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Periodic Korteweg de Vries equation with measures as initial
data
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Abstract. The main result of the paper is that the periodic KdV equation yt + ∂3
xy + yyx = 0

has a unique global solution for initial data y(0) given by a measure μ ∈ M(T) of sufficiently
small norm ‖μ‖. There are two main ingredients in the proof. The first is the study of the local
well-posedness problem in terms of the space-time Fourier-norms as exploited in [Bo] and also
subsequent work such as [K-P-V2]. At the end the estimates eventually depend on a uniform
estimate in terms of the Fourier coefficients

sup
n∈Z, t∈R

|ŷ(n)(t)| < C.

Such a priori bound (in the space of pseudo-measures) on the solution may be derived from spectral
theory and more precisely from the preservation of the periodic spectrum of a potential evolving
according to KdV, which is the second ingredient. Thus the result at this stage depends heavily
on integrability features of this particular equation. We also sketch an argument establishing
almost periodicity properties of these solutions. This work is in spirit closely related to [Bo].
Natural questions suggested by these investigations is an extension of the result (at least for the
IVP local in time) to a more general nonintegrable setting as well as to what extent the estimates
on Fourier coefficients by spectral invariants and vice versa remains valid in distributional spaces.
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1. Introduction

The main result is the following

Theorem. The periodic KdV equation

yt + ∂3
xy + yyx = 0 (1.1)



116 J. Bourgain Sel. math., New ser.

has a unique global solution for initial data y(0) given by a measure on the circle
of sufficiently small norm; thus y(0) = μ ∈ M( ), ‖μ‖ small enough.

This smallness assumption is of a technical nature and may likely be removed
by some additional work. As will be explained below, the method uses both the
local in time analysis from [Bo] and certain a priori bounds provided by spectral
theory. The content of the theorem may be reformulated as follows. Let {φα} be a
sequence of smooth data such that μ = lim

α
φα in the weak sense. Let {yα} be the

corresponding solutions of (1.1) satisfying yα(0) = φα. Then the sequence {yα(t)}
converges weakly for all time. Local well-posedness of he initial value problem{

yt + ∂3
xy + yyx = 0

y(0) = φ
(1.2)

in the period case, for φ ∈ Hs( ), s ≥ 0, was established in [Bo]. In this situation,
the result extends in fact to a global one because of the L2-conservation

‖u(t)‖2 = ‖φ‖2. (1.3)

It was observed in [KPV2] that this argument in fact may be applied to establish
local well-posedness for φ ∈ Hs( ), s ≥ − 1

2 . In the periodic case, the exponent − 1
2

turns out to be the boundary of the method. In fact, if one defines well-posedness
as a smooth behavior of the time shifts acting on Hs

0( )

φ �−→ yφ(t), 0 ≤ t ≤ T, (1.4)

where yφ is the unique solution to (1.2), then the condition s ≥ − 1
2 is necessary.

More comments on this will be given at the end of the paper. By Hs
0( ) we mean

the subpsace of Hs( ) consisting of the functions of mean 0∫
φ(x)dx = 0. (1.5)

Recall here that the mean is an invariant of motion under the KdV flow. Also when
formulating the well-posedness results in the periodic case, one should specify the
mean

∫
φ, since otherwise the statement is incorrect. The procedure of mean zero

reduction simply consists in replacing (1.2) by the equation{
yt + ∂3

xy − φ̂(0)yx + yyx = 0

y(0) = φ − φ̂(0).
(1.6)

The additional φ̂(0)yx-term plays otherwise a nonsignificant role in the [Bo]-anal-
ysis. This analysis requires however essentially that

ŷ(0)(t) = 0 where y(x, t) =
∑
n∈Z

ŷ(n)(t)ein.x. (1.7)
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Starting from φ = y(0) = μ, one has

|φ̂(n)| ≤ ‖μ‖ (1.8)

and hence φ as a distribution barely misses the H−1/2-class.
However, the well-posedness limitation s ≥ − 1

2 brought up above turns out to
be caused by data with Fourier coefficients of “extreme” size, such as

φ(x) = N1/2 sin 2πNx, N → ∞ (1.9)

and does not appear in the context of (1.8).
Thus the next issue to carry out the argument is how to obtain an a priori

estimate on the Fourier coefficients of the form (1.8)

sup
n∈Z

|ŷ(n)| < C. (1.10)

Here we will rely on spectral theory (unfortunately depending strongly on the
integrability aspects of KdV). Recall that if q is a real periodic potential, then the
periodic spectrum

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . < λ2n−1 ≤ λ2n < . . . (1.11)

of the Sturm-Liouville operator

Q = − d2

dx2 + q(x) (1.12)

is invariant if we let Q evolve according to the KdV flow. Recall that the periodic
spectrum {λj} is obtained as roots of the discriminant

Δ2(λ, q) − 4 = 0 (1.13)

where

Δ(λ, q) = y1(1, λ) + y′
2(1, λ) (1.14)

Qyi = λyi (i = 1, 2) (1.15)

y1(0, λ) = 1, y′
1(0, λ) = 0 (1.16)

and

y2(0, λ) = 0, y′
2(0, λ) = 1. (1.17)
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The functions yi = yi(x, λ, q) (i = 1, 2) satisfy equations

y1(x, λ) = cos
√

λx +
∫ x

0

sin
√

λ(x − s)√
λ

q(s)y1(s, λ)ds (1.18)

y2(x, λ) =
sin

√
λx√

λ
+

∫ x

0

sin
√

λ(x − s)√
λ

q(s)y2(s, λ)ds. (1.19)

Recall also the definition of the Dirichlet spectrum {μn} = {μn(q)}, given by the
roots of the equation

y2(1, μ) = 0 (1.20)

and interlacing the periodic spectrum

λ0 < λ1 ≤ μ1 ≤ λ2 < . . . < λ2n−1 ≤ μn ≤ λ2n < . . . (1.21)

If q is an L1( )-potential, then λ2n−1, λ2n = π2n2 + O(1). If q is sufficiently
smooth, then {λ2n − λ2n−1}, the sequence of gaps, measures essentially the decay
of the Fourier transform {|q̂(n)|; n ∈ Z+} (cf. [McK-T] and also [Bo] for inequalities
in the context of nonsmooth potentials). Our aim here will be to derive from the
preceding an a priori bound of the form (1.10).

Denote for given φ by M(φ) the corresponding isospectral manifold of functions
q with same periodic spectrum λj(q) = λj(φ). One may consider here smooth
functions to avoid complications, but the conclusions below should only involve
the ‖φ‖L1 = ‖φ‖1-norm. The scheme of the argument is then as follows

‖φ‖1 < c��	
λ2n−1(φ), λ2n(φ) = π2n2 + o(1)��	

|μn(q) − π2n2| = o(1) for all q ∈ M(φ)��	
sup

n
|q̂(n)| < c′

and thus (1.10).
It is here that the smallness assumption is used, making the previous argument

a bit easier. We remark that if φ ∈ L2( ), then M(φ) is a (compact) subset of L2.
However for φ ∈ L1( ) (resp. μ ∈ M( )), the members of M(φ) (resp. M(μ))
are distributions, not necessarily functions (resp. measures).
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We now return to the local in time analysis along the line of [Bo]. The present
work will be an elaboration of these arguments, with estimate (1.10) at our disposal.
A crucial role is played by a system of space-time norms, defined as

‖y‖s,b = ‖y‖Xs,b[0,T ] =
{∑

n∈Z

(1 + |n|)2s

∫
R

dλ(1 + |λ − n3|)2b|ŷ(n, λ)|2
}1/2

(1.22)

assuming (T > 0 bounded or small)

y(x, t) =
∑
n∈Z

∫
dλ ŷ(n, λ)ei(n.x+λ.t) on ×[0, T ]. (1.23)

Clearly Xs,b[0, T ] ⊂ CHs( )[0, T ] if b > 1
2 . For more details on the use of these and

similar norms, the reader may consult [Bo] or the expository paper by J. Ginibre
[Gi]. We will often use the notation | · | referring to 1+ | · | in the factors of (1.22).
The use of the norm (1.22) in solving the Cauchy problem (1.2), (1.6) local in time
is two-fold. First there are the Strichartz inequalities for the linear KdV-equation
(cf. [Bo]) {

yt + ∂3
xy = 0

y(0) = φ.
(1.24)

In the periodic case, we have the inequality

‖y‖L4( ×[0,T ]) ≤ C‖φ‖2 (1.25)

where
y(x, t) = S(t)φ(x) ≡

∑
n

φ̂(n)ei(nx+n3t) (1.26)

solves (1.24). In fact, we will use following strengthening of (1.25) in the form of
the general inequality

‖y‖L4( ×[0,T ]) � C‖y‖0, 13
(1.27)

(the exponent 1
3 is sharp). We dispose also of an L6-inequality (a+ denoting any

number > a)
‖y‖L6( ×[0,T ]) ≤ C‖y‖0+, 1

2+

which will not be used here however.
Secondly, the norms (1.22) permit us to capture certain smoothing phenomena

in the nonlinear term of the (equivalent) integral equation

u(t) = S(t)φ +
∫ t

0
S(t − τ)(yyx)(τ)dτ (1.28)
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(Duhamel’s formula). These smoothing effects in the periodic case are more subtle
than on the line R and result from certain arithmetic facts involving the (λ − n3)-
factors, namely the identities

(n1 + n2)3 − n3
1 − n3

2 = 3n1n2(n1 + n2) (1.29)

(n1 + n2 + n3)3 − n3
1 − n3

2 − n3
3 = 3(n1 + n2)(n2 + n3)(n3 + n1). (1.30)

For simplicity, we treat in the next sections the IVP (1.2), (1.6) with φ̂(0) = 0.
Otherwise the (λ − n3)-factor in (1.22) needs to be replaced by λ − n3 − φ̂(0)n,
making the formulas more cumbersome, although without essential differences.

It is not clear to me how the theorem above may be obtained by the sole use
of spectral considerations. Explicit formulas such as given in [Tr] seem to require
more smoothness of the data to converge. On the other hand, it is surely possible
that the result here may be extended to larger classes of distributions as initial
data than we are considering.

Most of the paper deals with the proof of the theorem stated in the beginning
(except for section 6 where we make some comments on sharpness of known local
well-posedness results in terms of required minimal regularity on data for the KdV
equation and generalizations).

As explained above, the two main ingredients are

(i) The local well-posedness theory for the periodic KdV equation

The method developed in sections 2, 3 is much in the spirit of [Bo] and some later
papers such as [KPV2]. (Presently, there is in fact a rather vast literature of this
approach to the Cauchy problem for various types of hyperbolic equations). Essen-
tially, we reproduce the H−1/2-well-posedness argument, but push the analysis to
the point where it becomes clear what is the exact nature of the obstruction to go
beyond H−1/2 (namely the presence of “large” Fourier coefficients). The starting
point is the use of Duhamel’s formula (2.1) below and the estimate of the second
(nonlinear term) in norms of the form (2.5). One significant difference with [Bo]
is that here we will need to iterate (2.1) twice, leading to estimates on a trilinear
expression in y (cf. (2.29)). Also norms ‖ ‖s,b for different parameters values (s, b)
are used yielding eventually in particular a bound on ‖y‖s,b with s < − 1

2 , b > 1
2 .

This analysis turns out to be conclusive provided there is an a priori uniform bound
on the Fourier coefficients

ŷ(n) = ŷ(n)(t) =
∫

y(x, t) e−2πnxdx.

Remark. It would be very interesting to develop a substitute for the norm (2.5)
such that we would not have to rely on this additional assumption, since it would
permit us to establish at least a local in time well-posedness result for nonintegrable
KdV-variants.
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(ii) A priori estimates from spectral theory

The a priori bound on |ŷ(n)| is derived in section 4 from the conservation of the
periodic spectrum {λj(q)} when the potential q evolves according to the KdV flow,
and the general “principle” that the size of the Fourier coefficients |q̂(n)| is essen-
tially measured by the gap sequence {λ2n − λ2n−1}. If q is a smooth potential,
such estimates appear in [McK-Tr]. For L2-potentials, the case of the Dirichlet
spectrum was studied in [P-Tr] and an L2-extension of [McK-Tr] outlined in [Bo].
(Such results may also be found in some recent works of T. Kappeler and coau-
thors). The methods here are again similar and the main problem is to bound error
terms in certain multilinear expansions involving the potential q (cf. (4.10)). The
situation is a bit more delicate however, since at the start we dispose of a measure
although the elements of the corresponding isospectral manifold are only expected
to be pseudomeasures.

Solutions of periodic KdV are almost periodic in time. For finite gap potentials,
this was proven by Lax and Novikov. The paper [McK-Tr] establishes the result in
the smooth case. An easy extension of their method (see [Bo]) yields the result in
L2. In section 5 of this paper, almost periodicity in Hs, s < − 1

2 , of the previously
constructed global solution, with initial data given by a measure, is established.

2. Estimates on the nonlinear term

We consider the integral equation

y(t) = Φ +
∫ t

0
S(t − τ)(∂xy2)(τ)dτ with Φ = S(t)φ (2.1)

As mentioned above, we assume

ŷ(0) = φ̂(0) = 0. (2.2)

There are essentially the following contributions to the nonlinear term (cf. [Bo])

∑
n�=0

∫
|λ−n3|>1

dλ
n

λ − n3

[ ∑
n=n1+n2
λ=λ1+λ2

ŷ(n1, λ1)ŷ(n2, λ2)
]
ei(nx+λt) (2.3)

and

∑
n�=0

n

⎡⎢⎣∫
|λ−n3|>1

dλ
1

λ − n3

[ ∑
n=n1+n2
λ=λ1+λ2

∫
ŷ(n1, λ1)ŷ(n2, λ2)

]⎤⎥⎦ ei(nx+n3t).
(2.4)
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Recall (1.22)

‖y‖s,b =
(∑

n

|n|2s

∫
|λ − n3|2b|ŷ(n, λ)|2

)1/2

. (2.5)

Choose α < 1
2 , close to 1

2 (to be specified). We will consider the different norms
‖ ‖−(1−α),α, ‖ ‖−α,α, ‖ ‖−α,(1−α) in what follows.
Write

ŷ(n, λ) =
|n|1−αc(n, λ)

|λ − n3|α (2.6)

where

‖c‖2 ≡ ‖c‖�2nL2
λ

= ‖y‖−(1−α),α. (2.7)

Substituting both ŷ-factors in (2.3), (2.4) by (2.6), we get the different contributions

|λ − n3| > |λ1 − n3
1|, |λ2 − n3

2| (2.8)

and

|λ1 − n3
1| > |λ − n3|, |λ2 − n3

2|, (2.9)

similarly

|λ2 − n3
2| > |λ − n3|, |λ1 − n3

1|. (2.10)

(I.1) Estimation of ‖(2.3) |λ−n3|>|λ1−n3
1|, |λ2−n3

2|‖−α,α

We get clearly

{ ∑
n

∫
dλ

|n|2(1−α)

|λ − n3|2(1−α)

∣∣∣∣ ∑∫
n=n1+n2
λ=λ1+λ2

(2.8)

|ŷ(n1, λ1)| |ŷ(n2, λ2)|
∣∣∣∣2

}1/2

(2.11)

where by assumption, cf. (1.29)

|λ − n3| = max(|λ − n3|, |λ1 − n3
1|, |λ2 − n3

2|) ≥ |n3 − n3
1 − n3

2| ≥ |n n1n2|. (2.12)
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By duality, (2.12) and (2.6), (2.11) is bounded by

∑∫
n=n1+n2
λ=λ1+λ2

d(n, λ)
|n1n2|2(1−α) |ŷ(n1, λ1)| |ŷ(n2, λ2)| (2.13)

(‖d‖2 ≤ 1)

≤
∑∫

n=n1+n2
λ=λ1+λ2

d(n, λ)
c(n1, λ1)

|λ1 − n3
1|α

c(n2, λ2)
|λ2 − n3

2|α
. (2.14)

Assume
α >

1
3
. (2.15)

Invoking (1.27), (2.14) then admits clearly an L2
xt ×L4

xt ×L4
xt-estimate, and we get

the contribution
‖c‖2

2 = ‖y‖2
−(1−α),α. (2.16)

In fact, from the denominator saving in (2.14), one may get for small time T an
estimate in X−(1−α),α[0, T ] by

T κ‖y‖2
−(1−α),α (2.17)

for some κ > 0.
Thus we reexpress (2.14) in terms of functions. Letting

F (x, t) =
∑

n

∫
dλ

{
d(n, λ) ei(nx+λt)

}
G(x, t) =

∑
n

∫
dλ

{ c(n, λ)
|λ − n3|α ei(nx+λt)

}
(2.14) yields ∫ ∫

F.G2 dxdt

(where the t-integration may be localized to the initial time interval [0, T ]) which,
by Hölder’s inequality and (1.27), (2.15) is bounded by

‖F‖2.‖G‖2
4 ≤ ‖G‖2

4 ≤
(1.27)

C‖G‖2
0, 13

≤
(α> 1

3)
C.‖c‖2

2. (2.17′)

In order to get (2.17), refine using interpolation the last inequality in (2.17′) as
follows

‖G‖0, 1
3

≤ ‖G‖1− 1
3α

0, 0 ‖G‖ 1
3α
0,α = ‖G‖1− 1

3α

L2( ×[0, T ]) · ‖c‖ 1
3α
2 .
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and, from Hölder’s inequality and again (1.27)

‖G‖L2( ×[0,T ]) ≤ T 1/4.‖G‖4 ≤ CT 1/4‖G‖0, 13
.

The last two inequalities yield

‖G‖0, 13
≤ CT 1/4(3α−1)‖c‖2. (2.17′′)

Substitution of (2.17′′) in (2.17′) yields the improved estimate (2.17)

C‖G‖2
0, 13

≤ CT
1
2 (3α−1)‖c‖2

2

with κ = 1
2 (3α − 1).

Remark.
(i) The preceding is a typical example of an estimate with this approach. The

problem is reexpressed using Fourier transform of the functions and mul-
tipliers. One then performs some “surgery” on those multipliers, often
distinguishing several regions. The newly obtained expressions are again
reformulated in a function setting and bounded for instance by a Strichartz
type inequality such as (1.27). More details on this may be found in [Bo]
or [Gi] for instance.

(ii) Similar improvement for small time interval of an initial bound (because
of some denominator savings), leading to an extra factor T κ, reappears
repeatedly in later estimates below without explicit mention.

(I.2) Estimation of ‖(2.4) |λ−n3|>|λ1−n3
1|, |λ2−n3

2|‖−α,

(From the form of (2.4), the exponent b in (2.5) may be chosen arbitrarily here.)
We get the bound{∑

n

|n|2(1−α)
[∫

dλ

|λ − n3|
[ ∑∫

n=n1+n2
λ=λ1+λ2

|ŷ(n1, λ1)| |ŷ(n2, λ2)|
]]2

}1/2

(2.18)

<
∑∫

n=n1+n2
λ=λ1+λ2

(2.8)

|n|1−αd(n)
|λ − n3|

|n1|1−αc(n1, λ1)
|λ1 − n3

1|α
|n2|1−αc(n2, λ2)

|λ2 − n3
2|α

(2.19)

(from duality; ‖d‖2 ≤ 1).

Writing by (2.12)

|λ − n3| > |λ1 − n3
1|

1
2−α+|λ2 − n3

2|
1
2−α+|nn1n2|2α− (2.20)
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we get thus

∑∫
n=n1+n2

dλ1dλ2|n|1−3α+d(n)
|n1|1−3α+c(n1, λ1)

|λ1 − n3
1|

1
2+

|n2|1−3α+c(n2.λ2)
|λ2 − n3

2|
1
2 +

. (2.21)

Defining

c̃(n) =
∫

c(n, λ)
|λ − n3| 1

2 +
dλ (2.22)

it follows from Hölder’s inequality that

‖c̃‖2 � ‖c‖2 = ‖y‖−(1−α),α. (2.23)

Thus

(2.21) =

〈∑
n

|n|1−3α+d(n)einx,

[∑
n1

|n1|1−3α+c̃(n1)ein1x

][∑
n2

|n2|1−3α+c̃(n2)ein2x

]〉
. (2.24)

Assuming

1 − 3α < −1
6
, hence α >

7
18

(2.25)

one gets from the Hausdorff-Young inequality and an L3
x × L3

x × L3
x-estimate, the

bound

(2.24) ≤
∥∥∥∥∥∑

n

|n|1−3α+d(n)einx

∥∥∥∥∥
3

∥∥∥∥∥∑
n

|n|1−3α+c̃(n)einx

∥∥∥∥∥
2

3

� ‖c̃‖2
2 ≤ ‖y‖2

−(1−α),α.

(2.26)

(II) Estimation of ‖(2.3) + (2.4) |λ1−n3
1|>|λ−n3|,|λ2−n3

2|‖−α,1−α (other case is sim-

ilar)

Denote for simplicity by I−α,1−α the quantity to be estimated here. Both contri-
butions (2.3), (2.4) are clearly bounded by

∑∫
n=n1+n2
λ=λ1+λ2

(2.9)

d(n, λ)|n|1−α

|λ − n3|α ŷ(n1, λ1)
|n2|1−αc(n2, λ2)

|λ2 − n3
2|α

(2.27)
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where
‖d‖2 ≤ 1, ‖c‖2 = ‖u‖−(1−α),α.

Since |λ1 − n3
1| > |λ − n3|, |λ2 − n3

2| by (2.9), the factor ŷ(n1, λ1) in (2.27) is given
by (2.3), thus replaced by

n1

λ1 − n3
1

[ ∑
n1=n3+n4
λ1=λ3+λ4

∫
ŷ(n3, λ3)ŷ(n4, λ4)

]
. (2.28)

We get as estimate on I−α,1−α∑∫
n=n1+n2,n1=n3+n4
λ=λ1+λ2,λ1=λ3+λ4

(2.9)

d(n, λ)|n|1−α

|λ − n3|α
n1

λ1 − n3
1

|n2|1−αc(n2, λ2)
|λ2 − n3

2|α
ŷ(n3, λ3)ŷ(n4, λ4).

(2.29)
Again we need to distinguish the cases

|λ1 − n3
1| > |λ3 − n3

3|, |λ4 − n3
4| (2.30)

and

|λ3 − n3
3| > |λ1 − n3

1|, |λ4 − n3
4|. (2.31)

Similarly

|λ4 − n3
4| > |λ1 − n3

1|, |λ3 − n3
3| (2.32)

corresponding to (2.8)–(2.10).

(II.1) Contribution of ‖(2.29) |λ3−n3
3|>|λ1−n3

1|,|λ4−n3
4|‖−α,1−α

One may clearly write

n1

λ1 − n3
1

∑∫
n1=n3+n4
λ1=λ3+λ4

(2.31)

ŷ(n3, λ3)ŷ(n4, λ4) =
|n1|αb(n1, λ1)
|λ1 − n3

1|1−α
(2.33)

where

‖b‖2 ≤ I−α,1−α. (2.34)
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Substitution of (2.33) in (2.29) yields

∑∫
n=n1+n2
λ=λ1+λ2

(2.9)

|n|1−αd(n, λ)
|λ − n3|α

|n1|αb(n1, λ1)
|λ1 − n3

1|1−α

|n2|1−αc(n2, λ2)
|λ2 − n3

2|α
. (2.35)

Since by (2.9)
|λ1 − n3

1| ≥ |nn1n2| (2.36)

(2.35) <
∑∫

n=n1+n2
λ=λ1+λ2

d(n, λ)
|λ − n3|α

[|n1|2α−1|b(n1, λ1)|
] c(n2, λ2)

|λ2 − n3
2|α

(2.37)

< o(1)‖d‖2.‖b‖2‖c‖2 (by L4
xt × L2

xt × L4
xt-estimate)

= o(1)‖y‖−(1−α),αI−α,1−α (2.38)

for small time T .

(II.2) Contribution of ‖(2.29) |λ1−n3
1|>|λ3−n3

3|,|λ4−n3
4|‖−α,(1−α)

Substituting (2.6), replace (2.29) by

∑∫
n=n2+n3+n4
λ=λ2+λ3+λ4

(2.40)

d(n, λ).|n|1−α

|λ − n3|α
|n1|

|λ1 − n3
1|

|n2|1−αc(n2, λ2)
|λ2 − n3

2|α
·

· |n3|1−αc(n3, λ3)
|λ3 − n3

3|α
|n4|1−αc(n4, λ4)

|λ4 − n3
4|α

(2.39)

where (2.40) denotes the parameter restriction

|λ1 − n3
1| > |λ − n3|, |λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4| (n1 = n3 + n4, λ1 = λ3 + λ4)
(2.40)

One gets from (2.9), (2.30)

|λ1 − n3
1| > |nn1n2| + |n1n3n4| ≥ |n1| |nn2|α|n3n4|1−α. (2.41)

Hence there is the bound

(2.39) <
∑∫

d(n, λ)|n|1−2α

|λ − n3|α
|n2|1−2α|c(n2, λ2)|

|λ2 − n3
2|α

|c(n3, λ3)|
|λ3 − n3

3|α
|c(n4, λ4)|
|λ4 − n3

4|α
. (2.42)
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Fix a number γ > 0 satisfying

γ >
2(1 − 2α)
α − 1/3

. (2.43)

In the parameter region

max
(|λ − n3|, |λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|
)

> (|n| + |n2|)γ (2.44)

(2.42) may then clearly be estimated by

∑∫
d(n, λ)

|λ − n3|1/3

|c(n2, λ2)|
|λ2 − n3

2|1/3

|c(n3, λ3)|
|λ3 − n3

3|1/3

|c(n4, λ4)|
|λ4 − n3

4|1/3 ·

(|n| + |n2|)2(1−2α)−γ(α− 1
3)

(2.45)

<
∑∫

d(n, λ)
|λ − n3|1/3

|c(n2, λ2)|
|λ2 − n3

2|1/3

|c(n3, λ3)|
|λ3 − n3

3|1/3

|c(n4, λ4)|
|λ4 − n3

4|1/3 . (2.46)

Again from an (L4
xt × L4

xt × L4
xt × L4

xt)-estimate and (1.27), this yields an
o(1).‖y‖3

−(1−α),α-bound. Thus we are restricted to the parameter region

max
(|λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|, |λ − n3|) ≤ (|n| + |n2|)γ . (2.47)

If (2.47), observe that

|λ1 − n3
1| = |λ − λ2 − (n − n2)3| > |n3 − n3

2 − (n − n2)3| − 2(|n| + |n2|)γ

> |nn1n2|
> |λ − n3| + max

i=2,3,4
|λi − n3

i |
(we may assume n, n1, n2 �= 0)

(2.48)

and (2.9), (2.30) are thus automatically fulfilled.
Hence the (2.47)-contribution to (2.29) is thus

∑∫
n=n2+n3+n4
λ=λ2+λ3+λ4

|n|1−αd(n, λ)
|λ − n3|α

n − n2

λ − λ2 − (n − n2)3
û(n2, λ2) û(n3, λ3) û(n4, λ4). (2.49)

Recall (1.30) implying that

max
(|λ − n3|, |λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|
)

≥ |n3 − n3
2 − n3

3 − n3
4| (2.50)

≥ |n2 + n3| |n3 + n4| |n4 + n2|.
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If (2.47), we get thus clearly that

n2 + n3 = 0 or n2 + n4 = 0. (2.51)

(Since n1 = n3 + n4, we may assume n3 + n4 �= 0.)
Assume n2 + n3 = 0. The case n2 + n4 = 0 is similar. Since

n3 = −n2, n4 = n (2.52)

(2.49) yields

∑∫
n,n2 �=n

λ=λ2+λ3+λ4
(2.54)

|n|1−αd(n, λ)
|λ − n3|α

n − n2

λ − λ2 − (n − n2)3
ŷ(n2, λ2)ŷ(−n2, λ3)ŷ(n, λ4) (2.53)

where (2.54) refers to the parameter restriction

|λ2 − n3
2|, |λ3 + n3

2|, |λ4 − n3|, |λ − n3| < (|n| + |n2|)γ . (2.54)

Write by (2.54)

n − n2

λ − λ2 − (n − n2)3
=

n − n2

n3 − n3
2 − (n − n2)3 + [λ − n3] − [λ2 − n3

2]

=
1

3nn2 + [λ−n3]−[λ2−n3
2]

n−n2

=
1

3nn2
+ O

(
(|n| + |n2|)γ

|n|2|n2|2|n − n2|
)

. (2.55)

The contribution of the first term in (2.53) is given by

∑
n,n2 �=n

λ=λ2+λ3+λ4
(2.54)

|n|1−αd(n, λ)
n|λ − n3|α

1
n2

ŷ(n2, λ2)ŷ(−n2, λ3)ŷ(n, λ4). (2.56)

To estimate it will require some care, taking into account certain cancellation in
(2.56) as well as the a priori bound (1.10).
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The second (error) term in (2.55) yields for (2.53) following straightforward
estimate

∑∫
n;n2 �=n

λ=λ2+λ3+λ4
(2.54)

|n|1−αd(n, λ)
|λ − n3|α |ŷ(n2, λ2)| |ŷ(−n2, λ3)| |ŷ(n, λ4)| (|n| + |n2|)γ

n2n2
2 (2.57)

≤
∑∫

d(n, λ)
|λ − n3|α

|c(n2, λ2)|
|λ2 − n3

2|α
|c(−n2, λ3)|
|λ3 + n3

2|α
|c(n, λ4)|
|λ4 − n3|α

|n|γ+2(1−α)|n2|γ+2(1−α)

n2n2
2 (2.58)

≤
∑∫

n=n2+n3+n4
λ=λ2+λ3+λ4

d(n, λ)
|λ − n3|α

|c(n2, λ2)|
|λ2 − n3

2|α
|c(n3, λ3)|
|λ3 − n3

3|α
|c(n4, λ4)|
|λ4 − n3

4|α

<o(1)‖y‖3
−(1−α),α (2.59)

provided

2(1 − α) + γ < 2. (2.60)

Next we analyze (2.56).
Rewrite (2.56) as

∑∫
n;n2 �=n,−n

λ=λ2+λ3+λ4
|λ−n3|,|λ4−n3|<(|n|+|n2|)γ

|n|1−αd(n, λ)
n|λ − n3|α

1
n2

[
(ŷ(n2, λ2) |λ2−n3

2|<(|n|+|n2|)γ
)(ŷ(−n2, λ3) |λ3+n3

2|<(|n|+|n2|)γ
)
]
ŷ(n, λ4)

(2.61)

+0

{ ∑∫
n;λ=λ2+λ3+λ4

(2.54)

|d(n, λ)|
|n|1+α|λ − n3|α |ŷ(−n, λ2)| |ŷ(n, λ3)| |ŷ(n, λ4)|

}
. (2.62)

Estimation of (2.61)

Permuting λ2 and λ3, an antisymmetric expression in n2 is obtained, so that
(2.61) = 0.
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Estimation of (2.62)

Recalling (1.10), we have the a priori bound

|ŷ(n)(t)| < C for all t (2.63)

and hence in particular
‖ŷ(n)‖L2

λ
< C. (2.64)

Thus

(2.62) <
∑

n

∫
|λi±n3|<2|n|γ

dλ2dλ3dλ4× (2.65)

×
[
|n|−2α|d(n, λ2 + λ3 + λ4)|(|n|−(1−α)|ŷ(−n, λ2)|)|ŷ(n, λ3)||ŷ(n, λ4)|

]
<o(1)

∑
n

|n|−2α+γ‖d(n)‖2

(
|n|−(1−α)‖ŷ(−n)‖2

)
(2.66)

<o(1)‖d‖2 ‖y‖−(1−α),0

<o(1)‖y‖−(1−α),α. (2.67)

This completes our preliminary analysis which may be summarized as follows

‖(2.3) + (2.4)‖−α,α <o(1)‖y‖2
−(1−α),α (from (2.17), (2.26))

+ I−α,α (2.68)

and

I−α,1−α <o(1)‖y‖−(1−α),αI−α,1−α (from (2.38))

+ o(1)‖y‖3
−(1−α),α (from (2.46), (2.59))

+ o(1)‖y‖−(1−α),α (from (2.67)) (2.69)

where o(1) depends on small time T .
By (2.1) and the fact that |φ̂(n)| < C, it follows from the preceding that

‖y‖−(1−α),α = o(1) + o(1)‖y‖2
−(1−α),α +

o(1)‖y‖−(1−α),α + ‖y‖3
−(1−α),α

1 − o(1)‖y‖−(1−α),α
. (2.70)

This enables us to deduce that

‖y‖−(1−α),α = o(1) (2.71)

I−α,(1−α) = o(1) (2.72)

‖(2.3) + (2.4)‖−α,α = o(1). (2.73)
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The conditions on α, γ are

α >
7
18

(from (2.15), (2.25))

γ >
2(1 − 2α)
α − 1/3

(2.43)

2(1 − α) + γ < 2 (2.60)

which are clearly compatible for α close enough to 1
2 .

Our next purpose is to derive an ‖y‖−s,b-estimate for some s > 1
2 , b > 1

2 . Con-
sidering the nonlinear term in (2.1) as a bilinear expression, denote for simplicity

(y, z) =
∫ t

0
S(t − τ)∂x(y, z)(τ)dτ. (2.74)

Thus

y = Φ + (y, y) (2.75)

where, by (2.73)

‖(y, y)‖−α,α = o(1). (2.76)

From the analysis of (2.4), (2.5), the contributions of

max
(|λ1 − n3

1|, |λ2 − n3
2|
)

≥ |λ − n3| (2.77)

are controlled in ‖ ‖−α,1−α; we denoted this quantity by I−α,1−α. Consider next
the contribution to (y, y) of

max
(|λ1 − n3

1| , |λ2 − n3
2|
)

< |λ − n3|. (2.78)

Write

(y, y) = (Φ,Φ) + 2(Φ, (y, y)) + ((y, y), (y, y)) (2.79)

= (2.80) + (2.81) + (2.82).

Fix s > 1
2 and estimate the ‖ ‖−s, 12+ norm of (2.79)

(2.78)
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Contribution of (2.80)

We get { ∑
n,m∈Z

|n|2(1−s)

|m − n3|1−

∣∣∣ ∑
n=n1+n2
m=n3

1+n3
2

φ̂(n1)φ̂(n2)
∣∣∣2}1/2

(2.83)

≤ C

( ∑
n=n1+n2

|n|2(1−s)

|nn1n2|1− |φ̂(n1)|2|φ̂(n2)|2
)1/2

(2.84)

since the system of equations in n1, n2 ∈ Z{
n1 + n2 = n

n3
1 + n3

2 = m
(2.85)

has only a bounded number of solutions for given n, m. Thus

(2.84) ≤
( ∑

n1,n2

1
|n1|1−|n2|1−|n1 + n2|2s−1−

)1/2

< C (2.86)

since s < 1
2 .

Estimation of ‖(2.81)
(2.78)

‖−s, 12+

From (2.76), we get the bound∑∫
n=n1+n2
λ=λ1+λ2

(2.78)

|n|1−sd(n, λ)
|λ − n3| 1

2−
|n1|α|b(n1, λ1)|

|λ1 − n3
1|α

|Φ̂(n2, λ2)| (2.87)

where ‖d‖2 ≤ 1, ‖b‖2 = 0(1).
From (2.12)

(2.87) <
∑∫

|n| 1
2−s+d(n, λ)

[ |n1|α− 1
2+|b(n1, λ1)|

|λ1 − n3
1|α

] [
|n2|− 1

2+|Φ̂(n2, λ2)|
]
. (2.88)

Since α < 1
2 , s > 1

2 are fixed exponents and |n2| < |n| + |n1|, we have

(2.88) <
∑∫

d(n, λ)
[ |b(n1, λ1)|
|λ1 − n3

1|α
] [

|n2|− 1
2−|Φ̂(n2, λ2)|

]
(2.89)

and from (1.27), (1.25), (2.89) may be estimated in L2
xt × L4

xt × L4
xt.
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Estimation of ‖(2.82)
(2.78)

‖−s, 12+

Again from (2.76), we get

∑∫
n=n1+n2
λ=λ1+λ2

(2.78)

|n|1−sd(n, λ)
|λ − n3| 1

2−
|n1|α|b(n1, λ1)|

|λ1 − n3
1|α

|n2|α|b(n2, λ2)|
|λ2 − n3

2|α
(2.90)

<
∑∫ [

|n|−s+ 1
2+d(n, λ)

] |n1|α− 1
2+|b(n1, λ1)|

|λ1 − n3
1|α

|n2|α− 1
2+|b(n2, λ2)|

|λ2 − n3
2|α (2.91)

<
∑∫

d(n, λ)
|b(n1, λ1)|
|λ1 − n3

1|α
|b(n2, λ2)|
|λ2 − n3

2|α
<C‖d‖2 ‖b‖2

2 = o(1). (2.92)

Hence we get that also

‖(y, y)
(2.78)

‖−s, 1
2+ = o(1) (2.93)

and thus, since

‖(y, y)
(2.77)

‖−α,1−α = I−α,1−α = o(1) (2.94)

we conclude that

‖(y, y)‖−s, 12+ = o(1) (2.95)

and, from (2.75)

‖y‖−s, 12+ = o(1). (2.96)

Here s > 1
2 is any fixed number.

3. Convergence properties for the flow

Coming back to the Cauchy problem (1.2) with φ ∈ M0( ) a measure of mean
zero, inequality (2.96) yields a bound

‖y‖−s,12+ = o(1), s >
1
2

(3.1)
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on the solution for t ∈ [0, T ], T small enough (depending on the constant C
in (1.10)and eventually on ‖φ‖ as will be shown in the next section).

Our purpose now is to show that if {φα} is a sequence of (smooth) regulariza-
tions of φ and {yα} the corresponding solutions to (1.2) with yα(0) = φα, then
{yα(t)} converges in H−s( ) for all s > 1

2 and |t| < T . This statement will in par-
ticular result from the convergence of {yα} in ‖ ‖−s, 1

2+ norm. Since we dispose
already of the uniform bound (3.1), it will, by interpolation, suffice to establish
convergence of {yα} in the weaker norm ‖ ‖−(1−α),α considered in the previous
section.

Let thus y = yφ, z = yψ be the solutions of (1.2) corresponding to data φ, ψ ∈
M0( ), respectively. We then repeat the estimates from the previous section to
y − z. This is usually a straightforward modification of the argument establishing
boundedness, replacing in the multilinear expression one of the y-factors by y − z.
However, more care is needed here since the vanishing of (2.61) for instance depends
on symmetry properties which do not remain valid for distinct factors. We will
therefore indicate briefly the details. For the contribution (I), the modification is
obvious and we get the estimate(‖y‖−(1−α),α + ‖z‖−(1−α),α

) ‖y − z‖−(1−α),α = o(1)‖y − z‖−(1−α),α. (3.2)

Denote next

Ĩ−α,1−α =
∥∥∥[(y, y) − (z, z)] |λ1−n3

1|>|λ−n3|,|λ2−n3
2|

∥∥∥
−α,(1−α)

(3.3)

the contribution of (II) in ‖ ‖−α,1−α norm. Substitute again the first factor y
(resp. z) by the integral term (y, y) (resp. (z, z)).

For simplicity, we denote by y or z the component with largest denominator.

Case (II.1) |λ3 − n3
3| > |λ1 − n3

1|, |λ4 − n3
4| (other case is again similar). Write

((y, y), y) − ((z, z), z) = ((y, y) − (z, z), y) + ((z, z), y − z) (3.4)

where ∥∥(y, y) − (z, z)
∥∥

−α,1−α
= Ĩ−α,1−α (3.5)

and, by (2.71), (2.72)

‖y‖−(1−α),α = o(1) (3.6)

‖(z, z)‖−α,1−α = I−α,1−α = o(1). (3.7)

We then repeat the (II.1)-estimate from section 2 to get the bound

o(1)Ĩ−α,1−α + o(1)‖y − z‖−(1−α),α. (3.8)
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Case (II.2): |λ1 − n3
1| > |λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|, |λ − n3|.
If (2.44), i.e.

max
(|λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|, |λ − n3|) > (|n| + |n2|)γ (3.9)

we repeat the argument, cf. (2.39), (2.46), to get an ‖y − z‖−(1−α),α estimate.
Assume (2.47). Thus

max
(|λ2 − n3

2|, |λ3 − n3
3|, |λ4 − n3

4|, |λ − n3|) < (|n| + |n2|)γ
. (3.10)

Write

[((u, u), u) − ((v, v), v)]
(3.10)

= [((u, u), u) − ((v, v), v)]
(3.10),n�=n3,n4(3.11)

+ ((u, u), u) (3.10)
n=n3,n2=−n4 �=n,−n

− ((v, v), v) (3.10)
n=n3,n2=−n4 �=n,−n

(3.12)

+ ((u, u), u) (3.10)
n=n4,n2=−n3 �=n,−n

− ((v, v), v) (3.10)
n=n4,n2=−n3 �=n,−n

(3.13)

+ [((u, u), u) − ((v, v), v)] (3.10)
n=n3=n4,n2=−n

. (3.14)

Again by (2.50), (3.11) has no contribution. Each of the terms in (3.12), (3.13)
are again decomposed in a vanishing part (2.61) and an “error term” obtained by
replacement of the n−n2

(λ−λ2)−(n−n2)3
-factor in (2.53) by [λ−n3]−[λ2−n3

2]
(n−n2)n2

2n2 + · · · . The
collected contribution of these error terms in the differences (3.12), (3.13) may
then again be estimated by o(1)‖y − z‖−(1−α),α, cf. (2.59). Finally (3.14) admits a
bound by o(1)‖y−z‖−(1−α),α, passing to a trilinear expression and applying (2.64)
to the two y, z factors with remaining ‖y − z‖−(1−α),0 factor. Thus in conclusion

‖y − z‖−(1−α),α ≤ ‖φ − ψ‖−(1−α) + o(1)‖y − z‖−(1−α),α + Ĩ−α,(1−α)
(3.15)

and

Ĩ−α,(1−α) ≤ o(1)Ĩ−α,1−α + o(1)‖y − z‖−(1−α),α. (3.16)

Hence

‖y − z‖−(1−α),α ≤ ‖φ − ψ‖−(1−α) + o(1)‖y − z‖−(1−α),α

thus

‖y − z‖−(1−α),α ≤ 2‖φ − ψ‖−(1−α). (3.17)
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Consequently, the map
φ �−→ yφ (3.18)

is Lipschitz from a ball in M0 ( ) endowed with H− (1−α) -topology into
X−(1−α),α[0, T ], T chosen sufficiently small. Hence, from the discussion in the be-
ginning of this section, (3.18) is Hölder-continuous into X−s, 1

2+[0, T ] for all s > 1
2

and the flow map for |t| < T
φ �−→ yφ(t) (3.19)

as well. Observe that the M( )-boundedness of the data is only used to fulfill the
estimate (1.10), (2.63). Since this is an a priori bound valid for all time, the map
(3.19) will be (Hölder) continuous for all time, establishing in particular uniqueness
of the weak solution.

4. Spectral estimates

The purpose of this section is to substantiate the bound (1.10) by showing that if

‖φ‖1 < c (4.1)

then there are uniform estimates on the Fourier transform of all members q of the
isospectral manifold M(φ). Thus

|q̂(n)| < c′, n ∈ Z, q ∈ M(φ). (4.2)

As mentioned in the introduction, we deal here in fact only with the case in which
the constant c in (4.1) is small, but this restriction is probably nonessential. At
least part of the elements mentioned below are known and we recall them for
completeness sake. Some of the calculations are borrowed from [Bo].

Recall that

Q = − d2

dx2 + q(x) (4.3)

where q is a real 1-periodic potential satisfying (4.1) with C small. There is no
restriction in assuming

∫
q = 0. The periodic spectrum {λi = λ2n−1, λ2n} is

obtained as roots of the equation

Δ(λ) = (−1)n2 (4.4)

where

Δ(λ) = y1(1, λ) + y′
2(1, λ) (4.5)
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is the discriminant and

Qy = λy

{
y1(0, λ) = y′

2(0, λ) = 1
y′
1(0, λ) = y2(0, λ) = 0.

(4.6)

The eigenfunctions y1, y2 satisfy the equations

y1(x, λ) = cos
√

λx +
∫ x

0

sin
√

λ (x − s)√
λ

q(s)y1(s, λ)ds (4.7)

y2(x, λ) =
sin

√
λx√
λ

+
∫ x

0

sin
√

λ (x − s)√
λ

q(s)y2(s, λ)ds. (4.8)

(i) Estimates on the periodic spectrum

Assume q ∈ L1(π),

‖q‖1 = o(1),
∫

q = 0. (4.9)

From (4.5) and iteration of (4.7), (4.8), we get
Δ(λ) = y1(1, λ) + y′

2(1, λ)

= 2 cos
√

λ +
∫ 1

0
λ−1/2

[
sin

√
λ (1 − s). cos

√
λ s + cos

√
λ (1 − s). sin

√
λ s

]
q(s)ds

+
∫ 1

0

∫ s

0
λ−1 sin

√
λ (1 − s). sin

√
λ (s − s′).q(s).q(s′).y1(s′, λ)ds ds′

+
∫ 1

0

∫ s

0
λ−1/2 cos

√
λ (1 − s). sin

√
λ (s − s′).q(s).q(s′).y2(s′, λ)ds ds′.

(4.10)
By (4.9), the second term in (4.10) vanishes and we get

Δ(λ) =2 cos
√

λ+

λ−1
∫ 1

0

∫ s

0
sin

√
λ (1 − s). sin

√
λ (s − s′). cos

√
λ s′.q(s)q(s′)ds ds′+

(4.11)

λ−1
∫ s

0

∫ s

0
cos

√
λ (1 − s). sin

√
λ (s − s′). sin

√
λ s′.q(s)q(s′)ds ds′

(4.12)

+ 0(λ−3/2) (4.13)

where

(4.11) + (4.12) =λ−1
∫ 1

0

∫ s

0
sin

√
λ (1 − s + s′). sin

√
λ (s − s′)q(s)q(s′)ds ds′

= − cos
√

λ

λ

∫ 1

0

∫ s

0
sin2

√
λ (s − s′)q(s)q(s′)ds ds′

+ 0
(
λ−1| sin

√
λ |

)
. (4.14)
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Since the integrand in the first term of (9.12) is symmetric in s, s′, one may replace
the double integration

∫ 1
0

∫ s

0 by 1
2

∫ 1
0

∫ 1
0 . This gives, since

∫
q = 0

− cos
√

λ

4λ

∫ 1

0

∫ 1

0

[
1 − cos 2

√
λ (s − s′)

]
q(s)q(s′)ds ds′

=
cos

√
λ

4λ

[(∫ 1

0
cos 2

√
λ s.q(s)ds

)2

+
(∫ 1

0
sin 2

√
λ s.q(s)ds

)2
]

.
(4.15)

From (4.4), (4.13), (4.14), (4.15), it follows that for λ = λ2n−1, λ2n

(−1)n2 = Δ(λ) = 2 cos
√

λ +
cos

√
λ

4λ

[〈
q, cos 2

√
λ s

〉2
+

〈
q, sin 2

√
λ s

〉2
]

+ 0
(
λ−3/2 + λ−1| sin

√
λ |

)
. (4.16)

Writing

(−1)n − cos
√

λ = (−1)n
[
1 − cos

(√
λ − πn

)]
∼

∣∣∣√λ − πn
∣∣∣2 (4.17)

(4.16) yields

|λ − π2n2|2 ∼ λ
∣∣∣√λ − πn

∣∣∣2
∼

(〈
q, cos 2

√
λ s

〉2
+

〈
q, sin 2

√
λ s

〉2
)

+ 0
(
n−1 +

∣∣∣√λ − πn
∣∣∣) .
(4.18)

In particular, it follows from (4.9) that

|λ2n−1 − π2n2| = o(1) and |λ2n − π2n2| = o(1). (4.19)

The property (4.19) is obviously preserved for all isospectral potentials. Denoting
{μn} the Dirichlet spectrum, i.e. the roots of

y1(1, μ, q) = 0 (4.20)

satisfying λ2n−1 ≤ μn ≤ λ2n, it follows thus that

|μn(q) − π2n2| = o(1) (4.21)

for all potentials in the isospectral manifold. Our next goal will then be to show
that conversely (4.19) implies (4.2). The main difficulty here when bounding the
error terms in formulas as used above is the absence of the ‖q‖1-bound.
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(ii) Eigenfunction estimates

Denote μ = μn the nth Dirichlet eigenvalue and y = y2(x, μ) the corresponding
eigenfunction normalized in L2[0, 1]. Thus

y(0) = y(1) = 0 and
∫ 1

0
|y(x)|2 = 1. (4.22)

By (4.22) one may represent y on [0, 1] by a series

y =
∑

ck sinπkx for x ∈ [0, 1]. (4.23)

Since

Qy = −y′′ + qy = μy (4.24)

it follows

−
∫ 1

0
y′′ sinπ�x +

∫ 1

0
q(x)y(x) sin π�x =

μ

2
c�. (4.25)

By (4.22) and partial integration∫ 1

0
y′′ sinπ�x = −π�

∫ 1

0
y′(x) cos π�x = −π2�2

∫ 1

0
sinπ�x.y(x) = −π2�2 c�

2
.

(4.26)
Hence, from (4.25), (4.26)

|c�| |μn − π2�2| �
∣∣∣∫ q(x)y(x) sin π�x

∣∣∣. (4.27)

Write from (4.23)∫ 1

0
q(x)y(x) sin π�x =

1
2

∑
n,k

q̂(n)ck

∫ 1

0
e2πinx [cosπ(k + �)x − cosπ(k − �)x]

(4.28)
and thus∣∣∣∫ 1

0
q(x)y(x) sinπ�x

∣∣∣
≤ C‖q̂‖∞

∑
n,k

|ck| |�|
(|2n ± (k + �)| + 1)(|2n ± (k − �)| + 1) (4.29)

(with sign correspondence)

≤ C‖q̂‖∞(log �)
(∑

k

|ck|
)

. (4.30)
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From (4.27), (4.30) and the assumption μn = π2n2 + o(1) (4.21)

|c�| < C‖q̂‖∞
log �

|n2 − �2|
(∑

k

|ck|
)

for � �= n. (4.31)

Consequently ∑
� �=n

|c�| < C‖q̂‖∞
(log n)2

n

(∑
k

|ck|
)

. (4.32)

Since by (4.22) ∑
c2
k = 1 (4.33)

and one easily derives from (4.31) that

∑
|ck| �

(
(log M)2

M
‖q̂‖∞

)(∑
|ck|

)
+ M1/2 (4.34)

for any positive integer M . Thus by appropriate choice of M in (4.34), we get∑
|ck| < (1 + ‖q̂‖∞)1/2 log (2 + ‖q̂‖∞) . (4.35)

Consequently, from (4.31), (4.32), (4.35)

|c�| ≤ C
log �

|n2 − �2| ‖q̂‖∞ (1 + ‖q̂‖∞) for � �= n (4.36)

and

∑
� �=n

|c�| ≤ C
(log n)2

n
‖q̂‖∞ (1 + ‖q̂‖∞) . (4.37)

(iii) Estimate of q̂

Let φ be a regularization of the measure in M( ),
∫

φ = 0 and

‖φ‖1 < η (4.38)

where η is taken sufficiently small. From the estimates on the periodic spectrum,
we get then (cf. (4.19))

|λ2n−1(q) − π2n2| � η, |λ2n(q) − π2n2| � η, |μn(q) − π2n2| � η (4.39)
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for all q in the isospectral manifold M(φ). We show here that if q ∈ M(φ) and

‖q̂‖∞ < a1 (4.40)

(where a1 is some fixed sufficiently small constant), then in fact

‖q̂‖∞ < a1/10. (4.41)

Since the map q �→ ‖q̂‖∞ is continuous on M(φ) which is connected (in fact it is
an infinite dimensional torus, cf. [McK-Tr]), it will then follow that (4.41) holds on
all of M(φ). Observe that the isospectral manifold is invariant under translation
on . Hence, to derive (4.41), it clearly suffices to get

|Re q̂(n)| < a1/10 for all n ∈ Z � {0} (4.42)

assuming (4.40). To estimate Re q̂(n), we use the Dirichlet spectrum for which the
analysis is a bit simpler than for the periodic spectrum.

One has for μ = μn

0 = y2(1, μn) =
sin

√
μ√

μ
+

∫ 1

0

sin
√

μ (1 − s)√
μ

y2(s, μ)q(s)ds. (4.43)

Denote y = ny2( · , μ), thus essentially L2-normalized and satisfying thus esti-
mates (4.36), (4.37). Thus

0 = n sin
√

μ +
∫ 1

0
sin

√
μ (1 − s)y(s, μ)q(s)ds

and by (4.39)

η � |μn − π2n2| ∼ n| sin√
μ| =

cn

∫ 1

0
sinπn(1 − s). sinπns.q(s)ds+ (4.44)

2
∫ 1

0
sin

√
μ − πn

2
. cos

√
μ + πn

2
(1 − s).y(s, μ).q(s)ds+ (4.45)∫ 1

0
sinπn(1 − s). [y(s, μ) − cn sinπns] q(s)ds (4.46)

where, by (4.36), (4.40)

y(s) =
∑

c� sin �πs, cn ∼ 1 and |c�| <
log �

|� − n| |� + n| ‖q̂‖∞ for � �= n.

(4.47)
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Contribution of (4.44)

Since
∫

q = 0,

(4.44) ∼
∫ 1

0
sin2 πns.q(s)ds ∼

∫ 1

0
cos 2πns.q(s)ds = Re q̂(n). (4.48)

Estimation of (4.45)

Denote ψ the function

ψ(s) = sin
√

μ − πn

2
(1 − s) · cos

√
μ + πn

2
(1 − s) · y(s, μ) (4.49)

satisfying ψ(0) = 0 = ψ(1). Thus

|(4.45)| ≤ ‖q̂‖∞
∑

k

|ψ̂(k)|. (4.50)

Estimate (4.50) distinguishing the cases k < n, k > n

Case k < n. One gets from (4.47), (4.49) the bound

‖q̂‖∞
∑
k<n

∑
�

|c�|
∣∣∣ ∫ 1

0
e−2πiks · sin

√
μ − πn

2
(1 − s)·

· cos
√

μ + πn

2
(1 − s) · sin �πs

∣∣∣ (4.51)

≤ ‖q̂‖∞
∑
k<n

∑
�

|c�|min
{

|√μ − πn|,

∣∣∣ ei
√

μ−πn
2

−2kπ −
√

μ−πn

2 + σ1

√
μ+πn

2 + σ2�π
−

− e−i
√

μ−πn
2

−2kπ +
√

μ−πn

2 + σ1

√
μ+πn

2 + σ2�π

∣∣∣} (4.52)

(with σ1, σ2 = ±1)

by (4.39)

< η‖q̂‖∞
1
n

∑
k<n

∑
�

|c�| 1
1 + | − 2k ± n ± �| (4.53)

by (4.37), (4.40)

< η‖q̂‖∞
log n

n

(
1 +

(log n)2

n
‖ŷ‖∞

)
(4.54)
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Case k > n. Write ∫ 1

0
ψ(s)e−2πiksds ∼ 1

k

∫ 1

0
e−2πiksψ′(s)ds (4.55)

since ψ(0) = ψ(1). One gets the contributions

1
k

|√μ − πn|
∣∣∣∣∫ 1

0
e−2πiks · cos

√
μ − πn

2
(1 − s) · cos

√
μ + πn

2
(1 − s) · y(s, μ)

∣∣∣∣
(4.56)

+
n

k

∣∣∣∣∫ 1

0
e−2πiks · sin

√
μ − πn

2
(1 − s) · sin

√
μ + πn

2
(1 − s) · y(s, μ)

∣∣∣∣ (4.57)

+
1
k

∣∣∣∣∫ 1

0
e−2πiks · sin

√
μ − πn

2
(1 − s) · cos

√
μ + πn

2
(1 − s) · y′(s, μ)

∣∣∣∣ (4.58)

The factors (4.56), (4.57) yield, by the estimates above

η‖q̂‖∞
∑
k>n

1
k

∑
�

|c�| 1
1 + | − 2k ± n ± �| (4.59)

<η‖q̂‖∞
∑

�

|c�| log(n + �)
n + �

(4.60)

and by (4.36), (4.40)

<η‖q̂‖∞
log n

n
+ η‖q̂‖2

∞
∑
� �=n

log �. log(n + �)
|n + �| |n − �|.n (4.61)

<η‖q̂‖∞
log n

n
+ ‖q̂‖2

∞
(log n)3

n2 . (4.62)

To estimate (4.58), replace the coefficient c� by �
k c� in (4.53). Thus we get

η‖q̂‖∞
1
n

∑
k>n

1
k

∑
�

�|c�| 1
1 + |2k ± n±�| (4.63)

<η‖q̂‖∞
1
n

∑
�

�|c�| log(n + �)
n + �

(4.64)

<η‖q̂‖∞
log n

n
+ η‖q̂‖2

∞
∑
� �=n

�. log �. log(n + �)
(n + �)|n − �|n.(n + �)

(4.65)

<η‖q̂‖∞
log n

n
+ ‖q̂‖2

∞
(log n)3

n2 (4.66)

hence, collecting estimates (4.54), (4.62), (4.65) yields

(4.45) < η‖q̂‖∞
log n

n
+ ‖q̂‖2

∞
(log n)3

n2 (4.67)
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Estimation of (4.46)

Define now
ψ(s) = sinπn(1 − s)[y(s, μ) − cn sinπns] (4.68)

again satisfying ψ(0) = ψ(1) = 0. For k < n, we get the estimate

‖q̂‖∞
∑
k<n

|ψ̂(k)|

< ‖q̂‖∞
∑
k<n

∑
� �=n

|c�| 1
1 + | − 2k ± n ± �|

< ‖q̂‖∞
log n

n

∑
� �=n

|c�|

< ‖q̂‖2
∞

(log n)3

n
by (4.37). (4.69)

For k > n, we estimate again by (4.36)

‖q̂‖∞
∑
k>n

1
k

∣∣∣∣∫ 1

0
e−2πiksψ′(s)ds

∣∣∣∣ <

‖q̂‖∞
∑
k>n

1
k

∑
� �=n

(� + n)|c�| 1
1 + | − 2k±n±�|

< ‖q̂‖∞
∑
� �=n

(� + n)|c�| log(n + �)
n + �

< ‖q̂‖2
∞

∑
� �=n

(log �) log(n + �)
(n + �)|n − �|

< ‖q̂‖2
∞

(log n)3

n
. (4.70)

Thus

|(4.46)| � ‖q̂‖2
∞

(log n)3

n
. (4.71)

In summary, from (4.44) – (4.46), (4.48), (4.67), (4.71)

|Re q̂(n)| � η + η‖q̂‖∞
log n

n
+ ‖q̂‖2

∞
(log n)3

n
� η + ηa1 + a2

1 (4.72)

invoking (4.40). Hence (4.42) holds, completing the proof. �
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5. Almost periodicity properties

Let y = y(t) be the solution of the IVP{
∂ty + ∂3

xy + yyx = 0
y(0) = μ

(5.1)

with μ ∈ M( ), ‖μ‖ small, obtained above. Then y ∈ CHs( )(R) for all s <

− 1
2 and we claim that y is an almost periodic Hs-valued function of time. The

corresponding result was obtained in [Bo] for L2-data using essentially the analysis
from [McK-Tr] for smooth data.

The proof of the result will be a rather simple adaptation of the argument in
[Bo], see Appendix 1. Recall that almost periodicity means that for given ε > 0
there is a number �(ε) such that any t-interval of length at least �(ε) contains an
“almost period” T , i.e. satisfying

‖y( . , t + T ) − y( . , t)‖Hs < ε for all t ∈ R. (5.2)

We fix here some s < − 1
2 .

As in [Bo], in order to use the formulas from [McK-Tr] for smooth potentials
without having to extend explicitly this theory to the case of non-smooth func-
tions or distributions, we regularize the data μ, considering a sequence of smooth
functions {φα} such that

lim
α→∞ φα = μ in H− 1

2−, |φ̂α| ≤ |μ̂|, ‖φα‖1 ≤ ‖μ‖ and
∫

φα(x)dx =
∫

dμ.

(5.3)
Let {yα} be the corresponding sequence of solutions of the IVP{

∂tyα + ∂3
xyα + yα(yα)x = 0

yα(0) = φα.
(5.4)

From the preceding, we know that

yα(t) −→ y(t) in H− 1
2− (5.5)

for all time t ∈ R. Assume the almost periodicity statement valid for all yα,
with �(ε) independent of α. Then, passing to a subsequence, we may assume the
corresponding sequence (Tα) of almost periods to converge

lim
α→∞ Tα = T. (5.6)
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Thus we get for all time t

‖y( · , t + T ) − y( · , t)‖Hs =

lim
α→∞‖y( · , t + Tα) − y( · , t)‖Hs = (since y ∈ CHs (R))

lim
α→∞‖yα( · , t + Tα) − yα( · , t)‖Hs (since y = lim yα in H− 1

2− uni-
formly on finite time intervals)

< ε. (5.7)

Hence it suffices to consider smooth data y(0) = φ, assuming a uniform bound

‖φ‖1 < c (5.8)

provided �(s) remains uniformly bounded.
At this stage, we briefly recall the main points from the [McK-Tr] analysis.

This analysis is rather involved and we refer the reader to [McK-Tr], [Bo], espe-
cially [McK-Tr], for details. Rewrite (by appropriate rescaling) the KdV equation
as

∂ty = V2y (5.9)

where V2 stands for the differential operator

V2(q) = 3qq′ − 1
2
q′′′. (5.10)

We consider the KdV-flow acting on the isospectral manifold M = M(φ) of poten-
tials q with same periodic spectrum {λi} as φ, thus

Δ2(λi, q) = 4 i = 0, 1, 2, . . . (5.11)

We assume (cf. [Bo]) the spectrum simple. There is a uniform estimate on the
gaps, cf. (4.19),

|λ2n−1 − n2π2| < C, |λ2n − n2π2| < C. (5.12)

Recall the product formula

4 − Δ2(λ) = 4(λ − λ0)
∏
n ≥ 1

(λ2n−1 − λ)(λ2n − λ)
n4π4 . (5.13)

Points q ∈ M may be identified in a 1 − 1 way with the sequence p = (pn), where

pn =
(
μn,

√
Δ2(μn) − 4

)
(5.14)
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with μn = μn(q) the nth Dirichlet eigenvalue of q and where the square root carries
a + or − sign (identifying M with the infinite dimensional torus constructed on
the intervals of instability).

On M, one considers a sequence of vector fields {Xn}, where at a given q ∈ M,
Xn(q) is defined by

Xn(q) = D
∂Δ(λ2n(q))

∂q
= −Δ̇(λ2n)D(f2

2n) (5.15)

where f2n stands for the L2-normalized eigenfunction corresponding to λ2n and D
is the differentiation operator. (In the case of simple spectrum, periodic eigenvalues
and eigenfunctions depend on q in a real analytic way.) For each q, the vectors
Xn(q) form a basis for the tangent space of M at q. The corresponding flows etXn

are defined for all t and commute. They also commute with the KdV flow etV2

since, for smooth potentials V2 may be written as a convergent expansion in the
Xn’s.

Let q0 ∈ M be the point of M with Dirichlet spectrum (λ1, λ3, . . . , λ2n−1, . . . )
(which is an even function). Let X =

∑
xnXn be a linear combination of the

Xn-fields. Let p = (p1, p2, . . . ) be the point of the torus corresponding to q = eXq0
according to the identification made above, cf. (5.14). Then the relation between
{xn} and p is expressed as follows

2
∞∑

n=1

∫ pn

0n

φ(μ)
dμ√

Δ2(μ) − 4
=

∞∑
n=1

xnφ(λ2n) (0n ≡ λ2n−1) (5.16)

for appropriately chosen paths of integration for
∫ pn

0 . The identity (5.16) is valid
for any φ ∈ I3/2, the class of integral functions of order 1/2 and type 1, satisfying∫ ∞
0 |φ(μ)|2μ3/2dμ < ∞. Thus the way eX acts on M is determined by an element

of the dual space (I3/2)∗, defined by the right member of (5.16), modulo the lattice
L ⊂ (I3/2)∗ generated by the elements

2
∫ λ2n

λ2n−1

φ(μ)
dμ√

Δ2(μ) − 4
. (5.17)

As a consequence of this discussion, it follows that, given X =
∑

xnXn, there is
Y =

∑
ynYn, such that

eXq0 = eY q0 and thus eX = eY (5.18)

(using the fact that the maps eX are commuting and act transitively) where the
coefficients yn are bounded by

|yn| < 4
∞∑

i=1

∫ λ2i

λ2i−1

1n(μ)√
Δ2(μ) − 4

dμ (5.19)
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with

1n(μ) =

∏
k �=n

(
1 − μ

λ2n

)
∏

k �=n

(
1 − λ2n

λ2k

) (5.20)

(by Lagrange interpolation).
Calculating (5.19), using (5.12), (5.13), yields that

|yn| � n +
∑
i�=n

n2

i|i2 − n2| � n. (5.21)

Let now
X(q) =

∑
n>n0

xnXn(q), |xn| � n (5.22)

for some q ∈ M, where the Xn(q) are defined by (5.15). We need to estimate the
Fourier coefficients X̂(q)(�), � ∈ Z. Thus∣∣∣X̂(q)(�)

∣∣∣ �
∑

n>n0

n|Δ̇(λ2n)||�|
∣∣∣f̂2

2n(�)
∣∣∣ � |�|

∑
n>n0

1
n

∣∣∣f̂2
2n(�)

∣∣∣ (5.23)

since

|Δ̇(λ2n| �
λ2n − λ2n−1

n2 �
1
n2 . (5.24)

The eigenfunction y = f2n is periodic or antiperiodic, hence has an expansion

y =
∑
k∈Z

ckeiπkx, c−k = ck for x ∈ R. (5.25)

Since
−y′′ + qy = λ2ny (5.26)

we get
|c�||λ2n − π2�2| ≤

∑
k

|q̂(� − k)||ck| < a1

∑
|ck| (5.27)

(cf. (4.31)).
It follows that

|c�| �
a1

|n2 − �2| for |n| �= |�|. (5.28)
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Coming back to (5.23), estimate by

|�|
∑

n>n0,k

1
n

|f̂2n(� − k)||f̂2n(k)| � |�|
∑

n>n0,k

1
n

1
1 + |n2 − k2|

1
1 + |n2 − (k − �)2|

� |�|
∑

n>n0,k

1
n

1
1 + |n2 − k2|

1
[|�| |2k − �| + 1]

� |�|
∑

n>n0

1
n

1∣∣∣n2 − [
�
2

]2∣∣∣ + 1

+
∑

n>n0,k �= �
2

1
n

1
1 + |n2 − k2|

1
|2k − �| . (5.29)

Distinguishing the cases n2 =
[

�
2

]2
, n2 �= [

�
2

]2
in the first sum and n2 = k2, n2 �= k2

in the second, we conclude that

∣∣∣X̂(q)(�)
∣∣∣� 1 for all �

and ∣∣∣X̂(q)(�)
∣∣∣ <

log n0

n0
if |�| < n0.

(5.30)

As in [Bo], it is our aim to prove that the family

{eX | X =
∑

xnXn}

acts equicontinuously as a subset of Cs(M;M), the space of continuous maps from
M to itself, where M is endowed with Hs-topology, s < − 1

2 . This properly needs
moreover to hold uniformly for M(φ), φ subject to (5.8).

From (5.21), we may assume |xn| ≤ n. We first establish a tale estimate, letting

X =
∑

n>n0

xnXn , |n0| � n. (5.31)

Writing

eXq − q =
∫ 1

0

d

dt
(etXq)dt =

∫ 1

0
X(etXq)dt
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it follows

‖eXq − q‖Hs ≤ sup
q1∈M

‖X(q1)‖Hs

=
(∑

(1 + |�|)2s
∣∣∣X̂(q1)(�)

∣∣∣2)1/2

by (5.30) �
( ∑

|�|<n0

(1 + |�|)2s

)1/2 log n0

n0
+

( ∑
|�|>n0

(1 + |�|)2s

)1/2

≤
log n0

n0
+ n2s+1

0 −→ 0 for n0 → ∞. (5.32)

Observe that this estimate is in particular uniform under the assumption (5.8).
To complete the argument of equicontinuity we have to check the continuity of
individual maps eXn , n fixed, where, by (5.15), (5.24)

Xn(q) ∼ λ2n − λ2n−1

n2 · D f2
2n(q). (5.33)

Thus, for this issue, we may assume some separation of λ2n−1, λ2n, since in par-
ticular

‖Xn(q)‖2 �
1
n

|λ2n − λ2n−1| → 0 if |λ2n − λ2n−1| → 0. (5.34)

Let, as in (5.25)
f2n(q) = y =

∑
k

ckeiπkx , x ∈ R. (5.35)

Expressing then the equation

−y′′ + qy = λy ; λ = λ2n = π2n2 + o(1) (5.36)

in the Fourier modes, yields

(k2 − λ)ck + q̂y(k) = 0 (5.37)

or

Tc = (D + S)c = 0 (5.38)

where the linear operators D, S are defined by

D is the diagonal operator with Dk = −λ + k2 (5.39)
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and S in the Toeplitz operator Sq,

Sq(k, �) = q̂(k − �). (5.40)

Replace the operator T by

T1 =
1

(|k2 − n2| + 1)1/2 ◦ T ◦ 1
(|�2 − n2| + 1)1/2 = D1 + S1 (5.41)

where

{
D1(n) = D1(−n) = n2 − λ

D1(k) = k2−λ
|k2−n2|+1 , hence |D1(k)| ∼ 1 for |k| �= n

(5.42)

and

S1(k, �) =
q̂(k − �)

(|k2 − n2| + 1)1/2(|�2 − n2| + 1)1/2 . (5.43)

Thus for q ∈ M, we clearly get that

‖S1‖ ≤ ‖S1‖Hs =
[∑

k,�

|q̂(k − �)|2
(1 + |k2 − n2|)(1 + |�2 − n2|)

]1/2

= o(1) (5.44)

since ‖q̂‖∞ < a1 = o(1).
We partition the index set Z as

Z = ∧ ∪ {−n, n} (5.45)

From (5.42), (5.44), the restricted operator T∧ = P∧T1P∧ is clearly invertible by a
Neumann series. The equation

T1c
′ = 0 , c′(k) = (1 + |k2 − n2|)1/2c(k) (5.46)

reduces therefore to following equation in cn, c−n

U

(
cn

c−n

)
= 0 (5.47)
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where

U =
(

n2 − λ q̂(n)
q̂(n) n2 − λ

)
−

(
B11 B12
B21 B22

)
, where (5.48)

B11 =
∑

k,�∈Λ

q̂(k − n)q̂(� − n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)

B12 =
∑

k,�∈Λ

q̂(k + n)q̂(� − n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)

B21 =
∑

k,�∈Λ

q̂(k − n)q̂(� + n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)

B22 =
∑

k,�∈Λ

q̂(k + n)q̂(� + n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)

This matrix depends continuously on q ∈ M(φ) endowed with Hs-topology for any
s < − 1

2 . Since λ = λ2n is in the periodic spectrum,

det U = 0. (5.49)

On the other hand, λ is simple, and, more precisely, a separation of λ2n and λ2n−1
is assumed. This implies that∣∣∣n2 − λ −

∑
k,�∈Λ

q̂(k − n)q̂(� − n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)
∣∣∣2+

+
∣∣∣q̂(n) −

∑
k,�∈Λ

q̂(k + n)q̂(� − n)
(1 + |k2 − n2|)1/2(1 + |�2 − n2|)1/2 T −1

Λ (k, �)
∣∣∣2 (5.50)

does not vanish, allowing to obtain an eigenvector y = y(q) with

f2n(q)2 =
y(q)2∫
y(q)2

(5.51)

depending continuously on q.
From the preceding discussion, the equicontinuity of the family{eX |X =∑
xnXn}, acting on M, follows.
We may now complete the proof of the almost periodicity of the KdV flow etV2

acting on M, following the argument [McK-Tr]. First, from the equicontinuity
property established above, given ε > 0, there is δ > 0 such that

‖eXq1 − eXq2‖s < ε (5.52)
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whenever X =
∑

xnXn and q1, q2 ∈ M, ‖q1 − q2‖s < δ. We let here s < − 1
2 be a

fixed exponent. Since M(φ) is obviously compact in Hs, so is the set

A = {etV2φ | t ∈ R}. (5.53)

Hence, there is T0 such that

inf
q2∈AT0

‖q1 − q2‖s < δ for all q1 ∈ A (5.54)

denoting

AT0 =
{

etV2φ | |t| < T
}
. (5.55)

Consider an interval I = [t′, t′′] in R,

t′′ − t′ > 10T0. (5.56)

It follows from (5.54) that there is t0 ∈ [−T0, T0] such that

∥∥∥e
t′+t′′

2 V2φ − et0V2φ
∥∥∥

s
< δ. (5.57)

Hence, from the commutation property and (5.52)

∥∥∥∥e

(
t′+t′′

2 −t0
)
V2eX

(
et0V2φ

) − eX
(
et0V2φ

)∥∥∥∥
s

< ε (5.58)

for any map eX . Since they act transitively on M, (5.58) implies

‖eTV2q − q‖s < ε for all q ∈ M (5.59)

where, by (5.56)

T =
t′ + t′′

2
− t0 ∈ I. (5.60)

In particular

‖e(t+T )V2φ − etV2φ‖s < ε (5.61)

which is (5.2).
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6. Remarks on wellposedness

If one strengthens the usual notion of well-posedness, requiring that the flow maps

φ �−→ yφ(t) |t| < T (6.1)

should act smoothly on the Hs-space under consideration (instead of just contin-
uously) it turns out that the known results on KdV and MKdV both on the line
and in the periodic case are essentially optimal. These results are

R

KdV s > −3/4 s ≥ − 1/2

MKdV s > 1/4 s ≥ 1
2

(see [Bo], [KPV1], [KPV2]), in which cases the flow map is in fact real analytic.
Fixing φ ∈ Hs, consider the solution y = y(δ) on the IVP{

yt + ∂3
xy + ∂x(y2) = 0

y(0) = δφ.
(6.2)

Then clearly

∂y

∂δ δ=0
= S(t)φ ≡ Φ (6.3)

∂2y

∂δ2 δ=0
∼

∫ t

0
S(t − τ)(∂xΦ2)(τ)dτ ≡ Ψ2 (6.4)

∂3y

∂δ3 δ=0
∼

∫ t

0
S(t − τ)(∂x(Φ.Ψ2))(τdτ ≡ Ψ3 (6.5)

etc.

and well-posedness in the strong sense mentioned above implies in particular for
|t| bounded

‖ψ2(t)‖Hs ≤ C‖φ‖2
Hs (6.6)

‖ψ3(t)‖Hs ≤ C‖φ‖3
Hs (6.7)

etc.

Consider first the case of periodic KdV. Take

φ(x) = N−s cos Nx, N → ∞ (6.8)
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as Hs-normalized initial data (s will be negative). Thus

Φ(x, t) ∼ N−s cos(Nx + N3t) (6.9)

Ψ2(x, t) ∼ N−2s+1
∫ t

0
S(t − τ)

[
sin(2Nx + 2N3τ)

]
dτ

∼ N−2s−2[sin(2Nx + 2N3t) − sin(2Nx + 8N3t)] (6.10)

and

Ψ3(x, t)

∼ N−3s−2
∫ 1

0
S(t − τ)∂x

[
cos(Nx + N3τ) sin(2Nx + 2N3τ)

− cos(Nx + N3τ) sin(2Nx + 8N3τ)
]
dτ

∼ N−3s−1
∫ t

0
S(t − τ)[

3 cos(3Nx + 3N3τ) + cos(Nx + N3τ) − 3 cos(3Nx + 9N3τ)

− cos(Nx + 7N3τ)
]
dτ (6.11)

with the main contribution

∼ N−3s−1t cos(Nx + N3t). (6.12)

Thus
‖Ψ3(t)‖Hs ∼ N−2s−1 (6.13)

and inequality (6.7) requires

2s + 1 ≥ 0, i.e. s ≥ − 1
2
. (6.14)

To treat the R-case, the preceding needs to be modified a bit. Take

φ(x) ∼ γ−1/2N−s cos Nx ·
(∫ γ

−γ

eiλxdλ

)
(6.15)

where
γ = γN ∼ 1√

N
. (6.16)

Thus
‖φ‖Hs = 1. (6.17)
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From (6.15), (6.3), (6.4), (6.5)

Φ(x, t) ∼ γ−1/2N−s

∫
|λ±N |<γ

e(λx + λ3t)dλ (6.18)

Ψ2(x, t) ∼ γ−1N−2s

∫
|λ1±N |<γ
|λ2±N |<γ

1
λ1λ2

e
[
(λ1 + λ2)x + (λ3

1 + λ3
2)t

]
dλ1 dλ2

(6.19)

−γ−1N−2s

∫
|λ1±N |<γ
|λ2±N |<γ

1
λ1λ2

e
[
(λ1 + λ2)x + (λ1 + λ2)3t

]
dλ1 dλ2.

(6.20)

The contribution of (6.19) to Ψ3 is thus

γ−3/2N−3s

∫
|λ1±N |<γ
|λ2±N |<γ
|λ3±N |<γ

λ1 + λ2 + λ3

λ1λ2
e
[
(λ1 + λ2 + λ3)x + (λ1 + λ2 + λ3)3t

]
·

ei[λ3
1+λ3

2+λ3
3−(λ1+λ2+λ3)3]t − 1

λ3
1 + λ3

2 + λ3
3 − (λ1 + λ2 + λ3)3

(6.21)

where

(λ1 + λ2 + λ3)3 − λ3
1 − λ3

2 − λ3
3 = 3(λ1 + λ2)(λ2 + λ3)(λ3 + λ1). (6.22)

Thus by (6.16) either |(6.22)| ∼ N3 or |(6.22)| < γ2N = o(1). The main contri-
bution to (6.21) is obviously gotten from the second alternative, in which case we
get

γ−3/2N−3s

∫
⎧⎪⎨⎪⎩

λ=λ1+λ2+λ3

|λα±N |<γ

|(5.22)|=0(1)

λ

λ1λ2
e(λx + λ3t)dλ1dλ2dλ3 (6.23)

with Hs-norm

∼ γ−1N−2s+1
[

γ2

N2 − γ2

N2 − γ2

N2

]
∼ γN−2s−1 ∼ N−2s−3/2. (6.24)

The contribution of (6.20) to Ψ3 yields

γ−3/2N−3s

∫
|λα±N |<γ

1
λ2λ2

e
[
(λ1 + λ2 + λ3)x + (λ1 + λ2 + λ3)3t

]
ei[(λ1+λ2)3+λ3

3−(λ1+λ2+λ3)3]t − 1
(λ1 + λ2)λ3

(6.25)
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for which the Hs-norm is bounded by

γ−3/2N−2s−3
∥∥∥ ∫

λ=λ1+λ2+λ3
|λα±N |<γ

eiλx 1
|λ1 + λ2|+ 1

N2

dλ1dλ2dλ3

∥∥∥
2

(6.26)

∼ γ−3/2γ1/2N−2s−3
( ∫

|λα±N |<γ

1
|λ1 + λ2|+ 1

N2

dλ1dλ2

)
< N−2s−3 log N. (6.27)

Thus (6.24) yields the main contribution to ‖Ψ3‖Hs and we find the condition

2s + 3/2 ≥ 0, i.e. s ≥ − 3/4. (6.28)

The calculations for MKdV are similar, in fact included in preceding analysis. The
results need to be multiplied by N2 and we get

N−2s+1 =⇒ s ≥
1
2

in the periodic case

N−2s+ 1
2 =⇒ s ≥

1
4

on the line.(∗) (6.29)

It is interesting to notice that the exponents in the table above differ from the
scaling exponents for instance for KdV on the line, this exponent is − 3

2 . In the
periodic case, the failure of well-posedness may be due to the need for certain
renormalizations; in fact, the results in the table above for the periodic case require
to specify the mean

∫
φ, for the KdV equation and the L2-norm,

∫
φ2, for the

MKdV-equation. The renormalization consists here in changing slightly linear and
nonlinear part of the equation as follows (see [Bo])

yt + ∂3
xy + 2

(∫
φ

)
y +

[
y2 − 2

(∫
y

)
y

]
= 0 (6.30)

yt + ∂3
xy + 3

(∫
φ2

)
y +

[
y3 − 3

(∫
y2

)
y

]
= 0. (6.31)

Such normalizations are, however, usually only useful in the context of discrete
modes and not likely to be helpful in the R-case.

Finally, we observe that when expressing the KdV-equation in Darboux coordi-
nates, i.e. in the standard Hamiltonian format ṗ = −∂H

∂q , q̇ = ∂H
∂p , the (symplectic

phase space normalization immerging, is amazingly H−1/2, cf. [Kuk].

(∗) Examples, as described above, were in fact investigated by Kenig, Ponce and Vega in
closely related context and the optimality of the 1

4 -exponent for MKdV observed by these
authors.
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