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Abstract
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regularity. We also prove finiteness results for local cohomology.

Keywords Exterior algebra · Infinite general linear group · Castelnuovo–Mumford
regularity

Mathematics Subject Classification Primary 13A50 · 13C05; Secondary 13D02 ·
15A75 · 20G15

List of symbols
k The base field, always algebraically closed of characteristic p > 0
V A fixed infinite dimensional k-vector space with basis {ei }i≥1

GL The group of automorphisms of V fixing all but finitely many of
the basis vectors ei

Vec The category of k-vector spaces
Reppol(GL) The category of polynomial representations of GL

Pol The category of strict polynomial functors Vec → Vec
R The exterior algebra of V

Lλ The irreducible polynomial representation of GL with highest
weight λ

� The Schur derivative functor, which we also call the shift functor
� The difference functor

−<n The submodule generated by all elements of degree less than n
−(r) The r -th Frobenius twist of a GL-representation

ti (−) The generation degree of TorR
i (−, k)

B Karthik Ganapathy
karthg@umich.edu

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-024-00960-4&domain=pdf


   63 Page 2 of 33 K. Ganapathy

1 Introduction

Over the last decade, multiple authors have proved interesting asymptotic and uni-
formity results in fields ranging from topology [1, 6, 29] and number theory [28, 39]
to algebraic statistics [4, 9, 10, 27] and commutative algebra [11, 23, 46]. A unify-
ing feature of these seemingly unrelated works is the prevalence of highly symmetric
infinite-dimensional objects. The class of GL-algebras, i.e., rings which admit an
(appropriate) action of the infinite general linear group GL plays a central role in
this endeavour. Snowden [47, 48], Sam–Snowden [42, 44], and other authors [3, 34]
have extensively studied GL-algebras over a field of characteristic zero; their work
has already found a diverse array of applications.

On the contrary, GL-algebras in positive characteristic have hardly been studied
despite being intimately connected to other ubiquitous algebraic structures like twisted
commutative algebras. We fill this gap in the literature and initiate the systematic
study of GL-algebras in positive characteristic. In this paper, we study the infinite
exterior algebra in detail; in the sequel [17], we investigate the infinite polynomial
ring. In positive characteristic, there are many complications in the polynomial ring
(like Frobenius-twisted ideals) that disappear in the exterior algebra, making the latter
easier to analyze.

Throughout the paper, we fix k an algebraically closed field of characteristic p > 0.
Let GL = ⋃

GLn(k) be the infinite general linear group, and let V = ⋃
kn be the

defining representation ofGL. Let R be the exterior algebra of V regarded as an alge-
bra object in Reppol(GL), and similarly, let S be the symmetric algebra of V. The
category of R-modules (resp. S-modules) in Reppol(GL) will be denoted by ModR

(resp. ModS). In this paper, we provide a detailed description of ModR . Over a field
of characteristic zero, Sam–Snowden [42] have studied the algebraic and homological
properties of ModR and ModS . We make many of their results characteristic indepen-
dent. For instance, we prove:

Theorem 1.1 The Castelnuovo–Mumford regularity of a finitely generated R-module
is finite.

We emphasize that in characteristic zero, the analogue of Theorem 1.1 is true for
both R and S. In characteristic p, this result fails for the polynomial ring S: the ideal
generated by the pth power of the variables is aGL-stable ideal with infinite regularity.

Theorem 1.1 is almost a formal consequence of our main structural result (see
Sect. 2.3 for the definition of the Schur derivative):

Theorem 1.2 (Shift Theorem) Let M be a finitely generated R-module and � be the
Schur derivative. The R-module �n(M) is flat for n � 0.

The shift theorem is known for R-modules in characteristic zero by work of Nagpal
[32].

Remark 1.3 Nagpal’s version of the shift theorem is for FI-modules in all characteris-
tics. An FI-module is a functor from FI, the category of finite sets with injections, to
the category of k-vector spaces. In characteristic zero, the category of FI-modules is
equivalent to the category ModS (by Schur–Weyl duality) which is equivalent to the
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category ModR (using the “transpose functor" [41, Section 7]). All these equivalences
fail in positive characteristic.

Wenowexplain the key technical novelty of our paper.Our proof of the shift theorem
is motivated by Li–Yu’s simplification [26] of Nagpal’s work. Crucial to Li–Yu’s proof
is the fact that for an FI-module M , the generation degree of �(M) = coker(M →
�(M)) is exactly t0(M) − 1. This property fails for R-modules: in Corollary 4.4, we
show that for a Frobenius twisted GL-representation W , we have �(R ⊗ W ) = 0.
Our main idea is to classify the R-modules for which � vanishes. We achieve this in
Sect. 4.2 by controlling the GL-representations that occur in such modules using the
Steinberg tensor product theorem. In fact, we show that if� vanishes for a torsion-free
R-module, then the module is (up to extensions) of the form R ⊗W with W Frobenius
twisted. We also use these ideas in our forthcoming paper on ModS [17].

The theory ofGL-algebras ismore difficult in positive characteristic, but notmerely
due to the lack of semisimplicity. Instead, as the previous paragraph shows, the pres-
ence of Frobenius twisted representations is the primary obstacle to extending many
results from characteristic zero to positive characteristic. Furthermore, recent work [3,
47] about GL-algebras in characteristic zero heavily exploit the presence of weight
vectors of weight (1n) in an arbitrary GL-representation; all the weights occurring in
a Frobenius twisted representation are divisible by p so we cannot use these methods.
The Frobenius powers of an ideal also cause significant pathology. We [17] show that
in the infinite polynomial ring S, the Frobenius powers of the maximal ideal behave
like prime ideals in a suitable sense. In characteristic zero, the appropriate spectrum of
S only has two points (the zero ideal and the maximal ideal); in positive characteristic,
it has infinitely many points. We hope to address these issues more systematically in
the future.

Remark 1.4 AVI-module is a functor fromVI, the categoryoffinite dimensional vector
spaces over Fq with injections, to the category of vector spaces over a field L . Nagpal
[33] also proved a shift theorem for VI-modules in non-describing characteristic;
i.e., when char(Fq) �= char(L). The aforementioned property about the shift functor
also fails for VI-modules. As a workaround, Nagpal proved that in non-describing
characteristic, aVI-module is flat, in a suitable sense, if andonly if its local cohomology
modules vanish. We prove a similar equivalence for R-modules (Proposition 5.11),
but obtain it as a corollary of the shift theorem. It would be interesting to see if the
strategy we employ here can be used to reprove Nagpal’s theorem.

1.1 Additional results on R-modules

Apart from the shift theorem, we extend a number of other results about the exterior
algebra to all characteristics.

• We prove ModR is locally noetherian using Gröbner theory (Theorem 3.2).
• We show that the Krull–Gabriel dimension of ModR is one (Proposition 3.8).
• We obtain finiteness results for the local cohomology functors R�; i.e., prove that
for a finitely generated R-module M , the R-module Ri�(M) is finite length for
all i , and vanishes for sufficiently large i (Theorem 5.17).
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Table 1 Other examples from equivariant commutative algebra

Group Ring char(k) Results

GL Sym(V) &
∧

(V) char 0 [6, 32, 42]

GL Sym(V⊕n) &
∧

(V⊕n) char 0 [40, 44]

S∞ Sym(V) any char [37, 38]

Sp Sym(V) char 0 [45]

GL Sym(V) char p > 0 [17]

GL
∧

(
∧2(V)) &

∧
(Sym2(V)) char 0 [36]

GL Sym(Sym2(V) & Sym(
∧2(V)) char 0 [34]

GL Sym(V ⊕ ∧2(V)) char 0 [45]

• We show that the derived category Db
fg(ModR) is generated by the simple R-

modules Lλ and the flat R-modules R ⊗ Lλ for arbitrary λ (Theorem 5.4).
• We explain how to make Theorem 1.1 effective using work of Gan–Li [16]
(Remark 5.7). This mirrors a theorem of Church–Ellenberg [5] on FI-modules.

Not everything generalizes, however. In characteristic zero, Sam–Snowden [42]
proved that ModgenR and ModtorsR are equivalent, and showed that every finitely gener-
ated R-module has finite injective dimension. Both these properties fail in our setting
(Proposition 5.15), though remarkably the functor R Hom(M,−) still preserves the
derived category Db

fg(ModR) (Theorem 5.16).
There are many more results known in characteristic zero; we are unaware if they

continue to hold in positive characteristic. For example, Nagpal–Sam–Snowden [35]
showed that the regularity of an R-module can also be computed using the local coho-
mology functors. It would be interesting if one can prove this in positive characteristic
as well (the analogous fact for Z-graded Gorenstein rings is classical).

1.2 Relation to other work

This work fits in with the broader goal of equivariant commutative algebra wherein
one studies G-equivariant modules over a k-algebra A. We collect some of the relevant
examples from the literature in Table 1. Our paper suggests that the exterior algebra
is a much more tractable object in positive characteristic compared to the polynomial
ring.

1.2.1 GL-algebras

Fix a positive integer r , and let A = ∧
(kr ⊗ V) and B = Sym(kr ⊗ V). In charac-

teristic zero, it is easy to see that the two categories ModA and ModB are equivalent;
Sam–Snowden [44] have studied the structural properties of ModB . The results (and
techniques) of our paper is strong evidence that in positive characteristic, at leastModA

should parallel the characteristic zero story.
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1.2.2 Invariant theory

Gandini [18, 19] has studied equivariant resolutions over exterior algebras in char-
acteristic zero by transferring well-established results about the polynomial ring to
the exterior algebra using the transpose functor (see [41, Section 7.4]). In positive
characteristic, the transpose functor does not exist, and moreover these results usually
fail for the polynomial ring. It would be interesting to see whether one can directly
prove analogues of Gandini’s results in positive characteristic.

1.2.3 The infinite symmetric group

Nagpal–Snowden [37, 38] have classified theS∞-stable ideals in the infinite polyno-
mial ring. There are many remarkable results and open problems [24, 25, 30] about
these ideals and their resolutions. The exterior algebra should be a good testing ground
for these problems, being somewhat less complicated structurally.

1.2.4 Twisted commutative algebras

A twisted commutative algebra (tca) is a commutative algebra object in Rep(S�), the
category of sequences of representations ofSn .Wehave a symmetricmonoidal functor
F : Reppol(GL) → Rep(S�) often referred to as the Schur functor. Given an object W
in Reppol(GL), the functor F induces a functor FW : ModSym(W ) → ModSym(F(W )).
In characteristic zero, the functor F is an equivalence, so the theory of tca’s and GL-
algebras in characteristic zero agree. In positive characteristic, the Schur functor is not
an equivalence. However, we are hopeful that the theory of GL-algebras in positive
characteristic will enable us to prove new results about tca’s in positive characteristic.

1.2.5 Categories with shift-like functors

Gan–Li [15] have described an inductivemachinery to prove results (likeNoetherianity
and finite regularity) about a module category equipped with a shift-like functor (see
Subsection 1.9 of loc. cit.). In theirwork, they assume t0(�(M)) = t0(M)−1 so it does
not apply in our case. Nevertheless, developing an inductive machinery without this
assumption on �(M) deserves serious consideration as more and more shift functors
do not satisfy this condition (see also Remark 1.4).

1.2.6 The infinite polynomial ring

As we remarked earlier, the infinite polynomial ring S is more complicated in positive
characteristic. In a forthcoming paper [17], we provide a fairly comprehensive picture
of ModS . The structural results of this paper will be used to prove finiteness properties
for resolutions of S-modules.
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1.3 Outline

In Sect. 2, we recall the necessary background. In particular, we recall the notion of a
polynomial representation in Sect. 2.1, and define GL-algebras and related concepts
in Sect. 2.2. The Schur derivative and some of its properties are discussed in Sect. 2.3.
We prove the noetherianity result (Theorem 3.2) and facts about torsion R-modules in
Sect. 3. Section4 contains the proof of the shift theorem with the key technical results
appearing in Sect. 4.2. In Sect. 5, we use the shift theorem to obtain structural results
about the derived category Db

fg(ModR).
For the expert, we suggest first reading Sect. 2.3, Proposition 2.4, and then directly

jumping to Sect. 4. Most of the other results in Sect. 2 and Sect. 3 are as one would
expect.

2 Background

2.1 Polynomial representations

We let GL = ⋃
n≥1GLn(k), and V = ⋃

n≥1 kn be the standard representation of
GL. A representation ofGL is polynomial if it appears as a subquotient of a (possibly
infinite) direct sum of tensor powers of V. We denote the category of all polynomial
representations byReppol(GL). It is a Grothendieck abelian category closed under ten-
sor products whose objects are locally finite length. For a quick review of polynomial
representations, we refer the interested reader to [49, Section 1].

Examples

The irreducible polynomial representations ofGL are indexed by partitions of arbitrary
size. For a partition λ, we let Lλ be the irreducible representation with highest weight
vector of weight λ, and we let Sλ(V) be the Schur module corresponding to λ. The
representation Lλ is the socle of Sλ(V). We note that S(d)(V) = Symd(V), and
S(1d )(V) = ∧d

(V). Furthermore, we let Divd(V) be the d-th divided power of V.
For a partition λ = (λ1, λ2, . . . , λn), we let Divλ(V) = Divλ1(V) ⊗ Divλ2(V) ⊗
. . .Divλn (V), and define Symλ(V) similarly. The modules Divλ(V) are projective
objects in Reppol(GL), and any polynomial representation is a quotient of direct sums
of Divλ(V) (as λ varies). Similarly, the representations Symλ(V) are injective objects
in Reppol(GL).

Polynomial functors

Let Pol denote the category of strict polynomial endofunctors of Vec in the sense
of Friedlander–Suslin [13]. The category Reppol(GL) is equivalent to Pol [13,
Lemma 3.4]. The equivalence is given by evaluating a polynomial functor F on V.
We let � : Reppol(GL) → Pol denote the inverse. Under this equivalence, the Schur
functor Sλ in Pol is mapped to the polynomial representation Sλ(V), and if W is a
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polynomial representation of GL, then W ∼= �(W )(V). Every concept we define for
polynomial representations can be transferred to Pol using this equivalence.

Frobenius twist

Let Frob : GL → GL denote the Frobeniusmap, which raises each entry of amatrix to
its p-th power. The Frobenius map is a group homomorphism. Given a representation
W ofGL, the Frobenius twist of W , denoted W (1), is theGL-representation obtained
bypullingW back along thismap. IfW is a polynomial representation, thenW (1) is also
a polynomial representation. For r > 1, we recursively define W (r) = (W (r−1))(1).

Grading

A homogeneous polynomial representation of degree d is a polynomial representation
of GL which has a (possibly infinite) filtration where the successive quotients are the
simple objects Lλ with |λ| = d. The degree is also compatible with the tensor product
and Frobenius twist: if V is homogeneous of degree d and W is homogeneous of
degree e, then V ⊗ W is homogeneous of degree d + e, and V (1) is homogeneous of
degree pd. Given an arbitrary polynomial representation W ofGL, we can decompose
it as

⊕
i∈N Wi where Wd is homogeneous of degree d [13, Lemma 2.5]. Therefore,

every polynomial representation has a canonical N-grading. We let Reppol(GL)d be
the full subcategory of Reppol(GL) on the homogeneous polynomial representation
of degree d.

Steinberg tensor product theorem

Apartitionλ = (λ1, λ2, . . . , λn) is p-restricted ifλi −λi+1 < p for all 1 ≤ i ≤ n (here
λn+1 = 0). We state an important result that relates p-restricted partitions, Frobenius
twists, tensor products, and irreducible representations, see e.g., [22, Theorem 1.1].

Theorem 2.1 Let λ be a partition and write λ = ∑n
i=0 piλi for p-restricted partitions

λ0, λ1, . . . , λn. Then, we have an isomorphism Lλ
∼= Lλ0 ⊗ L(1)

λ1
⊗ L(2)

λ2
. . . ⊗ L(n)

λn .

2.2 GL-algebras

AGL-algebra is a commutative, associative, unital k-algebra equipped with an action
ofGL via algebra homomorphisms, under which it forms a polynomial representation.
A skew GL-algebra is a skew-commutative associative, unital Z/2-graded k-algebra
equipped with an action of GL via algebra homomorphisms under which it forms a
polynomial representation. We write |A|, when we want to forget theGL-action on A
and think of it as an ordinary k-algebra. The GL-action endows |A| with a canonical
N-grading. In a skew GL-algebra, this canonical N-grading is unrelated to the Z/2-
grading. Given a polynomial representation W , the algebra Sym(W ) is a GL-algebra
and

∧
(W ) is canonically a skew GL-algebra.
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A-modules

Let A be a (skew) GL-algebra. We let ModA denote the category of A-modules in
Reppol(GL). Concretely, an A-module M is an |A|-module, equipped with an action
of GL that is compatible with the action on A (i.e., g(am) = g(a)g(m) for all a ∈
A, m ∈ M and g ∈ GL) such that M is a polynomial representation. The action ofGL
endows M with anN-grading, making M anN-graded |A|-module. AGL-ideal of A is
aGL-stable ideal of |A|. A submodule of an A-module is aGL-stable |A|-submodule.
We denote by A+ the ideal of positive degree elements of A.

Finite generation

A GL-algebra A is finitely generated if there exists a finite length subrepresentation
V ⊂ A such that the canonical map Sym(V ) → A is surjective. A skewGL-algebra A
is finitely generated if there exists finite length subrepresentations V ⊂ A0 and W ⊂
A1 such that the canonical map Sym(V )⊗∧

(W ) → A is surjective. Equivalently, the
k-algebra |A| is generated by the GL orbits of finitely many elements. An A-module
M is finitely generated if there exists a finite length subrepresentation V ⊂ M such
that the canonical map A ⊗ V → M is surjective. Equivalently, we can find finitely
many elements in M such that their GL-orbits generate |M | as an |A|-module.

Let M be an A-module. The generation degree of M is the smallest integer n ≥ −1
such that M is generated by elements of degree ≤ n (or ∞ if no such integer exists).
We say M is generated in degree n if M is generated by its degree n elements (in
particular, we have Mi = 0 for i < n).

Noetherianity

A (skew) GL-algebra is noetherian if every submodule of a finitely generated A-
module is also finitely generated. It is weakly noetherian if every GL-ideal of A is
finitely generated.

Nakayama’s Lemma

We have the following version of Nakayama’s lemma. The usual proof of the (graded
version of the) lemma applies.

Lemma 2.2 Let A be a GL-algebra and M be an A-module. Let V → M be a map
of GL-representations such that the composition V → M → M/A+M is surjective.
The map A ⊗ V → M, obtained by adjunction, is also surjective.

Projective and injective modules

For a projective polynomial representation V , the A-module A ⊗ V is projective.
Since there are enough (finite length) projectives in Reppol(GL), the category ModA

has enough (finitely generated) projectives. In fact, every A-module is a quotient of
direct sums of the projectivemodules {A⊗Divλ(V)}λ. The categoryModA has enough
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injectives as well since it is a Grothendieck abelian category (though the injectives
may not be finitely generated).

2.3 The Schur derivative

In this subsection,we define an endofunctor ofReppol(GL) called the Schur derivative.
We first define it for Pol and then define it for Reppol(GL) using the equivalence �.
Some properties of the Schur derivative are outlined in [41, Section 6.4] (under char
0 assumptions). The Schur derivative and related notions also appear in [2, Section 3]
under the name “linear approximation".

Schur derivative of polynomial functors

Let F : Vec → Vec be a polynomial functor. We define the Schur derivative of F ,
denoted �(F), to be the polynomial functor which on objects is defined by

�(F)(V ) = F(k ⊕ V )[1],

where the superscript here denotes the subspace of F(k ⊕ V ) on which k� acts with
weight 1. For a linear map f : V → W , the induced map �(F)( f ) : �(F)(V ) →
�(F)(W ) is given by restricting the map F(idk ⊕ f ) : F(k ⊕ V ) → F(k ⊕ W ) to the
1 weight-space of the k� action. It is easy to see that �(F) is a polynomial functor,
and that the assignment F → �(F) is functorial.

Basic properties of the Schur derivative

The Schur derivative is an exact functor (because k� is semisimple). It preserves finite
length objects of Pol. Furthermore, the Schur derivative is a categorification of the
ordinary derivative (of polynomials) as it satisfies:

• Additivity: �(F ⊕ G) = �(F) ⊕ �(G)

• Leibniz rule: �(F ⊗ G) = (�(F) ⊗ G) ⊕ (F ⊗ �(G))

• Chain rule: �(F ◦ G) = (�(F) ◦ G) ⊗ �(G)

• Kills “p-th powers": �(F (1)) = 0

For the second property, we use the fact that for k� representations V and W , we have
(V ⊗ W )[1] = (V [1] ⊗ W ) ⊕ (V ⊗ W [1]), and for the last property, we use the fact
that all the weights occurring in a Frobenius twisted representation are divisible by p.

Schur derivative of a polynomial representation

Since Pol and Reppol(GL) are equivalent, we obtain an endofunctor of Reppol(GL),
which we again denote by � and call the Schur derivative. For a polynomial represen-
tation W , we identify�(W ) as a subspace of�(W )(k ⊕V), where k� acts with weight
1. We also identify W is as a subspace of �(W )(k ⊕V) (where k� acts trivially). The
newly introduced basis vector of k ⊕Vwill usually be denoted by f1, or y1 depending
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on the situation. The proof of the next lemma is easy, but demonstrates how we will
work with the Schur derivative in the rest of the paper.

Lemma 2.3 For all n ≥ 1, we have isomorphisms �(Symn(V)) ∼= Symn−1(V), and
�(

∧n
(V)) ∼= ∧n−1

(V).

Proof The vector space Symn(V) has basis indexed by degree n monomials in
x1, x2, . . .. We shall identify �(Symn(V)) as a subspace of Symn(k ⊕ V), where
the newly introduced basis vector will be y1.

We define a map Symn−1(V) → �(Symn)(V) = Symn(k ⊕ V)[1], where

xi1
1 xi2

2 . . . xim
m �→ y1xi1

1 xi2
2 . . . xim

m .

This isGL(V)-equivariant (GL(V) acts trivially on y1), and easily checked to be both
injective and surjective. The proof for

∧n
(V) is similar. ��

Schur derivative of an A-module

Let A be a GL-algebra, and M be an A-module. The GL-representation �(M) is
canonically an A-module, as we now explain. Firstly, we have a canonical GL-
equivariant map A → �(A)(k ⊕V) induced by the canonical inclusion V → k ⊕V.
Now, the GL-representation �(M)(k ⊕ V) is a GL(k ⊕ V)-equivariant module over
�(A)(k ⊕ V). By restriction of scalars, it is a GL-equivariant module over A. The
subspace �(M) of �(M)(k ⊕ V ) is stable under the action of GL as well as |A|,
so �(M) is an A-module. To summarize, the Schur derivative induces a functor
� : ModA → ModA. For example, given a polynomial representation V , we have
�(A ⊗ V ) = (A ⊗ �(V )) ⊕ (�(A) ⊗ V ).

2.4 Semi-inducedmodules

Throughout this subsection, we fix a (skew) GL-algebra A such that A0 = k.
An A-module is induced if it is isomorphic to A ⊗ W for some polynomial rep-

resentation W . An A-module is semi-induced if it has a finite filtration where the
successive quotients are induced modules. The terminology is motivated by similarly
defined objects for FI-modules (and related algebraic structures) [32].

Given an A-module M , we let TorA
i (M,−) denote the left derived functors of the

right exact functor M ⊗A −. An A-module M is flat if the functor M ⊗A − is exact.
An A-module M is flat if and only if the functors TorA

i (M, N ) = 0 for all i > 0 and
all A-modules N . Finally, it is easy to see that the |A|-modules |TorA

i (M, N )| and
Tor|A|

i (|M |, |N |) are isomorphic.
The main result of this subsection is a characterization of semi-induced modules

using Tor.

Proposition 2.4 Let M be a finitely generated A-module. The following are equivalent:

(a) M is semi-induced,
(b) M is flat,
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(c) TorA
i (M, k) = 0 for all i > 0, and

(d) TorA
1 (M, k) = 0.

We let ti (M) = max deg TorA
i (M, k) as a polynomial representation with the con-

vention that max deg(0) = −1. By Nakayama’s lemma (Lemma 2.2), the module M
is generated in degrees ≤ n if and only if t0(M) ≤ n. We denote by M<n the A-
submodule of M generated by all elements of degree < n. If t0(M) = n, the quotient
M/M<n will be generated in degree n; we implicitly use this throughout the paper.

Lemma 2.5 Let M be a semi-induced A-module and N be any A-module. Then
TorA

i (M, N ) = 0 for i > 0.

Proof The induced module A⊗V is flat since the functor (A⊗V )⊗A − is isomorphic
to V ⊗k − which is exact. By dévissage, we see that semi-induced modules are also
flat. ��
Lemma 2.6 Let M be an A-module generated in degree n such that t1(M) ≤ n. The
natural map A ⊗ Mn → M is an isomorphism.

Proof The map A ⊗ Mn → M is surjective since M is generated in degree n. The
kernel K of this map must be supported in degrees > n. By Lemma 2.5, the module
TorA

1 (A ⊗ Mn, k) = 0. Therefore, the long exact sequence of TorA• (−, k) gives us the
exact sequence

0 → TorA
1 (M, k) → TorA

0 (K , k) → TorA
0 (A ⊗ Mn, k) → TorA

0 (M, k).

The rightmost map is an isomorphism, so the first map is also an isomorphism. Now,
since t1(M) ≤ n, we have t0(K ) ≤ n which implies K is zero since Ki = 0 for i ≤ n.
Therefore the map A ⊗ Mn → M is an isomorphism, as required. ��
Lemma 2.7 Let M be a finitely generated A-module such that TorA

1 (M, k) = 0 and
t0(M) = n. The module M/M<n is induced, and TorA

1 (M<n, k) = 0.

Proof Themodule M/M<n is generated in degree n.We have the long exact sequence

TorA
2 (M/M<n, k) → TorA

1 (M<n, k) → TorA
1 (M, k) → TorA

1 (M/M<n, k)

→ TorA
0 (M<n, k),

from which we see that t1(M/M<n) < n. So by Lemma 2.6, the module M/M<n is
an induced module. In particular, the module TorA

2 (M/M<n, k) = 0 by Lemma 2.5,
which in turn implies that TorA

1 (M<n, k) vanishes (from the long exact sequence
above), as required. ��
Proof of Proposition 2.4 (a) implies (b) is Lemma 2.5. (b) implies (c), and (c) implies
(d) is trivial. We now prove (d) implies (a). Using lemma 2.7, we see that the module
M/M<t0(M) is induced, and TorA

1 (M<t0(M), k) = 0. So by induction on generation
degree, we have that M<t0(M) is semi-induced, and therefore M is also semi-induced,
as required. ��
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Corollary 2.8 Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of finitely
generated A-modules.

(a) If M1 and M3 are semi-induced, then so is M2.
(b) If M2 and M3 are semi-induced, then so is M1.

Proof The analogous results for flat modules can be obtained using the long exact
sequence of Tor. We obtain the corollary for semi-induced modules using Proposi-
tion 2.4. ��

2.5 Serre subcategories and Serre quotients

We now review Serre quotients; see [14] or [12, Chapter 15] for general background.
A Serre subcategory B of an abelian category A is a full abelian subcategory of A

that is closed under extensions, and taking subquotients. Given a Serre subcategory
B ⊂ A, we let T : A → A/B denote the exact functor to the Serre quotient A/B and
S : A/B → A denote the right adjoint to T (the section functor), if it exists.

IfA and B are Grothendieck abelian categories, then the section functor exists (see
e.g., [12, Theorem 15.11]). Furthermore, under these assumptions, we also have a
functor � : A → B which takes an object M to the maximal subobject �(M) of M
contained in B. The functor � is right adjoint to the inclusion functor i : B → A, so
left exact; its right derived functors are the local cohomology functors.

All the results we use about local cohomology will be from [44, Section 4]. Many
of the results from loc. cit. are stated under the assumption that theB satisfies Property
(Inj), i.e., injective objects in B remain injective in A. We will verify this in cases of
interest.

3 Basic results on R-modules

For the rest of the paper, we let R = ∧
(V) be the exterior algebra. This is a skew

GL-algebra. We let m denote the ideal of all positive degree elements of R. In degree
i , the GL-representation Ri is the i-th exterior power

∧i
(V) which is irreducible of

highest weight (1i ). The irreducibility of Ri implies that the only nonzero properGL-
ideals of R are the ideals mr for r ≥ 1. Clearly, the ascending chain condition holds
for GL-ideals of R, i.e., the skew GL-algebra R is weakly noetherian. In Sect. 3.1,
we show that R is noetherian. In Sect. 3.2, we define the notion of a torsion R-module
(which makes sense only in the infinite variable setting).

3.1 Noetherianity

In this subsection, we show ModR is locally noetherian. We will prove a stronger
statement that given a finitely generated Inc(N)-equivariant R-module M , every
Inc(N)-stable R-submodule of M is also finitely generated. Our proof uses the fol-
lowing theorem of Cohen [7] (see also [31, Corollary 6.16]):
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Theorem 3.1 Let M be a finitely generated Inc(N)-equivariant module over the infinite
polynomial ring S = k[x1, x2, . . . , ]. Every Inc(N)-stable S-submodule of M is finitely
generated.

For the rest of the subsection (except the proof of Theorem 3.2), we forget the action
of GL on R and S.

Notation

Let Inc(N) denote the increasing monoid, i.e., the monoid of increasing injective
functions from N to itself. Let B denote the k-algebra S/(x21 , x22 , . . . , x2n , . . .). We let
Pn denote the R-module R ⊗V⊗n , and let Qn denote the B-module B ⊗V⊗n for all
n ≥ 0.

Monomial submodules

An element of Pn is monomial if it is of the form

m = (xi1 ∧ xi2 . . . ∧ xir ) ⊗ (e j1 ⊗ e j2 . . . ⊗ e jn )

with i1 > i2 > · · · > ir . We also have a similar notion of monomials for the B-module
Qn .

A submodule M of the R-module Pn (resp. the B-module Qn) is monomial if it is
generated by all the monomials it contains.

Bijection betweenmonomial submodules of Pn and Qn

We define a map � from the set of monomials of Pn and the set of monomials of Qn .
Given a monomial

m = (xi1 ∧ xi2 . . . ∧ xir ) ⊗ (e j1 ⊗ e j2 . . . ⊗ e jn ) ∈ Pn

we define

�(m) = (xi1xi2 . . . xir ) ⊗ (e j1 ⊗ e j2 . . . ⊗ e jn ) ∈ Qn .

Clearly, the map � is a bijection. The map � also induces a bijection �̃ between the
set of monomial submodules of Pn and Qn in the following way: given a monomial
submodule M of Pn , the submodule �̃(M) ⊂ Qn is generated by the monomials
�(m) with m varying over all the monomials in M .

Action of the increasing monoid

We define an action of Inc(N) on Pn . If σ ∈ Inc(N) and

m = (xi1 ∧ xi2 . . . ∧ xi p ) ⊗ (e j1 ⊗ e j2 ⊗ . . . ⊗ e jn ) ∈ Pn,
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we define

σm := (xσ(i1) ∧ xσ(i2) . . . ∧ xσ(i p)) ⊗ (eσ( j1) ⊗ eσ( j2) ⊗ . . . ⊗ eσ( jn))

and linearly extend this to all of Pn . We similarly define an action of Inc(N) on Qn as
well.

The action we have just defined endows Pn and Qn with the structure of an Inc(N)-
equivariant module over R and B respectively. Furthermore, the map �̃ restricts to an
inclusion-preserving bijection:

{Inc(N)-stable monomial submodules of Pn} �̃ {Inc(N)-stable monomial submodules of Qn}

Total order on monomials of Pn

Fix an n ∈ N. We endow a total ordering (denoted ≤) on the set of monomials of Pn .
Given monomials m = (xi1 ∧ xi2 . . . ∧ xir ) ⊗ (e j1 ⊗ e j2 . . . ⊗ e jn ), we associate to it
the word (I , J ) = ((i1, i2, . . . , ir ), ( j1, j2, . . . , jn)) in N∗ × Nn (here, N∗ is the set
of words of arbitrary length on the alphabet N). The lexicographic order on N∗ × Nn

restricts to a total order on the set of monomials. For example, in P3, the monomial
(x3 ∧ x1) ⊗ (e1 ⊗ e4 ⊗ e1) will be bigger than (x2 ∧ x1) ⊗ (e7 ⊗ e2 ⊗ e4) but smaller
than x5 ⊗ (e1 ⊗ e1 ⊗ e1).

The total order we have defined is also compatible with multiplication by a mono-
mial of R in the following sense: for a monomial n ∈ R, and monomials m, m′ ∈ Pn

with m > m′, we have nm > nm′. Here, we are implicitly identifying a monomial
with its negative, as it is possible that nm or nm′ is not a monomial as we have defined,
in which case −nm or −nm′ will be a monomial.

Initial submodules

Given an element m in Pn , we can write it as a sum of monomials m = ∑
ai mi , with

ai ∈ k�, and mi being monomials. We define the initial term of m, denoted init(m), to
be anmn , where mn is the largest monomial (under the total order just defined) among
all the mi . It is easy to see that init(σ (m)) = σ init(m), for σ ∈ Inc(N) and m ∈ Pn .
Given an arbitrary Inc(N)-stable submodule M of Pn , we define its initial submodule,
denoted init(M), to be the submodule generated by all elements of the form init(m),
with m ∈ M . By definition, the submodule init(M) is an Inc(N)-stable monomial
submodule of Pn .

Theorem 3.2 ModR is locally noetherian.

Proof For each λ, let Pλ = R ⊗ Divλ(V). Every finitely generated R-module is a
quotient of a finite direct sum of Pλ (as λ varies). Furthermore, the module Pλ is a
submodule of Pn for n = |λ| (as Divλ(V) is a subrepresentation of V⊗|λ|). Therefore,
it suffices to show that Pn is GL-noetherian for all n, because finite direct sums,
submodules and quotients of GL-noetherian modules are GL-noetherian. We will
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prove that Pn is Inc(N)-noetherian; this suffices as every GL-stable submodule of Pn

is easily seen to be Inc(N)-stable.
Fix an n. For Inc(N)-stable submodules M ⊂ N ⊂ Pn , clearly init(M) ⊂ init(N ).

The key point here is that the init operation detects strict inclusions, i.e., for M ⊂
N ⊂ Pn , we have init(M) = init(N ) if and only if M = N (see proof of [43,
Proposition 4.2.2]). Therefore, if ACC holds for Inc(N)-stable monomial submodules
of Pn , then ACC holds for all Inc(N)-stable submodule.

Using the bijection �̃, it suffices to prove that ACC holds for Inc(N)-stable mono-
mial submodules of Qn , which follows from Theorem 3.1. ��

3.2 Torsion and generic R-modules

An element m in an R-module is torsion if I m = 0 for a nonzeroGL-ideal of R. Since
the only nonzero properGL-ideals of R are of the formmn for n ≥ 1, an element m is
torsion if and only ifmnm = 0 for some n ∈ N. A module M is torsion if all elements
of M are torsion.

The subcategoryModtorsR of torsionmodules is a Serre subcategory ofModR .We let
ModgenR = ModR /ModtorsR . A generic module is an object of ModgenR . All the functors
from Sect. 2.5 exist in this case. In particular, the functor � : ModR → ModtorsR takes
a module M to its submodule �(M) of torsion elements. A nonzero module M is
torsion-free if �(M) = 0.

We now give some examples of torsion and torsion-free R-modules. Given a
nonzero module M , let M>n denote the submodule of M containing all elements
of degree > n. The module M/M>n is torsion (provided it is nonzero). Any finite
length R-module is clearly torsion. The module R is torsion-free: given a nonzero
element r ∈ R, it is clear thatmnr �= 0 for all n ≥ 0 (sincemnmm = mn+m �= 0). We
have crucially used the fact that we have infinitely many variables here, for otherwise,
mn = 0 for n � 0. More generally, the induced module R ⊗ W are all torsion-free,
and so are the semi-induced R-modules.

Lemma 3.3 The submodule �(M) of a finitely generated R-module M is finite length.

Proof First, assume M is a finitely generated torsion R-module generated by homo-
geneous elements m1, m2, . . . , mn . Assume mr mi = 0 for all i . Then Mi is a finite
length GL-representation for all i (this holds all finitely generated R-modules), and
vanishes for all i > r +max deg(mi ). So M has finite length as aGL-representation. If
M is a finitely generated R-module, then the submodule �(M) is a finitely generated
torsion R-module by Theorem 3.2, and hence �(M) is finite length, as required. ��
We now verify property (Inj) for ModtorsR , i.e., injectives in the Serre subcategory
ModtorsR remain injective in the ambient category ModR .

Lemma 3.4 ModtorsR satisfies property (Inj).

Proof Let M be a finitely generated R-module. The submodule �(M) is supported in
finitely many degrees by Lemma 3.3; assume �(M)i = 0 for i > N . Let M>N be the
submodule of M consisting of all elements of degrees > N . The submodule M>N
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is torsion-free and the quotient M/M>N is torsion. The result now follows from [44,
Proposition 4.18]. ��
This implies:

Corollary 3.5 Let M be a torsion R-module. For i > 0, the local cohomology functors
Ri�(M) vanish.

Proof This is [44, Proposition 4.2]. ��
Even if rm = 0 for an element r ∈ m and m ∈ M , the element m need not be torsion.
For example, we have x1 ∧ x1 = 0, but R is torsion-free. The next lemma shows that
if an element m is killed by r ∈ R which is disjoint from m (i.e., the basis vectors ofV
which are used in m are disjoint from the ones used in r ), then m is a torsion element.

Lemma 3.6 Let M be a finitely generated R-module, and m ∈ M be an element such
that m ∈ M(kn), i.e., m only uses the first n basis vectors. If xn+1xn+2 . . . xn+r m = 0,
then m is a torsion element killed by mr .

Proof We give a proof when r = 1, leaving the easy generalization to the reader.
Given i �= n + 1, let g be the element inGL that maps en+1 to en+1 + ei , and fixes e j

for j �= n + 1. We have

0 = g(xn+1m) = (gxn+1)(gm) = (xi + xn+1)m = xi m + xn+1m = xi m,

where for the third equality, we use the fact that m is fixed by g since m only uses the
first n basis vectors. So the GL-ideal m kills m, as required. ��

For an abelian category C, the Krull–Gabriel dimension measures how far C is
from being locally of finite length (see [14, § 4.1] for a precise definition). We have
KG. dim(C) = 0 if and only if all objects in C are locally finite length. It is easy
to see using Lemma 3.3 that KG. dim(ModtorsR ) = 0. We prove that ModgenR is also
zero-dimensional.

Lemma 3.7 Fix an n ∈ N. There exists an F(n) ∈ N such that the length of
∧i

(V) ⊗
V⊗n as a GL-representation is less than F(n) for all i ≥ 0.

Proof By [21, Theorem 2.8], the lengths of
∧i

(V) ⊗V⊗n is eventually periodic, i.e.,
there exists q (a power of p) and N such that for r , s > N with q|(r − s), we have

lenGL(
∧r

(V) ⊗ V⊗n) = lenGL(
∧sV ⊗ V⊗n).

In particular, the lengths are bounded above by some F(n) ∈ N, as required. ��
Proposition 3.8 The category ModgenR has Krull–Gabriel dimension zero. Conse-
quently, the Krull–Gabriel dimension of ModR is one.

Proof We first show that for a finitely generated R-module M , we have

lenModgenR
(T (M)) < lim inf

i
lenGL(Mi ).
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Indeed, given a submodule N ⊂ M , the equality T (N ) = T (M) holds if and only
if M/N is finite length, which holds if and only Ni = Mi for i � 0. Therefore, if
T (N ) � T (M), thenwe have lenGL(Ni ) < lenGL(Mi ) for sufficiently large i , whence
we get the above inequality.

Now, every finitely generated R-module is a subquotient of direct sums of Pn =
R ⊗ V⊗n . So it suffices to show that T (Pn) has finite length. By Lemma 3.7 and the
discussion in the previous paragraph, the length of T (Pn) is at most F(n), as required.

��

4 The shift theorem

In the last section, we showed that ModR splits into two pieces, the Serre subcategory
of torsion R-modules, and the Serre quotient of generic R-modules. In this section, we
prove the shift theorem which, in some sense, lets us glue these two pieces together.
We implicitly use the equivalence � between Pol and Reppol(GL) throughout. In
particular, we suppress the functor �. So if M is a polynomial representation, and we
write M(W ) for somevector spaceW ,wemean theGL(W )-representation�(M)(W ).

4.1 The shift functor

As we explained in Sect. 2.3, the Schur derivative restricts to an endofunctor of ModR .
We now define a natural map iM : M → �(M) for an R-module M . We have the
R-module map m �→ y1m from M to M(k ⊕ V) (where y1 is the new variable in
R(k ⊕ V)). Since m uses only the basis vectors ei , the k� ⊂ GL(k ⊕ V)-weight
of y1m is 1. Therefore, the map factors M → �(M) → M(k ⊕ V). We let iM be
the first map. It is easy to see that i is natural. We let �(M) = coker(iM ) be the
difference functor. Since � is an exact functor, it follows from the snake lemma that
� is right exact. We also let �r be the r -fold composition of � for r > 0 and let
�r (M) = coker(M → �r (M)).

Wefirst prove some basic properties of the Schur derivative functor (which hereafter
we refer to as the shift functor). See [26, Section 2] for analogous results for FI-
modules.

Proposition 4.1 Let M be an R-module.

(a) The kernel of iM is torsion.
(b) The map iM is injective if and only if M is torsion-free.
(c) If M is torsion-free then so is �(M).
(d) If M is finitely generated, then �r (M) is torsion-free for sufficiently large r .
(e) If M is nonzero, the module �r (M) is generated in degrees ≤ t0(M) − 1 for all

r ≥ 1.
(f) If M is a finitely generated semi-induced module, then so are �(M) and �(M).
(g) If M is finitely generated, then so are �(M) and �(M).
(h) For all r ≥ 1, the functors ��r and �r� are naturally isomorphic (i.e., the

functors � and �r commute).
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(i) The functors �� and �� are naturally isomorphic (i.e., the functors � and �

commute).

The proposition will be proved at the end of this subsection, after we prove a few
preliminary results.

Lemma 4.2 Let i : id → � be the natural map of functors. We have two natural maps
from � to �2: one given by �(i), and the other given by i� . There exists an involution
τ of �2 such that �(i) = τ ◦ i� .

Proof The module�2(M) can be identified as a submodule of M(k2 ⊕V). Under this
identification, the map �(iM ) is given by multiplying with the variable introduced
first (call it y1), and i�(M) is given by multiplying with the variable introduced second
(call it y2). We have an isomorphism of M(k2 ⊕ V) induced by the isomorphism of
k2 ⊕V which swaps the two basis vectors of the first factor and is identity on V. This
isomorphism clearly restricts to a natural isomorphism of �2(M); call this natural
map τ . We have

(τM ◦ �(iM ))(m) = τM (y1m) = y2m = i�(M)(m),

as required. ��

Lemma 4.3 Let V be a polynomial representation of GL. We have isomorphisms

�(R ⊗ V ) ∼= (�(R) ⊗ V ) ⊕ (R ⊗ �(V )) ∼= (R ⊗ V ) ⊕ (R ⊗ �(V )).

Furthermore, the natural map iR⊗V is the identity map onto the first summand. There-
fore, the module �(R ⊗ V ) is isomorphic to R ⊗ �(V ).

Proof Firstly, it is easy to check that iR is an isomorphism (see Lemma 2.3). Therefore
R ∼= �(R), giving us the second isomorphism in the statement of the lemma. For the
first isomorphism, we use the fact that � is a categorical derivation. The claim about
iR⊗V follows from the definition of i .

��

Corollary 4.4 Let W be a polynomial representation of GL. Then �(R ⊗ W (1)) = 0.

Proof All the weights of W (1) are divisible by p, so �(W (1)) = 0. The result now
follows from Lemma 4.3. ��

Proof of Proposition 4.1

(a) Assume m is in the kernel of iM , i.e., y1m = 0 in �(M). Viewing �(M) as a
submodule of M(k ⊕ V), we see that the element m ∈ M(V) ⊂ M(k ⊕ V) is
annihilated by y1 ∈ R(k ⊕ V). Since y1 and m are disjoint, the element m is
torsion by Lemma 3.6.
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(b) If M is torsion-free, then by part (a), the map iM is injective. Now, suppose M
is not torsion-free; let m be a torsion element and assume m ∈ M(ki ) (i.e., it
only uses the basis vectors e1, e2, . . . , ei ). Let n be the minimal integer for which
mnm = 0. Pick a nonzero element m̃ in the submodule mn−1m. Since mnm = 0,
we have mm̃ = 0. So, in M(k ⊕ V), we also have that y1m̃ = 0, which implies
that m̃ is in the kernel of iM , as required.

(c) If M is torsion-free, then by part (a), the map iM is injective. Applying the exact
functor �, we see that the map �(iM ) : �(M) → �2(M) is also injective. By
Lemma 4.2, we have i�(M) = τM ◦ �(iM ), where τM is an involution of �2(M).
Therefore, the map i�(M) is also injective, and so by part (b), the module �(M)

is torsion-free.
(d) The submodule �(M) of torsion elements is finitely generated, and so supported

in degrees < n for some n ∈ N. We have the short exact sequence

0 → �(M) → M → M/�(M) → 0.

Applying �n , we obtain an isomorphism �n(M) ∼= �n(M/�(M)) as
�n(�(M)) = 0. The module �n(M/�(M)) is torsion-free by part (c), and so
�n(M) is also torsion-free, as required.

(e) We prove the r = 1 case which can be easily extended to all r by the reader. For a
polynomial representation W of degree ≤ n, the representation �(W ) has degree
≤ n − 1. Therefore, by Lemma 4.3, applying � to an induced module generated
in degree ≤ n results in an induced module generated in degree ≤ n − 1. Now,
for an R-module M , we have a surjection R ⊗ W → M , with W a polynomial
representation of degree ≤ t0(M). Since � is right exact, we have a surjection
R ⊗ �(W ) → �(M), which implies that t0(�(M)) ≤ t0(M) − 1, as required.

(f) This follows from Lemma 4.3, and induction on the length of the filtration of M .
(g) This follows from Lemma 4.3 and the fact that the Schur derivative of a finite

length polynomial representation is also finite length.
(h) We again prove the r = 1 case with the easy generalization for all r > 1 left to

the reader. The module �(�(M)) is the cokernel of �(iM ), and �(�(M)) is the
cokernel of i�(M). These two maps only differ by an automorphism of the target,
and so their cokernels are isomorphic.

(i) Wehave the short exact sequence0 → �(M) → M → M/�(M) → 0.Applying
the functor � to this short exact sequence, we get

0 → �(�(M)) → �(M) → �(M/�(M)) → 0.

By part (c), themodule�(M/�(M)) is torsion-free, and therefore, the submodule
�(�(M)) is contained in the image of �(�(M)). For the reverse containment,
the image of �(�(M)) is a torsion submodule of �(M), and so is contained in
�(�(M)).

��
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Lemma 4.5 Let 0 → L → M → N → 0 be a short exact sequence of R-modules.
We have a six-term exact sequence

0 → K(L) → K(M) → K(N ) → �(L) → �(M) → �(N ) → 0

where K = ker(id → �).

Proof This is just the snake lemma applied to the diagram

0 L M N 0

0 �(L) �(M) �(N ) 0.

iL iM iN

��
Remark 4.6 It is not hard to see that the functorK is isomorphic toL1�, andLi� van-
ishes for i > 1 (for FI-modules, the analogous result can be found in [5, Lemma 4.7]).

Corollary 4.7 Let 0 → L → M → N → 0 be a short exact sequence of R-modules
such that N is torsion-free. We have a short exact sequence

0 → �(L) → �(M) → �(N ) → 0

Proof The module K(N ) = 0 by Proposition 4.1(a). The result now follows from
Lemma 4.5. ��

4.2 Vanishing of1

This subsection contains the main new technical result of this paper. We classify the
torsion-free R-modules for which �(M) vanishes. In characteristic zero, it is not
hard to prove that for a nonzero R-module M , we have t0(�(M)) = t0(M) − 1 [26,
Proposition 2.4]. So if �(M) = 0, then M must be generated in degree zero and
therefore induced. In positive characteristic we only have the inequality t0(�(M)) ≤
t0(M) − 1. In this subsection, we prove that if � vanishes for a torsion-free module,
then it is an extension of modules of the form R ⊗ W (1). In particular, they are all
semi-induced. We first prove this when the module M is generated in one degree
(Proposition 4.10), and then use the short exact sequence 0 → M<n → M →
M/M<n → 0 to deduce the result in general (Proposition 4.12).

The key lemma is:

Lemma 4.8 Let W be a polynomial representation ofGL that is not Frobenius twisted.
There exists a weight vector w ∈ W of weight μ with μ1 = 1.

Proof Since W is not Frobenius twisted, at least one of the irreducible constituent of W
will not be Frobenius twisted. So we may assume that W is an irreducible polynomial
representation that is not Frobenius twisted. By the Steinberg tensor product theorem,
we have an isomorphism W ∼= Lλ0 ⊗ L(1)

λ1
⊗ L(2)

λ2
. . .⊗ L(r)

λr for p-restricted partitions
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λ0, λ1, . . . , λr with λ0 �= ∅. In Lλ0 , we can find a nonzero weight vector v0 of
weight α with α1 = 1 and we can find a weight vector v1 of weight β with β1 = 0
in L(1)

λ1
⊗ L(2)

λ2
. . . ⊗ L(r)

λr . The vector v0 ⊗ v1 is a weight vector in W , and the first
component of its weight is 1, as claimed. ��
Lemma 4.9 Assume M is a finitely generated R-module with Mn = 0 and Mn+1
not Frobenius twisted. Then �(M)n �= 0. In particular, if M is a finitely generated
R-module generated in degree n +1 with �(M) = 0, then Mn+1 is Frobenius twisted.

Proof Since the representation Mn+1 is not Frobenius twisted, by Lemma 4.8, we can
find a vector v of weight (1, λ) in Mn . In M(k ⊕V), let w = g · v where g swaps the
newly introduced basis vector, say f , with e1 (and fixes the other ei ). The vector w

lies in �(M) as it has weight (1, 0, λ) for the action of GL(k ⊕V). Furthermore, the
element w has degree n so it is not in the image of the natural map M → �(M) (as
Mn = 0), which implies that the image of w is nonzero in �(M), as required. The
second part of the statement follows easily since for a module generated in degree
n + 1, we have Mn = 0. ��
Proposition 4.10 Let M be a torsion-free R-module generated in degree n such that
�(M) = 0. The natural map R ⊗ Mn → M is an isomorphism, i.e., M is an induced
module.

Proof The irreducible components of R in positive degree are p-restricted represen-
tations of GL (in degree i , it is the i-th exterior power

∧i
(V) which is irreducible

with highest weight (1i )). Therefore, if W is an irreducible representation ofGL, then
Rn ⊗ W (1) is also irreducible by the Steinberg tensor product theorem (Theorem 2.1),
and in particular, if n > 0, it is not Frobenius twisted. It follows that for a finite
length polynomial representation W , the irreducible components of R ⊗ W (1) are not
Frobenius twisted in degrees > deg(W (1)).

By the assumptions on M , we see that Mn is Frobenius twisted by Lemma 4.9.
Consider the natural map ϕ : R ⊗ Mn → M . The map ϕ is surjective, and K = ker(ϕ)

is zero in degrees ≤ n. We have to prove that K = 0. First, we claim that �(K ) = 0.
Indeed, since M is torsion-free, by Corollary 4.7, we have a short exact sequence

0 → �(K ) → �(R ⊗ Mn) → �(M) → 0.

By Corollary 4.4, we have �(R ⊗ Mn) = 0 and so �(K ) = 0, as claimed. Now,
suppose K is nonzero, and let r be the minimal degree in which K is nonzero (i.e.,
Kr �= 0 and Ki = 0 for i < r ). Note r > n and so Kr is not Frobenius twisted by the
first paragraph. Therefore, by Lemma 4.9, we see that �(K ) must be nonzero, which
is a contradiction. So the map ϕ is an isomorphism, as required. ��
Lemma 4.11 Let M be a torsion-free R-module with t0(M) = n such that �(M) is
semi-induced and �(M/M<n) = 0. Then M/M<n is torsion-free.

Proof As in Lemma 4.5, we have the short exact sequence

0 → K(M/M<n) → �(M<n) → �(M) → 0.
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Applying Tor to this gives us the exact sequence

TorR
1 (�(M), k) → TorR

0 (K(M/M<n), k) → TorR
0 (M<n, k).

However, since �(M) is semi-induced, the module TorR
1 (�(M), k) = 0, which

implies that

t0(K(M/M<n)) ≤ t0(M<n) < n.

But K(M/M<n) is supported only in degrees ≥ n (as it is a submodule of M/M<n),
and so must be zero. Therefore, the natural map M/M<n → �(M/M<n) is injective,
which implies that the module M/M<n is torsion-free by Proposition 4.1(b). ��

We can now prove our main result.

Proposition 4.12 Let M be a finitely generated torsion-free R-module such that
�(M) = 0. Then M is semi-induced.

Proof We proceed by induction on the generation degree of M . When t0(M) = 0, this
follows from Proposition 4.10. Now, assume that t0(M) = n > 0. Since � is right
exact, we see that �(M/M<n) = 0. Therefore, by Lemma 4.11, the module M/M<n

is torsion-free, and so by Proposition 4.10, the module M/M<n is semi-induced. By
Corollary 4.7, we have a short exact sequence

0 → �(M<n) → �(M) → �(M/M<n) → 0.

As �(M) = 0, we have that �(M<n) = 0, which implies that M<n is semi-induced
(by induction) and therefore, so is M . ��

We finally note a corollary (of Lemma 4.11) that we will use in the proof of the shift
theorem.

Corollary 4.13 Let M be a finitely generated torsion-free R-module with t0(M) = n
such that �(M) is semi-induced with t0(�(M)) ≤ max(−1, n − 2). Then M/M<n is
semi-induced.

Proof Since the functor � is right exact, we have

t0(�(M/M<n)) ≤ t0(�(M)) < n − 1.

Since M/M<n is supported in degrees ≥ n, the module �(M/M<n) is supported in
degrees ≥ n − 1, and so �(M/M<n) is also supported in degrees ≥ n − 1. Therefore,
the above inequality implies that �(M/M<n) = 0. Now, by Lemma 4.11, the module
M/M<n is torsion-free and so by Proposition 4.10, the module M/M<n is semi-
induced. ��
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4.3 Semi-induced subquotients of semi-inducedmodules

We prove some lemmas bounding the generation degree of semi-induced subquotients
of semi-induced modules. The only idea used in this subsection is that R(kn), the
exterior algebra on kn , is supported in degrees 0 through n.

Lemma 4.14 Let M be an R-module. Then for all n, we have M(kn)i = 0 for i >

n + t0(M). Furthermore, if M is semi-induced, then M(kn)n+t0(M) is nonzero for all
sufficiently large n.

Proof This is clear since R evaluated at kn is supported in degrees ≤ n. ��
Corollary 4.15 Let F be a semi-induced module and Z be a submodule of F such that
Z/Z<t0(Z) is semi-induced. Then t0(Z) ≤ t0(F).

Proof For sufficiently large n, the module Z(kn) is nonzero in degree n + t0(Z) as
this is true for Z/Z<t0(Z) by the previous lemma. Since Z is a submodule of F , we
have n + t0(Z) ≤ n + t0(F) for large n by the previous lemma, giving us the required
inequality. ��

4.4 Proof of the shift theorem

Lemma 4.16 Let M be a torsion-free R-module such that �(M) is semi-induced. Then
t1(M) ≤ t0(M).

Proof Let F be a semi-induced module surjecting onto M such that t0(F) = t0(M).
We have an exact sequence

0 → Z → F → M → 0.

The long exact sequence of TorR• (−, k) yields:

0 → TorR
1 (M, k) → TorR

0 (Z , k) → TorR
0 (F, k) → TorR

0 (M, k) → 0.

Therefore, we have the inequality t1(M) ≤ t0(Z). So it suffices to show that t0(Z) ≤
t0(M).

Since M is torsion-free, we also obtain a short exact sequence

0 → �(Z) → �(F) → �(M) → 0

by Corollary 4.7. The module �(F) is semi-induced by Proposition 4.1(f), and �(M)

is semi-induced by assumption. So by Corollary 2.8, the module �(Z) is also semi-
induced.

We know t0(�(Z)) ≤ t0(Z) − 1 by Proposition 4.1(e). If t0(�(Z)) < t0(Z) − 1,
then Z/Z<t0(Z) is semi-induced by Corollary 4.13 (note that Z is torsion-free being a
submodule of F) and therefore, by Corollary 4.15, we have t0(Z) ≤ t0(F) = t0(M).
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Instead, if t0(�Z) = t0(Z)−1, then from the short exact sequence above, we have
the inequality

t0(�(Z)) = t0(Z) − 1 ≤ t0(�(F)) ≤ t0(F) − 1 = t0(M) − 1,

or t0(Z) ≤ t0(M). ��
Proposition 4.17 Let M be a finitely generated torsion-free R-module such that �(M)

is semi-induced. Then M is also semi-induced.

Proof We induct on t0(M). When t0(M) = 0, the module �(M) = 0, and so M is
semi-induced by Proposition 4.12. Now, assume t0(M) = n > 0. We have the short
exact sequence

0 → M<n → M → M/M<n → 0.

So it suffices to prove that M<n and M/M<n are semi-induced.
We first show that M/M<n is semi-induced. The long exact sequence of TorR• (−, k)

associated to the above short exact sequence gives us

TorR
1 (M, k) → TorR

1 (M/M<n, k) → TorR
0 (M<n, k)

fromwhichwe see that t1(M/M<n) ≤ max(t1(M), t0(M<n)) = max(t1(M), n−1) ≤
n. For the last step, we use Lemma 4.16 to get t1(M) ≤ t0(M) = n. So by Lemma 2.6,
the module M/M<n is semi-induced.

We proceed to show that M<n is also semi-induced. Since M/M<n is semi-induced,
it is torsion-free, and therefore, we have a short exact sequence

0 → �(M<n) → �(M) → �(M/M<n) → 0

by Corollary 4.7. By Proposition 4.1(f), we have that �(M/M<n) is semi-induced,
and so from the short exact sequence above, we see that�(M<n) is also semi-induced
by Corollary 2.8. Since t0(M<n) < n, by the induction hypothesis, it now follows that
M<n is semi-induced, as required. ��
Theorem 4.18 (Shift Theorem) Let M be a finitely generated R-module. We can find
an L ∈ N such that for all l > L, the module �l(M) is semi-induced.

Proof We follow the proof of [26, Theorem 3.13] and proceed by induction on t0(M).
It suffices to prove the result for�r (M) for r � 0, and so wemay additionally assume
M is torsion-free by Proposition 4.1(d). When t0(M) = 0, the module �(M) = 0 and
so M is semi-induced by Proposition 4.17. Now, assume t0(M) = n > 0. We have
a short exact sequence 0 → M → �(M) → �(M) → 0 with t0(�(M)) < n. By
induction, for l � 0 the module �l(�(M)) is semi-induced. By Proposition 4.1(h)
we have �l(�(M)) ∼= �(�l(M)), and so by Proposition 4.17 we have that �l(M) is
semi-induced, as required. ��
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5 Structure of ModfgR

In this section, we use the shift theorem to study the structure of finitely generated
R-modules.

5.1 Generators of the derived category

In this subsection, we show that the derived category is generated by the torsion
and flat R-modules. Using this, we prove that all finitely generated R-modules have
finite regularity. We first note a useful corollary of the shift theorem. Throughout this
section, we let Db

fg(ModR) denote the bounded derived category ofModR with finitely
generated cohomology.

Theorem 5.1 (Resolution Theorem) Let M be a finitely generated R-module. We have
a chain complex of R-modules

0 → M → P0 → P1 → . . . → Pr → 0

satisfying the following properties:

• each Pi is a finitely generated semi-induced module with t0(Pi ) ≤ t0(M) − i ,
• r ≤ t0(M), and
• the cohomology of this complex is torsion (and so supported in finitely many

degrees).

Furthermore, given a map of R-modules f : M → N, we can find complexes M → P•
and N → Q• satisfying the above properties, and a map of complexes f̃ extending
f .

Proof We prove the result by induction on n = t0(M). If n = 0, then by the shift
theorem, for l � 0, the module�l(M) is semi-induced. Set P0 = �l(M). The kernel
of the natural map M → P0 is torsion by Proposition 4.1(a), and this map must be
surjective as the cokernel is generated in degrees < t0(M) = 0 by Proposition 4.1(e).
Therefore, the complex 0 → M → P0 → 0 is the required complex for M . Now
assume n > 0. Again, by the shift theorem, the module �l(M) is semi-induced for
l � 0 (and t0(�l(M)) = t0(M)). Set P0 = �l(M). As before, the kernel of the
natural map from M → P0 is torsion. Furthermore, the cokernel of this map is
generated in degrees ≤ n − 1 by Proposition 4.1(e). By induction, we have a complex
0 → N → P1 → P2 . . . Pn → 0 satisfying all the conditions of the theorem for N . It
is easy to check that the complex 0 → M → P0 → P1 → . . . → Pn → 0 satisfies
all the desired properties. The last statement is clear upon noting that if M → P•
satisfies all the required properties, then so does the complex M → �(P•). ��
Lemma 5.2 Given a bounded complex C of finitely generated R-modules with finite
length cohomology, there exists a complex of finite length R-modules D that is quasi-
isomorphic to C.
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Proof Given an R-module M , we let M>n be the submodule of M consisting of all
elements of degree > n, and given a complex of R-modules C , we let C>n be the
canonical subcomplex of C with (C>n)i = (Ci )>n . Now, assume C is a bounded
complex of finitely generated R-modules and its cohomology is supported in degrees
< N . We have a short exact sequence

0 → C>N → C → C/C>N → 0

withC/C>N a bounded complex of finite lengthmodules. By assumption on the coho-
mology of C , the complex C>N is acyclic so the the complex C is quasi-isomorphic
to C/C>N , as required. ��
Proposition 5.3 Given a finitely generated R-module M, there exists a distinguished
triangle T → M → F → in Db

fg(ModR), with T quasi-isomorphic to a bounded
complex of finite length R-modules, and F quasi-isomorphic to a bounded complex
of finitely generated semi-induced R-modules.

Proof Let M → P• be a complex satisfying Theorem 5.1. We consider M to be a
complex supported in degree 0, and let j denote the map of complexes M → P•. We
obtain a distinguished triangle

M → P• → Cone( j) →

in Db
fg(ModR). The complex Cone( j) has finite length cohomology, so is quasi-

isomorphic to a finite complex of finite length torsion R-modules T by Lemma 5.2.
The rotated triangle T [−1] → M → P• → satisfies the requirements. ��
Theorem 5.4 The category Db

fg(ModR) is generated as a triangulated category by the
modules Lλ and R ⊗ Lλ for arbitrary λ.

Proof By Proposition 5.3, the smallest triangulated subcategory of Db
fg(ModR) con-

taining the torsion and semi-induced R-modules is all of Db
fg(ModR). Any torsion

R-module (resp. semi-induced R-module) has a filtration where the successive quo-
tients are Lλ (resp. R ⊗ Lλ). So the modules Lλ and R ⊗ Lλ generate Db

fg(ModR), as
required. ��
We can now prove the theorem on finite regularity.

Definition 5.5 For an R-module M , we define the Castelnuovo–Mumford regularity
of M to be the minimal integer ρ such that ti (M) ≤ ρ + i for all i , or ∞ if no such
integer exists.

Theorem 5.6 The Castelnuovo–Mumford regularity of a finitely generated R-module
is finite.

Proof Let λ be a partition. The inducedmodule R⊗Lλ is flat, and so has regularity |λ|.
The module k ∼= R/m has regularity 0 as witnessed by the Koszul resolution (which
is a flat resolution of k). Applying the functor − ⊗k Lλ to the Koszul resolution of k,
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we obtain a flat resolution of Lλ. Therefore, the module Lλ has regularity |λ|. Since
these two classes of modules generate the bounded derived category, every bounded
complex has finite regularity, and in particular, so does every finitely generatedmodule.

��
Remark 5.7 Using Nagpal’s shift theorem [33], Gan–Li showed that the regularity
of a finitely generated VI-module M is at most t0(M) + t1(M) [16, Theorem 3.2].
The results (and proofs) of Section 2 and Theorem 3.2 of loc. cit. also hold for R-
modules. The only additional ingredient required for their proof is that for a finite
length R-module M , we have reg(M) ≤ max deg(M). This can be proved using
the Koszul complex. Therefore, by mimicking their approach, we obtain the bound
reg(M) ≤ t0(M) + t1(M) for every finitely generated R-module.

5.2 The shift functor commutes with local cohomology

In Proposition 4.1(i), we showed that the shift functor commutes with the functor
�. In this subsection, we show that the shift functor also commutes with the derived
functors of �. This technical result will be used to prove several finiteness results for
local cohomology. We first explain the setup.

Let M be an R-module, and let M → I • and �(M) → J • be injective resolution
of M and �(M) respectively. The identity map of �(M) induces a map of complexes
�(I •) → J • as J • is an injective resolution. Applying � and taking cohomology,
we obtain a map Hi (�(�(I •))) → Hi (�(J •)) = Ri�(�(M)). We also have natural
isomorphisms,

Hi (�(�(I •))) ∼= Hi (�(�(I •))) ∼= �(Hi (�(I •))) = �(Ri�(M)),

where for the first isomorphism, we use that� commutes with� by Proposition 4.1(i),
and for the second isomorphism, we use that � is an exact functor, and therefore
commutes with taking cohomology. So we get a natural map Fi,M : �(Ri�(M)) →
Ri�(�(M)).

Proposition 5.8 The map Fi is an isomorphism for all i ≥ 0.

Proof Our proof is an expanded version of the proof of [33, Lemma 4.20] and [8,
Proposition A.3]. We proceed by induction on i . For i = 0, this is just Proposi-
tion 4.1(h). Now, assume i > 0, and we know that Fi−1 is an isomorphism. We have
to show that Fi is an isomorphism.

Before we prove the result, we make two reductions. First, we may assume that
M is torsion-free. Indeed, given an arbitrary module N , we have the short exact
sequence 0 → �(N ) → N → N/�(N ) → 0. Using the long exact sequence
of local cohomology and Corollary 3.5, we see that for i > 0, the map Fi,N is an
isomorphism if and only if Fi,N/�(N ) is an isomorphism.

Second, we may assume that M is finitely generated. It is easy to see that the
functors� and� commute with filtered colimits. In a locally noetherian Grothendieck
category, a filtered colimit of injective objects remains injective. Therefore, by [20,
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Proposition A.4], the right derived functors of � also commute with filtered colimits.
So, for an arbitrary module N , we may write Fi,N as the colimit of the maps {Fi,Nα }α
where {Nα}α is the directed system of finitely generated submodules of N . Therefore,
if we show Fi,M is an isomorphism for finitely generated M , then Fi,N will also be
an isomorphism. So for the rest of the proof, we assume that M is a finitely generated
torsion-free R-module.

We first show that Fi,M is injective. Consider a short exact sequence

0 → M → I → N → 0

where I is an injective R-module. We obtain a commutative diagram

�(Ri−1�(I )) �(Ri−1�(N )) �(Ri�(M)) �(Ri�(I )) = 0

Ri−1�(�(I )) Ri−1�(�(N )) Ri�(�(M)) Ri�(�(I ))

where the rows are exact. The first two vertical arrows are isomorphisms (by induc-
tion), and the fourth vertical map is injective, so by the four lemma, the third
vertical map, which is Fi,M is also injective. This implies that the canonical map
�lRi�(M) → Ri�(�l(M)) is also injective for all l ∈ N.

Let κl(M) = ker[Ri�(M) → �l(Ri�(M))]. We will now show that the modules
�κl(M) and κl(�(M)) are isomorphic for l � 0. For all l, we have a short exact
sequence

0 → M → �l(M) → �l(M) → 0.

Therefore, we get the exact sequence

Ri−1�(�l(M)) → Ri−1�(�l(M)) → Ri�(M) → Ri�(�l(M)).

Let I • and J • be injective resolutions of M and�l(M) respectively. The induced map
I • → J • is easily seen to factor via I • → �(I •) → J •. Therefore, the last map in
the above exact sequence factors

Ri�(M) → �lRi�(M) → Ri�(�l(M)).

We have already shown that �lRi�(M) → Ri�(�l(M)) is injective, so we get
that κl(M) can also be written as ker[Ri�(M) → Ri�(�l(M))] and from the exact
sequence above, we also get

κl(M) = ker[Ri�(M) → Ri�(�l(M))] ∼= coker[Ri−1�(�l(M)) → Ri−1�(�l(M))].
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Therefore, we have isomorphisms

�κl (M) = � ker[Ri �(M) → Ri �(�l (M))]
∼= � coker[Ri−1�(�l (M)) → Ri−1�(�l (M))]
∼= coker[�Ri−1�(�l (M)) → �Ri−1�(�l (M))] (� commutes with taking cokernels)

∼= coker[Ri−1�(�(�l (M))) → Ri−1�(�(�l (M)))] (induction hypothesis)

∼= coker[Ri−1�(�l (�(M))) → Ri−1�(�l (�(M)))] (� commutes with �l and �l )

∼= ker[Ri �(�(M)) → Ri �(�l (�(M)))]
= κl (�(M))

proving our claim that �κl(M) ∼= κl(�(M)) for l � 0.
Now, since Ri�(M) is a torsion module, we have Ri�(M) = coliml∈N κl(M),

using which we get

�Ri �(M) = �(colim κl (M)) ∼= colim�(κl (M)) ∼= colim κl (�(M)) ∼= Ri �(�(M)).

For the second isomorphism, we have used the fact that � commutes with colimits
and for the third isomorphism, that the functor � commutes with κl for sufficiently
large l, which we proved in the previous paragraph. Therefore, the natural map Fi,M

is an isomorphism, as required. ��
Remark 5.9 To prove Proposition 5.8, we have only used the fact that ModR is locally
noetherian, that the Serre subcategory ModtorsR satisfies Property (Inj), that a torsion
R-module M can be realized as the colimit of the kernel of the maps M → �l(M),
the functors � and � commute with taking filtered colimits, and that the functor �

commutes with � and �l .

Corollary 5.10 Let M be a torsion-free R-module. If the natural map M → �l(M)

splits for all l, then Ri�(M) = 0 for all i ≥ 0.

Proof The proof of [33, Proposition 4.21] applies. ��
Proposition 5.11 A finitely generated R-module M is semi-induced if and only if
R�(M) = 0.

Proof Assume that M is an inducedmodule. Then, the naturalmap M → �l(M) splits
(Lemma 4.3). Therefore, by Corollary 5.10, all the local cohomology of M vanishes.
By dévissage, the functor R� vanishes on semi-induced modules as well.

Now, assumeR�(M) = 0. In particular, the R-module M is torsion-free as�(M) =
0. We will show by induction on t0(M) that M is semi-induced. When t0(M) = 0, we
have �(M) = 0 and therefore M is semi-induced by Proposition 4.12. Now, assume
t0(M) > 0. By the shift theorem, we have a short exact sequence

0 → M → �l(M) → �l(M) → 0

with �l(M) being semi-induced. Therefore R�(�l(M)) = 0 by the previous
paragraph. So from the long exact sequence of local cohomology, we also have
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R�(�l(M)) = 0. By Proposition 4.1(e), we see that t0(�l(M)) < t0(M) and so
�l(N ) is semi-induced by the induction hypothesis. Now, by Corollary 2.8, we have
that M is semi-induced, as required. ��
Definition 5.12 We let S : ModR → ModR be the saturation functor (where S =
S ◦ T ). The saturation functor S is a left exact functor. We let η : id → S denote the
unit of adjunction. An R-module M is saturated if the natural map M → S(M) is an
isomorphism. An R-module M is derived saturated if it is saturated and RiS(M) = 0
for all i .

The next result holds whenever the Serre subcategory satisfies Property (Inj); see [44,
Proposition 4.6]) for details.

Lemma 5.13 An R-module M is derived saturated if and only if R�(M) = 0.

Corollary 5.14 An R-module is derived saturated if and only if it is semi-induced.

Proof This follows by combining Lemma 5.13 and Proposition 5.11. ��
In characteristic zero, Sam–Snowden proved that ModtorsR is equivalent to ModgenR .

Recently, Snowden [47] extended this result to integral GL-algebras in characteristic
zero, i.e., for a GL-algebra A with |A| an integral domain, Snowden proved that
the generic category ModgenA = ModA /ModtorsA is equivalent to ModlfA, the category
of locally finite length A-modules. We show that this result fails for R in positive
characteristic.

Proposition 5.15 The categories ModgenR and ModR are not equivalent abelian cate-
gories in positive characteristic.

Proof InModtorsR , it is easy to see that every finitely generated object has finite injective
dimension.Wewill show that T (R) has infinite injective dimension inModgenR . Firstly,
the injective dimension of

∧i
(V) in Reppol(GL) is unbounded as i varies (see [49,

Page 6]). So R has infinite injective dimension in ModR as injective objects in ModR

are injective inReppol(GL). Now, since R is derived saturated,wemay take an injective
resolution of T (R), and apply S to obtain an injective resolution of R. Therefore the
injective dimension of T (R) is at least the injective dimension of R, and so infinite as
well. This implies that the two categories are not equivalent. ��
Theorem 5.16 Let M, N be two finitely generated R-modules. The module
ExtiR(M, N ) is finite length for all i , and vanishes for i � 0.

Proof By dévissage, it suffices to show that the conclusions of the theorem hold when
M and N are the generators of the derived category given in Theorem5.4. First, assume
N is the simple R-module Lλ. The R-module Lλ has a finite injective resolution by
finite length injectives. So ExtiR(M, Lλ) vanishes for sufficiently large i and is finite
length for all i (since M is finitely generated).

Next, assume N is the induced R-module R⊗Lλ and M is the simple R-module Lμ.
The module N is derived saturated (Proposition 5.11), so ExtiR(Lμ, R ⊗ Lλ) vanishes
for all i ( [44, Proposition 4.7]). Finally, assume M = R ⊗ Lμ and and N = R ⊗ Lλ
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are both inducedmodules. TheGL-representation Lμ has a finite projective resolution
P• in Reppol(GL), see e.g., [49, Theorem 1]. The complex R ⊗ P• is a finite projective
resolution of R ⊗ Lλ. Therefore, the conclusion of the theorem holds in this case as
well. ��

5.3 Semi-orthogonal decomposition

Using Property (Inj), we obtain a semi-orthogonal decomposition

D+(ModR) = 〈D+(ModtorsR ),D+(ModgenR )〉

of the derived category D+(ModR) (see below for definitions and [44, Proposition 4.9]
for details). In this section, we prove the analogous result for Db

fg(ModR) (Theo-

rem 5.19). We emphasize that for Db
fg(ModR), the semi-orthogonal decomposition is

not a formal consequence of Property (Inj). It will follow from our next theorem on
the finiteness of local cohomology, which we prove using the results of the previous
two sections.

Theorem 5.17 (Finiteness of local cohomology) For a finitely generated R-module M,
the R-module Ri�(M) is finite length for all i , and is zero for sufficiently large i .

Proof For torsion modules and semi-induced modules, the conclusions of the theorem
hold by Corollary 3.5 and Proposition 5.11 respectively. Since the torsion and semi-
induced modules generate Db

fg(ModR), the result holds for all finitely generated R-
modules. ��
We now recall the definition of a semi-orthogonal decomposition of a triangulated
category. We refer the reader to [44, Section 4] for a succinct reference.

Definition 5.18 A semi-orthogonal decomposition of a a triangulated category T is a
sequence 〈A1,A2, . . . ,An〉 of full triangulated subcategories such that

(1) HomT (Mi , M j ) = 0 for objects Mi ∈ Ai , M j ∈ A j with i < j , and
(2) the smallest triangulated subcategory containing A1,A2, . . . ,An is T .

Theorem 5.19 We have a semi-orthogonal decomposition

Db
fg(ModR) = 〈Db

fg(ModtorsR ),Db
fg(ModgenR )〉.

where Db
fg(ModgenR ) is identified as a subcategory of Db

fg(ModR) using the functor RS.

Proof This is a consequence Theorem 5.17 (see [44, Proposition 4.15] for more
details). ��

We can now prove a generalization of Proposition 5.3.

Proposition 5.20 Given an object M in Db
fg(ModR), there exists a distinguished tri-

angle R�(M) → M → RS(M) → in Db
fg(ModR).

Proof This follows by combining [44, Proposition 4.6] with Theorem 5.17. ��
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