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Geometry of conservation laws for a class of parabolic
PDE’s, II: Normal forms for equations with conservation laws

Jeanne Nielsen Clelland

Abstract. We consider conservation laws for second-order parabolic partial differential equa-
tions for one function of three independent variables. An explicit normal form is given for such
equations having a nontrivial conservation law. It is shown that any such equation whose space
of conservation laws has dimension at least four is locally contact equivalent to a quasi-linear
equation. Examples are given of nonlinear equations that have an infinite-dimensional space of
conservation laws parameterized (in the sense of Cartan-Kähler) by two arbitrary functions of one
variable. Furthermore, it is shown that any equation whose space of conservation laws is larger
than this is locally contact equivalent to a linear equation.
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1. Introduction

In [4], the author studied conservation laws for second-order, parabolic partial
differential equations for one function of three independent variables. These are
equations of the form

ut = G
(
x, y, t, u, ux, uy, uxx, uxy, uyy

)
(1.1)

where the right-hand side of (1.1) is an elliptic operator, i.e.,∣∣∣∣ Guxx 1
2Guxy

1
2Guxy Guyy

∣∣∣∣ > 0.

Such an equation may be formulated as an exterior differential system I on a 12-
dimensional manifold M , and its space of conservation laws is identified with the
vector space of closed 3-forms in the infinite prolongation of I modulo the so-called
“trivial” conservation laws.

The principal result of [4] is the following theorem.

This work was supported in part by NSF Grant DMS–9427403.
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Theorem 1. Any conservation law for a second-order, parabolic PDE for one
function of three independent variables can be represented by a closed 3-form in the
differential ideal I on the original 12-manifold M .

In other words, passing to the infinite prolongation of I is not necessary. This
means that every conservation law has an expression that depends on at most
second derivatives of the unknown function u.

The author showed that if an equation of this type has a nontrivial conservation
law, then the differential system I is locally equivalent to a system J of a certain
type, called a parabolic Monge-Ampère system, on a 7-manifold N , and any con-
servation law for the original system can be represented by a closed 3-form in J .
For equations in the real analytic category, the following normal form result was
obtained.

Theorem 2. Let J be a real analytic, parabolic Monge-Ampère system on a 7-
manifold N . Then J is locally contact equivalent to a Monge-Ampère system that
corresponds to a (parabolic) equation of the form

A
(
uxx uyy − u2

xy

)
+B uxx + 2C uxy +Duyy +E = 0 (1.2)

where A, B, C, D, E are functions of the variables x, y, t, u, ux, uy, ut such that
equation (1.2) can locally be solved for ut and BD−AE−C2 > 0. Conversely, for
any functions A, B,C, D, E of x, y, t, u, ux, uy, ut that satisfy these conditions,
the equation (1.2) corresponds to a parabolic Monge-Ampère system.

In particular, any equation of this type in the real analytic category that has
a nontrivial conservation law is locally contact equivalent to an equation of the
form (1.2).

In this paper we refine this result by obtaining an explicit normal form for equa-
tions of this type having a nontrivial conservation law. We also consider equations
whose space of conservation laws has dimension greater than one, and we obtain
the following results:

Theorem (cf. Theorem 3.1). Any parabolic PDE of the form (2.2) whose space
of conservation laws has dimension at least 2 is locally contact equivalent to an
equation of the form

ut = A′ (uxxuyy − u2
xy) +B′ uxx + 2C′ uxy +D′ uyy +E′

where the coefficients A′, B′, C′, D′, E′ are functions of x, y, t, u, ux, uy.

Theorem (cf. Theorem 4.1). Any parabolic PDE of the form (2.2) whose space
of conservation laws has dimension at least 4 is locally contact equivalent to an
equation of the form

ut = B′ uxx + 2C′ uxy +D′ uyy +E′

where the coefficients B′, C′, D′, E′ are functions of x, y, t, u, ux, uy. In particular,
such an equation is locally contact equivalent to a quasi-linear equation.
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Theorem (cf. Theorem 5.3). Let I be a parabolic Monge-Ampère system whose
space of conservation laws has parameter space (in the sense of Cartan-Kähler)
strictly larger than the space of two arbitrary functions of one variable. Then I
is locally contact equivalent to a system that arises from a linear parabolic partial
differential equation, and the space of conservation laws is parameterized by two
arbitrary functions of two variables.

The author would like to thank Robert Bryant for many helpful discussions.

2. A normal form for equations that have a conservation law

A few words about notation are in order. We will work with a parabolic Monge-
Ampère system I on a 7-dimensional manifold M with local coordinates {x1, x2, x3,
u, p1, p2, p3}. The system I that corresponds to the PDE (1.2) is generated locally
by the forms

θ = du− p1 dx
1 − p2 dx

2 − p3 dx
3

dθ = −dp1 ∧ dx1 − dp2 ∧ dx2 − dp3 ∧ dx3

Υ =
[
Adp1 ∧ dp2 +B dp1 ∧ dx2 + C

(
dx1 ∧ dp1 + dp2 ∧ dx2)

+Ddx1 ∧ dp2 +E dx1 ∧ dx2
]
∧ dx3.

Define vector fields Xi on M as follows:

X0 =
∂

∂u

X1 =
∂

∂x1 + p1
∂

∂u

X2 =
∂

∂x2 + p2
∂

∂u

X3 =
∂

∂x3 + p3
∂

∂u

X4 =
∂

∂p1

X5 =
∂

∂p2

X6 =
∂

∂p3
.

At each point p ∈ M , the vectors {X0, X1, X2, X3, X4, X5, X6} form a basis of
TpM which is dual to the basis {θ, dx1, dx2, dx3, dp1, dp2, dp3} of T ∗pM . For any
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function f on M , let fi denote Xi(f). Then

df = f0 θ + f1 dx
1 + f2 dx

2 + f3 dx
3 + f4 dp1 + f5 dp2 + f6 dp3.

For second and higher-order derivatives, it is not difficult to show that mixed
partials almost commute: fij = fji unless {i, j} is one of the pairs {1, 4}, {2, 5},
{3, 6}. These mixed partials satisfy the equations

f14 = f41 + f0

f25 = f52 + f0

f36 = f63 + f0.

2.1. A refinement of Theorem 2

Suppose that the parabolic equation

A(uxxuyy − u2
xy) +B uxx + 2C uxy +Duyy +E = 0 (2.1)

has a nontrivial conservation law Φ. It is shown in [4] that Φ has a representative
of the form

Φ = Q
[
Adp1 ∧ dp2 +B dp1 ∧ dx2 + C

(
dx1 ∧ dp1 + dp2 ∧ dx2)

+Ddx1 ∧ dp2 +E dx1 ∧ dx2
]
∧ dx3 + θ ∧ ψ

for some function Q and some 2-form ψ. By scaling the coefficients A,B,C,D,E
appropriately, we can assume that Q ≡ 1. (Note that this choice of scaling depends
on the particular conservation law Φ.) So suppose that

Φ =
[
Adp1 ∧ dp2 +B dp1 ∧ dx2 + C

(
dx1 ∧ dp1 + dp2 ∧ dx2)

+Ddx1 ∧ dp2 +E dx1 ∧ dx2
]
∧ dx3 + θ ∧ ψ

is a conservation law. Computing dΦ ≡ 0 mod θ shows that

ψ = A6 dp1 ∧ dp2 +B6 dp1 ∧ dx2 + C6
(
dx1 ∧ dp1 + dp2 ∧ dx2)+D6 dx

1 ∧ dp2

+E6 dx
1 ∧ dx2 +

(
E4 −B1 − C2) dx2 ∧ dx3 + (E5 − C1 −D2

)
dx3 ∧ dx1

+
(
A2 −B5 + C4

)
dp1 ∧ dx3 + (A1 + C5 −D4) dx3 ∧ dp2.

Now computing dΦ ≡ 0 modulo various combinations of forms shows that

A66 = 0
B66 = 0
C66 = 0
D66 = 0
E66 = 0.
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Therefore, A,B,C,D,E have the form

A = A′ −A′′p3

B = B′ −B′′p3

C = C′ − C′′p3

D = D′ −D′′p3

E = E′ −E′′p3,

where A′, B′, C′, D′, E′, A′′, B′′, C′′, D′′, E′′ are functions of the variables x1, x2, x3,
u, p1, p2. The condition that (2.1) can locally be solved for ut implies that at least
one of A′′, B′′, C′′, D′′, E′′ is nonzero; therefore equation (2.1) can be written as

ut =
A′(uxxuyy − u2

xy) +B′uxx + 2C′uxy +D′uyy +E′

A′′(uxxuyy − u2
xy) +B′′uxx + 2C′′uxy +D′′uyy +E′′

, (2.2)

where the coefficients are functions of x, y, t, u, ux, uy and the right-hand side of
the equation is elliptic.

2.2. An equivalent system on a 6-manifold

Let Φ be a conservation law as above. Set

Φ′ = A′dp1 ∧ dp2 +B′dp1 ∧ dx2 + C′
(
dx1 ∧ dp1 + dp2 ∧ dx2)

+D′dx1 ∧ dp2 +E′dx1 ∧ dx2

Φ′′ = A′′dp1 ∧ dp2 +B′′dp1 ∧ dx2 + C′′
(
dx1 ∧ dp1 + dp2 ∧ dx2)

+D′′dx1 ∧ dp2 +E′′dx1 ∧ dx2.

From the computation of ψ above (note that A6 = −A′′, etc.), it follows that Φ
may be written as

Φ =
(
Φ′ − p3Φ′′

)
∧ dx3 − θ ∧

(
Φ′′ + κ ∧ dx3)

= Φ′ ∧ dx3 − Φ′′ ∧
(
du−p1 dx

1−p2 dx
2)+ κ ∧ θ ∧ dx3

where κ is a 1-form whose exact expression is not relevant, except to note that it
contains no dp3 terms.

Since Φ contains no dp3 terms and dΦ = 0, Φ is well-defined on an open subset
U ⊂ R6 with coordinates {x1, x2, x3, u, p1, p2}. Set

θ = du− p1 dx
1 − p2 dx

2
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and let I′ be the ideal on U defined by

I′ =
{
θ ∧ dx3,Φ

}
.

Integral manifolds of I′ are locally in one-to-one correspondence with integral man-
ifolds of I, and any conservation law for I may be expressed as a closed 3-form
in I′.

Define vector fields Xi on U as on M , with the exceptions that there is no vector
field X6 and

X3 =
∂

∂x3 .

The noncommuting mixed partial derivatives on U are

f14 = f41 + f0

f25 = f52 + f0.

2.3. A normal form

Since the conservation law Φ is a closed form on U , locally there exists a 2-form Ψ
on U such that

Φ = dΨ.

Such a form Ψ must have the property that

dΨ ∧ θ ∧ dx3 = 0 (2.3)

dΨ ∧ dθ ∧ dx3 = 0.

Furthermore, the coefficients of dx1 ∧ dp1 ∧ dx3 and dp2 ∧ dx2 ∧ dx3 in dΨ must be
equal.

Conversely, for any 2-form Ψ on U which satisfies these conditions and the
nondegeneracy condition that the right-hand side of the equation (2.2) determined
by Φ = dΨ is elliptic (note that this condition may depend on the particular
solution u as well as on Ψ), the 3-form Φ = dΨ uniquely determines a parabolic
PDE up to contact equivalence, together with a conservation law for the PDE.

For notational convenience, set

η0 = θ

η1 = dx1

η2 = dx2

η3 = dx3

η4 = dp1

η5 = dp2
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and set

Ψ = F ij ηi ∧ ηj

with F ij = −F ji. It is not difficult to show that the conditions (2.3) together with
the equality of the coefficients of dx1 ∧ dp1 ∧ dx3 and dp2 ∧ dx2 ∧ dx3 in dΨ are
equivalent to the first-order PDEs

F 01 = F 15
2 − F 25

1 − F 12
5

F 02 = F 24
1 + F 12

4 − F 14
2

F 03 =
1
2
(
F 23

5 + F 35
2 − F 25

3 − F 14
3 + F 13

4 + F 34
1
)

(2.4)

F 04 = F 45
2 + F 24

5 − F 25
4

F 05 = F 15
4 − F 14

5 − F 45
1 .

Note that Ψ is not uniquely determined by Φ; Ψ can be modified by an arbitrary
exact form without affecting Φ. Given Ψ = F ij ηi ∧ ηj , define a 1-form γ = Gj ηj
by setting G3 = 0 and choosing Gj , j 6= 3, so that

Gj3 = F j3.

Replacing Ψ by Ψ + dγ, we can assume that F j3 = 0 for all j. The third equation
in (2.4) then becomes

F 14
3 + F 25

3 = 0,

which implies that

F 25 = −F 14 + f
(
u, x1, x2, p1, p2

)
for some function f .

The general parabolic PDE which admits a conservation law can now be de-
scribed as follows: let F 12, F 14, F 15, F 24, F 45 be essentially arbitrary functions of
the variables x1, x2, x3, u, p1, p2 (subject only to the nondegeneracy condition men-
tioned above), and let f be an arbitrary function of the variables x1, x2, u, p1, p2.
(The function f will actually turn out to be unnecessary.) With F 3j = 0 and
F 25 = −F 14 + f , define functions F 0j by the equations (2.4). A straightforward
computation shows that the PDE which arises from the 3-form Φ = dΨ has the
form

ut =
A′(uxxuyy − u2

xy) +B′uxx + 2C′uxy +D′uyy +E′

A′′(uxxuyy − u2
xy) +B′′uxx + 2C′′uxy +D′′uyy +E′′
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where
A′ = F 45

3

B′ = −F 24
3

C′ = F 14
3

D′ = F 15
3

E′ = F 12
3

A′′ = F 05
4 − F 04

5 − F 45
0

= −F 45
0 − F 45

14 − F 45
25 + F 15

44 − F 24
55 − 2F 14

45 + f45

B′′ = F 24
0 + F 02

4 − F 04
2

= 2F 24
0 + F 24

14 − F 24
25 + F 12

44 − F 45
22 − 2F 14

24 + f24

C′′ = −F 14
0 − F 01

4 + F 04
1

= −2F 14
0 + F 12

45 + F 45
12 − F 15

24 + F 24
15 + f0

D′′ = −F 15
0 + F 05

1 − F 01
5

= −2F 15
0 + F 15

14 − F 15
25 + F 12

55 − F 45
11 − 2F 14

15 + f15

E′′ = −F 12
0 + F 02

1 = F 01
2

= −3F 12
0 + F 12

14 + F 12
25 + F 24

11 − F 15
22 − 2F 14

12 + f12.

Replacing F 14 by F 14 + 1
2f , we can assume that f ≡ 0.

3. Multiple conservation laws: first reduction

From now on we will assume that the PDE (2.2) has a nontrivial conservation
law. We now consider the case where the space of conservation laws has dimension
greater than one. The principal result of this section is the following theorem.

Theorem 3.1. Any parabolic PDE of the form (2.2) whose space of conservation
laws has dimension at least 2 is locally contact equivalent to an equation of the
form

ut = A′
(
uxxuyy − u2

xy

)
+B′ uxx + 2C′ uxy +D′ uyy +E′

where the coefficients A′, B′, C′, D′, E′ are functions of x, y, t, u, ux, uy.

Suppose that
Φ0 = Φ′0 ∧ dx3 − Φ′′0 ∧ θ + κ0 ∧ θ ∧ dx3

is a conservation law for (2.2). Any other conservation law Φ has the form

Φ = Q
(
Φ′0 ∧ dx3 − Φ′′0 ∧ θ

)
+ κ ∧ θ ∧ dx3
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where Q = Q(x1, x2, x3, u, p1, p2). Computing dΦ ≡ 0 mod θ shows that

κ =
[
(E′Q)5 − (C′Q)1 − (D′Q)2

]
dx1 +

[
(B′Q)1 + (C′Q)2 − (E′Q)4

]
dx2

+
[
(B′Q)5 − (C′Q)4 − (A′Q)2

]
dp1 +

[
(A′Q)1 + (C′Q)5 − (D′Q)4

]
dp2.

Then computing dΦ = 0, using the fact that dΦ0 = 0, yields the following equations
for Q:

B′′Q1 + C′′Q2 −E′′Q4 = 0 (3.1)

C′′Q1 +D′′Q2 −E′′Q5 = 0 (3.2)

A′′Q1 −D′′Q4 + C′′Q5 = 0 (3.3)

A′′Q2 + C′′Q4 −B′′Q5 = 0 (3.4)

A′′Q3 + 3A′Q0 +A′4 Q1 +A′5Q2 + (A′1 + 2C′5 − 2D′4)Q4 + (A′2 − 2B′5 + 2C′4)Q5

+A′ (Q41 +Q52)−D′Q44 + 2C′Q45 −B′Q55 = 0 (3.5)

B′′Q3 + 2B′Q0 +B′4Q1 + (2A′2 −B′5 + 2C′4)Q2 + (B′1 + 2C′2 − 2E′4)Q4 −B′2Q5

+B′ (Q41 −Q52) +A′Q22 + 2C′Q24 −E′Q44 = 0 (3.6)

C′′Q3 + 2C′Q0 + (B′5 −A′2)Q1 + (D′4 −A′1)Q2 + (D′2 −E′5)Q4 + (B′1 −E′4)Q5

+B′Q15 +D′Q24 −A′Q12 −E′Q45 = 0 (3.7)

D′′Q3 + 2D′Q0 + (2A′1 + 2C′5 −D′4)Q1 +D′5Q2 −D′1Q4 + (2C′1 +D′2 − 2E′5)Q5

+D′ (Q52 −Q41) + A′Q11 + 2C′Q15 −E′Q55 = 0 (3.8)

E′′Q3 +E′Q0 + (2B′1 + 2C′2 −E′4)Q1 + (2C′1 + 2D′2 −E′5)Q2 −E′1 Q4 −E′2Q5

−E′ (Q41 +Q52) +B′Q11 + 2C′Q12 +D′Q22 = 0. (3.9)

In general, this is an overdetermined system of linear equations for Q. The fact that
Q = constant is always a solution reflects the assumption that Φ0 is a conservation
law. Additional conservation laws, if they exist, are given by nonconstant solutions
of equations (3.1)–(3.9).

Lemma 3.2. Equations (3.1)–(3.9) have no nonconstant solutions unless

B′′D′′ −A′′E′′ − (C′′)2 = 0.

Proof. Suppose that B′′D′′ − A′′E′′ − (C′′)2 6= 0. Equations (3.1)–(3.4) can be
written in matrix form as

B′′ C′′ −E′′ 0
C′′ D′′ 0 −E′′
A′′ 0 −D′′ C′′

0 A′′ C′′ −B′′



Q1
Q2
Q4
Q5

 = 0.
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This matrix has determinant (B′′D′′ − A′′E′′ − (C′′)2)2, which by hypothesis is
nonzero. Therefore Q1 = Q2 = Q4 = Q5 = 0, and

dQ = Q0 θ +Q3 dx
3.

Since dQ is exact, it must lie in the last derived system of {θ, dx3}. But

{
θ, dx3}(1) =

{
dx3},

and so
dQ = Q3 dx

3.

Since at least one of A′′, B′′, C′′, D′′, E′′ must be nonzero, equations (3.5)–(3.9)
now imply that Q3 = 0, and hence dQ = 0. Therefore, there are no nonconstant
solutions Q. �

With this lemma in hand, we can now prove Theorem 3.1.

Proof. Suppose that the space of conservation laws for equation (2.2) has dimension
at least 2. By Lemma 3.2,

B′′D′′ −A′′E′′ − (C′′)2 = 0.

This implies that the 2-form

Φ′′0 = A′′dp1 ∧ dp2 +B′′dp1 ∧ dx2 + C′′(dx1 ∧ dp1 + dp2 ∧ dx2)

+D′′dx1 ∧ dp2 +E′′dx1 ∧ dx2

is decomposable. Therefore, there exist 1-forms ω1, ω2 such that

Φ′′0 = ω1 ∧ ω2.

We will now show that the system L = {θ, ω1, ω2, dx3} is integrable. Since Φ0 is
a conservation law and

Φ0 ≡ −Φ′′0 ∧ θ ≡ −ω1 ∧ ω2 ∧ θ mod dx3,

it follows that
0 ≡ dΦ0 mod θ, dx3

≡ −ω1 ∧ ω2 ∧ dθ mod θ, dx3.

Therefore,
dθ ≡ 0 mod θ, ω1, ω2, dx3.
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Let α be a 1-form such that

dθ ≡ α ∧ θ mod ω1, ω2, dx3.

Then
0 ≡ dΦ0 mod dx3

≡ −dω1 ∧ ω2 ∧ θ + ω1 ∧ dω2 ∧ θ − ω1 ∧ ω2 ∧ α ∧ θ.

Reducing this equation modulo ω1 shows that

dω1 ∧ ω2 ≡ 0 mod θ, ω1, dx3

which implies that
dω1 ≡ 0 mod θ, ω1, ω2, dx3.

Similarly,
dω2 ≡ 0 mod θ, ω1, ω2, dx3.

Therefore L is integrable, as claimed. By the Frobenius theorem, locally there exist
functions x̃1, x̃2, ũ, p̃1, p̃2 such that

L =
{
dũ, dx̃1, dx̃2, dx3}

and
θ ≡ λ

(
dũ− p̃1 dx̃

1 − p̃2 x̃
2) mod dx3

for some nonzero function λ. In this coordinate system,

Φ0 ≡ −Ẽ′′dx̃1 ∧ dx̃2 ∧ θ̃ mod dx3

and the PDE takes the form

ut =
1
Ẽ′′

[
Ã′
(
uxxuyy − u2

xy

)
+ B̃′ uxx + 2C̃′ uxy + D̃′ uyy + Ẽ′

]
.

Setting A′ = Ã′

Ẽ′′
, etc., yields the desired form. �

In fact, we can arrange via a contact change of coordinates that E′′ ≡ 1, as
follows. Suppose that

Φ0 ≡ −E′′dx1 ∧ dx2 ∧ θ mod dx3.

A straightforward computation shows that

0 ≡ dΦ0 ≡ −E′′4 dp1 ∧ dx1 ∧ dx2 ∧ θ −E′′5 dp2 ∧ dx1 ∧ dx2 ∧ θ mod dx3,
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which implies that E′′4 = E′′5 = 0. Therefore E′′ can be expressed in the form

E′′ = f(x1, x2, x3, u),

and
Φ0 ≡ −f(x1, x2, x3, u) du ∧ dx1 ∧ dx2 mod dx3.

Set F (x1, x2, x3, u) =
∫ u

0 f(x1, x2, x3, τ) dτ , and make the following change of co-
ordinates:

x̃1 = x1

x̃2 = x2

x̃3 = x3

ũ = F (x1, x2, x3, u)

p̃1 = f(x1, x2, x3, u) p1 +
∂F

∂x1

p̃2 = f(x1, x2, x3, u) p2 +
∂F

∂x2 .

It is not difficult to check that this is a contact change of coordinates and that

Φ0 ≡ −dũ ∧ dx̃1 ∧ dx̃2 mod dx3.

Therefore E′′ ≡ 1 in this coordinate system.
The condition that Φ′′0 be decomposable is a significant restriction, even among

equations that have one conservation law. For example, the parabolic equation

ut =
uxxuyy − u2

xy − 1
2uxx + 2uyy + 1

has one conservation law, which is represented by the 3-form

Φ0 = (dp1 ∧ dp2 − dx1 ∧ dx2) ∧ dx3 − (2dp1 ∧ dx2 + 2dx1 ∧ dp2 + dx1 ∧ dx2) ∧ θ.
But

Φ′′0 = 2dp1 ∧ dx2 + 2dx1 ∧ dp2 + dx1 ∧ dx2

is not decomposable; therefore the space of conservation laws for this equation is
one-dimensional and is spanned by Φ0. (This can be easily verified by a direct
computation.)

Applying Theorem 3.1 and assuming that E′′ ≡ 1, equations (3.1)–(3.4) imply
that Q4 = Q5 = 0. Equations (3.5)–(3.9) now take the form

3A′Q0 +A′4Q1 +A′5 Q2 = 0 (3.5′)

2B′Q0 +B′4Q1 +
(
2A′2 −B′5 + 2C′4

)
Q2 +A′Q22 = 0 (3.6′)

2C′Q0 +
(
B′5 −A′2

)
Q1 +

(
D′4 −A′1

)
Q2 −A′Q12 = 0 (3.7′)

2D′Q0 +
(
2A′1 + 2C′5 −D′4

)
Q1 +D′5Q2 +A′Q11 = 0 (3.8′)

Q3 +E′Q0 +
(
2B′1 + 2C′2 −E′4

)
Q1 +

(
2C′1 + 2D′2 −E′5

)
Q2

+B′Q11 + 2C′Q12 +D′Q22 = 0. (3.9′)
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We will consider separately the cases A′ 6= 0, A′ = 0.

4. Case 1: A′ 6= 0

Equation (3.5′) can be used to express Q0 as a linear combination of Q1, Q2. Then
equations (3.6′)–(3.8′) can be used to express Q11, Q12, Q22 as linear combinations
of Q1, Q2. Finally, equation (3.9′) can be used to expressQ3 as a linear combination
of Q1, Q2. As a result of this computation, dQ may be expressed as

dQ = Q1 ω
1 +Q2 ω

2

for certain 1-forms ω1, ω2. Therefore, dQ must lie in the last derived system of
L = {ω1, ω2}.

4.1. Case 1.1: rank L(∞) = 0

Then there are no nonconstant solutions Q, and the space of conservation laws is
1-dimensional.

4.2. Case 1.2: rank L(∞) = 1

Then locally there exists a function y such that L(∞) = {dy}. Q must be a function
of y alone, and

dQ = Qy dy.

Using the chain rule, the derivatives Qi, Qij can be expressed in terms of Qy and
Qyy, and at least one of equations (3.6′)–(3.8′) can be written in the form

Qyy = λQy.

This equation has at most a 2-dimensional space of solutions, so the space of
conservation laws in this case is at most 2-dimensional.

4.3. Case 1.3: rank L = 2

Then locally there exist functions y, z such that L(∞) = {dy, dz}. Q must be a
function of y, z alone, and

dQ = Qy dy +Qz dz.

Equations (3.6′)–(3.8′) yield equations of the form

Qyy = a1Qy + a2Qz

Qyz = b1Qy + b2Qz

Qzz = c1Qy + c2Qz.
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If the functions ai, bi, ci depend nontrivially on any variables other than y, z, then
differentiating with respect to these variables yields a linear relation between Qy
and Qz, and the argument of the previous case shows that the space of conserva-
tion laws is at most 2-dimensional. So assume that ai, bi, ci are functions of y, z
alone.

On the manifold R5 = {(y, z,Q,Q1, Q2)}, let

η = dQ−Q1 dy −Q2 dz

η1 = dQ1 −
(
a1Q1 + a2Q2

)
dy −

(
b1Q1 + b2Q2

)
dz

η2 = dQ2 −
(
b1Q1 + b2Q2

)
dy −

(
c1Q1 + c2 Q2

)
dz.

Let J be the differential system generated by {η, η1, η2}. The space of conservation
laws may be identified with the space of 2-dimensional integral manifolds of J that
satisfy the independence condition dy∧dz 6= 0. This space is at most 3-dimensional,
with dimension equal to 3 if and only if J is Frobenius.

From this discussion, it is clear that if A′ 6= 0, then the space of conservation
laws is at most 3-dimensional. We state this result as the following theorem.

Theorem 4.1. Any parabolic PDE of the form (2.2) whose space of conservation
laws has dimension at least 4 is locally contact equivalent to an equation of the
form

ut = B′ uxx + 2C′ uxy +D′ uyy +E′

where the coefficients B′, C′, D′, E′ are functions of x, y, t, u, ux, uy. In particular,
such an equation is locally contact equivalent to a quasi-linear equation. �

5. Case 2: A′ = 0

Since the right-hand side of equation (2.2) is an elliptic operator, it must be true
that B′D′ − (C′)2 > 0. In particular, both B′ and D′ must be nonzero.

Equation (3.5′) is now an identity, and equations (3.6′)–(3.9′) take the form

2B′Q0 +B′4Q1 +
(
2C′4 −B′5

)
Q2 = 0 (3.6′′)

2C′Q0 +B′5Q1 +D′4Q2 = 0 (3.7′′)

2D′Q0 +
(
2C′5 −D′4

)
Q1 +D′5Q2 = 0 (3.8′′)

Q3 +E′Q0 +
(
2B′1 + 2C′2 −E′4

)
Q1 +

(
2C′1 + 2D′2 −E′5

)
Q2

+B′Q11 + 2C′Q12 +D′Q22 = 0. (3.9′′)
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Moreover, computing dΦ0 = 0 shows that the following equations must hold:

B′55 − 2C′45 +D′44 = 0 (5.1)

E′44 = 2B′0 +B′41 −B′52 + 2C′24 (5.2)

E′45 = 2C′0 +B′15 +D′24 (5.3)

E′55 = 2D′0 +D′52 −D′41 + 2C′15 (5.4)

E′0 −E′41 −E′52 +B′11 + 2C′12 +D′22 = 0. (5.5)

Let

S =

 2B′ B′4 2C′4 −B′5
2C′ B′5 D′4
2D′ 2C′5 −D′4 D′5

 .
Since B′D′ − (C′)2 > 0, S has rank at least 1. Equations (3.6′′)–(3.8′′) are
equivalent to the statement that the vector t [Q0 Q1 Q2 ] lies in the kernel of S.

Let L be the linear span of the forms{
Q0 θ +Q1 dx

1 +Q2 dx
2 | t [Q0 Q1 Q2 ] ∈ ker(S)

}
∪
{
dx3},

and let L(∞) be the last derived system of L. Note that L(∞) has rank at most 3.
We will consider separately the possibilities for the rank of L(∞).

In the course of this discussion, we will use the following theorem, which is
easily proved using standard techniques.

Theorem 5.1. Let θ be a contact form on a (2n+1)-dimensional manifold M . Let
{θ, ω1, . . . , ωp}, p ≤ n, be a rank p+1 system such that

1. the system {ω1, . . . , ωp} is integrable
2. (dθ)n−p+1 ≡ 0 mod {θ, ω1, . . . , ωp}
3. (dθ)n−p 6≡ 0 mod {θ, ω1, . . . , ωp}.

Then there exist local coordinates xi, u, pi, 1 ≤ i ≤ n, such that

θ = λ
(
du− pi dxi

)
for some λ 6= 0 and {

ω1, . . . , ωp
}

=
{
dx1, . . . , dxp

}
.

5.1. Case 2.1: rank L(∞) = 1

Then L(∞) = {dx3}, and
dQ = Q3 dx

3.

Equation (3.9′′) implies that Q3 = 0; therefore there are no nonconstant solu-
tions Q, and the space of conservation laws is 1-dimensional.
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5.2. Case 2.2: rank L(∞) = 2

Then L(∞) has the form

L(∞) =
{
a0 θ + a1 dx

1 + a2 dx
2, dx3}

with at least one of a1, a2 nonzero. Applying Theorem 5.1 to the system{
θ = θ − p3 dx

3} ∪ L(∞)

on the manifold U × R with coordinate p3 on the second factor shows that there
exist local contact coordinates x̃i, ũ, p̃i with dx̃3 = dx3 and

L(∞) =
{
dx̃1, dx̃3}.

In this coordinate system,

dQ = Q1 dx
1 +Q3 dx

3.

To avoid the previous case, we assume that Q1 6= 0. Equations (3.6′′)–(3.8′′) imply
that

B′4 = B′5 = 2C′5 −D′4 = 0 (5.6)

and equation (3.9′′) now takes the form

Q3 +
(
2B′1 + 2C′2 −E′4

)
Q1 +B′Q11 = 0. (3.9′′′)

Using equations (5.2), (5.3), and (5.6), it can be shown that the coefficients of
Q1 and Q11 in equation (3.9′′′) are independent of p1 and p2. If either of these
coefficients depends nontrivially on u or x2, then the space of solutions of equation
(3.9′′′) (and hence the space of conservation laws for equation (2.2)) has dimension
at most 2. Otherwise, equation (3.9′′′) is a linear parabolic equation for one function
of two independent variables, and the space of solutions of equation (3.9′′′) (and
hence the space of conservation laws for equation (2.2)) is parameterized (in the
sense of Cartan-Kähler) by two arbitrary functions of one variable.

Example. ut = uxx + uy uyy. This equation is parabolic whenever uy > 0, and it
is represented by the closed 3-form

Φ0 =
(
dp1 ∧ dx2 + p2 dx

1 ∧ dp2
)
∧ dx3 − dx1 ∧ dx2 ∧ θ.

Any other conservation law has the form

Φ = QΦ0 −Q1 θ ∧ dx2 ∧ dx3
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where Q(x1, x3) satisfies the backward heat equation

Q3 +Q11 = 0.

In classical terms, Φ = dφ, where

φ = Q
(
p1 dx

2 ∧ dx3 +
1
2
p2

2 dx
3 ∧ dx1 − u dx1 ∧ dx2)−Q1 u dx

2 ∧ dx3.

This corresponds to the fact that for any solution u(x, y, t) with asymptotically
zero boundary conditions,

d

dt

∫∫
R2
Q(x, t)u(x, y, t) dx dy = 0.

5.3. Case 2.3: rank L(∞) = 3

In this case the matrix S necessarily has rank 1. Using equations (3.6′′)–(3.8′′), Q0
can be expressed as a linear combination of Q1 and Q2. L can then be written in
the form

L =
{
ω1 = dx1−λ1 θ, ω2 = dx2−λ2 θ, dx3}.

Applying Theorem 5.1 to the system L shows that there exist local contact coor-
dinates x̃i, ũ, p̃i with dx̃3 = dx3 and

L =
{
dx1, dx2, dx3}.

In this coordinate system, ker(S) is spanned by vectors of the form

t [ 0 Q1 Q2 ] .

This implies that the second and third columns of S vanish, i.e.,

B′4 = B′5 = C′4 = C′5 = D′4 = D′5 = 0. (5.7)

Equations (3.6′′)–(3.8′′) imply that Q0 = 0, and equation (3.9′′) now takes the form

Q3 +
(
2B′1 + 2C′2 −E′4

)
Q1 +

(
2C′1 + 2D′2 −E′5

)
Q2

+B′Q11 + 2C′Q12 +D′Q22 = 0.
(3.9′′′′)

Using equations (5.2), (5.3), (5.4), and (5.7), it can be shown that the coef-
ficients of Q1, Q2, Q11, Q12, and Q22 in equation (3.9′′′′) are independent of p1
and p2. The solution space of equation (3.9′′′′) depends on how these coefficients
depend on the variable u. If any of these coefficients depend nontrivially on u,
then equation (3.9′′′′) actually splits into two or more equations, and the space of
conservation laws is parameterized by at most two functions of one variable, as in
the previous case.
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Example. ut = 1
2e
−u(uxx + uyy). This equation arises naturally in a geometric

problem and is discussed in more detail in [4]. The equation is parabolic and is
represented by the closed 3-form

Φ0 =
(
dp1 ∧ dx2 + dx1 ∧ dp2

)
∧ dx3 − 2eu dx1 ∧ dx2 ∧ θ.

Any other conservation law has the form

Φ = QΦ0 +
(
Q1 dx

2 −Q2 dx
1) ∧ θ ∧ dx3

where Q(x1, x2) satisfies Laplace’s equation

Q11 +Q22 = 0.

In classical terms, Φ = −dφ, where

φ = 2Qeu dx1 ∧ dx2 − tQ
(
dp1 ∧ dx2 + dx1 ∧ dp2

)
+ t
(
du− p1 dx

1 − p2 dx
2) ∧ (Q1 dx

2 −Q2 dx
1).

This corresponds to the fact that for any solution u(x, y, t) for which the integral
converges,

d

dt

∫∫
R2
Q(x, y)

(
2eu(x,y,t) − t(uxx + uyy)

)
dx dy = 0.

Proposition 5.2. If all of the coefficients in equation (3.9′′′′) are independent of
u, then the PDE (2.2) is linear.

Proof. By hypothesis,
B′0 = C′0 = D′0

so B′, C′, D′ are functions of x1, x2, x3 alone. Equations (5.2), (5.3), (5.4) imply
that

E′44 = 2B′0 = 0

E′45 = 2C′0 = 0

E′55 = 2D′0 = 0.

The fact that the coefficients of Q1, Q2 in (3.9′′′′) are independent of u implies that

E′04 = 2B′01 + 2C′02 = 0

E′05 = 2C′01 + 2D′02 = 0.

Finally, differentiating (5.5) with respect to u yields

E′00 = E′041 +E′052 +B′011 + 2C′012 +D′022 = 0.

Therefore,
E′ = f(xi)u+ g(xi) p1 + h(xi) p2 + k(xi)

and the PDE (2.2) is linear. �
It is well-known that the space of conservation laws for a linear equation is

isomorphic to the space of solutions of its adjoint equation. The result of this
discussion is the following theorem.
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Theorem 5.3. Let I be a parabolic Monge-Ampère system whose space of con-
servation laws has parameter space (in the sense of Cartan-Kähler) strictly larger
than the space of two arbitrary functions of one variable. Then I is locally contact
equivalent to a system that arises from a linear parabolic partial differential equa-
tion, and the space of conservation laws is parameterized by two arbitrary functions
of two variables. �
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