lie bialgebra can be
quantized. Their results become algorithmically computable once we know that an
associator can be found iteratively.1

Unfortunately, Drinfel’d’s paper is complicated and hard to read. It involves
the introduction, almost “out of thin air”, of two groups, ĜT and ĜRT, that act
on the set ÂSS of all associators. Both groups act simply transitively on ÂSS,
with ĜT acting on the right and ĜRT on the left, and the two actions commute.
He then studies these groups and their actions on ÂSS to deduce the existence of
formulae better then ΦKZ. Drinfel’d’s “Grothendieck-Teichmuller” group ĜT is
closely related to number theory and the group Gal(Q̄/Q). See [Dr2], [Sc]. ĜRT
is in some sense a “gRaded” version of ĜT, explaining why Drinfel’d inserted an
R in the middle of its name.

1.2. What we do

The purpose of this paper is to present a framework within which the set of as-
sociators ÂSS, the groups ĜT and ĜRT, and the relevant facts about them are
natural. In fact, the mere fact that ĜT and ĜRT exist and act simply transitively
on the right (for ĜT) and on the left (for ĜRT), with the two actions commuting,
stems from the following basic principle (which I learned from M. Hutchings):

Principle 1. If B is a mathematical structure (i.e., a set, a set with a basepoint,
an algebra, a category, etc.) and if C is an isomorphic mathematical structure,
then on the set A of all isomorphisms B → C there are two commuting group
actions, with both actions simple and transitive:

• The group GT of (structure-preserving) automorphisms of B acts on A by
composition on the right.

• The group GRT of (structure-preserving) automorphisms of C acts on A
by composition on the left.

We apply this principle to a certain “upgrade” of the Kohno isomorphism [Koh1]
(see also [KT]) between the unipotent completion P̂Bn of the pure braid group on

1 For most applications of associators to finite-type invariants, it is in fact sufficient to use a
weaker but more complicated notion of an associator for which an iterative construction was
given in [B-N3].
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n strands and its associated graded algebra, which is a certain completed algebra
Âpbn generated by symbols tij with 1 ≤ i 6= j ≤ n.2 More specifically, in our case,
B will be a certain category PaB (defined in section 2.1) of parenthesized braids,
and C will be a certain category PaCD (defined in section 2.2) of parenthesized
chord diagrams. On top of the category structure, both PaB and PaCD are
“fibered linear”, have natural “basepoints” (some specific morphisms between some
specific objects), natural “coproducts”, and natural “extension”, “cabling”, and
“strand removal” operations, all defined in section 2. Furthermore, PaB has a
natural “filtration”, PaCD has a natural “gradation” (which induces a filtration
as well), and these filtrations/gradations (also defined in section 2) respect all
other structure on PaB and PaCD. In applying Principle 1, we will only consider
isomorphisms/automorphisms that respect all the additional structure on PaB and
PaCD.

To be fair, we apply Principle 1 not to B = PaB and C = PaCD, but
rather to their “quotients” PaB(m) = PaB/Fm+1PaB and PaCD(m) = PaCD/
Fm+1PaCD by their respective filtrations, or to their “completions” P̂aB =
lim←−m→∞PaB(m) and P̂aCD = lim←−m→∞PaCD(m). In section 3 we show that
every isomorphism (invertible structure-preserving functor) Ẑ : P̂aB → P̂aCD is
determined by its action on some specific morphism a in P̂aB, and that Ẑ(a) can
be interpreted as an associator. We will thus identify the set of all such Ẑ’s with
ÂSS, and get the two groups ĜT and ĜRT (as well as their simple, transitive, and
commuting actions) entirely for free from Principle 1. Similarly, using Principle 1
with B = PaB(m) and C = PaCD(m), we get groups GT(m) and GRT(m) that
act on the set ASS(m) of all “associators up to degree m”.

In section 4 we start by explaining why the surjectivity of the natural map π :
GRT(m) → GRT(m−1) implies the surjectivity of the map ASS(m) → ASS(m−1),
which implies that there exists an iterative procedure for finding an associator, and
that a rational associator exists.

We then turn to the proof of the surjectivity of π. To do this, we first write the
relations defining ĜRT explicitly. These turn out to be the “pentagon”, the “clas-
sical hexagon”, the “semi-classical hexagon”, and some technical relations of lesser
interest. It turns out that the only relation that could challenge the surjectivity
of π is the semi-classical hexagon, and so we spend the rest of section 4 proving
that the semi-classical hexagon follows from the classical hexagon, the pentagon,
and the lesser relations. This is done by using a certain 12-face polyhedron to
show that the failure ψ of the semi-classical hexagon to hold lies in the kernel of

2 In the language of Vassiliev invariants, the Kohno isomorphism is a combination of three
facts: that the space of Vassiliev invariants of pure braids is the dual of P̂Bn, that the
associated graded space of Vassiliev invariants of pure braids is dual to the algebra Apbn of
“chord diagrams”, and that the maps P̂Bn → Âpbn that we consider are “universal Vassiliev
invariants”.
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some differential, and by studying the relevant cohomology of the corresponding
complex.

Just for completeness, in section 5 we display the defining formulas of ĜT and
ĜRT that are not needed in the main argument. A future part II of this paper
will contain some additional results, following [Dr2, section 6].

It is worthwhile to note that all our arguments depend on the existence of at
least one associator. Otherwise, we do not know that P̂aB and P̂aCD are at all
isomorphic. So in a sense, all that we do is to take the Knizhnik-Zamolodchikov
associator ΦKZ (constructed by Drinfel’d) and “improve” it.

Almost everything that we do appears either explicitly or implicitly in Drin-
fel’d’s paper [Dr2]. The presentation of ĜT as a group of automorphisms of some
braid-group-like objects is due to Lochak and Schneps [LS1], [LS2] (who work with
a different completion than ours).

1.3. Acknowledgement

This paper grew out of a course I gave at Harvard University in the spring semester
of 1995, titled “Knot Theory as an Excuse”. One of the advertised goals of that
course was to “attempt to read together two papers by Drinfel’d [[Dr1], [Dr2]]”3,
where I admitted that “I have read about 20% of the material in these papers,
understood about 20% of what I read, and got a lot out of it”. The idea was then
to have “a discussion group in which everybody holds copies of the papers and we
jointly try to understand them”. Courses like that are usually doomed to fail, but
due to the amazing group of participants I think we managed to meet the target
of “get ourself up to about 50% on both figures [of reading and understanding]”.
These participants were: D. D. Ben-Zvi, R. Bott, A. D’Andrea, S. Garoufalidis,
D. J. Goldberg, E. Haley, M. Hutchings, D. Kazhdan, A. Kirillov, T. Kubo, S. Ma-
jid, A. Polishchuk, S. Sternberg, D. P. Thurston, and H. L. Wolfgang. I wish to
thank them all for the part they took in the joint effort that led to this paper.
In addition, I’d like to thank P. Deligne, E. de-Shalit, and E. Goren for teaching
me some basic facts about algebraic groups, and A. Haviv, Yael K., A. Referee,
E. Rips, and J. D. Stasheff for many useful comments.

2. The basic definitions

In this section we introduce the two mathematical structures PaB and PaCD on
which we will apply Principle 1. Let A be some fixed commutative associative
Q-algebra with unit (typically C or Q). Most objects that we will define below
“have coefficients” in A. We will mostly suppress A from the notation, except in
the few places where it matters.

3 All quotes taken from the official course description.
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2.1. Parenthesized braids and GT

A parenthesized braid is a braid (whose ends are points ordered along a line) to-
gether with a parenthesization of its bottom end (the domain) and its top end (the
range). A parenthesization of a sequence of points is a specification of a way of
“multiplying” them as if they were elements in a non-associative algebra. Rather
than giving a formal definition, Figure 1 contains some examples.

�)

�)�)

(� (��))

((��) (��))

(((��)

((��)

Figure 1. A parenthesized braid whose domain is ((••)•) and whose range is (•(••)) (left), and a
parenthesized braid whose domain is (((••)•)•) and whose range is ((••)(••)) (right). Notice that
by convention we draw “inner multiplications” as closer endpoints, and “outer multiplications” as
farther endpoints. Below we will not bother to specify the parenthesizations at the ends explicitly,
as this information can be read from the distance scales appearing in the way we draw the ends.

Parenthesized braids form a category
in an obvious way. The objects of this
category are parenthesizations, the mor-
phisms are the parenthesized braids
themselves, and composition is the oper-
ation of putting two parenthesized braid
on top of each other, as on the right (pro-
vided the range of the first is the domain
of the second).

� � �

� � �

B1
�

� � �

� � �

B2
=

� � �

� � �

B2

� � �

� � �

B1

Furthermore, there are some naturally defined operations on parenthesized
braids. If B is such a braid with n strands, these operations are:

• Extension operations: Let d0B = dn0B (dn+1B = dnn+1B) be B with one
straight strand added on the left (right), with ends regarded as outer-most:

d0

0
@

1
A
= ; d3

0
@

1
A = :
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• Cabling operations: Let diB = dni B for 1 ≤ i ≤ n be the parenthesized braid
obtained from B by doubling its ith strand (counting at the bottom), taking
the ends of the resulting “daughter strands” as an inner-most product:

d2

0
@

1
A
= :

• Strand removal operations4: Let siB = sni B for 1 ≤ i ≤ n be the paren-
thesized braid obtained from B by removing its ith strand (counting at the
bottom):

s2

0
BBB@

1
CCCA = :

The skeleton SB of a parenthesized braid B is the map that it induces from the
points of its domain to the points of its range, taken together with the domain and
range:

S

0
BBB@

1
CCCA = : (1)

More precisely, the skeleton S is a functor on the category of parenthesized
braids whose image is in the category PaP of parenthesized permutations, whose
definition should be clear from its name and a simple inspection of the example
in (1). There are naturally defined operations di and si on PaP as in the case of
parenthesized braids, and the skeleton functor S intertwines the di’s and the si’s
acting on parenthesized braids and on parenthesized permutations.

The category that we really need is a category of formal linear combinations of
parenthesized braids sharing the same skeleton:

Definition 2.1. Let PaB(A) = PaB (for Parenthesized Braids) be the category
whose objects are parenthesizations and whose morphisms are pairs (P,

∑k
j=1 βjBj),

4 The strand removal operations (and all other si’s below) are important in the applications,
but play no crucial role in this paper and can be systematically removed with no change to
the end results.
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where P is a morphism in the category of parenthesized permutations, the Bj ’s
are parenthesized braids whose skeleton is P , and the βj ’s are coefficients in the
ground algebra A. The composition law in PaB is the bilinear extension of the
composition law of parenthesized braids. There is a natural forgetful “skeleton”
functor S : PaB → PaP. If the sum

∑
βjBj is not the empty sum, we usually

suppress P from the notation, as it can be inferred from the Bj ’s. See Figure 2.

� +
22

7
S(B) =B =

Figure 2. A morphism B in PaB and its skeleton S(B) in PaP.

2.1.1. Fibered linear categories. The category PaB together with the functor
S : PaB→ PaP is an example of a fibered linear category. Let P be a category “of
skeletons”. A fibered linear category over P is a pair (B,S : B → P) of the form
(category, functor into P), in which B has the same objects as P, the “skeleton”
functor S is the identity on objects, the inverse image S−1(P ) of every morphism
P in P is a linear space, and so the composition maps in B are bilinear in the
natural sense. Many notions from the theory of algebras have analogs for fibered
linear categories, with the composition of morphisms replacing the multiplication
of elements. Let us list the few such notions that we will use, without giving precise
definitions:

• A subcategory of a fibered linear category (B,S : B → P) is a choice of a
linear subspace in each “space of morphisms with a fixed skeleton” S−1(P ),
so that the system of subspaces thus chosen is closed under composition.
• An ideal in (B,S : B → P) is a subcategory I so that if at least one of

the two composable morphisms B1 and B2 in B is actually in I, then the
composition B1 ◦B2 is also in I.
• One can take powers of ideals — The morphisms of Im will be all the

morphisms in B that can be presented as compositions of m morphisms in
I. The power Im is also an ideal in B.
• One can form the quotient B/I of a fibered linear category B by an ideal I

in it, and the result is again a fibered linear category.
• Direct sums of fibered linear categories that are fibered over the same skele-

ton category can be formed.
• One can define filtered and graded fibered linear categories. One can talk

about the associated graded fibered linear category of a given filtered fibered
linear category.
• One can take the inverse limit of an inverse system of fibered linear cate-

gories (fibered in a compatible way over the same category of skeletons). In
particular, if I is an ideal in a fibered linear category B, one can form “the
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I-adic completion B̂ = lim←−m→∞B/Im. The I-adic completion is a filtered
fibered linear category.
• Tensor powers of a fibered linear category (B,S : B→ P) can be defined.

For example, B⊗B will have the same set of objects as B, and for any two
such objects O1 and O2, we set

morB⊗B(O1, O2) =
∐

P∈morP(O1,O2)

S−1(P )⊗ S−1(P ).

B⊗B is again a fibered linear category.
• The notion of a coproduct functor � : B→ B⊗B makes sense.

2.1.2. Back to parenthesized braids. We can now introduce some more struc-
ture on PaB, and specify completely the mathematical structures that will play
the role of B in Principle 1.

Definition 2.2. Let � : PaB→ PaB⊗PaB be the coproduct functor defined by
setting each individual parenthesized braid B to be group-like, that is, by setting
�(B) = B ⊗B.

Let I be the augmentation ideal of PaB, the ideal of all pairs (P,
∑
βjBj)

in which
∑
βj = 0. Powers of this ideal define the unipotent filtration of PaB:

FmPaB = Im+1.

Definition 2.3. Let PaB(m) = PaB/FmPaB = PaB/Im+1 be the mth unipotent
quotient5 of PaB, and let P̂aB = lim←−m→∞PaB(m) be the unipotent completion of
PaB.

Let σ be the parenthesized braid .
The fibered linear categories PaB(m) and P̂aB inherit the operations di and

si from parenthesized braids, and a coproduct � and a filtration F? from PaB.
The specific parenthesized braid σ can be regarded as a morphism in any of these
categories.

Definition 2.4. Let GT(m) and ĜT (really, GT(m)(A) and ĜT(A)) be the
groups of structure preserving automorphisms of PaB(m) and P̂aB, respectively.
That is, the groups of all functors PaB(m) → PaB(m) (or P̂aB → P̂aB) that
cover the skeleton functor, intertwine di, si and � and fix σ. In short, let

B(m)=
(
PaB(m),S : PaB(m) → PaP, di, si,�, σ

)
;

B̂ =
(
P̂aB,S : P̂aB→ PaP, di, si,�, σ

)
;

5 If you are familiar with Vassiliev invariants, notice that PaB(m) is simply PaB moded out
by “(m+ 1)-singular parenthesized braids”.
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GT(m) = AutB(m); ĜT = Aut B̂.

Remark. One easily sees that elements of GT(m) (ĜT) automatically preserve
the filtration F?.
Claim 2.6. PaB is generated by a±1, σ±1, and their various images by repeated
applications of the di’s, where

a = ; � = :

Proof. (sketch) The main point is that any of the standard generators of the braid
group can be written in terms of a±1 and σ±1 and their images. For example,

= = d0a
�1

� d0d3� � d0a:

�

2.2. Parenthesized chord diagrams and GRT

The category PaCD, the main ingredient of the mathematical object C on which
we will apply Principle 1, can be viewed as natural in two (equivalent) ways. First,
PaCD is natural because it is the associated graded of PaB, as will be proven
in section 3. PaCD can also be viewed as the category of “chord diagrams for
finite-type (Vassiliev) invariants [B-N1], [B-n4], [Bi], [BL], [Go1], [Go2], [Kon],
[Va1], [Va2] of parenthesized braids”, and all the operations that we will define on
PaCD are inherited from their parallels on parenthesized braids, that were defined
in section 2.1. I prefer not to make more than a few comments about the latter
viewpoint below. Saying more requires repeating well known facts about finite-type
invariants, and these can easily be found in the literature. If you already know
about Vassiliev invariants and chord diagrams, you’ll find the relation between
them and the definitions below rather clear. Unfortunately, if finite-type invariants
are not mentioned, we have to start with some unmotivated definitions.

Definition 2.7. Let Apbn = Apbn (A) be the algebra (over the ground algebra A)
generated by symbols tij for 1 ≤ i 6= j ≤ n, subject to the relations tij = tji,
[tij , tkl] = 0 if |{i, j, k, l}| = 4, and [tjk, tij + tik] = 0 if |{i, j, k}| = 3. The
algebra Apbn is graded by setting deg tij = 1; let GmApbn be the degree m piece of
Apbn , let F?Apbn be the filtration defined by FmApbn =

⊕
m′>m Gm′Apbn , let Apb(m)

n be
Apbn /FmApbn , and let Âpbn be the graded completion lim←−m→∞A

pb(m)
n of Apbn . We call

elements of Apbn chord diagrams, and draw them as in Figure 3. (In the language



192 D. Bar-Natan Sel. math., New ser.

of finite-type invariants, Apbn is the algebra of chord diagrams for n-strand pure
braids, and the last relation is the “4T” relation.)

t
13
t
13
t
12
t
23
 ! ; 4T : = ++

Figure 3. Elements of Apb3 are presented as chord diagrams made of 3 vertical strands and some
number of horizontal chords connecting them. A chord connecting the ith strand to the jth strand
represents tij , and products are read from the bottom to the top of the diagram.

Definition 2.8. There is an action of the symmetric group Sn on Apbn by “per-
muting the vertical strands”, denoted by (τ,Ψ) 7→ Ψτ :

	 = 7! 	
231
= :

Definition 2.9. Let di = dni : Apbn → Apbn+1 for 0 ≤ i ≤ n + 1 and si = sni :
Apbn → A

pb
n−1 for 1 ≤ i ≤ n be the algebra morphisms defined by their action on

the generators tjk (with j < k) as follows:

dit
jk =



tj+1,k+1 i < j < k

tj,k+1 + tj+1,k+1 i = j < k

tj,k+1 j < i < k

tjk + tj,k+1 j < i = k

tjk j < k < i

sit
jk =



tj−1,k−1 i < j < k

0 i = j < k

tj,k−1 j < i < k

0 j < i = k

tjk j < k < i.

Graphically, dn0 (dnn+1) acts by adding a strand on the left (right), dni for 1 ≤ i ≤ n
acts by doubling the ith strand and summing all the possible ways of lifting the
chords that were connected to the ith strand to the two daughter strands, and sni
acts by deleting the ith strand and mapping the chord diagram to 0 if any chord
in it was connected to the ith strand:

d0

� �
= ; d2

� �
= = + + + ;

s1

� �
= ; s1

� �
= 0:
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(Here and below the symbol means + ).

Definition 2.10. Let � : Apbn → Apbn ⊗Apbn be the coproduct defined by declaring
the tij ’s to be primitive: �(tij) = tij ⊗ 1 + 1⊗ tij .
Definition 2.11. PaCD = PaCD(A) (for Parenthesized Chord Diagrams) is
the category whose objects are parenthesizations and whose morphisms are formal
productsD·P , where P is a parenthesized permutation of n objects (for some n) and
D ∈ Apbn (A). The composition law in PaCD is D1·P1◦D2·P2 = (D1 ·DP1

2 )·(P1◦P2)
(whenever P1 and P2 are composable), where DP1

2 denotes the action of of the
permutation P1 on D2 as in Definition 2.8. This composition law is better seen
graphically as in Figure 4. PaCD inherits a grading PaCD =

⊕
m GmPaCD from

Apb? , and is fibered linear over PaP with the skeleton functor S : D ·P 7→ P . PaCD
is also be filtered by setting FmPaCD =

⊕
m′>m Gm′PaCD. PaCD inherits a

coproduct � : PaCD→ PaCD ⊗PaCD from the coproduct � of Apbn .

�
t
12
�

�
�

�
t
23

t
13
�

�
! � ! ! ! t

12
t
23

t
13
�

Figure 4. The composition of a morphism in morPaCD((•(••)), (•(••))) with a morphism in
morPaCD((•(••)), ((••)•)).

Definition 2.12. As in the case of PaB, there are some naturally defined op-
erations on PaCD. If D · P is a parenthesized chord diagram on n strands, set
di(D · P ) = dni (D · P ) = dni D · dni P , and similarly for si = sni . These operations
are:

• Extension operations: d0 (dn+1) adds a far-away independent strand on the
left (right).
• Cabling operations: diB with 1 ≤ i ≤ n doubles the ith strand and sums

all possible ways of lifting the chords that were connected to the ith strand
to the two daughter strands.
• Strand removal operations: si removes the ith strand and maps everything

to 0 if there was any chord connected to the ith strand.

Definition 2.13. Let PaCD(m) be the category PaCD/FmPaCD of parenthe-
sized chord diagrams of degree up to m, and let P̂aCD be the category
lim←−m→∞PaCD(m) of formal power series of parenthesized chord diagrams. The
fibered linear categories PaCD(m) and P̂aCD inherit the operations di and si, the
coproduct � and the filtration F? from PaCD.

Let X and H be the parenthesized chord diagrams and respectively,
and let R̃ be the formal exponential R̃ = exp

(1
2H
)
· X , regarded a morphism in
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PaCD(m) or P̂aCD.

Definition 2.14. Let GRT(m) and ĜRT (really, GRT(m)(A) and ĜRT(A))
be the groups of structure preserving automorphisms of PaCD(m) and P̂aCD,
respectively. That is, the groups of all functors PaCD(m) → PaCD(m) (or
P̂aCD → P̂aCD) that cover the skeleton functor, intertwine di, si and � and
fix R̃. In short, let

C(m)=
(
PaCD(m),S : PaCD(m) → PaP, di, si,�, R̃

)
;

Ĉ =
(
P̂aCD,S : P̂aCD→ PaP, di, si,�, R̃

)
;

GRT(m) = AutC(m); ĜRT = Aut Ĉ.

Remark 2.15. Elements of GRT(m) (ĜRT) fix each of X and H individually.
Indeed, R̃2 = expH and hence expH and thus H are fixed. But then X =
exp(− 1

2H)R̃ is fixed too.

Claim 2.16. PaCD is generated by a±1, X, H, and their various images by
repeated applications of the di’s, where

a = ; X = ; H = :

(Notice that the symbol “a” plays a double role, as a generator of PaB and as a
generator of PaCD).

Proof. (sketch) Perhaps one illustrative example will suffice:

= = d0X � a
�1

� d3H � a � d0X:

�
Remark 2.17. Remark 2.15 and Claim 2.16 imply that elements of GRT(m)

(ĜRT) automatically preserve the filtration F?.

3. Isomorphisms and associators

In this section we make the key observation that makes Principle 1 useful in our
case: The fact that the set of all associators à la Drinfel’d [Dr1], [Dr2] can be
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identified with the set of all structure-preserving functors Ẑ : B̂ → Ĉ. Recall that
A is some fixed commutative associative Q-algebra with unit.

Definition 3.1. An associator is an invertible element Φ of Âpb3 (A) satisfying the
following axioms:

• The pentagon axiom holds in Âpb4 :

d4Φ · d2Φ · d0Φ = d1Φ · d3Φ. ( )

• The hexagon axioms hold in Âpb3 :

d1 exp
(
±1

2
t12
)

= Φ · exp
(
±1

2
t23
)
· (Φ−1)132 · exp

(
±1

2
t13
)
·Φ312. ( ±)

• Φ is non-degenerate: s1Φ = s2Φ = s3Φ = 1.
• Φ is group-like: �Φ = Φ⊗ Φ.

(Apart from the different notation, this definition is equivalent to Drinfel’d’s [Dr2]
definition of an Fr(A,B)-valued ϕ, and practically equivalent to the definition of
an APhor-valued Φ in [B-N3].)

Definition 3.2. Let ÂSS = ÂSS(A) be the set of associators Φ ∈ Âpb3 (A). Sim-
ilarly, if we mod out by degrees higher than m, we can define associators up to
degree m and the set ASS(m).

Remark 3.3. The hexagon axiom for Φ ∈ ÂSS or Φ ∈ ASS(m) implies that
Φ = 1+(higher degree terms).

By the definition of B̂ and Ĉ, a structure-preserving functor Ẑ : B̂ → Ĉ carries
σ to R̃, and thus it is determined by its value Ẑ(a) on the remaining generator of
PaB. As Ẑ must cover the skeleton functor, Ẑ(a) must be of the form ΦẐ · a, for
some ΦẐ ∈ Â

pb
3 .

Proposition 3.4. If Ẑ is a structure preserving functor B̂ → Ĉ, then ΦẐ is an
associator, and the map Ẑ 7→ ΦẐ is a bijection between the set of all structure-
preserving functors Ẑ : B̂ → Ĉ and the set ÂSS of all associators Φ ∈ Âpb3 . A
similar construction can be made in the case of B(m), C(m) and ASS(m), and the
same statements hold.

Before we can prove Proposition 3.4, we need a bit more insight about the
structure of Apbn .

Lemma 3.5. The following two relations hold in Apbn :
1. Locality in space: For any k ≤ n, the subalgebra of Apbn generated by
{tij : i, j ≤ k} commutes with the subalgebra generated by {tij : i, j > k}.
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In pictures, we see that elements that live in “different parts of space” com-
mute:

=

A

B A

B

1 k n 1 k nk+1 k+1

��� ��� ��� ���

2. Locality in scale Elements that live in “different scales” commute. This is
best explained by a picture, with notation as in Definition 2.9:

A

� � �

+

� � �� � �

.

.

.

A
.
.
.

local

global

(We think of the part A as “local”, as it involves only the “local” group of
strands, and of the rest as “global”, as it regards the “local” group of strands
as “equal”.)

(A similar statement is [B-N3, Lemma 3.4].)

Proof of Lemma 3.5. Locality in space follows from repeated application of the
relation tijtkl = tkltij with i < j < k < l. Locality in scale follows from repeated
application of the relation tijtkl = tkltij with general i, j, k, l with |{i, j, k, l}| = 4,
and the 4T relation, which can be redrawn in the more suggestive form = .

Proof of Proposition 3.4. Let Ẑ be a structure preserving functor B̂ → Ĉ, and let
Φ = ΦẐ. Apply Ẑ to the parenthesized braid equality

= ; d4a � d2a � d0a = d1a � d3a;

and, using Ẑ(a) = Φ · a, get



Vol. 4 (1998) Associators and the Grothendieck-Teichmuller group, I 197

(d4Φ · d2Φ · d0Φ) · (d4a ◦ d2a ◦ d0a) = (d1Φ · d3Φ) · (d1a ◦ d3a).

The Âpb part of this equality is precisely the fact the Φ satisfies the pentagon
equation.

Similarly, the parenthesized braid equality

= ; d1� = a � d0� � a
�1

� d3� � a (2)

together with Ẑ(a) = Φ · a and Ẑ(σ) = R̃ implies the positive hexagon equation
+. Likewise, the same parenthesized braid equality but with σ replaced by σ−1

implies −.
s1a = s2a = s3a is the identity morphism in mor((••), (••)), and after applying

Ẑ we find that Φ is non-degenerate. Finally, a is group-like in PaB and as Ẑ
preserves the coproduct, Φ is also group-like. Hence we have verified that ΦẐ = Φ
is an associator.

To show that the map Ẑ 7→ ΦẐ is a bijection we construct an inverse map. Let
Φ be an associator. We try to define a functor Ẑ = ẐΦ : P̂aB→ P̂aCD by setting
Ẑ(a) = a · Φ and Ẑ(σ) = R̃, and by extending it to all other generators of PaB
in a way compatible with the di’s. We need to verify that this extension yields a
well-defined functor; that is, that all the relations between the generators of PaB
get mapped to relations in PaCD by Ẑ. One can verify (using the Mac Lane
coherence theorem [Ma]) that the relations between the generators of PaB are the
(repeated) di images of the relations (see also [B-N3]):

• The pentagon d4a ◦ d2a ◦ d0a = d1a ◦ d3a, as above.
• The hexagons d1σ

±1 = a ◦ d0σ
±1 ◦ a−1 ◦ d3σ

±1 ◦ a, as above.
• Locality in space: (slashes ( ) indicate bundles of strands)

=

A

B A

B

:

Here A and B can each be either a±1 or σ±1.
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• Locality in scale:

=

A B C

A B C
and =

A B

B A

:

Here A, B and C can each be either a±1 or σ±1.

Clearly, Ẑ respects the pentagon and the hexagons because Φ satisfies the pen-
tagon and the hexagon axioms in the definition of an associator. By Lemma 3.5,
Ẑ respects the locality relations. Hence Ẑ is well defined on morphisms of PaB.
One can verify that Ẑ(I) ⊂ F1P̂aCD, and hence Ẑ makes sense on P̂aB. Finally,
the fact that Ẑ intertwines the coproduct � and the operations si follows from the
group-like property and the non-degeneracy of Φ, respectively.

The proof in the case of B(m), C(m) and ASS(m) is essentially identical. �

Proposition 3.6. Every structure preserving functor Ẑ : B̂ → Ĉ or Z(m) :
B(m) → C(m) is invertible.

Proof. The unipotent completion P̂Bn of the pure braid group PBn on n strands
can be identified with the the ring of morphisms in P̂aB from the n-point object
Or = (•(• . . . (••) . . . )) back to itself that cover the identity permutation in PaP.
Similarly, Âpbn can be identified with the ring of self-morphisms of Or in P̂aCD that
cover the identity permutation. Thus, a functor Ẑ : B̂ → Ĉ induces a filtration-
preserving ring morphism Ẑn : P̂Bn → Âpbn . In P̂aB (P̂aCD) every morphism can
be written as a composition of invertible morphisms and an element of P̂Bn (Âpbn ),
and hence it is enough to prove that Ẑn is an isomorphism for every n. Finally,
it is enough to do that on the level of associated graded spaces. That is, we only
need to show that Z̄mn : GmPBn = Im/Im+1 → GmApbn is an isomorphism for every
n and m, where I is the augmentation ideal of PBn.

Let σij with 1 ≤ i < j ≤ n be the standard generators of PBn:

�
ij
=

1 i n

: : : : : : : : :

j

:

In PaB, the parenthesized braid corresponding to σij is a conjugate of an extension
of σ2:



Vol. 4 (1998) Associators and the Grothendieck-Teichmuller group, I 199

�13 = �
2

=

C

C
�1

:

As Ẑ(σ2) = R̃2 = expH and Ẑ preserves all structure, we find that

Ẑ(σij − 1) = Ẑ(C)−1(exp tij − 1)Ẑ(C) = tij + (higher terms).

Ergo,

Ẑ
(
(σi1j1 − 1)(σi1j2 − 1) · · · (σikjk − 1)

)
= ti1j1ti1j2 · · · tikjk + (higher terms), (3)

and the maps Z̄mn are surjective. Furthermore, as we mod out by Im+1, products
of the form

(σi1j1 − 1)(σi1j2 − 1) · · · (σimjm − 1)

generate GmPBn, and hence it is enough to verify the injectivity of Z̄mn on such
products.

To do this we attempt to construct an inverse map Y mn by setting

Ymn (ti1j1ti1j2 · · · timjm) = (σi1j1 − 1)(σi1j2 − 1) · · · (σimjm − 1).

We only need to show that Y mn is well defined; i.e., that it carries the relations
in GmApbn to relations in GmPBn. This is a routine verification. For example, if
i < j < k, the braid relation [σjk, σijσik] = 0 (“the third Reidemeister move”)
implies [σjk − 1, (σij − 1) + (σik − 1)− (σij − 1)(σik − 1)] = 0. Notice that the last
term in this equality lies in a higher power of the augmentation ideal, and hence it
can be ignored. What remains proves that Y mn maps the 4T relation [tjk, tij + tik]
to 0 in the case when i < j < k. �
Remark 3.7. In the language of Vassiliev invariants, the last proof is essentially
the identification of the space of weight systems for pure braids with the dual of
Apb. If you know that language, you may find it amusing to translate the above
proof to the Vassiliev setting.

Remark. Implicitly in the proof of Proposition 3.6 we have also proved that Ĉ is
the “associated graded mathematical structure” of the filtered structure B̂.

Propositions 3.4 and 3.6 imply the following:

Theorem 1. The set ÂSS (ASS(m)) can be identified with the set of all structure-
preserving isomorphisms B̂ → Ĉ (B(m) → C(m)). �

This would not be of much use if it was not for the following theorem, proven
by Drinfel’d [Dr1], [Dr2] using complex-analytic techniques:
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Theorem 2. The set ÂSS(C) (and thus ASS(m)) is non-empty. �
This, in turn, allows us to use Principle 1 and get:

Theorem 3. The groups ĜT(C) and ĜRT(C) act simply transitively on ÂSS(C)
on the right and on the left respectively, and their actions commute. The same holds
for GT(m)(C), GRT(m)(C), and ASS(m)(C). �

It is a consequence (and indeed, the purpose) of our main theorem below, that
Theorems 2 and 3 also hold over Q.

4. The Main Theorem

4.1. The statement, consequences, and first reduction

Our main theorem is:

Theorem 4 (Proof on page 205). The natural map ASS(m)(C)→ ASS(m−1)(C)
is surjective.

This theorem means that an associator can be constructed degree by degree.
Furthermore, if Φm−1 ∈ ASS(m−1) is an associator up to degree m− 1 and Φm =
Φm−1 + ϕm, with degϕm = m, then the equations6 that ϕm has to satisfy for Φm
to be an associator up to degree m are non-homogeneous linear, with a constant
term determined algebraically from Φm−1. Therefore, if a Φm−1 is found over
the rationals, then a Φm can be found over the rationals (i.e., the statement of
Theorem 4 also holds over Q). Proceeding using induction, we find that a rational
associator exists (and so Theorems 2 and 3 also hold over Q).

Corollary 4.1. Rational associators exist and can be constructed iteratively. �
Let P be the automorphism of Apb that sends every generator tij to its negative

−tij . It is clear that P preserves ASS(m) (it simply switches the positive and
negative hexagon identities while not touching the pentagon identity). If Φm−1 ∈
ASS(m−1) is even (i.e., satisfies Φm−1 = PΦm−1), it can be lifted to an even
Φm ∈ ASS(m): Simply take any lifting Φ′m and set Φm = (Φ′m + PΦ′m)/2. This
is an associator because the set of liftings of Φm−1 is affine, as it is determined by
the solutions of a non-homogeneous linear equation.

Corollary 4.2. Rational even associators exist and can be constructed itera-
tively. �
Remark 4.3. Even associators were given a topological interpretation in [LM2],
and were used further in [LMO].

6 More on these equations can be found in Drinfel’d [Dr2] and in [B-N3].
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Lemma 4.4. To prove Theorem 4 it is enough to prove that the natural homo-
morphism GRT(m)(C)→ GRT(m−1)(C) is surjective.

Proof. By Theorem 2, ASS(m)(C) is non-empty, and so there exists at least one
Φm−1 ∈ ASS(m−1)(C) that extends to a Φm ∈ ASS(m)(C). Take now any other
element Φ′m−1 of ASS(m−1)(C). By Theorem 3, it can be pushed to Φm−1 by some
Gm−1 ∈ GRT(m−1)(C). Take a Gm ∈GRT(m)(C) that extends Gm−1, and use it
to pull Φm back to become an extension G−1

m Φm of Φ′m−1, as required. �

4.2. More on the group ĜRT

To prove the surjectivity of GRT(m)(A)→ GRT(m−1)(A) for some ground algebra
A, we need to know some more about GRT(m) = AutC(m) and about the structure
C(m) itself. Recall that the category PaCD is generated by the (repeated) di
images of the specific morphisms a±1, X and H.

Proposition 4.5. The (repeated) di images of the relations below generate all the
relations between generators of PaCD:

• X is its own inverse and it commutes with H.
• The pentagon d4a ◦ d2a ◦ d0a = d1a ◦ d3a, as for the category PaB.
• The classical hexagon

= ; d1X = a � d0X � a
�1

� d3X � a: (4)

• The semi-classical hexagon (the name is explained in Remark 4.6)

d1

0
BBB@

1
CCCA

def
= =

+ ; (5)

d1H ◦ d1X = a ◦ d0H ◦ d0X ◦ a−1 ◦ d3X ◦ a+ a ◦ d0X ◦ a−1 ◦ d3H ◦ d3X ◦ a.

• Locality in space as in PaB (but with A,B ∈ {a±1, X,H}).
• Locality in scale:
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=

A B C

A B C
; =

A B

B A

;

and =

A B

A B

;

with A,B,C ∈ {a±1, X,H}.

Proof. (sketch) Let TMP be the fibered-linear category freely generated by the
repeated di images of a±1, X and H in PaCD, modulo the relations listed above.
There is an obvious functor F : TMP → PaCD, which is well defined because
the relations above are indeed relations in PaCD (4T is needed to verify the third
locality in scale relation with A or B equal H). The category TMP is graded
by declaring that deg a = degX = 0, that degH = 1, and that the operations di
preserve degree. Clearly, the functor F preserves degrees. We need to show that F
is invertible, and we do so by constructing an inverse G : PaCD→ TMP in steps
as follows:

(1) There is no problem with constructing G in degree 0. The relevant gen-
erators of TMP are commutativities X and associativities a±1, and the
relevant relations are (some of) the locality relations and the pentagon and
the classical hexagon. Thus the existence of G in degree 0 is exactly the
Mac Lane coherence Theorem [Ma].

Let PaCDr (TMPr) be the algebra of self-morphisms of the object Or =
(•(• . . . (••) . . . )) in PaCD (TMP) that cover the identity permutation in PaP,
and let Fr : TMPr → PaCDr be the obvious restriction of F. Our next objective
is to construct Gr, an inverse of Fr. There is no loss of generality in assuming
that all morphisms that we deal with involve exactly n strands (for some fixed n).
With this in mind, the PaCDr can be identified with Apbn .

(2) Construct Gr in degree 1. It is enough to specify the image in TMPr of
tij ∈ Apbn , and to check that Gr is indeed the inverse of Fr in degree 1.
So for i < j set G(tij) = P−1

ij ◦ Hn ◦ Pij . Here Hn = dn−1
0 dn−2

0 · · · d2
0H

is H extended by adding strands on the left and Pij ∈ morTMP(Or, Or)
with degPij = 0 corresponds to the parenthesized permutation that takes
the jth strand to be the last and the ith to be the one before the last,
while preserving the order of all other strands. (Step (1) implies that it
does not matter which particular generator combination we choose for Pij).
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Now Fr ◦ Gr = Id is trivial, and Gr ◦ Fr = Id : TMPr → TMPr

is not hard to check. Indeed, a degree 1 morphism in TMPr contains
exactly one (repeated di image of) H. By the semi-classical hexagon we
can replace cabled H’s by extended ones (terminology as in Definition 2.12),
and extended H’s can be slid right using locality in scale relations:

adding a thing

and its inverse

sliding

an H
:

Finally, on “right justified” H’s there is almost nothing to prove.
(3) By extending Gr multiplicatively to higher degrees, we find that the free

algebra FT generated by G1TMPr is isomorphic to the free algebra FA
generated by G1Apbn . The algebra TMPr is the quotient of FT by the qua-
dratic locality relations: locality in space with A = B = H, and the third
locality in scale relation with either A = H or B = H. The algebra G1Apbn
is the quotient of FA by quadratic relations: the relation [tij , tkl] = 0 and
the 4T relation [tjk, tij + tik] = 0. Quite clearly, these relations correspond
under the isomorphisms between FT and FA; the locality relation =, for
example, is sent to the 4T relation. We conclude that the quotients TMPr

and Apbn are isomorphic via Fr and Gr.

Finally, we get back to constructing G:

(4) Every morphism M in PaCD can be written uniquely as a composition P1◦
D ◦ P2 where D ∈ Apbn = PaCDr, P1,2 are of degree 0, and P1 induces the
identity permutation (between possibly different parenthesizations). Define
G(M) = G(P1) ◦Gr(D) ◦G(P2). Clearly, G is the inverse of F. �

Remark 4.6. Let ε be a formal parameter satisfying ε2 = 0, and let PaCDε be
defined as PaCD, only with coefficients in the algebra A[ε] rather than the algebra
A. Let Rε be the morphism (exp εH) ◦X in PaCDε, and consider the “quantum”
hexagon relation for Rε:

d1Rε = a ◦ d0Rε ◦ a−1 ◦ d3Rε ◦ a.

A quick visual inspection of equations (2) (with Rε replacing σ), (4) and (5) reveals
that the classical and semi-classical hexagon relations are the degree 0 and 1 parts
(in ε) of the quantum hexagon relation, explaining their names.

Remark 4.7. Modulo the other relations, the semi-classical hexagon is equivalent
to the simpler but less conceptual “cabling relation”, d2H = a−1 ◦ d3H ◦ a+ d0X ◦
a−1 ◦ d3H ◦ a ◦ d0X :
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d2

0
@

1
A def
= =

+ :

By Claim 2.16 and Remark 2.15, any G ∈GRT(m) is determined by its action
on the generator a of PaCD(m), and thus it is determined by the unique Γ ∈ Apb(m)

3
for which G(a) = Γ · a. Just as in the proof of Proposition 3.4, the relations of
Proposition 4.5 impose relations on Γ:

Proposition 4.8. The group GRT(m) (ĜRT) can be identified (as a set) with
the set of all group-like non-degenerate Γ ∈ Apb(m)

3 (Γ ∈ Âpb3 ) satisfying:
• The pentagon equation d4Γ · d2Γ · d0Γ = d1Γ · d3Γ.
• The classical hexagon equation 1 = Γ · (Γ−1)132 · Γ312.
• The semi-classical hexagon equation

d1t
12 = Γ ·

(
t23 · (Γ−1)132 + (Γ−1)132 · t13) · Γ312,

or, equivalently, the cabling equation d2t
12 = Γ−1 · t12 ·Γ + (Γ−1 · t12 ·Γ)132.

Proof. The group-like property and the non-degeneracy of Γ correspond to the fact
thatG preserves� and the operations si. The pentagon, classical and semi-classical
hexagon, and cabling equations correspond to their namesakes in Proposition 4.5.
The other relations in Proposition 4.5 impose no further constrains on Γ; the
locality relations follow from Lemma 3.5 and the relations X2 = 1 and XH = HX
do not involve Γ at all. �
Warning 4.9. The product of GRT(m) (ĜRT) is not the product ofApb(m) (Âpb).
See Proposition 5.1.

Remark 4.10. The classical hexagon axiom for Γ ∈ GRT(m) implies that Γ =
1+(higher degree terms).

Remark 4.11. In the spirit of Remark 4.6, the classical and semi-classical hexagon
equations can be replaced by a single “quantum hexagon equation” written in
Apb(m)

3 (A[ε]):
eε(t

13+t23) = Γ · eεt23 · (Γ−1)132 · eεt13 · Γ312. (6)

4.3. The second reduction

Theorem 5 (Proof on page 207). The pentagon and classical hexagon equations
for Γ ∈ Apb(m)

3 imply the semi-classical hexagon equation (and hence the cabling
equation).
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Assuming Theorem 5, the proof of Theorem 4 reduces to an easy observation
and some standard (but non-trivial) facts from the theory of affine group schemes.

Proof of Theorem 4. By Lemma 4.4, it is enough to show that the natural homo-
morphism π : GRT(m)(C) → GRT(m−1)(C) is surjective. In the next paragraph
we will show that π is a homomorphism of connected reduced algebraic group
schemes. Hence it is enough to prove this statement at the level of Lie algebras,
and the Lie algebras are given by the linearizations near the identity 1 of the
defining equations, the pentagon and the classical hexagon. These linearizations
are

d4γ + d2γ + d0γ = d1γ + d3γ and 0 = γ − γ132 + γ312. (7)

Clearly, any solution to degree m − 1 of these equations can be extended to a
solution to degree m (for example, by taking the degree m piece to be 0). Notice
that if the cabling relation was still present, this would not have been so easy: The
linearization of the cabling relation is 0 = [t12, γ] + [t13, γ132], and this equation at
degree m imposes a (possibly new) condition on the degree m− 1 piece of γ.

All that is left now is some standard algebraic geometry. We defined GRT(m)(A)
for an arbitrary ground algebra A in a functorial way, and saw that it is al-
ways defined by the same equations (Proposition 4.8). Thus GRT(m) (regarded
as a functor from the category of Q-algebras to the category of groups) is an
affine group scheme (see e.g. [Wa, section 1.2]) for any m (and similarly, the map
GRT(m) → GRT(m−1) is a homomorphism of affine group schemes). GRT(m)

has a faithful representation in the vector space V of parenthesized chord diagrams
whose skeleton is a (already the action of G ∈ GRT(m) on a itself determines G).
Thus GRT(m) can be regarded as an algebraic matrix group. Notice that for any
G ∈ GRT(m), we have G(X) = X , G(H) = H, and G(a) = a + (higher degrees),
and hence for any homogeneous v ∈ V we have G(v) = v+(higher degrees). Hence
G is unipotent, and GRT(m) is a unipotent group [Wa, section 8]. As we are
working in characteristic 0, GRT(m) is reduced [Wa, section 11.4] (and hence (7)
defines its Lie algebra) and GRT(m−1) is connected [Wa, section 8.5]. �
Remark 4.12. Very little additional effort as in the paragraph following Theo-
rem 4 shows that GRT(m)(A)→ GRT(m−1)(A) is surjective for any A.

4.4. A cohomological interlude

Before we can prove Theorem 5, we need to know a bit about the second cohomology
of Apbn . There are two relevant ways of turning the list Apb2 , A

pb
3 , . . . into a cochain

complex. The first is to define d = dn : Apbn → Apbn+1 by dn =
∑n+1
i=0 (−1)idni .

The second is to define d̃ = d̃n : Apbn+1 → A
pb
n+2 (notice the shift in dimension)

by d̃n =
∑n+1
i=0 (−1)id̃ni , where d̃i = d̃ni = dn+1

i for i ≤ n, and d̃n+1 = d̃nn+1 =
(dn+1
n+2)12...n(n+2)(n+1) is the operation of “adding an empty strand between strands

n and n+ 1”:
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~d3

 !
= :

For the purpose of proving Theorem 5, all we need is to understand H2
d̃
:

Proposition 4.13. H2
d̃

is 2-dimensional and is generated by t12 (in degree 1) and
[t13, t23] (in degree 2).

Proof. It is well known (see e.g. [Koh1], [Dr2], [Hu], [B-n4]) that as vector spaces,
Apbn+1 = Apbn ⊗ T V n, where T V n denotes the tensor algebra on the n-dimensional
vector space V n generated by t1(n+1), . . . , tn(n+1) (as algebras, this is a semi-direct
product). Furthermore, d̃ni and the strand removal operations s̃ni

def= sn+1
i preserve

this decomposition, and define a structure of a cosimplicial vector space on each of
Apbn+1, Apbn , and V n. The cosimplicial structure induced on Apbn coincides with the
one it already has ((dni , s

n
i )), and hence by the Eilenberg-Zilber theorem and the

Künneth formula
H?
d̃

= H?
d ⊗̂T̂ H?(V ?). (8)

(Here ⊗̂ denotes the Z/2Z-graded tensor product and T̂ denotes the tensor algebra
formed using ⊗̂).

Computing H?
d : The cohomology H?

d is very hard to compute. Indeed, if we could
compute H4

d , we probably needn’t have written this paper at all (see [Dr2], [B-n4]).
But up to H2

d there is no difficulty in computing by hand. The algebras Apb0 and
Apb1 contain only multiples of the identity element. The algebra Apb2 contains only
the powers of t12. The differential d0 : Apb0 → A

pb
1 is the zero map, the differential

d1 : Apb1 → A
pb
2 is injective, mapping the identity of Apb1 to the identity of Apb2 .

Finally, let us study d2(t12)m ∈ Apb3 . Setting c = t12 + t13 + t23 ∈ Apb3 , we get:

d2(t12)m =
3∑
i=0

(−1)id2
i (t

12)m = (t23)m − (c− t12)m + (c− t23)m + (t12)m.

The relations of Definition 2.7 (in the case n = 3) can be rewritten in terms of
the new generators t12, t23 and c of Apb3 . In these terms, they are equivalent to
the statement “c is central”. Thus Apb3 is the central extension by c of the free
algebra in t12 and t23. Looking at the coefficient of (say) c(t12)(m−1) in d2(t12)m

as computed above, we find that d2(t12)m 6= 0 for m ≥ 2. It is easy to verify that
d2(t12)m = 0 for m = 0, 1. In summary, we found that dimH0

d = 1, with the
generator being the unit of Apb0 , that dimH1

d = 0, and that H2
d is one dimensional

and is generated by t12.
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Computing H?(V ?): By the normalization theorem for simplicial cohomology the
complex (V n) has the same cohomology as the complex (V̂ n) defined by Ĉn =⋂
i ker s̃ni . But it is clear that V̂ n = 0 unless n = 1, and that C̃1 is 1-dimensional.

Thus H?(V ?) has only one generator, t12 in H1(V ?). (The same computation
appears in [B-N3, Lemma 4.14]).

Assembling the results: Using (8) and the above two cohomology computations,
we find that H2

d̃
is generated by the class of t12 (coming from H2

d) and a degree
2 class coming from the class t12 ⊗ t12 in H1(V ?)⊗̂H1(V ?) via the Künneth map.
An explicit computation of the latter (or a direct computation of the cycles and
boundaries, which is easy in this low dimension), shows that it is the class of
[t13, t23]. �

4.5. Proof of the semi-classical hexagon equation

Proof of Theorem 5. Assume that for some Γ ∈ Apb(m)
3 the pentagon and the

classical hexagon hold, but the semi-classical hexagon doesn’t. By Remark 4.11,
we know that the quantum hexagon (6) has an error proportional to ε. Let εψ′ be
that error:

1 + εψ′ = Γ · eεt23 · (Γ−1)132 · eεt13 · Γ312 · e−ε(t13+t23).

By assumption, ψ′ 6= 0. Let ψ be the lowest degree piece of ψ′, and let k = degψ.
Clearly, k ≥ 2. From this point on, mod out by degrees higher than k.

We claim that

d̃2ψ = 0. (9)

The proof of (9) is essentially contained in Figure 5. How polyhedra correspond
to identities of this kind was explained in [Dr1], and again in [B-N3], where the
very same polyhedron appeared in a very similar context. For completeness, we
include the explanation here, in a very concrete form. In Figure 5 every edge is
oriented and is labeled by some invertible element of Apb(m)

4 (A[ε]). There are 12
faces in the figure (including the face at infinity). Each one corresponds to a certain
product in Apb(m)

4 (A[ε]) by starting at the ♣ symbol, going counterclockwise, and
multiplying the elements seen on the edges (or their inverses depending on the edge
orientations). These products turn out to all be locality relations, or pentagons, or
quantum hexagons (or a permutation or a cabling/extension operation applied to
a pentagon or a quantum hexagon), as marked within each face.

For example (remember that we are ignoring degrees higher than k),
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→ : 1=d4Γd2Γd0Γ(d3Γ)−1(d1Γ)−1,

→ d1 ε :1 + d1ψ=d1Γeεt
34

((d1Γ)1243)−1eε(t
14+t24)(d2Γ)4123e−ε(t

14+t24+t34),

→d2
−1
ε :1− d2ψ=(product around shaded area).

Combining these equations along the common edges we get

→ 1 + d1ψ − d2ψ = (product around shaded area).

Continuing along the same line, we find that the product around the whole figure
is 1 − d0ψ + d1ψ − d2ψ. On the other hand, this product is itself a variant of the
quantum hexagon — ⊂ d̃3 ε, as marked on the face at infinity. So we learn that
1− d0ψ + d1ψ − d2ψ = 1− d̃3ψ. But this is exactly (9).

By (9) and Proposition 4.13, we see that if k > 2 then ψ must be in d̃1GkApb2 .
That is, it must be a multiple of χ = d̃1(t12)k. But as Γ is group-like, ψ must
be primitive: �ψ = ψ ⊗ 1 + 1 ⊗ ψ. One easily verifies that χ is not primitive,
and hence ψ = 0 as required. If k = 2, equation (9) and Proposition 4.13 tell us
that ψ is of the form c1d̃

1(t12)2 + c2[t13, t23]. A routine verification shows that if
the semi-classical hexagon relation is pre-multiplied by d3X and post-multiplied
by d0X , then modulo the other relations, it does not change. This means that
ψ213 = ψ (this identity follows more easily from the cabling relation), and thus
c2 = 0. But then the primitivity of ψ implies that c1 vanishes as well, and thus
ψ = 0 as required. �

5. Just for completeness

For completeness, this section contains a description of the group law of ĜRT, a
description of its action on ÂSS, and similar descriptions for the group ĜT. This
information is not needed in the main part of this paper. Throughout this section
one can replace unipotent completions by unipotent quotients (GRT(m), ASS(m),
Apb(m), etc.) with no change to the results.
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Figure 5. The proof of equation (9).

Proposition 5.1. The group law × of ĜRT is expressed in terms of the Γ’s (of
Proposition 4.8) as

Γ1 × Γ2 = Γ1 ·
(

Γ2|t12→Γ−1
1 t12Γ1, t13→(Γ−1

1 )132t13Γ132
1 , t23→t23

)
, (10)

where “·” is the product of Âpb, Γ−1
1 is interpreted in Âpb, and the substitution above

means: replace every occurrence of t12 in Γ2 by Γ−1
1 t12Γ1, etc. (In particular, we

claim that this substitution is well defined on Âpb).

Proof. Âpb3 can be identified with the algebra of self-morphisms in P̂aCD of the ob-
ject (•(••)). Let Γ denote the self-morphism corresponding to a Γ ∈ Âpb3 . We have
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Γ·a = a◦Γ, and hence (with Γ 7→ GΓ denoting the identification in Proposition 4.8)

a ◦ Γ1 × Γ2 = GΓ1×Γ2(a) = GΓ1(GΓ2(a))

= GΓ1(a ◦ Γ2) = GΓ1(a) ◦GΓ1(Γ2) = a ◦ Γ1 ◦GΓ1(Γ2).
(11)

To compute GΓ1(Γ2) we need to write Γ2 in terms of the generators of P̂aCD.
This we do by replacing every t12 appearing in Γ2 by t12 = a−1 ◦ d3H ◦ a, every t13

by t13 = d0X ◦a−1 ◦d3H ◦a◦d0X , and every t23 by t23 = d0H. By the definition of
the action of GΓ1 on the generators of P̂aCD, we find that it maps t12 to Γ−1

1 t12Γ1,
t13 to (Γ−1

1 )132t13Γ132
1 and t23 to t23. Combining this and (11) we get (10). �

Similar reasoning leads to the following:

Proposition 5.2. The action of ĜRT on ÂSS, written in terms of Γ’s and Φ’s,
is given by

Γ(Φ) = Γ ·
(

Φ|t12→Γ−1
1 t12Γ1, t13→(Γ−1

1 )132t13Γ132
1 , t23→t23

)
,

with products and inverses taken in Âpb3 . �

The group ĜT admits a similar description. Any element of ĜT maps a to
a limit of formal sums of parenthesized braids whose skeleton is a. Such a limit
is of the form a ◦ Σ, where Σ is a self-morphism whose skeleton is the identity of
the object (•(••)) of P̂aB, regarded as an element of P̂B3. Let σ1 and σ2 be the
standard generators and of the (non-pure) braid group B3 on 3 strands.
Every Σ ∈ P̂B3 is a limit of formal sums of combinations of σ1,2.

Proposition 5.3.

1. ĜT can be identified as the group of all group-like non-degenerate Σ ∈ P̂B3
satisfying:
• The pentagon for pure braids, in P̂B4:

d4Σ · d2Σ · d0Σ = d1Σ · d3Σ

(with the obvious interpretation for the di’s).
• The hexagons for pure braids, in B̂3, the unipotent completion of B3:

σ2σ1 = Σ · σ2 ·Σ−1 · σ1 · Σ.

2. The group law is given by

Σ1 × Σ2 = Σ1 ·
(

Σ2|σ1→Σ−1σ1Σ, σ2→σ2

)
,
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with products and inverses taken in B̂3.
3. The action on ÂSS is given by

(Φ,Σ) 7→ ΦΣ = Φ ·
(

Σ|σ1→Φ−1et12/2X1Φ, σ2→et23/2X2

)
.

This formula makes sense in Âpb3 o S3, with X1 = (12) and X2 = (23)
the standard generators of the permutation group S3 which acts on Âpb3 as
in Definition 2.8. Implicitly we claim that this formula is well defined and
valued in Âpb3 ⊂ Â

pb
3 o S3. �
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