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Abstract
In this article we define and study a zeta function ζG—similar to the Hasse-Weil zeta
function—which enumerates absolutely irreducible representations over finite fields
of a (profinite) groupG. ThisWeil representation zeta function converges on a complex
half-plane for all UBERG groups and admits an Euler product decomposition. Our
motivation for this investigation is the observation that the reciprocal value ζG(k)−1

at a sufficiently large integer k coincides with the probability that k random elements
generate the completed group ring of G. The explicit formulas obtained so far suggest
that ζG is rather well-behaved. A central object of this article is the Weil abscissa,
i.e., the abscissa of convergence a(G) of ζG . We calculate the Weil abscissae for
free abelian, free abelian pro-p, free pro-p, free pronilpotent and free prosoluble
groups. More generally, we obtain bounds (and sometimes explicit values) for the
Weil abscissae of free pro-C groups, where C is a class of finite groups with prescribed
composition factors. We prove that every real number a ≥ 1 is the Weil abscissa
a(G) of some profinite group G. In addition, we show that the Euler factors of ζG are
rational functions in p−s if G is virtually abelian. For finite groups G we calculate ζG
using the rational representation theory of G.
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1 Introduction

The use of zeta functions to study asymptotic properties of algebraic objects is a well-
established branch of algebra, see for instance [13, 18, 33, 47, 48] and references
therein. In particular, there is considerable interest in zeta functions enumerating all
[1, 32], some [29] or equivalence classes of [45] complex irreducible representations
of infinite groups. To be well-defined, the counting problem needs to be adapted to the
class of groups under investigation. In this article we take a different approach suitable
for the large class of UBERG groups: we define and study a Weil representation zeta
function enumerating absolutely irreducible representations over finite fields.

For a profinite groupG and a field F , we write r∗(G, F, n) to denote the number of
absolutely irreducible representations ofG of dimension n defined over F .We say that
G has UBERG if there exists a positive constant c > 0 such that r∗(G, F, n) ≤ |F |cn
for every finite field F . UBERG stands for ‘uniformly bounded exponential represen-
tation growth’ (over finite fields) and, maybe surprisingly, it shows up naturally in
the study of probabilistic generation properties of profinite groups. In fact, a finitely
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presented profinite group is positively finitely related (PFR) exactly if it has UBERG.
Moreover, a profinite group has UBERG if and only if the completed group algebra
Ẑ�G� is positively finitely generated (PFG, see [30]) as a Ẑ�G�-module. The prop-
erties of UBERG groups were the central object of the authors’ paper [9]. The class
of UBERG groups is ‘large’, meaning that it contains all finitely generated profinite
groups not involving some finite simple group as an upper section [30, Theorem 6.10].
In particular, this implies that finitely generated prosoluble groups, congruence com-
pletions of S-arithmetic groups and congruence completions of branch groups have
UBERG.

Since we are dealing with an exponential growth condition, we define the following
complex function for an UBERG profinite group G:

ζG(s) := exp

⎛
⎝∑

p∈P

∞∑
n=1

∞∑
j=1

r∗(G, Fp j , n)

j
p−sn j |Pn−1(Fp j )|

⎞
⎠ for s ∈ C. (1.1)

We will see that, for an UBERG group G, the above sum converges on some com-
plex half-plane (cf. Corollary 2.3). It admits an obvious Euler product decomposition
ζG(s) = ∏

p∈P ζG,p(s). The formula for ζG is reminiscent of the Hasse–Weil zeta
function of an algebraic variety V where absolutely irreducible representations of G
over Fq now take the role of Fq -rational points of V . Due to this ζG will be called the
Weil representation zeta function of G. Thinking about maximal ideals explains the
factor |Pn−1(Fq)|: for every absolutely irreducible Fq -representation V of dimension
n, there are |Pn−1(Fq)|maximal ideals M in Fq�G�, such that Fq�G�/M ∼= V . More-
over, the factor is necessary to make ζG a probabilistic zeta function (see Theorem A).
The main objective of this article is to start the investigation of the function ζG(s) and
the group-theoretical properties of G detected by it.

If G is an abstract group, any finite-dimensional representation of G over a finite
field has to factor through a finite quotient; hence, for a groupG withUBERGprofinite
completion Ĝ, we define ζG(s) := ζĜ(s). For instance, for G = Z one obtains (see
Example 2.5)

ζZ(s) = ζ(s − 1)

ζ(s)
,

where ζ denotes Riemann’s zeta function. In general, ζG is the Hasse–Weil zeta func-
tion of Spec(Z[G]) whenever G is a finitely generated abelian group. More examples
can be found in Appendix A; our list of examples conveys the impression that ζG is
rather well-behaved. It is worth noting that if one replaces absolutely irreducible by
irreducible representations in the formula for theWeil representation zeta function the
resulting zeta function is less well-behaved; see Appendix B.

Our initial motivation to study ζG is a significant connection between the values
of ζG(s) at the natural numbers and the probability PR(R, k) that k random elements
generate the group ring R = Ẑ�G� of G over Ẑ as a Ẑ�G�-module. In this setting, we
have the following theorem (see Sect. 3).
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Theorem A Let G be an UBERG profinite group and let R = Ẑ�G� be its group ring
over Ẑ. For all sufficiently large integers � the following equality holds:

PR(R, �)−1 = ζG(�).

Theorem A is evocative of the probabilistic zeta function introduced by Mann [36,
Sec. 5, Conjecture]. In fact, both zeta functions are related to a probability: the former
to the probability of generating a profinite group G with � random elements, the latter
to the probability P̂

Z�G�(Ẑ�G�, �). However, it is important to remark that Mann’s
zeta function is not known to exist in general for positively finitely generated profinite
groups (see [35]), while the Weil representation zeta function is well-defined for any
UBERG group.

Following the tradition of the study of zeta functions associated to algebraic objects,
we study the abscissa of convergence of the function ζG(s), i.e. the real number

a(G) = inf{t ∈ R≥1 | ζG(t) converges}. (1.2)

We will refer to a(G) as the Weil abscissa. In Sect. 4 we prove the following
properties of the function a(G).

Theorem B Let G be an UBERG profinite group.

(i) If H is an open subgroup of G, then

a(H)

|G : H | ≤ a(G) ≤ a(H) + 1 − 1

|G : H | .

Moreover, if G = H × � for a finite group �, then a(G) = a(H).
(ii) If � a closed normal subgroup of G, then a(G/�) ≤ a(G). Moreover, if the

quotient map G → G/� splits, then

a(G) ≤ a(�) + a(G/�) + 1.

As a corollary we obtain that a(G) = 1 for all finite groups G, however there are
infinite groups with Weil abscissa 1 (see Theorems C and E). We show in Example
5.12 that the lower bound in (i) is sharp, but it appears to us that the upper bound in
(i) is not sharp. We construct examples of groups G that are split extensions of a finite
index normal subgroup H such that a(G) > a(H) in Sect. 7.

We move on to calculate theWeil abscissa of various families of profinite groups in
Sect. 5. We recall briefly the notation used in the theorem. As usual, Fsol

r , Fnil
r and F p

r
denote the free prosoluble, pronilpotent and pro-p groups on r generators, respectively,
andZp denotes the p-adic integers.Moreover, cnil = 5 log(2)

2 log(3) and csol = 2
3+ 5 log(2)

2 log(3) are
the constants from [50] and [40], respectively. Finally, K (p) and K ′(p) are number-
theoretic constants defined inSects. 5.2 and5.4 respectively,with 1 ≤ K (p) ≤ 2.1115,
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K ′(p) ≤ K (p), and

K ′(p)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 2 log(3)
5 log(2) if p = 2;

= (p−1) log(p+1)
p log(p) < 1 if p is a Mersenne prime;

≥ 1 otherwise.

Theorem C Let p be a prime number and r ∈ N.

(i) a(Zr ) = r + 1.

(ii)
r

K (p)
≤ a(Zr

p) ≤ r − 1

K (p)
+ 1. In particular, a(Zp) = 1.

(iii) a(F p
r ) = r − 1

K ′(p)
+ 1 if p is odd and a(F2

r ) = cnil(r − 1) + 1.

(iv) a(Fnil
r ) = cnil(r − 1) + 1 if r > 2 and a(Fnil

2 ) = 3.
(v) a(Fsol

r ) = csol(r − 1) + 1.
(vi) If G is a pronilpotent group of finite rank r , then a(G) ≤ r + 1.

It is worth pointing out that the calculation of the Weil abscissa of Z
r
p touches

on some deep number-theoretic conjectures and results concerning the distribution of
primes in arithmetic progressions: see Sect. 5.2. Strong results are needed to show that
a(Z2

p) > 1.
On the other hand,we can estimate (and sometimes calculate exactly) the abscissa of

some free groupswith restricted non-abelian composition factors of large degree, aswe
explain now. We recall that an NE-formation is a class of finite groups which is closed
under quotients, finite subdirect products, taking normal subgroups and extensions
(see [43, §2.1]). Let C be an NE-formation containing the cyclic groups of prime
order. Let FC

r be the free pro-C group on r generators. If C contains alternating groups
of arbitrarily large degree, or classical groups with natural representation of arbitrarily
large dimension, one can show that FC

r does not have UBERG (cf. Theorem 5.5).
Assume it does not. Let c0 bemaximal such that Alt(c0) ∈ C. InTheorem5.22we show
that, for large enough c0, the Weil abscissa of FC

r is dominated by representations of a
very specific type. More concretely, in Sect. 5.9, we define an effectively computable
absolute constant C0.

Theorem D Let C be a NE-formation of finite groups containing the cyclic groups of
prime order and let c0 be maximal such that Alt(c0) ∈ C. Suppose that c0 > C0. Then
C does not contain alternating groups of degree greater than c0. Let FC

r be the free
pro-C group on r generators. Then:

cC,space(r − 1) + 1 ≤ a(FC
r ) ≤ max(cC,space(r − 1) + 1, cC,time(r − 1) + 2).

The constants cC,space and cC,time are defined just before Theorem 5.34. Note that
cC,time ≤ cC,space, so these bounds differ by at most 1. The inspiration for these names
is that the convergence of ζG is often dominated either by the representations in all
dimensions over a specific field, or by the representations in a specific dimension over
all fields; we think of the former behaviour as ‘space-like’ and the latter as ‘time-like’.
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This should not be taken as a claim of a detailed analogy to the concept from general
relativity, but the intuition is as follows. In general relativity, an interval between two
events is called time-like if, in some inertial frame, the interval in space-time is parallel
to the time axis; the interval is called space-like if, in some inertial frame, the interval
is parallel to the space axis. We imagine the prime powers on a number line as a time
axis, and the positive integers on a number line as a (1-dimensional) space axis. We

assign to each point (p j , n) the value ν(p j , n) = logpnj (
r∗(G,Fp j ,n)

j
pnj−1
p j−1

), and let

ν = lim suppnj→∞ ν(p j , n). Then we fix a sequence (εk)k∈N of positive real numbers

converging to 0, and for each k ∈ N we pick a point (p jk
k , nk) in space-time such that

ν(p jk
k , nk) > ν −εk and pnk jkk ≥ pnk−1 jk−1

k−1 . The sequence (pnk jkk ) plots a path through

space-time: if, for any sequence (εk) and any choice of (pnk jkk ), the path is eventually

parallel to the time axis, we say G is time-like; if, for any (εk) and any (pnk jkk ), the
path is eventually parallel to the space axis, we say G is space-like.

Not all groups fit into one of these classes, and the time-like groups could be broken
down further into being dominated by representations in a specific characteristic,
versus in a specific power of the characteristic; but at any rate, this categorisation is
useful for the groups we have studied. For a surprising example, Fnil

r is space-like for
r > 2 and time-like for r = 2, which is what causes the behaviour of the abscissa in
Theorem C(iv).

Additionally, we can calculate the Weil abscissa of FC
r for two specific NE-

formationsCwhere the zeta function is space-like: theNE-formationCAlt(c0) generated
by all cyclic groups of prime order and the alternating groups of degree at most c0;
and the NE-formation C�(c0) generated by all the simple groups in CAlt(c0), all the
sporadic groups, all the exceptional groups of Lie type, and all the classical simple
groups whose natural representation has dimension at most c0. In these cases,

a(F
CAlt(c0)

r ) = c0 log2(c0!)
(c0 − δ(c0))(c0 − 1)

(r − 1) + 1

where δ(c0) = 1 or 2 for c0 odd or even, respectively, and

a(F
C�(c0)

r ) = (c0 + (c0 − 1) log(
∏c0

i=1(1 − 2−i )) + log(c0!)
c0(c0 − 1) log(2)

)(r − 1) + 1.

In general determining the Weil abscissa for a profinite group seems to be a hard
problem. One might wonder whether all real numbers α ≥ 1 are the Weil abscissa of
some profinite group. We answer this positively in Sect. 6.

Theorem E Let α be a non-negative real number and set

Gα =
∏
p∈P

SL(2, p)
pα�.

Then ζGα (s) has abscissa of convergence α/2 + 1.
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The analogous theorem for representations over the complex numbers was proved
in [17, Chapter 6]. It is interesting to point out that certain classes of groups have
better behaved abscissae; for instance, the abscissa of convergence of the complex
representation zeta function of an arithmetic group is always a rational number [1].
We suspect that an analogous result for arithmetic groups might hold for the Weil
representation zeta function. However, some natural profinite groups have irrational
abscissa of convergence: by Theorem C the Weil abscissa of free pronilpotent and
prosoluble groups is irrational.

Finally, we concentrate our attention on analytic properties of the function ζG(s)
in special cases. In the case where G is a finite group, we can give in Sect. 8 an
explicit formula for the Weil representation zeta function, depending on the rational
representations of G, up to rational functions. First some notation: for a meromorphic
function f : C → C and a natural number n we define

f #n(s) :=
n−1∏
j=0

f (ns − j).

We write f ∼ g if there exists K ∈ N such that f /g is of the form

K∏
k=1

(1 − M−aks+bk
k )εk (1.3)

with Mk ∈ N≥2, ak > bk ∈ N0 and εk ∈ {±1}, for k = 1, . . . , K .
Let G be a finite group and let V be an irreducible rational representation with

character χ . We write Kχ for the centre of the endomorphism algebra of EndG(V )

and m(χ) denotes the Schur index of χ . We note that Kχ is an algebraic number field
and dimKχ EndG(V ) = m(χ)2.

Theorem F Let G be a finite group. Then

ζG(s) ∼
∏

χ∈Irr(G,Q)

ζ
#nχ

Kχ
(s).

where ζKχ denotes the Dedekind zeta function of Kχ and nχ = χ(1)
[Kχ :Q]m(χ)

. The Weil

representation zeta function ζG(s) admits a meromorphic continuation to C, it has a
pole of order |Irr(G, Q)| at s = 1 and all other poles are located at rational numbers
in the interval [0, 1 −√|G|−1].
By a result of Solomon [46], the formula in Theorem F agrees (up to rational factors)
with the ideal zeta function of Z[G], i.e., the Dirichlet series enumerating ideals of a
given index inZ[G].We thank an anonymous referee for pointing us to this remarkable
equality. It can be traced back to the case of algebras of the form Mn,n(O) whereO is
the ring of integers in a p-adic field (cf. [46, Lemma 5]). It prompts a natural question:
Is there relation between the ideal zeta function of Ẑ�G� and the Weil representation
zeta function for general profinite groups?
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Since the Weil representation zeta function bears a resemblance to the Hasse–Weil
zeta function of an algebraic variety, it is a very natural question to ask if (or when) the
local factors ζG,p satisfy parts of Weil’s conjectures. In Sect. 9 we show the following.

Theorem G Let p be a prime and let G be a finitely generated virtually abelian group.
Then ζG,p(s) is a rational function in p−s .

The proof uses the moduli varieties Mn of n-dimensional absolutely irreducible
representations and the classical solution of the Weil conjectures. We suspect that the
Weil representation zeta functions of a larger class of UBERG groups have rational
local factors. To support this, we show in Appendix A that the local factors of theWeil
representation zeta function of the lamplighter groups C2 � Z and C3 � Z are rational.

To conclude, one natural direction of future work is the study of meromorphic
continuation of Weil representation zeta functions. At the moment, we only have
some partial calculations.

Notation As it is customary when working with profinite groups and rings, all sub-
groups will be assumed to be closed and all homomorphisms will be assumed to be
continuous.

2 The zeta function à laWeil of PFG profinite rings

Let R be a profinite ring. We say that R is PFG if it is positively finitely generated as
left module over itself. Let F be a finite field, and let F denote the algebraic closure. An
F⊗Z R module M is absolutely simple if it is simple and F⊗F M is simple.We define
r∗(R, F, n) to be the number of isomorphism classes of absolutely simple F ⊗Z R
modules of dimension n over F . We observe that if R = Ẑ�G� is the completed group
ring of a profinite group G, then r∗(R, F, n) = r∗(G, F, n).

Lemma 2.1 A profinite ring R is PFG if and only if there is a constant c > 0 such that
for all finite fields F and all n the following inequality holds:

r∗(R, F, n) ≤ |F |cn.

Proof The proofs of [30, Prop. 6.1] and [30, Lem. 6.8] go through without changes in
our current situation. ��

Suppose R is a PFG profinite ring. Let c0(R) be the infimum of the numbers c such
that, for all but finitely many tuples (p, j, n), r∗(R, Fp j , n) ≤ pcnj . We may define
c0(R) = ∞ if R is not PFG.

Lemma 2.2 The series

∑
p∈P

∞∑
n=1

∞∑
j=1

r∗(R, Fp j , n)

j
p−sn j |Pn−1(Fp j )|

converges absolutely for all complex numbers s = σ + iτ with σ > c0(R) + 1, and
diverges for s = σ + iτ with σ < c0(R).
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Proof Since all the coefficients are real and positive, absolute convergence is the same
as convergence, and we may assume s is real and rearrange the terms. Let ε > 0.
Replacing p j with q, we get the upper bound

∑
p∈P

∞∑
n=1

∞∑
j=1

r∗(R, Fp j , n)

j
p−sn j |Pn−1(Fp j )| ≤ κ

∞∑
q=1

∞∑
n=1

qn(c0(R)+ε)q−σnqn−1.

for a suitable constant κ > 0. When σ > c0(R) + 1 + 2ε, we have

∞∑
n=1

qn(c0(R)+ε)q−σnqn−1 = qc0(R)+ε−σ

1 − qc0(R)+ε+1−σ
� q−1−ε,

so the whole sum converges.
On the other hand, when σ < c0(R), fix ε > 0 such that σ + ε < c0(R). For

infinitely many tuples (p, j, n)we have r∗(R, Fp j , n) > p(σ+ε)nj ; call the set of such
tuples S. So

∑
p∈P

∞∑
n=1

∞∑
j=1

r∗(R, Fp j , n)

j
p−σnj |Pn−1(Fp j )| >

∑
(p, j,n)∈S

pε j/ j .

Since p ≥ 2, a calculation shows pε j/ j ≥ ε log(2)21/ log(2), so the sum diverges.
Hence, by standard results on Dirichlet series, the sum diverges for all s with σ <

c0(R). ��
Corollary 2.3 If R is a PFG profinite ring, then

ζR(s) := exp

⎛
⎝∑

p∈P

∞∑
n=1

∞∑
j=1

r∗(R, Fp j , n)

j
p−sn j |Pn−1(Fp j )|

⎞
⎠

defines a holomorphic function in some right half plane.

We will call ζR(s) the Weil zeta function of R. Now we compute some examples that
will be useful in the proof of Theorem A.

Example 2.4 Let R = Ẑ = Ẑ�1�. Let F be any finite field. Then Ẑ has exactly one
one-dimensional absolutely simple module over every finite field. Therefore (using
the logarithmic series)

ζ
Ẑ
(s) = exp

⎛
⎝∑

p∈P

∞∑
j=1

1

j
p−s j

⎞
⎠ =

∏
p∈P

(
1 − 1

ps

)−1

= ζ(s)

is the Riemann zeta function.
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More generally, letOK denote the ring of integers of an algebraic number field K .
Then for R = ÔK the Weil zeta function ζR agrees with the Dedekind zeta function
of K . In the following we will mostly be studying Ẑ�G� for profinite groups G. It
seems interesting to replace Z byOK in this situation; we will not consider this more
general setting here.

Example 2.5 Let R = Ẑ�Ẑ�. Let F be any finite field. Ẑ�Ẑ� has q−1 one-dimensional
absolutely simple modules over Fq . Therefore

ζR(s) = exp

⎛
⎝∑

p∈P

∞∑
j=1

p j − 1

j
p−s j

⎞
⎠ =

∏
p∈P

(
1 − 1

ps−1

)−1 (
1 − 1

ps

)
= ζ(s − 1)

ζ(s)

Example 2.6 Let p be a fixed prime. Let R = Mn(Fpk ) be the matrix algebra over the
finite field Fpk . The ring has k absolutely simple modules of dimension n over F if
and only if F contains Fpk , i.e.,

r∗(R, F,m) =
{
k if m = n and Fpk ⊆ F;
0 otherwise.

The zeta function agrees with the Weil zeta function of the projective space P
n−1

defined over Fpk evaluated at sn:

ζR(s) = exp

⎛
⎝

∞∑
j=1

k

jk
p−s jkn|Pn−1(Fpk j )|

⎞
⎠ =

n−1∏
i=0

(
1 − pki

pskn

)−1

.

Next we show that the Weil zeta function of a profinite ring is the pointwise limit
of the Weil zeta functions of its finite quotients.

Proposition 2.7 (Continuity) Let R = lim←−i∈N
Ri be a PFG profinite ring which is

given a an inverse limit of finite rings Ri . If ζR(s) converges absolutely at s ∈ C, then

ζR(s) = lim
i→∞ ζRi (s).

Proof Since every absolutely simple module factors over some Ri , we have

r∗(R, F, n) = lim
i→∞ r∗(Ri , F, n)

for all finite fields F and the sequence r∗(Ri , F, n) is monotonically increasing. By
assumption there is c > 0 such that

r∗(Ri , F, n) ≤ r∗(R, F, n) ≤ |F |nc



Weil zeta functions of group representations over finite. . . Page 11 of 57 46

for all finite fields F and every n. Let s ∈ C and assume that the series defining ζR(s)
converges absolutely at s, then

lim
i→∞ ζRi (s) = ζR(s)

by Lebesgue’s theorem of dominated convergence (e.g., [5, 5.6 Thm.]). ��
We end this preliminary section with a formula for the Weil zeta function of the

direct product of rings and of groups.

Proposition 2.8 (Products of rings) Let R, S be two PFG profinite rings. Then R × S
is PFG and

ζR×S(s) = ζR(s) · ζS(s)

for all s ∈ C where ζR(s), ζS(s) are defined.

Recall that, given two functions f , g : N → N the Dirichlet convolution of f and
g is the function

( f ∗ g)(n) =
∑
d|n

f (d)g(n/d).

Recall that if G and H have UBERG, then the direct product G × H does too; see
[30, Theorem 6.4].

Proposition 2.9 (Products of groups) Let G, H be two profinite groups. Then r∗(G ×
H , F, n) = (r∗(G, F,−) ∗ r∗(H , F,−))(n), where ∗ denotes Dirichlet convolution.
If G and H have UBERG, we can write ζG×H (s) as

exp

⎛
⎝∑

p∈P

∞∑
n=1

∞∑
j=1

(r∗(G, Fp j ,−) ∗ r∗(H , Fp j ,−))(n)

j
p−sn j |Pn−1(Fp j )|

⎞
⎠ .

Note that the above formula does not directly give a nice formula for the Weil
representation zeta function of G × H and, even for finite groups, it might be hard to
compute it.

3 Weil zeta functions and probability

In this section we will prove Theorem A. In fact, Theorem A holds for arbitrary PFG
profinite rings and the following proof is written in this general setting.

Proof of TheoremA Let R be a PFG profinite ring and let J (R) denote the Jacobson
radical. A tuple of elements generates R if and only if it generates R/J (R). Hence
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PR(R, �) = PR/J (R)(R/J (R), �) for all � ∈ N. Similarly, the Jacobson radical anni-
hilates all simple modules, hence

r∗(R, F, n) = r∗(R/J (R), F, n).

So we may replace R with R/J (R), and assume that R is semisimple, i.e., a product
of matrix algebras over finite fields. Since R is PFG, it has countably many simple
quotients, so this product is countably based.

Thus we may write R = lim←−i∈N
Ri as an inverse limit of finite semisimple rings.

Then PR(R, �) = limi∈N PRi (Ri , �) and so by Proposition 2.7 it is sufficient to prove
the theorem for finite semisimple rings. Since probabilities and zeta functions behave
well under finite direct products of rings (see Proposition 2.8), it is sufficient to prove
the equality for a single matrix algebra. The probability that � random elements gen-
erate Mn(Fpk ) is the probability that a random (n × n�) matrix has rank n, i.e.,

PMn(Fpk )(Mn(Fpk ), �) = p−k�n2
n−1∏
i=0

(pk�n − pki ) =
n−1∏
i=0

(
1 − pki

p�kn

)
,

and the assertion follows from Example 2.6. ��

4 Abscissae of convergence

Let G be an UBERG profinite group. Write a(G) for the abscissa of convergence of
ζG(s), as defined in (1.2). Observing that all the coefficients are real and positive,
we deduce that the abscissa of convergence of ζG(s) equals its abscissa of absolute
convergence. Therefore, we can rearrange terms in ζG(s) and only study convergence
for real s.

We start by comparing the abscissa of converge of a quotient with that of the group.
The following lemma is clear.

Lemma 4.1 For any profinite group G and � � G, we have a(G/�) ≤ a(G).

In particular, a(G) ≥ 1 for any G, because a({1}) = 1 by Example 2.4. The next
lemma will be used repeatedly for calculations of abscissae.

Lemma 4.2 Suppose f : P × N+ × N+ → R≥1 is such that f (p, n, j) = po(nj). For
any function g : P × N+ × N+ → R, the series

A(s) =
∑
p∈P

∞∑
n=1

∞∑
j=1

g(p, n, j)

j
p−sn j |Pn−1(Fp j )|

and

B(s) =
∑
p∈P

∞∑
n=1

∞∑
j=1

f (p, n, j)
g(p, n, j)

j
p−sn j |Pn−1(Fp j )|
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have the same abscissae of convergence.

Proof When A(s) converges, B(s) = Oε(A(s + ε)) converges too for all ε > 0,
because pεnj ≥ f (p, n, j) for large p, n, j . The converse is clear. ��

Next we deal with the abscissa of open subgroups and we prove the first item in
Theorem B.

Proposition 4.3 Suppose G is a profinite group and H ≤o G. Then:

(i) a(G) ≤ a(H) + 1 − |G : H |−1;
(ii) a(H) ≤ |G : H |a(G).

If � is a finite group and G = H × �, then a(G) = a(H).

Proof G has UBERG if and only if H does, by [30, Thm. 6.2]. If neither has UBERG,
ζG and ζH have abscissa of convergence ∞. So we may assume they both have
UBERG.

For each absolutely irreducible Fp j �G�-module N , pick one irreducible Fp j �H�-

submodule M of ResGH (N ). We note that M has the structure of an Fp je�H�-module
for e such that Fp je ∼= EndH (M); by [22, (9.2)] this module is absolutely irreducible
and henceforth we will abuse notation by writing M for this Fp je�H�-module. We
get a map φ : N �→ M from absolutely irreducible G-modules over finite fields to
absolutely irreducible H -modules over finite fields.

Fix an absolutely irreducible Fp j �H�-module M of dimension m: we want to
consider φ−1(M). Any absolutely irreducible G-module N in φ−1(M) is defined
over some field Fp� with � | j : note that |EndH (M)| ≤ |HomH (M,ResGH (N )| =
|HomG(IndGH (M), N )| ≤ |EndG(N )||G:H |, so p j ≤ p�|G:H | and j/� ≤ |G : H |. In
particular, there are at most |G : H | possibilities for �. Denote by L the restriction
of scalars from Fp� to Fp j of M . As L is irreducible and N appears as a quotient of

IndGH (L), for a fixed � there are at most |G : H | possibilities for N ∈ φ−1(M). Hence
there are at most |G : H |2 possibilities for N ∈ φ−1(M). Moreover, such an N can
have dimension n at most |G : H | dimFp�

L = |G : H | jm/� over Fp� , with n� ≥ mj .

Write Irr∗(G, Fp� , n) for the set of absolutely irreducible Fp��G�-modules of

dimension n, and define α(N ) = p−sn�

�

p�n − 1

p� − 1
for N ∈ Irr∗(G, Fp� , n). Then

we may write the log of the Weil representation zeta function of G as

∑
p∈P

∞∑
�=1

∞∑
n=1

∑
Irr∗(G,Fp� ,n)

α(N ).

Grouping these terms by their image under φ, this is equal to

∑
p∈P

∞∑
�=1

∞∑
n=1

∑
Irr∗(H ,Fp j ,m)

∑

N∈φ−1(M)

α(N ).
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Now, for N as above in φ−1(M),

α(N ) = p−sn�

�

p�n − 1

p� − 1
= p−sn�

�

p j − 1

p� − 1

p jm − 1

p j − 1

p�n − 1

p jm − 1

≤ p−sn�

�

j p j−�

�

p jm − 1

p j − 1

�np�n− jm

jm
= np−sn�+ j−�+�n− jm

�m

p jm − 1

p j − 1

= nj

�m
p(�n− jm)(1−s)+ j−�α(M). (4.1)

We have j/� ≤ |G : H | and n/m ≤ |G : H | j/� ≤ |G : H |2, so for s > 1,
α(N ) ≤ |G : H |3 p(�n− jm)(1−s)+ j−�α(M) ≤ |G : H |3 p(1−|G:H |−1) jα(M), and hence∑

N∈φ−1(M) α(N ) ≤ |G : H |5 p(1−|G:H |−1) jα(M). Finally, for s > a(H) + 1 − |G :
H |−1, we conclude that

log(ζG)(s) ≤
∑
Fp j

∞∑
m=1

∑
Irr∗(H ,Fp j ,m)

|G : H |5 p(1−|G:H |−1) j p
−smj

j

p jm − 1

p j − 1

≤ |G : H |5
∑
Fp j

∞∑
m=1

∑
Irr∗(H ,Fp j ,m)

p(1−|G:H |−1−s)mj

j

p jm − 1

p j − 1

= |G : H |5 log(ζH )(s − 1 + |G : H |−1),

which converges.
Conversely, by the same approach, we may define a map ψ from absolutely irre-

ducible H -modules M to absolutely irreducible G-modules N : if M is defined over
Fp j , we take N to be an irreducible quotient of IndGH (M), with the structure of an
Fp je�G�-module, where Fp je ∼= EndG(N ).

Fix an absolutely irreducible Fp��G�-module N of dimension n. Suppose M ∈
ψ−1(N ) is defined over Fp j (with j | �) and has dimension m. As before, we have
|EndG(N )| ≤ |EndH (M)||G:H |, so p� ≤ p j |G:H | and �/ j ≤ |G : H |. Denote by L
the restriction of scalars from Fp� to Fp j of N . As L is irreducible and M appears as a
submodule of L , for a fixed j there are at most |G : H | possibilities for M ∈ ψ−1(N )

and so at most |G : H |2 possibilities for M altogether; moreover, such an N must
have dimension n at least (dimFp j

L)/|G : H | over Fp j .
Grouping terms as before, we may write the log of the Weil representation zeta

function of H as

∑
p∈P

∞∑
�=1

∞∑
n=1

∑
Irr∗(G,Fp� ,n)

∑

M∈ψ−1(N )

α(M).
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Now, for M as above in ψ−1(N ),

α(M) = p−smj

j

p jm − 1

p j − 1
= p−smj

j

p� − 1

p j − 1

p�n − 1

p� − 1

p jm − 1

p�n − 1

≤ p−smj

j

�p�− j

j

p�n − 1

p� − 1

p jm

p�n(1 − p−�n)

= 2�2 psn�−smj+�− j+ jm−�n

j2
α(N ).

We have �/ j ≤ |G : H |, n�/mj ≤ |G : H | and

(s − 1)n�(1 − |G : H |−1) + �(1 − |G : H |−1) − sn� ≤ −|G : H |−1sn�,

and thus we conclude that log(ζH )(s) is at most

∑
p∈P

∞∑
�=1

∞∑
n=1

∑
Irr∗(G,Fp� ,n)

2|G : H |4 p�(1−|G:H |−1)((s−1)n+1) p
−sn�

�

p�n − 1

p� − 1

≤ 2|G : H |4
∑
p∈P

∞∑
�=1

∞∑
n=1

r∗(G, Fp� , n)
p−|G:H |−1sn�

�

p�n − 1

p� − 1

= 2|G : H |4 log(ζG)(s/|G : H |),

which converges for s > |G : H |a(G).
For the final statement, if G = H × �, a(H) ≤ a(G) by Lemma 4.1. For the

converse, we can argue exactly as in the proof of (i), except that, by [15, Theorem 2.7],
we always have j = �. We then have n/m ≤ |G : H |, so from (4.1) we see that, for
s > 1, α(N ) ≤ |G : H |α(M), and hence

∑
N∈φ−1(M) α(N ) ≤ |G : H |2α(M).

We conclude as in (i) that log(ζG)(s) ≤ |G : H |2 log(ζH )(s), which converges for
s > a(H). ��

Corollary 4.4 (Finite groups) Let G be a finite group, then a(G) = 1.

Proof Apply Proposition 4.3 to G and the trivial open subgroup. ��

Remark 4.5 The bound in Proposition 4.3(i) can be improved under additional assump-
tions. For instance, suppose in addition that H is perfect and normal in G. Any
irreducible representation N of G such that N ∈ φ−1(M) with M 1-dimensional
can then be seen as a representation of G/H . In particular,

∑
p, j

∑
Irr∗(H ,Fp j ,1)

∑

N∈φ−1(M)

α(N ) ≤ log(ζG/H )(s),
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which converges for all s > 1 by Corollary 4.4. On the other hand,

∑
p, j

∞∑
m=2

∑
Irr∗(H ,Fp j ,m)

|G : H |5 p(1−|G:H |−1) j p
−smj

j

p jm − 1

p j − 1

≤ |G : H |5
∑
p, j

∞∑
m=1

∑
Irr∗(H ,Fp j ,m)

p((1−|G:H |−1)/2−s)mj

j

p jm − 1

p j − 1

= |G : H |5 log(ζH )(s − (1 − |G : H |−1)/2)

converges when s > a(H) + (1 − |G : H |−1)/2. So we conclude a(G) ≤ a(H) +
(1 − |G : H |−1)/2. Further variations of this argument are possible.

Now we will look at the Weil abscissae of direct products of profinite groups. We
start by considering the case of profinite rings.

Lemma 4.6 (Products of rings) For PFG profinite rings R, S, a(R × S) =
max(a(R), a(S)).

Proof This is clear from Proposition 2.8. ��
Unfortunately, as we have seen in Sect. 2, the Weil representation zeta function of

the product of two groups is not as well-behaved. Nonetheless, we can produce an
upper bound.

Proposition 4.7 (Products) a(G × H) ≤ a(G) + a(H).

Proof By [15, Theorem 2.7], absolutely irreducible Fp j �G × H�-modules have the
formM⊗Fp j

N , withM an absolutely irreducibleFp j �G�-module and N an absolutely

irreducible Fp j �H�-module. Fix such an M , of dimensionm, say. By the contribution
of M to the sum log(ζG×H )(s), we mean the sum, over all Fp j �G × H�-modules of

the form M ⊗Fp j
N , of 1

j p
−smk j |Pmk−1(Fp j )|, where k is the dimension of N .

When s = a(H) + ε + t , with ε > 0, the contribution of M is therefore

∞∑
k=1

r∗(H , Fp j , k)

j
p−(a(H)+ε)k j p

k j − 1

p j − 1
p−(sm−a(H)−ε)k j p

mk j − 1

pkj − 1
.

Now

p−(sm−a(H)−ε)k j p
mk j − 1

pkj − 1
≤ pkj(m−1−sm+a(H)+ε)

1 − p−k j

≤ p j(m−1−sm+a(H)+ε)

1 − p− j
≤ p jm−t jm

p j − 1

where we use that

m − 1 − sm + a(H) + ε = −tm − (a(H) + ε − 1)(m − 1) < −tm < 0
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in the second inequality. So the contribution of M is bounded above by

log(ζH )(a(H) + ε)
p−tm j pmj

p j − 1
≤ 2 log(ζH )(a(H) + ε)p−tm j |Pm−1(Fp j )|.

Hence, when t = a(G) + δ, δ > 0, the total sum over all M is

≤ 2 log(ζH )(a(H) + ε)
∑
p∈P

∞∑
j=1

∞∑
m=1

r∗(G, Fp j ,m)p−(a(G)+δ)mj |Pm−1(Fp j )|,

which converges by Lemma 4.2. This holds for all ε, δ > 0, so the abscissa of conver-
gence is at most a(G) + a(H). ��

Recall from [9, Theorem 4.7] that split extensions of profinite groups with UBERG
have UBERG. We cannot get the same bound on the Weil abscissa for such groups as
we do for direct products, but we can get close.

Theorem 4.8 (Split extensions) Suppose G is a profinite group,��G and the quotient
map G → G/� splits. Then a(G) ≤ a(�) + a(G/�) + 1.

We will use the following elementary lemma.

Lemma 4.9 For all a ∈ N, p ≥ 2 and t > 0, there is a constant c, depending only on
t, such that

∑
l≥a

l2 p−tl ≤ ca2 · p−at .

Proof Divide by a2 p−at and observe that

∞∑
l=a

( l
a

)2
p−t(l−a) ≤

∞∑
l=0

(l + 1)2 p−tl ≤
∞∑
l=0

(l + 1)22−tl

converges to a value which does not depend on p and a. ��
To simplify the notation, sums in this proof will mean sums from 1 to ∞ unless

stated otherwise.

Proof of Theorem 4.8 For each absolutely irreducible Fp j �G�-module N of dimen-

sion n, fix an irreducible summand M of ResG� N . Then M is absolutely irreducible
over Fpk , some multiple k of j , of dimension m such that mk ≤ nj . This gives
a map φ from the set of absolutely irreducible G-modules to the set of absolutely
irreducible �-modules, and we write r∗(G, Fp j , n, M) for the number of absolutely
irreducible Fp j �G�-modules N of dimension n such that φ(N ) = M . Similarly, if
N is an irreducible Fp j �G�-module, we may think of N as an absolutely irreducible
EndG(N )�G�-module N ′, and define a map N �→ φ(N ′) from irreducible Fp j �G�-
modules to absolutely irreducible�-modules. Then we write R(G, Fp j , n, M) for the
number of irreducible Fp j �G�-modules of dimension at most n in the preimage of M .
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Wecall the contribution ofM to log(ζG)(s) the sum
∑

φ−1(M) α(N ), whereα(N ) =
1
j p

−sn j pnj−1
p j−1

. Thus, the contribution of M is

∑
n, j

r∗(G, Fp j , n, M)

j
p−sn j p

jn − 1

p j − 1
.

Now r∗(G, Fp j , n, M) ≤ R(G, Fp j , n, M), and the proof of [9, Theorem 4.7] shows
that R(G, Fp j , n, M) ≤ nR(G/, Fp j , n); finally,

R(G/�, Fp j , n) ≤
n∑

l=1

∑
i |l

r∗(G/�, Fp ji , l/i).

Let s′ = a(�) + ε + s, for some small ε > 0. Then the contribution of M to
log(ζG)(s′) is

∑
n, j

r∗(G, Fp j , n, M)

j
p−s′nj p

jn − 1

p j − 1

≤ p−(a(�)+ε)mk
∑
n, j

∑
u,v:v≥ j,uv≤nj

n

j
r∗(G/�, Fpv , u)p−sn j p

jn − 1

p j − 1

= p−(a(�)+ε)mk
∑
u,v

r∗(G/�, Fpv , u)
∑

n, j : j≤v,nj≥uv

n

j
p−sn j p

jn − 1

p j − 1
.

Now grouping the terms with the same value of nj together, we get

∑
n, j :nj≥uv

n

j
p−sn j p

jn − 1

p j − 1
≤

∑
n, j :nj≥uv

njp(1−s)nj ≤
∑
l≥uv

l2 p(1−s)l ≤ (c0u
2v2)pvu(1−s)

for some constant c depending only on s, by Lemma 4.9 for a = uv and t = 1 − s.
So the contribution of M is

≤ p−(a(�)+ε)mk
∑
u,v

cu2v2r∗(G/�, Fpv , u)pvu(1−s)

≤ p−(a(�)+ε)mk
∑
u,v

cu2v3
r∗(G/�, Fpv , u)

v
pvu(1−s)|Pu−1(Fpv )|

which converges, by Lemma 4.2, for all s > a(G/�) + 1, to p−(a(�)+ε)mk f (s) �
1
k p

−(a(�)+ε/2)mk |Pm−1(Fpk )| f (s) for some f which is independent of M . Summing
over all absolutely irreducible �-modules M , we see that log(ζG)(s′) converges for
all s′ > a(�) + a(G/�) + 1. ��
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5 Examples of abscissae

In this section we will prove Theorem C.

5.1 Free abelian groups

Finitely generated abelian groups have UBERG by [30], and all their absolutely irre-
ducible representations have dimension 1. For the free abelian group Z

r of rank r
and its profinite completion Ẑ

r , r∗(Zr , Fp j , 1) = r∗(Ẑr , Fp j , 1) is the number of

homomorphisms from Ẑ
r to F

×
p j , that is, (p

j − 1)r . So

log(ζ
Ẑr (s)) =

∑
p∈P

∞∑
j=1

(p j − 1)r

j
p−s j ≤

∑
n

nr−s

which converges for s > r + 1. When s = r + 1, we get

log(ζ
Ẑr (s)) >

∑
p∈P

(p − 1)r

pr+1 =
∑
p∈P

r∑
i=0

(−1)i

pi+1

(
r

i

)
.

For each i > 0, the sum over the primes p converges absolutely, whereas for i = 0,
it diverges [37]. Therefore the whole sum, over i and p, diverges. So a(Ẑr ) = r + 1.

Note that, by expanding (p j − 1)r = ∑r
i=0(−1)r−i

(r
i

)
pi j , we get

log(ζ
Ẑr (s)) =

r∑
i=0

∑
p∈P

∞∑
j=1

(−1)r−i
(
r

i

)
p(i−s) j

j
=

r∑
i=0

(−1)r−i
(
r

i

)
log(ζ(s − i)),

so ζ
Ẑr (s) = ∏r

i=0 ζ(s − i)(−1)r−i(ri), where ζ(s) is the Riemann zeta function. In
particular, ζ

Ẑr (s) admits a meromorphic extension to C and has a simple pole at r +1.
It is interesting to remark that the Weil representation zeta function in this case is
very similar to the subgroup growth zeta function as defined in [18]: in that case
ζ

≤
Ẑr

(s) = ∏r−1
i=1 ζ(s − i) by [18, Proposition 1.1].

5.2 Free abelian pro-p groups

Fix a prime number p. Here we study the Weil abscissa of free abelian pro-p groups
Z
r
p. Letwp(m) = |m|−1

p denote the highest p-power dividingm. If q is a prime power,
then

r∗(Zr
p, Fq , 1) = wp(q − 1)r ,
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i.e., there are many absolutely irreducible representations, if q is congruent 1 modulo
a high power of p. We will see that this observation links the Weil abscissa closely to
small prime powers in the arithmetic progressions npk + 1.

We begin with a short summary of results on small primes in arithmetic progres-
sions. By Linnik’s theorem there are constants c, L such that for every d ≥ 2 the least
prime pmin(d) congruent 1 modulo d satisfies

pmin(d) ≤ cdL .

Currently, the best known value for the exponent is L = 5; see [51]. Assuming
the extended Riemann hypothesis or the generalized Riemann hypothesis, we have
L = 2+ε for every ε > 0; see [3] or [19]. A folklore conjecture (sometimes attributed
to Chowla) states that L = 1 + ε for every ε > 0.

For our purposes the only relevant case is d = p j a power of the fixed prime number
p. In this case better results are known. Let L(p) be defined as

L(p) = lim sup
j→∞

log(pmin(p j ))

j log(p)
.

In other words L(p) is the infimum over all real numbers L > 0 such that pmin(p j ) ≤
cL p j L for some cL > 0 and all j ≥ 1. Barban, Linnik and Tshudakov proved
L(p) ≤ 8

3 . Gallagher [16] (see also Iwaniec [23]) established L(p) < 2.5 and Huxley
[21] improved this to L(p) ≤ 2.4. Currently the best bound appears in a paper of
Banks-Shparlinski [4], who show that L(p) < 2.1115.

We will now see that the Weil abscissa for Z
r
p is related to a very similar, but less

studied constant. For our purposes, we can replace lim sup by lim inf and, in addition,
we are interested in prime powers in arithmetic progressions (which should not make
a big difference asymptotically).

Definition 5.1 Let ppmin(d) denote the least prime power congruent 1 modulo d. We
define

K (p) = lim inf
j→∞

log(ppmin(p j ))

j log(p)
.

Proposition 5.2 Let p be a prime number. Then

r

K (p)
≤ a(Zr

p) ≤ r − 1

K (p)
+ 1.

In particular, a(Zp) = 1.

We note that a(Zp) ≥ 1 for all groups, so the second assertion follows immediately
from the upper bound.

It is clear that 1 ≤ K (p) ≤ L(p). As mentioned before, it is conjectured that
L(p) = 1 and so one might conjecture K (p) = 1. In this case the upper and lower
bounds agree and a(Zr

p) = r .
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Proof of the lower bound in 5.2 Let q
k j
j = ppmin(p j ) be the least prime power congru-

ent 1 modulo p j (where q j is a prime).

Let ε > 0. By assumption, q
k j
j > p j(K (p)−ε) for all sufficiently large j , say j ≥ j0.

Since q
k j
j ≤ cp5 j by [51], we have k j log(q j ) ≤ log(c)+5 j log(p). Then, for all real

s > 1, log ζZr
p
(s) is at least

∑
j≥ j0

p jr

k jq
k j s
j

≥
∑
j≥ j0

p jr

k j p js(K (p)−ε)
≥
∑
j≥ j0

p jr log(q j )

(log(c) + 5 j log(p))p js(K (p)−ε)

and this series diverges for s < r
K (p)−ε

. We deduce that a(Zr
p) ≥ r

K (p) . ��
Let ζZr

p
be the Weil representation zeta function of Z

r
p. Then

log ζZr
p
(s) =

∑
q prime

∞∑
k=1

wp(qk − 1)r

k
q−sk;

recall that wp(m) denotes the highest p-power dividing m with the convention that
wp(0) = 0. It is well-known that the Riemann zeta function satisfies

log ζ(s) =
∑
n

�(n)

log(n)
n−s

where � denotes the von Mangoldt function. In the same way we can rewrite ζZr
p
(s)

and obtain

log ζZr
p
(s) =

∑
n

�(n)wp(n − 1)r

log(n)
n−s .

Proof of the upper bound in Proposition 5.2 Let K := K (p). Let ε > 0 be given. We
may assume that K − ε ≥ 1, since for K = 1, we can even take ε = 0.

By assumption, there are only finitely many pairs ( j, n) where n is a prime power
with n ≡ 1 mod p j and n1/(K−ε) ≤ p j . We define wε

p(n− 1) to be the highest power

of p which divides n − 1 and is at most n1/(K−ε). Using �(n)/ log(n) ≤ 1 we obtain
for all real s > 1:

log ζZr
p
(s) =

∑
n

�(n)wp(n − 1)r

log(n)
n−s

=
∑
n

�(n)wε
p(n − 1)r

log(n)
n−s + O(1)

≤
∑
n

wε
p(n − 1)r n−s + O(1).
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Let W ε
p,r (x) = ∑

n≤x wε
p(n − 1)r . Using a standard trick we get

W ε
p,r (x) =

∑
n≤x

wε
p(n − 1)r ≤ 
x − 1� +


logp(x)/(K−ε)�∑
k=1

⌊ x − 1

pk

⌋
(pkr − p(k−1)r )

≤ (x − 1) +

logp(x)/(K−ε)�∑

k=1

x − 1

pk
(prk − pr(k−1))

= (x − 1) + (1 − p−r )(x − 1)


logp(x)/(K−ε)�∑
k=1

p(r−1)k

≤ (x − 1)

(
1 + 1 − p−r

1 − p−(r−1)
x (r−1)/(K−ε)

)

� x (r−1)/(K−ε)+1.

We use Abel’s summation formula to obtain for all x > p

∑
p<n≤x

wε
p(n − 1)r n−s = W ε

p,r (x)x
−s − W ε

p,r (p)p
−s −

∫ x

p
W ε

p,r (u)(−su−s−1)du

� x
r−1
K−ε

+1−s + s
∫ x

p
u(r−1)/(K−ε)−sdu

� x
r−1
K−ε

+1−s + s
r−1
K−ε

+ 1 − s
x

r−1
K−ε

+1−s

the latter expression is bounded for all s > r−1
K−ε

+ 1 as x → ∞. We conclude that

log ζZr
p
(s) converges absolutely for Re(s) > r−1

K−ε
+ 1. ��

Remark 5.3 Assuming K (p) > 1, it seems that the upper bound in Proposition 5.2 is
of the right order of magnitude. In fact, from the prime number theorem in arithmetic
progressions one would expect that there are roughly

p j(K (p)+ε)

jϕ(p j )
= p j(K (p)+ε−1)

j(1 − p−1)

primes congruent 1 mod p j below p j(K (p)+ε) (at least for large j). An estimate of this
form, i.e. a lower bound on ψ(x; pm, 1) = ∑

n≤x
n≡1 mod pm

�(n) for small x and infinitely

many m, gives rise to a lower bound which matches the upper bound in Proposition
5.2. Some quantitative results concerning the amount of small primes in arithmetic
progressions are available. For instance, it is a result of Banks-Shparlinski [4, Theorem
3.6] that ψ(x; pm, 1) � x

ϕ(pm )
for m large and x ≥ pmL with L ≈ 2.1115 which
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implies

a(Zr
p) ≥ r − 1

L
+ 1.

This improves our best numerical lower bound of a(Zr
p) ≥ r

L which can be deduced

from Proposition 5.2, though whether we have r−1
L + 1 ≥ r

K (p) or the converse will

depend on the value of K (p). For r = 2, this gives a(Z2
p) ≥ 1+ L−1 ≈ 1.4736 > 1.

Remark 5.4 The proof of the upper bound shows similarly that any finite product
∏

Zp

over distinct primes p hasWeil abscissa 1 (though, aswe have already seen, the product
over all primes has abscissa of convergence 2). But in fact, we can show that in some
cases,

∏
k Zpk has Weil abscissa 1 for an infinite sequence of primes (pk).

Indeed, suppose we choose pk > 2(2k ), and let G = ∏
k Zpk . We may define

c(pk )(n) to be the largest divisor of n all of whose prime factors are in (pk), so that
log(ζG)(s) ≤ ∑

n c(pk )(n − 1)n−s . Write f (x) for the number of positive integers n
less than x such that c(pk )(n) = n. As in Proposition 5.2, Tschebyscheff’s trick shows
that

∑
n≤x c(pk )(n − 1) is at most (x − 1) f (x).

Let x = 2(2k); then f (x) is at most the number of partitions of 2k into powers
of 2. It is shown in [7, (1.3)] that the number of such partitions is 2O(k2). Therefore,∑

n≤2(2k ) c(pk )(n − 1) ≤ 22
k+O(k2). Finally, we can use Abel’s summation formula as

before to show that
∑

n≤2(2k ) c(pk )(n − 1)n−s = O(22
k+O(k2)−2k s) converges when

s > 1.

5.3 Free pro-C groups, I

Let C be a class of finite groups which is closed under quotients, finite subdirect
products, taking normal subgroups and extensions (i.e., C an NE-formation in the
sense of [43, §2.1]). Let FC

r be the free pro-C on r generators; these exist by [43,
Section 3.3] and satisfy the usual universal property. An open normal subgroup of
index m is again a free pro-C group of rank m(r − 1) + 1 by [43, Theorem 3.6.2].
Here we prove a general lower bound result for the Weil abscissa of FC

r .

Theorem 5.5 Let q be a prime power. Assume that C contains a non-trivial abelian
group of order coprime to q and an absolutely irreducible subgroup S ⊆ GL(n0, q)

for some n0 ≥ 1. Then

a(FC
r ) ≥ log |S|

n0 log q
(r − 1) + 1.

Lemma 5.6 Let p be a prime and let L/F be an extension of finite fields such that p
divides (|L| − 1)/(|F | − 1). Let G be a profinite group and let N ≤ G be a normal
subgroup of index p. Every G-invariant absolutely irreducible representation of N
over F extends to an absolutely irreducible representation of G over L.
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Proof Let θ be an absolutely irreducible G-invariant representation of N defined over
F . Let ω ∈ H2(G/N , F×) be the obstruction cocycle (see [26, Section 9]). Since
G/N is cyclic of order p, we have H2(G/N , A) = A/pA for all modules A with
trivial G/N -action (see [26, Lemma 5.5]). Since F× and L× are cyclic the map
H2(G/N , F×) → H2(G/N , L×) is trivial, i.e., by [26, Thm. 9.6] θ extends to G
over L . ��
Proof of Theorem 5.5 We assume r ≥ 2; in fact, for r = 1 there is nothing to do. We
may also assume that S is non-trivial. Since C contains a non-trivial abelian group,
there is a prime number p (not dividing q) such that C contains all p-groups. We
only consider representations over the field Fq . Let m = |S|. The number of sur-
jective homomorphisms from FC

r onto S is mr − O((m/2)r ), where the error term
depends on the maximal subgroups of S. A conjugacy class of homomorphisms con-
tains at most |GL(n0,q)|

q−1 elements. We deduce that the number of equivalence classes

of representations r S(FC
r ) with image S ⊆ GL(n0, q) satisfies

r S(FC
r ) ≥ λmr−1(1 − O(2−r+1)

)

as r tends to infinity with λ = m(q−1)
|GL(n0,q)| .

Let k ≥ 1 and let φ : FC
r → Z/pkZ be a surjective homomorphism. Let N =

ker(φ) and let N+ be the unique normal subgroup containing N with index p. We
note that N is free of rank pk(r − 1)+ 1 and N+ is free of rank d = pk−1(r − 1)+ 1.
We claim that most irreducible representations of N with image S ⊆ GL(n0, q) are
not N+-invariant. From Lemma 5.6 we know that an N+-invariant representation of
N over Fq extends to N+ over a suitable field extension L/Fq (whose degree depends
only on p and q). Let x1, . . . , xd be a free generating set of N+ with x1, . . . , xd−1 ∈ N
(To find such a generating set, one can start with an arbitrary free generating set of N+
such that φ(xd) has order p and replace xi by xi x

ki
d for suitable ki ∈ Z). The number

of homomorphisms of N+ into GLn0(L) that map x1, . . . , xd−1 into S ⊆ GL(n0, q)

ismd−1 · |GLn0(L)| and we conclude that the number of N+-invariant representations
satisfies

r S(N )N
+ = O(mpk−1(r−1)).

and so

r S(N ) − r S(N )N
+ ≥ λmpk (r−1)

(
1 − O

(
2−pk−1(r−1))) .

If θ is an absolutely irreducible representation of N which is not N+-invariant, then
θ has trivial inertia subgroup in FC

r since N+ is the unique minimal normal subgroup

of in G/N . Therefore the induced representation Ind
FC
r

N (θ) is absolutely irreducible.
Moreover, only |G/N | = pk distinct conjugates of θ give rise to the same induced
representation. We obtain that

r∗(FC
r , Fq , p

kn0) ≥ κ p−km pk (r−1)
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for all sufficiently large k and a suitable constant κ . This lower bound implies that the
series

log(ζFC
r
)(s) =

∑
n,�, j

r∗(FC
r , F� j , n)

j
�− jns �

jn − 1

� j − 1
≥ κ

∑
k

m pk (r−1) p−kq(1−s)pkn0

diverges for real numbers s <
log(m)
n0 log(q)

(r − 1) + 1. ��
Corollary 5.7 In Theorem 5.5 assume in addition that C contains a transitive permu-
tation group T of degree d > 1. Then

a(FC
r ) ≥ log

(|S|(d−1)|T |)
(d − 1)n0 log q

(r − 1) + 1.

Proof Let k ≥ 1. We consider the wreath product

Wk = S � T � T � · · · � T︸ ︷︷ ︸
k times

constructed from the permutation representation of T on d elements. Since Wk is an
extension of direct products of groups in C, it belongs to C. We will show that Wk has
a faithful absolutely irreducible representation of degree dkn0 over Fq . Then Theorem
5.5 gives

a(FC
r ) − 1 ≥ log |Wk |

dkn0 log(q)
(r − 1) = log(|S|dk |T |(dk−1)/(d−1))

dkn0 log(q)
(r − 1)

= log(|S|d−1) + (1 − 1
dk

) log(|T |))
(d − 1)n0 log(q)

(r − 1)

and the result follows by letting k tend to infinity.

Let N = ∏dk
i=1 Si be the normal base group of Wk . To see that Wk admits an

absolutely irreducible faithful representation of degree dkn0 we fix a copy S1 ⊆ N
of S in the base group. Then S1 has a faithful representation θ of degree n0 over
Fq . We extend this representation trivially to a representation θ ′ of the normalizer
NWk (S1). This is possible since the normalizer is a direct product S1 × W ′; indeed it
is generated by N and a point stabilizer in T � T � · · · � T . In particular, the normalizer
has index dk in Wk . The induced representation IndWk

NWk (S1)
(θ ′) has degree dkn0. It

is absolutely irreducible because the restriction to N consists of a single Wk-orbit of
irreducible representations.Moreover, it is faithful, because both θ and the permutation
representation of T � T � · · · � T on dk elements are faithful. ��

We also include here a result which will be useful in proving upper bounds.

Proposition 5.8 Let G ≤ GL(n, p j ). Then the number of absolutely irreducible rep-
resentations of dimension n over Fp j of an r-generated group F with image contained
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in G is at most |G|r−1|G ∩ F
×
p j | ≤ |G|r−1 p j , where F

×
p j ≤ GL(n, p j ) is the group

of diagonal matrices.

Proof An absolutely irreducible representation of F is just a homomorphism F �
J ≤ GL(n, p j ), up to conjugacy in GL(n, p j ), with J absolutely irreducible. The
number of such homomorphisms with J ≤ G is at most |G|r . The size of a conjugacy
class is at least |NGL(n,p j )(G)|/|CGL(n,p j )(J )| ≥ |G|/|CGL(n,p j )(J )∩G| ≥ |G|/p j ,
because J is absolutely irreducible. Therefore the number of conjugacy classes is at

most |G|r p j

|G| , as required. ��

5.4 Free pro-p groups (odd p)

Let p be an odd prime number. We define

K ′(p) = inf
k≥1

log(ppmin(pk))

(k + 1
p−1 ) log(p)

.

Theorem 5.9 Let F p
r be the free pro-p group on r generators with r ≥ 2. The abscissa

of convergence is

a(F p
r ) = r − 1

K ′(p)
+ 1.

Before we give the proof, some comments on the constant K ′(p) are in order. We note
that

K ′(p) ≤ inf
k≥1

log(ppmin(pk))

k log(p)
≤ K (p),

where K (p) is the constant from Sect. 5.2. The discussion there gives K ′(p) ≤ 2.1115
and conjecturally K ′(p) ≤ 1. One can determine the precise value of K ′(p) if p is a
Mersenne prime.

Proposition 5.10 Let p be an odd prime.

(i) If p is not a Mersenne prime, K ′(p) ≥ 1.
(ii) If p is a Mersenne prime, K ′(p) = (p−1) log(p+1)

p log(p) < 1.

Proof (i) Since the size S(n, q j ) of a Sylow p-subgroup of GL(n, q j ) is at most

wp(q j − 1)n p
n−1
p−1 , with equality when n is a power of p, we see that K ′(p) is

maximal such that |S(n, q j )|K ′(p) ≤ qnj . So when p is not a Mersenne prime,
K ′(p) ≥ 1 by [50, Theorem 1.6(ii)]; the result follows.

(ii) Suppose p = 2m − 1 is a Mersenne prime. Let f p(k) = log(pk+1)
(k+1/(p−1)) log(p) ≤

log(ppmin(pk ))
(k+1/(p−1)) log(p) . When p > 3, a calculation shows f p(k) has a minimum when
k = 1, and so K ′(p) = f p(1). When p = 3, f3(k) > f3(1) for all k ≥ 3. Since
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19 is the smallest prime power congruent 1 modulo 9, we conclude that for k = 2
we have log(19)

(2+1/(p−1)) log(p) > f3(1), so we conclude that K ′(3) = f3(1).
��

Example 5.11 For the first four Mersenne primes one obtains

K ′(3) ≈ 0.8412, K ′(7) ≈ 0.9160, K ′(31) ≈ 0.9767, K ′(127) ≈ 0.9937.

Even if p is not a Mersenne prime the formula for K ′(p) yields upper bounds close
to 1 already for small values of k. For instance,

K ′(5) ≤ log(1251)

(4 + 1
4 ) log(5)

≈ 1.0426.

Example 5.12 Let G = F p
r . Then a(G) = r−1

K ′(p) + 1. If H is an open subgroup of
index i , by the Nielsen-Schreier theorem for free pro-p groups [43, Theorem 3.6.2],
H is free pro-p on i(r − 1) + 1 generators; hence a(H) = i(r−1)

K ′(p) + 1. This gives

a(H)/a(G) = i
1+ K ′(p)

i(r−1)

1+ K ′(p)
(r−1)

. Since the right hand side approaches i as r tends to infinity,

this shows that the upper bound a(H)/a(G) ≤ i given in Proposition 4.3(ii) is sharp.

As in the previous section wp(n) = |n|−1
p denotes the highest p-power dividing n.

We begin with an upper bound result.

Lemma 5.13 Let q be a prime power and let k ≥ 0. If p divides q − 1, then

r∗(F p
r , Fq , p

k) ≤ wp(q − 1)p
k (r−1)+1 p

(pk−1)(r−1)
p−1 .

If n is not a p-power or n > 1 and p doesn’t divide q − 1, then r∗(F p
r , Fq , n) = 0.

Proof It is well-known that the degrees of absolutely irreducible representations of
finite p-groups are p-powers. Since the centre of the image of a non-trivial absolutely
irreducible representation acts by a non-trivial character, such representations require
the existence of pth roots of units, i.e. p | q − 1.

Write n = pk and assume p | q − 1. Fix a Sylow p-subgroup Sp of GL(n, q),
which is isomorphic to

Cwp(q−1) �Cp � · · · � Cp︸ ︷︷ ︸
k times

,

and in general |Sp| ≤ wp(q −1)n p
n−1
p−1 : see [49, Section 2]. The claimed upper bound

follows from Proposition 5.8. ��
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Proof of Theorem 5.9 The upper bound a(F p
r ) ≤ r−1

K ′(p) + 1 for the Weil abscissa fol-

lows from Proposition 5.2 in combination with r∗(F p
r , Fq , n) ≤ qn(r−1)/K ′(p)wp(q−

1) (which can be deduced from Lemma 5.13). In fact, for real s we have

log ζF p
r
(s) ≤

∑
q,n

qn(r−1)/K ′(p)wp(q − 1)q−sn q
n − 1

q − 1

�
∑
q

wp(q − 1)q−1
∞∑
n=1

qn
(
(r−1)/K ′(p)+(1−s)

)

�
∑
q

wp(q − 1)q(r−1)/K ′(p)+s = log ζZp

(
s − r − 1

K ′(p)

)

Let k ≥ 1. The cyclic group of order pk admits a 1-dimensional faithful absolutely
irreducible representation over Fq with q = ppmin(pk) and the cyclic group of order
p admits a faithful permutation representation on p elements. Corollary 5.7 implies
that

a(F p
r ) ≥ log(pk(p−1)+1)

(p − 1) log(q)
(r − 1) + 1 = (k + 1

p−1 ) log(p)

log(ppmin(pk))
(r − 1) + 1.

Taking the supremum gives the lower bound. ��

5.5 Free pro-2 groups

We consider separately the case p = 2. Let F2
r be the free pro-2 group on r generators,

with r ≥ 2.

Theorem 5.14 The abscissa of convergence for the free pro-2 group F2
r of rank r ≥ 2

is a(F2
r ) = 5 log(2)

2 log(3) (r − 1) + 1.

We take an approach similar to that used for odd primes, however, the proof requires
a number of modifications. We first discuss the upper bound for a(F2

r ). As usual we
have r∗(F2

r , F2 j , n) = 1 for n = 1 and 0 otherwise.

Lemma 5.15 Let q be an odd prime power. If q ≡ 1 mod 4, then

r∗(F2
r , Fq , 2

k) ≤ 2(2k−1)(r−1)w2(q − 1)2
k (r−1)+1.

If q ≡ 3 mod 4, then

r∗(F2
r , Fq , 2

k) ≤ 2(2k+2k−1−1)(r−1)+1w2(q + 1)2
k−1(r−1).

Proof Let S be a Sylow 2-subgroup of GL(2k, q). By Proposition 5.8, we have

r∗(F2
r , Fq , 2

k) ≤ |S|r−1|Z ∩ S|
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where Z ⊆ GL2k (Fq) denotes the group of scalar matrices. The order of the Sylow
2-subgroups of GL(2k, q) can be found in [8, Section 1]. When q ≡ 1 mod 4 we have
|S| = 22

k−1w2(q − 1)2
k
and |S ∩ Z | = w2(q − 1). When q ≡ 3 mod 4 we have

|S| = 22
k+2k−1−1w2(q + 1)2

k−1
and |S ∩ Z | = 2. ��

This gives an upper bound for the zeta function:

log(ζF2
r
)(s) ≤

∑
q,n

�(q)

log(q)
2(n−1)(r−1)w2(q − 1)n(r−1)+1 q

n − 1

q − 1
q−ns

+ 2
∑

q≡3 mod 4
n even

�(q)

log(q)
2(n+ n

2−1)(r−1)w2(q + 1)
n
2 (r−1) q

n − 1

q − 1
q−ns .

We show exactly as for F p
r with p odd that the first sum converges when s >

(r − 1)/K ′(2) + 1 with

K ′(2) = inf
k≥1

log(ppmin(2k))

(k + 1) log(2)
.

Recall that ppmin(2k) denotes the smallest prime power congruent 1 modulo 2k . Simi-
larly, let pp−

min(2
k) denote the smallest prime power congruent−1 modulo 2k . Define

K− = inf
k≥1

2 log(pp−
min(2

k))

(k + 3) log(2)
.

Then, for q ≡ 3 mod 4 and n even, r∗(F2
r , Fq , n) ≤ qn(r−1)/K−

, so the second sum
converges when s > (r − 1)/K− + 1. As in Proposition 5.10, [50, Theorem 1.6(i),
Proposition 1.7] shows that K ′(2) ≥ K− = 2 log(3)

5 log(2) ≈ 0.633985.Overall, we conclude

that a(F2
r ) ≤ 5 log(2)

2 log(3) (r − 1) + 1.
We now turn to the lower bound. The proof for the upper bound suggests that the

crucial prime power is q = 3 and it turns out that it is sufficient to consider this case.
Here the 2-dimensional representations will serve as our base case. A Sylow 2-

subgroup S of GL(2, 3) is a semidihedral group of order 16. We observe that S is
absolutely irreducible, because it is non-abelian. Indeed, an abelian group cannot be
absolutely irreducible in dimension 2. Conversely, since S is a non-abelian 2-group, the
representation on F3 is semisimple and cannot decompose into 1-dimensional pieces.
Using the action of the 2-element group on two points, we deduce from Corollary 5.7
that

a(F2
r ) ≥ log(16 · 2)

2 log(3)
(r − 1) + 1 = 5 log(2)

2 log(3)
(r − 1) + 1.
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5.6 Free prosoluble groups

In this section we discuss an upper bound for the Weil abscissa of free prosoluble
groups. Let csol = 2

3 + 5 log(2)
2 log(3) ≈ 2.24399.

Theorem 5.16 Let Fsol
r be the free prosoluble group on r generators, r ≥ 2. Then

a(Fsol
r ) = csol(r − 1) + 1.

Wecollect some results needed in the proof.By [50,Theorem3.1] and [44,Corollary
to Theorem A] we have:

Lemma 5.17 Let q be a prime power. The order of a soluble irreducible subgroup
of GL(n, q) is ≤ qcsol n . For q ≥ 11, the order of a soluble irreducible subgroup of
GL(n, q) is ≤ q(1+logq (24)/3)n.

We also use [6, Theorem 14.1]:

Lemma 5.18 The number of conjugacy classes of maximal irreducible soluble sub-
groups of GL(n, q) is at most n4 log

3(n)+4 log2(n)+log(n)+3.

Fix a prime power q and fix amaximal soluble subgroupM in each conjugacy class.
By Proposition 5.8, the number of GL(n, q)-conjugacy classes of homomorphisms to
M with absolutely irreducible image is at most |M |r−1(q − 1). We conclude that

r∗(Fsol
r , Fq , n) ≤ n4 log

3(n)+4 log2(n)+log(n)+3(q − 1)qcsol n(r−1)

for all q, and

r∗(Fsol
r , Fq , n) ≤ n4 log

3(n)+4 log2(n)+log(n)+3(q − 1)q(1+logq (24)/3)n(r−1)

for q ≥ 11.
For any ε > 0, pick Q such that logQ(24)/3 < ε. We split the series defining

log(ζFsol
r

)(s) into terms with q > Q and terms with q ≤ Q. By Lemmas 2.2 and 4.2,
the first sum converges when s > (1+ ε)(r − 1) + 2, while, for each q ≤ Q, we have
the series

∑
n

nO(log3(n))

j
q(csol (r−1)+1−s)nj ,

which converges when s > csol(r − 1)+ 1. Since the second of these bounds is larger
for r ≥ 2, we conclude a(Fsol) ≤ csol(r − 1) + 1.

The lower bound follows fromCorollary 5.7.We note that GL(2, 3) is an absolutely
irreducible soluble group of order 48 and that S4 is a soluble group of order 24.
Corollary 5.7 allows us to deduce

a(Fsol
r ) − 1 ≥ log(483 · 24)

2 · 3 · log(3) (r − 1) = csol(r − 1)
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5.7 Free pronilpotent groups

The results for free pro-p groups may be used to determine the Weil abscissa for
free pronilpotent groups. We note that the class of nilpotent groups is not closed
under extensions, so that the results from Sect. 5.3 cannot be applied directly. Let
Fnil
r = ∏

p F
p
r be the free pronilpotent group on r generators, with r ≥ 2.

Theorem 5.19 Let r ≥ 2. The Weil abscissa of ζFnil
r

is

a(Fnil
r ) =

{
3 if r = 2
5 log(2)
2 log(3) (r − 1) + 1 if r > 2.

In other words, for r ≥ 3 the free pro-2 factor of Fnil
r is responsible for most of the

representations of Fnil
r . In particular, the lower bound follows immediately from 5.14.

For r = 2 the lower bound follows from a(Ẑ2) = 3 obtained in Sect. 5.1. We will
study the corresponding upper bound now.

Lemma 5.20 Let n ≥ 1 and let q be a prime power. Then

r∗(Fnil
r , Fq , n) ≤ (q − 1)r q

5 log(2)
2 log(3) (r−1)n

.

Proof Let n = pk11 · · · pkll be the prime decomposition. Every absolutely irreducible
representation of dimension n over Fq is, by [15], of the form

θ1 ⊗ · · · ⊗ θl ⊗ χ

where θi is an absolutely irreducible representation of dimension pkii of F pi
r over Fq

and χ : ∏p�n F
p
r → F

×
q is a homomorphism. Now Proposition 5.8 gives

r∗(Fnil
r , Fq , n) ≤ (q − 1)r

l∏
i=1

S(pi , q)r−1

where S(pi , q) is the order of a Sylow pi -subgroup of GL(pkii , q).
We note that q and n are coprime. Sowe know by [50, Theorem 1.6] that S(pi , q) ≤

q
5 log(2)
2 log(3) p

ki
i . Therefore we have

r∗(Fnil
r , Fq j , n) ≤ (q − 1)r q

5 log(2)
2 log(3) (r−1)

∑l
i=1 p

ki
i ≤ (q − 1)r q

5 log(2)
2 log(3) (r−1)n

.

��
Proof of the upper bounds in Theorem 5.19 We adapt the argument used for the free
prosoluble group. For any ε > 0, pick Q such that logQ(24)/3 < ε. We split the
sum log(ζFnil

r
)(s) into terms with q > Q and terms with q ≤ Q. As for prosoluble
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groups we infer r∗(Fnil
r , Fq , n) ≤ nO(log3(n))(q − 1)q(1+logq (24)/3)n(r−1) for q ≥ 11

from Lemmas 5.17 and 5.18. Thus we see by Lemmas 2.2 and 4.2 that the first sum
converges when s > (1 + ε)(r − 1) + 2, while, for each q ≤ Q, we have the upper
bound

∑
n

(q − 1)r q(
5 log(2)
2 log(3) (r−1)+1−s)n ≤ Qr

∑
n

q(
5 log(2)
2 log(3) (r−1)+1−s)n

,

which converges when s >
5 log(2)
2 log(3) (r − 1) + 1.

We note that 5 log(2)
2 log(3) > 3

2 . Therefore, when r > 2, the second bound is larger, and

we conclude a(Fnil
r ) ≤ 5 log(2)

2 log(3) (r − 1) + 1. When r = 2, the first bound is larger, and

we conclude a(Fnil
2 ) ≤ 3. ��

5.8 Pronilpotent groups of finite rank

Let G be a profinite group. Recall that the rank of G is the supremum of the minimal
number of generators of all open subgroups; see [12, 3.11].

Proposition 5.21 Let G be a pronilpotent group of finite rank r . Then a(G) ≤ r + 1.

The bound is sharp for the free abelian profinite group Ẑ
r .

Proof We consider the one-dimensional and higher dimensional representations sep-
arately. The one-dimensional representations factor through the abelianisation, which
itself is a factor of Ẑ

r . Hence the sum of the contributions for all one-dimensional
representations converges for Re(s) > r + 1; see 5.1.

Let n ≥ 1 and let q be a prime power. When q ≡ 1 mod 4, or when n is odd, every
absolutely irreducible representation of G over Fq is monomial by [11, Theorem 5.3].
When q ≡ 3 mod 4 and n is even, every absolutely irreducible representation of G
over Fq j is induced from one of dimension ≤ 2, by [11, Theorem 5.1]. We may count
the absolutely irreducible primitive representations of dimension 2 using the structure
theory of [10]: by [10, Proposition 4.2], an absolutely irreducible primitive nilpotent
subgroup G of GL(2, q) is a direct product G2 × C where G2 is a primitive 2-group
and C is a group of scalars of odd order. If q ≡ 3 mod 4, then 4w2(q + 1) is the order
of a Sylow 2-subgroup of GL(2, q). Let an(G) denote the number of subgroups of
index n in G. Taking into account the monomial representations and, if needed, those
induced from 2-dimensional representations, we deduce

r∗(G, Fq , n) ≤ an(G)(q − 1)r + δn,qan/2(G)(4c2(q + 1))r
(q − 1

2

)r

where δn,q ∈ {0, 1} depending on whether q ≡ 3 mod 4 and n is even. Since G has
finite rank, it has polynomial subgroup growth (see [34, 10.1]); hence, we get an upper
bound of the form

r∗(G, Fq , n) ≤ bnq
2r
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where bn is a function which grows at most polynomially in n.
We use this to estimate the contribution to ζG from representations of dimension at

least 2 and obtain

∑
q, j

∑
n≥2

r∗(G, Fq j , n)

j
q− jns q

jn − 1

q j − 1
≤
∑
q, j

1

j

∑
n≥2

bnq
2r j q− jnsq j(n−1)

≤
∑
q, j

q(2r−1) j

j

∑
n≥2

bnq
j(1−s)n

The inner sum converges for Re(s) > 1 and the result is bounded by q2(1−s) j+ε for any
ε > 0 up to a constant. We deduce that the series converges for Re(s) > r + 1+ ε/2.
Since ε was arbitrary, the result follows. ��

5.9 Free pro-C groups, II

Let C be a NE-formation of finite groups containing the cyclic groups of prime order.
Let FC

r be the free pro-C group on r generators. If C contains alternating groups of
arbitrarily large degree, or classical groups with natural representation of arbitrarily
large dimension, an application of Theorem 5.5 shows that FC

r does not have UBERG.
Assume it does not. Let c0 be maximal such that Alt(c0) ∈ C.

To make the results in this section work, we will need to assume that c0 is suffi-
ciently large. Specifically, let C0 be an absolute constant such that (C0!)1/(C0−1) ≥
max((2ct )4, 22c4+4ci+2), where ct , c4, ci are the (effectively computable) constants
defined in [24]; we will refer to these constants without further comment in the rest
of this section. (By Stirling’s approximation, (C0!)1/(C0−1) → ∞ as C0 → ∞, so the
required C0 does exist.) We will assume for the rest of Sect. 5.9 that c0 > C0.

To make the calculation of the Weil abscissa of FC
r easier, we start by showing that

only certain types of absolutely irreducible representations need to be considered. Just
as, for soluble groups, theWeil abscissa is dominated by representations whose image
is in a wreath productGL(2, F3)�Sym(4)�· · ·�Sym(4), here the abscissa is dominated
by representations whose image is in a wreath product N�LF

p j
(β,Fpk )(E) � Sym(c0) �

· · ·�Sym(c0), for E a classical or alternating groupwith natural representation overFpk

of dimension β. (Here, for an alternating group, by the natural representation wemean
the fully deleted permutation module defined in [28, Section 5.3, Alternating groups].)
Note that, when E ∈ C is classical or alternating, Out(E) and C�LF

p j
(β,Fpk )(E) are

soluble, so N�LF
p j

(β,Fpk )(E) ∈ C and hence N�LF
p j

(β,Fpk )(E)�Sym(c0)�· · ·�Sym(c0)

is too.
For p a prime and j, n ≥ 1 integers, consider the set of all classical or alternating

groups E ∈ C with natural representation over Fpk of dimension β, such that j |k and
n = β k

j c
l
0, for some l. We define r∗

D(FC
r , Fp j , n) to be the sum over all such E of

|N�LF
p j

(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)︸ ︷︷ ︸
l times

|r−1 p j .
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Theorem 5.22 The abscissa of convergence of ζFC
r
(s) is at most that of �D =

∑
p, j,n

r∗
D(FC

r ,Fp j ,n)

j p−sn j |Pn−1(Fp j )|.
We will prove this in a series of smaller results.

5.9.1 Permutation group results

We recall following the well known result of

Proposition 5.23 Let P be a primitive permutation group of degree n and suppose
that P does not contain Alt(n). Then the order of P is at most 4n.

Proposition 5.24 If G ≤ Sym(n) is a transitive permutation group in C then
log(|G|) ≤ n−1

c0−1 log(c0!), and the orders of the iterated wreath products

Sk = Sym(c0) � · · · � Sym(c0)︸ ︷︷ ︸
k times

≤ Sym(ck0)

attain this bound. Thus, |G| ≤ (c0!)(n−1)/(c0−1), and the supremum of log(|G|)/n over
all n and G ∈ C is log(c0!)

c0−1 .

Proof We have G ≤ P1 � · · · � Pl for some primitive P1, . . . , Pl of degrees s1, . . . , sl
respectively, with Pi induced by the stabiliser in G of a minimal block in the quotient
action of G on a set of n/(s1 · · · si−1) elements. If s1, . . . , sl ≤ c0, the proof is a
straightforward induction which we leave to the reader. Suppose instead that (without
loss of generality) s1, . . . , si−1 ≤ c0, and si > c0. Write Gi (respectively, Gi+1)
for the image of G in the quotient Pi � · · · � Pl (respectively, Pi+1 � · · · � Pl ). By
the inductive hypothesis, log(|Gi+1|) ≤ si+1···sl−1

c0−1 log(c0!). If Pi does not contain
Alt(si ), |Pi | ≤ 4si by Proposition 5.23, and we calculate log(|Gi |) ≤ si · · · sl log(4)+
log(|Gi+1|) ≤ si · · · sl log(4)+ si+1···sl−1

c0−1 log(c0!) ≤ si ···sl−1
c0−1 log(c0!). Indeed, because

si > c0 > C0 > 9, this implies that log(c0!)
c0−1 > c0+1

c0
log(4) ≥ si

si−1 log(4), and hence

si · · · sl log(4) ≤ (si−1)si+1 · · · sl log(c0!)c0−1 and the result follows. If Pi contains Alt(si ),

consider H = Gi ∩Psi+1···sl
i : this is normal inGi , so inC. SinceG permutes the factors

transitively, if H is non-trivial, the image of H in each copy of Pi is a non-trivial normal
subgroup of Pi , so it contains Alt(si ), giving a contradiction. Therefore H is trivial,
and log(|Gi |) ≤ si+1···sl−1

c0−1 log(c0!) ≤ si ···sl−1
c0−1 log(c0!).

Finally, log(|G|) ≤ si · · · sl log(|P1 � · · · Pi−1|) + log(|Gi |), so by the inductive
hypothesis, log(|G|) ≤ log(c0!)

c0−1 ((s1 · · · si−1−1)si · · · sl+si · · · sl−1) = n−1
c0−1 log(c0!),

as required.

For the second claim, we have |Sk | = |Sym(c0)|ck−1
0 +ck−2

0 +···+c10 , so log(|Sk |) =
ck0−1
c0−1 log(c0!). ��

In fact the proof shows more:
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Corollary 5.25 Suppose G ≤ P1 � · · · � Pl is in C, with P1, . . . , Pl primitive per-
mutation groups of degree s1, . . . , sl . If s1, . . . , si−1 ≤ c0 and si > c0, |G| ≤
4si ···sl (c0!)

n−si ···sl+si+1 ···sl−1
c0−1 .

Proof The proof of the proposition shows log(|Gi |) ≤ si log(4) + si+1···sl−1
(c0−1) log(c0!).

So log(|G|) ≤ si · · · sl log(|P1 � · · · � Pi−1|) + si · · · sl log(4) + si+1···sl−1
(c0−1) log(c0!) ≤

n−si ···sl+si+1···sl−1
c0−1 log(c0!) + si · · · sl log(4). ��

Lemma 5.26 Let s1, . . . , sl be fixed. Suppose G ∈ C is an r-generated transitive
permutation group such that G ≤ P1 � · · · � Pl for some primitive P1, . . . , Pl of
degrees s1, . . . , sl . Suppose Alt(s1), . . . , Alt(si−1) ∈ C and Alt(si ) /∈ C. Then up to
conjugacy in Sym(n), for the constant ct defined in [24, Theorem 3.1], G is contained
in one of at most crsi ···slt subgroups of Sym(s1) � · · · � Sym(si−1) � Pi � · · · � Pl which
are in C.

Proof By [24, Theorem 3.1], there are at most crsi ···slt possibilities for the image G ′ of
G in Pi � · · · � Pl up to conjugacy. The result follows immediately. ��

5.9.2 Linear group results

Suppose G ≤ GL(n, p j ) is in C and irreducible. We can write G ≤ P � T , where
P ≤ GL(b, p j ) is primitive, and T ≤ Sym(t), t = n/b, is transitive and in C – but
note that in general P need not be in C. We can also write T ≤ P1 � · · · � Pl as in the
last section, with P1, . . . , Pl primitive permutation groups of degrees s1, . . . , sl such
that s1 · · · sl = t .

In the case |P| > pc4bj , we will need to fix some additional notation, following
[24, Proposition 5.7]. Suppose Fpk′ = Z(EndF∗(P)(F

b
p j )). In this case, there exist

A ≤ �LFp j
(α, Fpk′ ), B ≤ �LFp j

(β, Fpk′ ) such that P ≤ A � B (so that αβk′ = bj

and t = (nj)/(αβk′)). These have the property that F
×
pk′ ≤ A, F

×
pk′ ≤ B, and β ≥ α,

so that |A| ≤ p(α2+1)k′ ≤ pbj+k′
. Also, E(B) is either a classical group over a subfield

Fpk of Fpk′ with natural representation in dimension β with scalars extended to Fpk′ ,
or an alternating group with natural representation over Fpk′ in dimension β.

For each classical group E ∈ C over Fpk with natural representation in dimension

β, define cE by |N�LFp (β,Fpk )(E)| = pcEβk (so that |N�LF
p j

(β,Fpk )(E)| = 1
j p

cEβk).

For each alternating group E ∈ C with natural representation over Fpk in dimension

β, define cE,pk by |N�LFp (β,Fpk )(E)| = pcE,pk βk . We have |N�LFp (β,Fpk )(Alt(d))| =
|Out(Alt(d))|k(pk − 1) (with Out(Alt(d)) = Sym(d) for d �= 6), and β = d − 1
or d − 2, so an easy calculation shows that cAlt(d),pk < cAlt(d),2 for any pk > 2 and
d ≥ 5. When the choice of field is clear, we may suppress the dependence on pk in
the notation.

We want to count representations of FC
r with image G. We consider several classes

of possibilities for G. The strategy for each class is to show that G is contained in
some larger subgroup of GL(n, p j ) in C which has an easy-to-describe form, such
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that we can bound both the order of these larger subgroups and the number of such
subgroups up to conjugacy.

1. |P| ≤ pc4bj .

Proposition 5.27 The number r∗
1 (FC

r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 1 is at most

pc4(r−1)nj+ j+ci rn j (c0!)
(r−1)(n/2−1)

c0−1 . (5.1)

Proof Suppose G is in class 1. By Proposition 5.24, |G| ≤ pc4nj (c0!)
t−1
c0−1 , where

t ≤ n/2. By [24, Proposition 6.1], up to conjugacy in GL(n, p j ), there are at most
pci rn j possibilities for the image G of FC

r . The result follows by Proposition 5.8. ��

2. G is not in class 1, and E(B) is not in C.

Proposition 5.28 The number r∗
2 (FC

r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 2 is at most p2(r−1)nj+ j+ci rn j (c0!)

(r−1)(n/2−1)
c0−1 .

Proof SupposeG is in class 2. Consider H = G∩E(B)t , which is normal inG, so inC.
If H � Z(E(B))t , since the factors are permuted transitively, the image of H in each
copy of E(B) is a non-trivial normal subgroup of E(B), so it contains E(B), giving
a contradiction. Therefore H ≤ Z(E(B))t . Also, |N�LF

p j
(β,F

pk
′ )(E(B))/E(B)| is at

most

|C�LF
p j

(β,F
pk

′ )(E(B))||Out(E(B)/Z(E(B)))| ≤ k′

j
p2bj ≤ 1

j
p3bj

by [24, Lemma 2.6, Proposition 5.7]. So, by Proposition 5.24, |G| ≤ 1
j t p

3nj (c0!)
t−1
c0−1 ,

with t ≤ n/2.
As for class 1, there are at most pci rn j possibilities for G. The result follows by

Proposition 5.8. ��

3. G is not in classes 1 or 2.
In this case, we have

|B| ≤ |N�LF
p j

(β,F
pk

′ )(E(B))| ≤ k′

k j
pcE(B)βk+k′ ≤ 1

j
pcE(B)βk+2k′

.

Moreover, B ∈ C, because CGL(β,F
pk

′ )(E(B)) is cyclic and Out(E(B)) is soluble.

We divide class 3 into classes 3.E of groups G in class 3 such that E(B) = E , over
all classical and alternating groups E in C. We subdivide these classes further.

3.E .1. α > 1.
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Proposition 5.29 The number r∗
E .1(F

C
r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 3.E.1 is at most

n j

βk
crnj/(2βk)t

(
1

j

)(r−1)(nj)/(βk)

p(cE/2+2)(r−1)nj+ j (c0!)
(r−1)((nj)/(2βk)−1)

c0−1 .

Proof Since βk′ ≤ bj/2, we have |B| ≤ 1
j p

cE(B)bj/2+bj . Therefore |P| ≤ |A � B| =
|A||B|/pk′ ≤ 1

j p
cE(B)bj/2+2bj , and hence, by Proposition 5.24,

|G| ≤
(
1

j

)(nj)/(βk′)
p(cE(B)/2+2)nj (c0!)

(nj)/(2βk′)−1
c0−1 .

In this class, we have G ≤ (�LFp j
(α, Fpk′ ) � N�LF

p j
(β,F

pk
′ )(E(B))) � T . There

are at most nj
βk choices for α and then, by [24, Theorem 3.1], at most crnj/(2βk)t choices

for T up to conjugacy, giving nj
βk c

rnj/(2βk)
t possibilities altogether. The result follows

by Proposition 5.8. ��

3.E .2. G is not in class 3.E .1, and k′ > k.

Proposition 5.30 The number r∗
E .2(F

C
r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 3.E.2 is at most

crnj/(βk)t

(
1

j

)(r−1)(nj)/(βk)

p(cE/2+3)(r−1)nj+ j (c0!)
(r−1)((nj)/(βk)−1)

c0−1 .

Proof Here we may choose B to be P , so

|P| = |B| ≤ 1

j
pcE(B)βk+2k′ ≤ 1

j
p(cE(B)/2+2)βk′ = 1

j
p(cE(B)/2+2)bj ,

and hence |G| ≤
(

1
j

)(nj)/(βk′)
p(cE(B)/2+2)nj (c0!)

(nj)/(βk′)−1
c0−1 by Proposition 5.24.

In this class, we have G ≤ N�LF
p j

(β,F
pk

′ )(E(B))) � T . There are at most crnj/(βk)t

choices for T up to conjugacy, by [24, Theorem 3.1], and hence at most crnj/(βk)t
possibilities for N�LF

p j
(β,F

pk
′ )(E(B))) � T . The result follows by Proposition 5.8. ��

3.E .3. G is not in classes 3.E .1 or 3.E .2, and some si is greater than c0.

Proposition 5.31 The number r∗
E .3(F

C
r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 3.E.3 is at most
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2log2((nj)/(βk))
2
crsi ···slt

(
1

j

)(r−1)(nj)/(βk)

pcE (r−1)nj+ j4(r−1)si ···sl ·

·(c0!)
(r−1)((nj)/(βk)−si ···sl+si+1···sl−1)

c0−1 .

Proof Note that l ≤ log2((nj)/(βk)), and there are at most (nj)/(βk) choices for
each si , so there are at most ((nj)/(βk))log2((nj)/(βk)) = 2log2((nj)/(βk))

2
possibilities

for s1, s2, . . . , sl . Fix one possibility.
Without loss of generality, we assume that s1, . . . , si−1 ≤ c0. Because k = k′, we

have |P| ≤ 1
j p

cE(B)bj . By Corollary 5.25, we have

|G| ≤
(
1

j

)(nj)/(βk)

pcE(B)nj4si ···sl (c0!)
(nj)/(βk)−si ···sl+si+1···sl−1

c0−1 .

By Lemma 5.26, for fixed s1, . . . , sl , G is contained in one of at most crsi ···slt
possibilities in C in this class, up to conjugacy. The result follows by Proposition 5.8.

��

3.E .4. G is not in classes 3.E .1 or 3.E .2 or 3.E .3.

Proposition 5.32 The number r∗
E .4(F

C
r , Fp j , n) of absolutely irreducible representa-

tions of FC
r with image in class 3.E.4 is at most

2log2((nj)/(βk))
2
(
1

j

)(r−1)(nj)/(βk)

pcE (r−1)nj+ j (c0!)
(r−1)((nj)/(βk)−1)

c0−1 .

Proof As before, there are at most 2log2((nj)/(βk))
2
possibilities for s1, . . . , sl . Fix one.

Then G ≤ N�LF
p j

(β,F
pk

′ )(E(B))) � Sym(s1) � · · · � Sym(sl), so

|G| ≤
(
1

j

)(nj)/(βk)

pcE(B)nj (c0!)
(nj)/(βk)−1

c0−1

by Proposition 5.24. The result follows by Proposition 5.8. ��
Proof of Theorem 5.22 Recall, for G in class 3.E , that cE(B) > c4 > 4, and that
Alt(si ) ∈ C for si < 5. Since (c0!)1/(c0−1) ≥ (2ct )4, a calculation shows that the
bounds for r∗

E .1(F
C
r , Fp j , n), r∗

E .2(F
C
r , Fp j , n) and r∗

E .3(F
C
r , Fp j , n) are at most

2log2((nj)/(βk))
2
(
1

j

)(r−1)(nj)/(βk)

pcE (r−1)nj+ j (c0!)
(r−1)((nj)/(βk)−1)

c0−1 . (5.2)

Also, it is clear that the upper bound for r∗
2 (FC

r , Fp j , n) is less than the upper bound

for r∗
1 (FC

r , Fp j , n).
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We have shown that r∗(FC
r , Fp j , n) is at most

2pc4(r−1)nj+ j+ci rn j (c0!)
(r−1)(n/2−1)

c0−1 (5.3)

+ 4
∑
E∈C

2log2((nj)/(βk))
2
(
1

j

)(r−1)(nj)/(βk)

pcE (r−1)nj+ j (c0!)
(r−1)((nj)/(βk)−1)

c0−1 , (5.4)

so log(ζG) ≤ 2�1 + 4�2 where

�1 =
∑
p∈P

∞∑
j,n=1

f1(p, n, j)

j
p−sn j |Pn−1(Fp j )|,

�2 =
∑
E∈C

∑
p∈P

∞∑
j,n=1

f2(p, n, j)

j
p−sn j |Pn−1(Fp j )|,

f1(p, n, j) and f2(p, n, j) are the functions appearing in (5.3) and (5.4). Therefore,
a(G) is at most the maximum of the abscissae of �1 and �2. We have Sym(c0) ∈ C,
with (absolutely irreducible) natural representation over F2 of dimension c0 − δ(c0),
where δ(c0) = 1 or 2 for odd or even c0, respectively. By Theorem 5.5, we have
a(FC

r ) ≥ log(c0!)
(c0−δ(c0)) log(2)

(r − 1) + 1. On the other hand, the abscissa of �1 is at most

c4(r −1)+cir + log(c0!)(r−1)
2 log(2)(c0−1) +2 by Lemma 2.2. So when (c0!)1/(c0−1) > 22c4+4ci+2,

a calculation shows that we have a(G) larger than the abscissa of �1, and hence at
most that of �2.

For each E ∈ C, and each n = β k
j c

l
0, some l, we have

|N�LF
p j

(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)| =
(
1

j

)(nj)/(βk)

pcEnj (c0!)
(nj)/(βk)−1

c0−1 ,

by Proposition 5.24. So the sum

cl0∑
(nj)/(βk)=1

2log2((nj)/(βk))
2
(
1

j

)(r−1)(nj)/(βk)

pcE (r−1)nj+ j (c0!)
(r−1)((nj)/(βk)−1)

c0−1

is at most cl02
log2(c

l
0)

2 |N�LF
p j

(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)|r−1 p j . It follows,

using the usual techniques, that the abscissa of �2 is at most that of �D , by summing
both over n for a fixed E and j , and then by summing over E and j . ��

In fact, we can do slightly better: for p a prime and n ≥ 1 an integer, consider the
set Sp,n of all classical or alternating groups E ∈ C with natural representation over
Fpk of dimension β, such that n = βkcl0, for some l. We define r∗

D′(FC
r , Fp, n) to be

the sum over Sp,n of
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|N�L(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)︸ ︷︷ ︸
l times

|r−1 p.

Corollary 5.33 The abscissa of convergence of ζFC
r
(s) is at most that of �D′ =∑

p,n r
∗
D′(FC

r , Fp, n)p−ns |Pn−1(Fp)|.
Proof It is enough to show that �D′ has the same abscissa as �D . Clearly �D′ ≤ �D ,
so one direction is trivial. We prove the converse.

For a fixed classical or alternating group E with natural representation over Fpk of

dimension β, and fixed l (so that nj = βkcl0), the contribution to �D is

∑
j : j |k

|N�LF
p j

(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)|r−1 p j

j
p−sn j |Pn−1(Fp j )|

≤ 2
∑
j : j |k

|N�LF
p j

(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)|r−1 p−sβkcl0(pβkcl0−1)

≤ 2k|N�L(β,Fpk )(E) � Sym(c0) � · · · � Sym(c0)|r−1 p−sβkcl0(pβkcl0−1),

which is at most 2k times the contribution of this fixed E and l to �D′ . Summing over
E and l, Lemma 4.2 now gives the result. ��

Let cC,space be the supremum of cE + logp(c0!)
βk(c0−1) over all classical and alternating

groups E ∈ C. For a constant K , let cC,time,K be the supremum of cE over all classical
and alternating groups E such that pk ≥ K , and let cC,time = infK (cC,time,K ); clearly
cC,time ≤ cC,time,K ≤ cC,space for any K .

Theorem 5.34 cC,space(r − 1) + 1 ≤ a(FC
r ) ≤ max(cC,space(r − 1) + 1, cC,time(r −

1) + 2).

Proof The lower bound follows from Corollary 5.7 by taking, for all ε > 0, S =
N�LFp (n,Fpk )(E) for some E ∈ Cwith cE+ logp(c0!)

βk(c0−1) > cC,space−ε, and T = Sym(c0).

The number of groups E contributing to r∗
D(FC

r , Fp j , n) is at most 7n2: there are
at most n choices for each of β and k, and then at most 7 choices of classical or
alternating group. So r∗

D(FC
r , Fp j , n) ≤ 7n2 pcC,space(r−1)nj+ j .

To prove the upper bound, we may split our sum into the sum

∑

p, j,n:p j≥K

r∗
D(FC

r , Fp j , n)

j
p−njs p

nj − 1

p j − 1

and finitely many sums of the form

∑
n

r∗
D(FC

r , Fp j , n)

j
p−njs p

nj − 1

p j − 1
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with p j fixed. Each of the sums with p j fixed converges for s > cC,space(r − 1) + 1.

On the other hand,
logp(c0!)
βk(c0−1) → 0 as pk → ∞. So for all ε > 0, we can pick K large

enough that for pk ≥ K , we have r∗
D(FC

r , Fp j , n) ≤ 7n2 p(cC,time+ε)(r−1)nj+ j . Since
ε is arbitrary, we get the result by Lemmas 2.2 and 4.2. ��

As examples, we will now calculate the abscissa in more detail for two specific
NE-formations. Let CAlt(c0) be the NE-formation generated by the cyclic groups of
prime order and the alternating groups of degree ≤ c0; let C�(c0) be the NE-formation
generated by the class of groups defined in [2]: that is, all the simple groups in CAlt(c0),
all exceptional groups of Lie type, all non-abelian simple groups of order at most c0,
and all classical simple groups whose natural representation has dimension at most
c0. None of the calculations below would be affected if we followed [34, Window:
Permutation groups, Section 2] in also including all the sporadic simple groups (this is
not done in [2] only because the classification of finite simple groups was incomplete
when the paper was written), so our results also hold in this case.

5.9.3 CAlt(c0)

Let δ(c0) = 1 or 2 for odd or even c0, respectively.

Theorem 5.35 Suppose that c0 > C0. For any r ≥ 2,

a(F
CAlt(c0)

r ) = c0 log2(c0!)
(c0 − δ(c0))(c0 − 1)

(r − 1) + 1.

Proof Recall that, for E alternating, of degree ≥ 5, that cE,pk , over all fields Fpk ,
is maximised when pk = 2. In this case, we have |N�LFp (β,Fpk )(E)| = c0!, and
β = c0 − δ(c0). So c0! = 2cAlt(c0)(c0−δ(c0)) and cAlt(c0) = log2(c0!)

c0−δ(c0)
.

In fact,
logp(c0!)
βk(c0−1) is also maximised in this case, giving log2(c0!)

β(c0−1) . So cCAlt(c0),space =
supa≤c0(

log2(a!)
a−δ(a)

+ log2(c0!)
(a−δ(a))(c0−1) ) = log2(c0!)

c0−δ(c0)
+ log2(c0!)

(c0−δ(c0))(c0−1) = c0 log2(c0!)
(c0−δ(c0))(c0−1) .

On the other hand, the same proof shows that for pk ≥ K large, cE,pk ≤ logK (c0!)+1
c0−2 .

So cCAlt(c0),time ≤ 1
c0−2 , and hence, for any r ≥ 2,

a(F
CAlt(c0)

r ) ≤ c0 log2(c0!)
(c0 − δ(c0))(c0 − 1)

(r − 1) + 1.

This is also the lower bound for a(F
CAlt(c0)

r ) given by Theorem 5.34. ��
Stirling’s approximation shows that c0 log2(c0!)

(c0−δ(c0))(c0−1) ∼ log2(c0) as c0 → ∞.

Remark 5.36 In fact, this approach can be used to show that we could modify the
definition of �D′ to consider, in the contributions of alternating groups to the sum,
only their natural representations over F2, and the statement of Corollary 5.33 would
still hold.
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5.9.4 C6(c0)

For a prime power pk , define ρ(pk) = (c0−1) log(k
∏c0

i=1(1−p−ik ))+log(c0!)
c0(c0−1) log(pk )

.

Theorem 5.37 Suppose that c0 > C0. For any r ≥ 2, a(F
C�(c0)

r ) = (c0 + ρ(2))(r −
1) + 1. Moreover, log(c0)

(c0−1) log(2) − 3
c0 log(2)

< ρ(2) <
log(c0)

(c0−1) log(2) .

Proof By hypothesis, for any prime power pk and any classical or alternating E ∈
C�(c0) defined over Fpk , E has natural representation of dimension β, some β ≤
c0. Since GL(c0, Fpk ) ∈ C�(c0), it is straightforward to show that, for any prime

power pk , |N�LFp (β,Fpk )(E)| ≤ p
cSL(c0,F

pk
)βk

(see [28, Table 2.1.C]). We calculate

|�LFp (c0, Fpk )| = kpc
2
0k
∏c0

i=1(1 − p−ik) = p
cSL(c0,F

pk
)c0k

. As pk → ∞, cpk →
c0, so cC�(c0),time = c0. Similarly, we see that

logp(|N�LFp (β,F
pk

)(E)|)
βk + logp(c0!)

βk(c0−1) is

maximised, for each pk , by β = c0 and E = SL(c0, Fpk ), so cC�(c0),space is given by

suppk (cSL(c0,Fpk ) + logp(c0!)
kc0(c0−1) ) = c0 + suppk ρ(pk).

We split the sum
∑

p, j,n
r∗
D(FC

r ,Fp j ,n)

j p−njs pnj−1
p j−1

as follows. For any ε > 0, set K

large enough that ρ(pk) < ε for p j ≥ K . For each p j < K ,�1(p j ) is the sum over n
of terms with p j fixed. �2 is the sum over p, j, n of terms with p j ≥ K and n ≥ c0.
For each n < c0, �3(n) is the sum over p, j such that p j ≥ K , with n fixed. This

partitions the terms of
∑

p, j,n
r∗
D(FC

r ,Fp j ,n)

j p−njs pnj−1
p j−1

into finitely many parts.

Each �1(p j ) converges for s > cC�(c0),space(r − 1) + 1 = (c0 + suppk ρ(pk))(r −
1) + 1.

Next, �2 ≤ ∑
p, j,n:p j≥K ,n≥c0 7n

22log2(nj)
2
p((c0+ε)(r−1)+1−s)nj . This has the

same abscissa of convergence as
∑

p, j,n:p j≥K ,n≥c0 p
−tn j , by Lemma 4.2, for s =

(c0 + ε)(r − 1) + 1 + t . Summing over n first, we get
∑

p, j :p j≥K
p−tc0 j

1−p−t j �∑
p, j :p j≥K p−tc0 j , where the implicit constant depends only on t ; the latter sum

converges when t > 1/c0.
Finally, for each n < c0, |�LFp (n, p j )| ≤ p(n+ε)nj . As before, we get that �3(n)

has the same abscissa of convergence as
∑

p, j :p j≥K p((n+ε)(r−1)+1−s)nj , which con-
vergeswhen s > (n+ε)(r−1)+1+1/n, and this bound is< (c0+ε)(r−1)+1+1/c0.

Since ε was arbitrary, to show a(F
C�(c0)

r ) ≤ (c0 + suppk ρ(pk))(r − 1) + 1, it
remains to show that (c0 + suppk ρ(pk))(r − 1) + 1 ≥ c0(r − 1) + 1 + 1/c0, or
equivalently that suppk ρ(pk)(r − 1) ≥ 1/c0. We first find a bound for log(

∏c0
i=1(1−

2−i )) ≥ ∑∞
i=1 log(1 − 2−i ). We can write log(1 − 2−i ) as a Taylor series to get∑∞

i=1 log(1 − 2−i ) = −∑∞
i=1

∑∞
ι=1

2−ιi

ι
. Changing the order of summation, we get

−∑∞
ι=1

∑∞
i=1

2−ιi

ι
= −∑∞

ι=1
2−ι

ι(1−2−ι)
= −∑∞

ι=1
1

ι(2ι−1) > −∑∞
ι=1

1
2ι−1 = −2. So

the whole sum is absolutely convergent, and we conclude log(
∏c0

i=1(1 − 2−i )) >

−2. Moreover, log(c0!) > c0(log(c0) − 1) by Stirling’s approximation, so ρ(2) >



Weil zeta functions of group representations over finite. . . Page 43 of 57 46

log(c0)−1
(c0−1) log(2) − 2

c0 log(2)
>

log(c0)
(c0−1) log(2) − 3

c0 log(2)
. Therefore, because c0 > C0 > 2e3,

the result holds.
We wish to show that suppk ρ(pk) = ρ(2) ≤ log(c0)

(c0−1) log(2) ; we have already

shown the lower bound for ρ(2). For each pk , we have the upper bound ρ(pk) <
log(k)+log(c0!)
c0(c0−1) log(pk )

<
log(k)+log(c0)
(c0−1) log(pk )

. Since c0 > C0 > 8, a calculation shows, for pk ≥ 3,

ρ(pk) <
log(k)+log(c0)
(c0−1) log(pk )

<
log(c0)−3
c0 log(2)

< ρ(2) <
log(c0)

(c0−1) log(2) .

Finally, for the lower bound on a(F
CAlt(c0)

r ), (c0 + ρ(2))(r − 1) + 1 is given by
Theorem 5.34. ��

The reader may generate their own examples, but we mention the following gener-
alisation of the previous two theorems, which follows from essentially the same proof
without any additional work, as the reader may verify. Suppose, for each of the types
Ad , Bd ,Cd , Dd ,

2 Ad ,
2 Dd of classical groups (where d denotes the Lie rank), we pick

some non-negative integers dA, dB , dB , dD, d(2A), d(2D). Let C be the NE-formation
generated by some subset of the cyclic groups of prime order including C2 and C3,
some subset of the sporadic groups, some subset of the exceptional groups of Lie
type, some subset of the alternating groups of degree ≤ c0 including Alt(c0), some
subset of the classical groups of type Ad(q) (if dA > 0) over all d ≤ dA and all
prime powers q including AdA(2), and similarly for the other classical groups (for the
Steinberg groups 2Ad

(2 A)
(q2) and 2Dd

(2D)
(q2), we assume 2Ad

(2 A)
(4) and 2Dd

(2D)
(4)

are in C). Including C3 ensures that the normalisers of the Steinberg groups in C in
the corresponding general linear groups over F4 are also in C; including C2 ensures
Sym(c0) ∈ C. C2 and C3 also ensure that Theorem 5.5 applies.

Theorem 5.38 Suppose c0 > C0. For any r ≥ 2, a(FC
r ) = cC,space(r −1)+1, where

cC,space = max

{
cAlt(c0) + log2(c0!)

(c0 − δ(c0))(c0 − 1)
, cAdA (2) + log2(c0!)

(dA + 1)(c0 − 1)
,

cBdB (2) + log2(c0!)
(2dB + 1)(c0 − 1)

, cCdC (2) + log2(c0!)
2dC (c0 − 1)

, cDdD (2) + log2(c0!)
2dD(c0 − 1)

,

c(2Ad
(2 A)

)(4) + log2(c0!)
2(d(2A) + 1)(c0 − 1)

, c(2Dd
(2D)

)(4) + log2(c0!)
4d(2D)(c0 − 1)

}
.

Note that analogous results can still be proved without the assumption that AdA (2),
etc., are in C, but in this case the constant C0 may have to be increased, as a function
of the smallest pk such that AdA(p

k), etc., are in C. By contrast, C0 does not depend
on dA, etc.

Up to error terms which tend to 0 as q → ∞, the values given in [28, Table 5.1.A,
Table 5.4.C] show that cAdA (q) = dA + 1; cBdB (q) = dB + 1/(2dB + 1); cCdC (q) =
dC + 1/2 + 1/(2dC ); cDdD (q) = dD − 1/2 + 1/(2n); c(2Ad

(2 A)
)(q2) = d(2A)/2 + 1/2;

c(2Dd
(2D)

)(q2) = d(2D)/2 − 1/4 + 1/(2n).
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6 Groups with arbitrary abscissae

In this section we will prove Theorem E. In passing we mention that similar results
for other types of zeta functions have been obtained by Kassabov [27] and Klopsch-
Piccolo (unpublished).

For n a positive integer, let π(n) ≤ log2(n) denote the number of prime factors of
n with repetitions (for example, π(2k) = k). In particular, we set π(1) = 0.

Theorem 6.1 Let Gα = ∏
p>3 SL(2, p)
pα�, for any real α ≥ 0. Then ζGα (s) has

abscissa of convergence α/2 + 1.

Proof of Theorem E Let p > 3 be a prime. We first list a few general facts about the
representations of SL(2, p) that we will use. Since p > 3, the group PSL(2, p) is
simple. It is known that (see [20, Section 8]) SL(2, p) has exactly one absolutely
irreducible representation in each dimension d ∈ {1, . . . , p}, over the field Fp j for all
j . Let q �= p be a prime. The group SL(2, p) has non-trivial absolutely irreducible
representations over Fq j only in dimensions ≥ (p − 1)/2 by [28, Theorem 5.3.9].
By the Wedderburn-Artin theorem, the number of non-trivial absolutely irreducible
representations of SL(2, p) over Fq j of dimension n ≥ (p − 1)/2 is at most

|SL(2, p)|/n2 ≤ 4(p3 − p)/(p − 1)2 = 4p + 8 + 8/(p − 1) ≤ 4p + 10. (6.1)

Now fix α ≥ 0 and denote G = Gα . We will split the proof into two parts: showing
that a(G) ≤ α/2 + 1 and showing that a(G) ≥ α/2 + 1.

We start by fixing a finite field Fq j , q prime, and count absolutely irreducible
representations in dimension n. All copies of SL(2, p) with p �= q and p > 2n + 1
must act trivially.

By [15] (see also [28, Lemma 5.5.5]), we may write an n-dimensional absolutely
irreducible representation of G as a tensor product of one absolutely irreducible m-
dimensional representation of SL(2, q)
qα� and one absolutely irreducible n/m-dim-
ensional representation of H = ∏

SL(2, p)
pα�, where the product of H ranges over
the primes p such that p ≤ 2n/m + 1 and p �= 2, 3, q. For the case q ≤ 3, we
simply assume m = 1. As an upper bound for r∗(H , Fq j , n/m), note that any such
representation must be a tensor product of at most log2(n/m) non-trivial absolutely
irreducible representations of one of the special linear groups in H . Additionally, the
number of SL-factors appearing in H is at most

∑
p≤2n/m+1


pα� ≤ (2n/m + 1)α+1,

and by (6.1) each factor has at most 4(2n/m + 1) + 10 ≤ 8n/m + 14 non-trivial
absolutely irreducible representations. This gives the upper bound

r∗(H , Fq j , n/m) ≤ ((2n/m + 1)α+1(8n/m + 14))log2(n/m) = 2Oα(log2(n/m)2),

where the implied constant depends only on α.
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Nowwe estimate r∗(SL(2, q)
qα�, Fq j ,m) similarly: any such representation must
be a tensor product of non-trivial absolutely irreducible representations of the SL(2, q)

factors, of which there are 
qα�, each with at most one absolutely irreducible represen-
tation in each dimension. Thus r∗(SL(2, q)
qα�, Fq j ,m) is bounded by the number of
possible distributions of the π(m) prime factors of m to the 
qα� copies of SL(2, q).
This gives the upper bound r∗(SL(2, q)
qα�, Fq j ,m) ≤ qαπ(m).

In total, summing over m, we have r∗(G, Fq j , n) = qαπ(n)2Oα(log2(n)2).
Putting all this together, we get the upper bound

log(ζG)(s) ≤
∑
q∈P

∑
n, j∈N

qαπ(n)2Oα(log2(n)2)

j
q−sn j q

nj − 1

q j − 1
.

For a fixed k = nj , because q ≥ 2, we have qnj−1
q j−1

≤ qnj−1
q−1 ≤ qnj−1 q

q−1 ≤ 2qk−1.
So replacing nj with k, we find the upper bound

2
∑
q∈P

∑
k

2Oα(log2(k)
2)qαπ(k)+(1−s)k−1,

which converges when απ(k) + (1 − s)k < −δk for some δ > 0, or equivalently
when απ(k) + (1 − s)k < 0 for all integers k ≥ 1. Indeed, summing over k,∑

2Oα(log2(k)
2)q−1−δk = O(q−1−δ′

/(1 − q−δ′
)) for any 0 < δ′ < δ, for an implied

constant independent of q, so the sum converges by the integral test.
In particular, it converges when s > αmax{π(k)/k | k ∈ N} + 1. Using π(k) ≤

log2(k), it is easy to check that α(log2(k)/k) + 1 attains its upper bound α/2 + 1 for
k = 2 and k = 4, and is otherwise smaller. We conclude that a(G) ≤ α/2 + 1.

To show that a(G) ≥ α/2+ 1, we count representations of dimension 2 over fields
of prime order. Here we have log(ζG)(s) ≥ ∑

q≥5
qα�q−2 s(q + 1). For large q,


qα� ≥ (1−ε)qα for any ε > 0, so this sum is at least (1−ε)
∑

q≥Q qα+1−2s+qα−2s ,
which diverges when α + 1 − 2s > −1, or equivalently when s < α/2 + 1. So
a(G) ≥ α/2 + 1. ��

7 Finite extensions with largeWeil abscissae

Here we will construct examples of groups G that are split extensions of a finite index
normal subgroup H such that a(G) > a(H). We will use a product of groups of Lie
type, acted on by the cyclic groups C f of order f via Frobenius automorphisms.

Theorem 7.1 Let f ≥ 5 be a prime and let G = ∏
p∈P,p>3 SL(2, p f )p

f
. Let the

cyclic group C f act diagonally on G by Frobenius automorphisms on the factors.
Then

a(G) = 3

2
− f − 1

4 f
<

3

2
≤ a(G � C f ).
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Note that a(G � C f ) − a(G) ≥ (1 − f −1)/4, that is, one quarter of the maximum
increase predicted by Proposition 4.3 (see also Remark 4.5) as f tends to infinity.

Proof We copy the proof of Theorem E to show convergence. In characteristic q �= p,
the group SL(2, p f ) has non-trivial absolutely irreducible representations only in
dimensions≥ (p f −1)/2when p > 3 by [28, Theorem 5.3.9], and the number of such
representations over Fq j of dimension n ≥ (p f − 1)/2 is at most |SL(2, p f )|/n2 ≤
4(p3 f − p f )/(p f − 1)2 = 4p f + 8 + 8/(p f − 1) ≤ 4p f + 9.

Now we consider characteristic p. The splitting field for SL(2, p f ) is Fp f by [28,
Proposition 5.4.4], and we consider first the irreducible representations over a field
Fp f j ′ .We can use [28, Theorem5.4.5] to see that r∗(SL(2, p f ), Fp f j ′ , n) is the number
of ways of writing n as an ordered product of f numbers between 1 and p. From this
description, we have r∗(SL(2, p f ), Fp f j ′ , n) = f π(n), where as before π(n) is the
number of prime factors of n.

On the other hand, consider Fp j with j coprime to f . By [28, Proposition 5.4.6],
and the description of the absolutely irreducible representations of SL(2, p) in [20,
Section 8] (compare with the proof of Theorem E), there is one absolutely irreducible
representation of SL(2, p f ) in each of dimensions 1 f , 2 f , . . . , p f , and no others.

Now we can apply these upper bounds to count absolutely irreducible representa-
tions for thewhole ofG. Fix a finite fieldFq j , q prime, and count absolutely irreducible
representations in dimension n.

As for Theorem E, we write such a representation as a tensor product of two
absolutely irreducible representations, one of SL(2, q f )q

f
of dimension m and one

of H = ∏
p f ≤2n/m+1,p �=2,3,q SL(2, p f )p

f
of dimension n/m; when q = 2 or 3, we

simply assume m = 1. We see that H contains
∑

p f ≤2n/m+1,p �=2,3,q p f ≤ (2n/m +
1)(n/m + 1) special linear direct factors, each with at most 8n/m + 13 absolutely
irreducible representations in any dimension ≤ n/m; we conclude that

r∗(H , Fq j , n/m) ≤ ((2n/m + 1)(n/m + 1)(8n/m + 13))log2(n/m) = 2O(log2(n/m)2).

When j is coprime to f , as for Theorem E, we get r∗(SL(2, q f )q
f
, Fq j , l f ) ≤

(q f )π(l); meanwhile r∗(SL(2, q f )q
f
, q j ,m) = 0 for other values of m.

When j = f j ′ for an integer j ′, each SL(2, q f ) has at most f π(m) abso-
lutely irreducible representations over Fq f j ′ in dimension m, giving the upper bound

r∗(SL(2, q f )q
f
, Fq f j ′ ,m) ≤ (q f f )π(m).

We now split log(ζG) = �1 + �2 into two sums, and consider the convergence of
each separately, where

�1 =
∑
q∈P

∞∑
n=1

∑
j :gcd( j, f )=1

r∗(G, q j , n)

j
q−sn j |Pn−1(Fq j )|,

�2 =
∑
q∈P

∞∑
n=1

∞∑
j ′=1

r∗(G, q f j ′ , n)

f j ′
q−sn f j ′ |Pn−1(Fq f j ′ )|.
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First we deal with�1.Write n = m(n/m) as above.Wemay assumem has the form
l f . We consider separately the case where l = 1: the reader may verify it converges
for all s > 1. So we need only check convergence for

�′
1 =

∑
q∈P

∑
j :gcd( j, f )=1

∑
l≥2

∞∑
l ′=1

r∗(G, Fq j , l f l ′)
j

q−sl f l ′ j |Pl f l ′−1(Fq j )|,

where we write n as l f l ′. The approximations above give

�′
1 ≤

∑
q∈P

∑
gcd( j,q)

∑
l≥2

∞∑
l ′=1

2O(log2(l
′)2)q f π(l)q(1−s)l f l ′ j−1.

Now we sum over all l, l ′ and j such that l f l ′ j = k to get

�′
1 ≤

∑
q∈P

∑

k≥2 f

2O(log2(k)
2)qπ(k)+(1−s)k−1

(because k ≥ l f ≥ 2 f ) –which, as for TheoremE, convergeswhenπ(k)+(1−s)k < 0
for all k ≥ 2 f , or equivalently (using π(k) ≤ log2(k)) when s > maxk≥2 f (π(k)/k)+
1 = 1 + f /2 f .

Now we will deal with �2. From the bounds above, we get r∗(G, Fq f j ′ , n) ≤
2O(log2(n)2)(q f f )π(n), and we conclude

�2 ≤
∑
q∈P

∞∑
n, j ′=1

2O(log2(n)2)q f π(n)+(1−s)n f j ′− f .

Replacing nj ′ with k as in the proof of Theorem E, by the arguments above, this
converges for s such that f (π(k) + (1 − s)k − 1) < −1 for all k, which holds when
s > π(k)/k − ( f − 1)/( f k) + 1.

This function has a maximum when k = 4, so �2 converges when s > 3/2− ( f −
1)/(4 f ). For all primes f ≥ 5, we find

a(G) ≤ max
(3
2

− f − 1

4 f
, 1 + f

2 f

)
= 3

2
− f − 1

4 f
<

3

2
.

We obtain a corresponding lower bound by looking at representations of dimension
4. We have r∗(G, Fq f , 4) ≥ q2 f for q ≥ 5, so

log(ζG)(s) ≥
∑
q∈P

q2 f

f
q−4 f s q

4 f − 1

q f − 1
≥
∑
q∈P

q(5−4s) f

f
,

which diverges when (5−4s) f ≥ −1, or equivalently when s ≤ 3/2− ( f −1)/(4 f ).
Therefore a(G) = 3/2 − ( f − 1)/(4 f ).
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On the other hand, when we extend G by C f acting diagonally by Frobenius
automorphisms on each SL(2, p f ), each SL(2, p f ) � C f has an absolutely irre-
ducible representation of dimension 2 f over Fp. So we get log(ζG�C f )(s) ≥∑

q q
f q−2 f s q2 f −1

q−1 ≥ ∑
q q

f −2 f s+2 f −1, which diverges when 3 f − 2 f s ≥ 0, or
equivalently s ≤ 3/2. ��

8 Weil zeta functions of finite groups

In this section we prove Theorem F.

Proof of Theorem F Since Q[G] is a semisimple Q-algebra, we may write

Q[G] ∼=
r∏

i=1

Ai

where Ai is a simple Q-algebra with centre Ki = Z(Ai ). Let Oi denote the ring of
algebraic integers in Ki . Put n2i = dimKi Ai . Note that dimKi Ai ≤ dimQ Q[G] = |G|
and so ni ≤ √|G|. We have r = |Irr(G, Q)| and the rational irreducible representa-
tions ofG correspond to the simple modules of the algebras Ai . Let χi be the character
of the simple rational representation of Q[G], which factors through Ai . Let m(χi )

denote the Schur index. Then χi (1) = nim(χi )[Kχ : Q]; i.e. ni = χi (1)[Kχi :Q]m(χ)
.

We say that a prime number p in unramified in Z[G], if the following hold

(i) p is unramified in Ki for all i ∈ {1, . . . , r},
(ii) for all i the algebra Ai splits at all primes p of Oi dividing p
(iii) Zp[G] is a maximal Zp-order in Qp[G].
The integral group ringZ[G] is aZ-order inQ[G]. For almost all prime numbers p the
completion Zp[G] is a maximal Zp-order in Qp[G]; this follows from the existence
of maximal orders and [42, (11.6)]. We deduce that almost all primes are unramified
in Z[G]; see [39, (8.4)] and [42, (32.1)]. If p is unramified, then

Qp[G] ∼=
r∏

i=1

∏
p|p

Mni (Ki,p).

By [42, (17.3)] the maximal R-orders in Mn(F) are conjugate to Mn(R) if R is a
complete discrete valuation ring with quotient field F . In particular, we deduce for
unramified p that

Zp[G] ∼=
r∏

i=1

∏
p|p

Mni (Oi,p)
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and so

Fp[G] ∼=
r∏

i=1

∏
p|p

Mni (Oi/p).

Let N (p) = |Oi/p| be the norm of the prime ideal p ⊆ Oi and write N (p) = p f (p).
We recall that r∗(Mni (Oi/p), Fpk , n) vanishes unless n = ni and k is a multiple of
f (p), in which case r∗(Mni (Oi/p), Fpk , ni ) = f (p). This allows us to calculate the
Weil representation zeta function of G up to ramified primes. The correction amounts
to multiplication of a finite number of factors of the form (1.3). We obtain

ζG(s) ∼
r∏

i=1

exp

⎛
⎝∑

p⊆Oi

∞∑
k=1

r∗
n (Mni (Oi/p), Fpk )

k
p−sni k |Pni−1(Fpk )|

⎞
⎠

=
r∏

i=1

exp

⎛
⎝∑

p⊆Oi

∞∑
k′=1

f (p)

k′ f (p)
p−sni k′ f (p)|Pni−1(Fpk′ f (p) )|

⎞
⎠

=
r∏

i=1

∏
p⊆Oi

exp

( ∞∑
k′=1

1

k′ N (p)−sni k′(
N (p)k

′(ni−1) + · · · + N (p)k
′ + 1

))

=
r∏

i=1

∏
p⊆Oi

ni−1∏
j=0

(
1 − N (p)−sni+ j )−1 =

r∏
i=1

ζ
#ni
Ki

(s).

It is a classical result of Hecke that the Dedekind zeta function ζK of a number field K
admits a meromorphic extension to C with a simple pole at s = 1. The poles of ζ #n

K (s)
are thus 1

n , 2
n , . . . , 1. The rational correction factors (1.3) satisfy ak ≤ √|G| and thus

can have poles at non-negative rational numbers which are also bounded from above
by 1 −√|G|−1. ��

9 Virtually abelian groups

In this section we prove Theorem G.

Proof of TheoremG Let A � G be an abelian normal subgroup of finite index d =
|G : A| in G. Then every absolutely irreducible representation of G has dimension at
most d. For every n ∈ {1, 2, . . . , d} there is a moduli variety Mn defined over Fp such
that the closed points Mn(Fpk ) are in bijective correspondence with the isomorphism
classes of absolutely irreducible representations of G over the field Fpk ; see e.g. [31,
Theorem 6.23]. Define Vn = Mn × P

n−1. Then

|Vn(Fpk )| = r∗(G, Fpk , n) · |Pn−1(Fpk )|
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hold for all k ∈ N. This implies that

ζG,p(s) =
d∑

n=1

Z(Vn, s)

where Z(Vn, s) denotes the local Hasse–Weil zeta function of Vn . The local Hasse–
Weil zeta function is a rational function in p−s by [14]. ��

The following is probably well-known and it was communicated to the authors by
Alexander Moretó.

Lemma 9.1 [ [38]] Let K be a field of characteristic p > 0. Then there exists a
real-valued function f such that if G is a finite group such that all irreducible repre-
sentations over K have dimension at most n, then G has a characteristic p-abelian
subgroup A such that |G : A| ≤ f (n).

It follows that the groups to which the proof of Theorem G can be applied are
exactly the finitely generated virtually abelian groups. However, the class of UBERG
groups with rational local factors is larger; for instance, it contains the lamplighter
group (see Appendix A:). It would be interesting to have a description of the class of
groups for which the rationality result holds.
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Appendix A: Examples

In this section we will collect various examples of Weil representation zeta functions
that we have calculated. Some examples have appeared in this article; others can be
obtained by following the steps of Example A.5. Finally, we also calculate the Weil
representation zeta functions for the lamplighter groups C2 � Z and C3 � Z. In this
section ζ(s) will denote the Riemann zeta function.

A.1 Abelian groups

Since one-dimensional representations are always absolutely irreducible, ζG can be
easily calculated for abelian groups by counting homomorphisms into F

×
q for every

q.

http://creativecommons.org/licenses/by/4.0/
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Example A.1 [Cp cyclic group]

ζCp (s) = ζ(s) ·
∏
p

∏

χ∈F
×
p

(
1 − χ(p)

ps

)−1

= ζ(s) · ζQ(η)(s) ·
(
1 − 1

ps

)

where η denotes a primitive pth root of unity.
It is instructive to compare this with Theorem F and its proof in Sect. 8. The cyclic

groupCp has exactly two irreducible rational representations: the trivial representation
and a representation of dimension p − 1 (multiplication with η on Q(η)). This gives
the decomposition Q[Cp] ∼= Q × Q(η) and in fact, (after inverting the prime p) one
has Z[1/p][Cp] = Z[1/p] × Z[1/p, η].
Example A.2 [Zr free abelian group] We have seen in Sect. 5.1 that

ζ
Ẑr (s) =

r∏
i=0

ζ(s − i)(−1)r−i(ri).

A.2 Symmetric groups

In Theorem F we gave a formula for the zeta function of a finite group up to rational
factors. An exact formula for ζG requires a concise understanding of the modular
representation theory ofG. The modular representation theory of the symmetric group
Sn is well-studied and the description of the absolutely irreducible representations of
Sn as quotients Sμ/(Sμ ∩ (Sμ)⊥) of the Specht modules Sμ given in [25, Theorem
4.9] can be used to compute an exact formula for ζSn for small values of n.

Example A.3 [S4 symmetric group]

ζS4(s) = ζ(s)2ζ #2(s)ζ #3(s)2(1 − 2−s)
∏

k∈{2,3}

k−1∏
j=0

(1 − 3 j−ks).

We can also give a more concise formula for the Weil representation zeta function
up to rational factors for primes below n. Given two meromorphic functions f , g on
C we write f ∼n g if there is a rational function h in {p−s | p ≤ n, p prime} such
that f h = g.

Example A.4 [Sn symmetric group] Let n ≥ 2 be an integer. Then

ζSn (s) ∼n

∏
χ∈Irr(Sn ,C)

χ(1)−1∏
j=0

ζ(χ(1)s − j).

It follows from Theorem F that the Weil representation zeta function ζSn (s) has a pole
of order P(n) at s = 1, where P(n) denotes the number of partitions of n.
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A.3 Virtually abelian groups

For virtually abelian groups ζG can be calculating by inducing irreducible representa-
tions from an abelian normal subgroup. We explain this for Z � C2. All the examples
of this section can be calculated in essentially the same way.

Example A.5 [Z � C2 wreath product] Consider the group G = Z � C2 = Z
2

� C2,
where C2 swaps the two copies of Z. Then

ζZ�C2(s) ∼ ζ(s − 1)2

ζ(s)2
· ζ(2s)ζ(2s − 3)

ζ(2s − 1)ζ(2s − 2)
.

It is easy to see that Gab ∼= C2 × Z. Therefore, if 2 � q, r∗(G, Fq , 1) = 2(q − 1) and,
if 2 | q, r∗(G, Fq , 1) = q − 1.

For degree two representations, consider two distinct one-dimensional irreducible
representations χ1, χ2 of Z over Fq , then the induced representation ρ(χ1, χ2) =
IndG

Z2(χ1 ⊗ χ2) is an absolutely irreducible representation of G and the number of

such representations is 1
2 (q−1)(q−2) (the order of χ1, χ2 does not matter). However,

it is possible that the field of definition of the induced representation ρ is smaller than
Fq and this is actually one of themain difficulties that arise for virtually abelian groups.
In the case at hand, there could be a representation ρ : G → GL2(Fq) such that ρ|Z2 is
diagonalisable overFq2 , but not overFq .More precisely, givenχ1, χ2 : Z → Fq2 , then
ρ(χ1, χ2) is defined over Fq exactly if χ1 and χ2 are conjugate under Gal(Fq2/Fq).

The number of representations of this type is 1
2 (q

2 − q) and

r∗(G, Fq , 2) = 1

2
(q − 1)(q − 2) + 1

2
(q2 − q) = q2 − 2q + 1;

we note that the factor 1
2 disappeared.

Calculating the Weil representation zeta function ζG(s):

exp

⎛
⎝∑

p �=2

⎛
⎝

∞∑
j=1

2(p j − 1)

j
p−s j +

∞∑
j=1

p2 j − 2p j + 1

j
p−2s j (p j + 1)

⎞
⎠
⎞
⎠ ·

exp

⎛
⎝

∞∑
j=1

2 j − 1

j
p−s j +

∞∑
j=1

22 j − 2 · 2 j + 1)

j
p−2s j (2 j + 1)

⎞
⎠

=
(
1 − 1

2s−1

)(
1 − 1

2s

)−1
ζ(s − 1)2

ζ(s)2
· ζ(2s)ζ(2s − 3)

ζ(2s − 1)ζ(2s − 2)
.

Example A.6 [D∞ infinite dihedral group]

ζD∞(s) ∼ ζ(s)4 · ζ(2s − 2)

ζ(2s − 1)ζ(2s)2
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Example A.7 [Z � C3 wreath product]

ζZ�C3(s) ∼ ζ(s − 1)3

ζ(s)3
· ζ(3s − 3)ζ(3s − 2)

ζ(3s)

Example A.8 [BS(1,−1) metabelian Baumslag-Solitar group]

ζBS(1,−1)(s) ∼ ζ(s − 1)2

ζ(s)2
· ζ(2s)2ζ(2s − 3)

ζ(2s − 1)ζ(2s − 2)2

A.4 Two lamplighter groups

LetG be the lamplighter groupC2 �Z. Let N = ⊕
i∈Z

C2 denote the base of the wreath
product. We determine the number r∗(G, Fq , n) absolutely irreducible n-dimensional
representations of G over the finite field Fq .

Proposition A.9 Let q be a prime power.

(i) If q is even, then all irreducible Fq -representations of G are 1-dimensional and
r∗(G, Fq , 1) = q − 1.

(ii) If q is odd, then

r∗(G, Fq , n) = (q − 1)
F(n)

n

where F(n) = ∑
d|n 2dμ(n/d).

Before we can prove the proposition, we study the function F .

Lemma A.10 Let n ∈ N. Then F(n) = ∑
d|n 2dμ(n/d) is the number of sequences in

{±1}Z which have stabilizer nZ under the Bernoulli shift action.

Proof For every divisor d of n let X(d) denote the subset of {±1}Z consisting of
sequences with stabilizer dZ under the shift action of Z. Define F(d) = |X(d)|; we
will show that this function satisfies the formula. The union

⋃
d|n X(d) consists of

all sequences which are stabilized by nZ. Since the first n entries determine such a
sequence completely, we deduce

2n =
∑
d|n

|X(d)| =
∑
d|n

F(d). (A.1)

The Möbius inversion formula implies that

F(n) =
∑
d|n

2dμ(n/d).

��
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Proof of Proposition A.9 Let V be an absolutely irreducible representation of G over
Fq . If q is even, then V|N is trivial, since N is a 2-group and V|N is semisimple.
Every irreducible representation over Fq factors through the infinite cyclic quotient.
In particular, the representations are 1-dimensional and r∗

1 (G, q) = q − 1.
Assume thatq is odd.ThenV|N decomposes as a sumof irreducibleFq [N ]-modules.

We note that every irreducible N -module is absolutely irreducible, one dimensional
and of the form

χv((σi )i∈Z) =
∏
i

v
σi
i

for some sequence v = (vi )i∈Z ∈ {±1}Z. As V|N is finite dimensional and consists of
a single orbit of a representation χv , the sequence v needs to be periodic with some
period n. The representation factors through Gn := ⊕

i∈Z/nZ
C2 � Z. The central

subgroup nZ in Gn acts with a character ψ : nZ → F
×
q and by Clifford Theory

V ∼= IndGN×nZ
(χv ⊗ ψ).

In particular, V has dimension n. Conversely, every irreducible representation is of this
form. A sequence v ∈ {±1}Z is periodic with period n exactly if χv has stabilizer nZ

in the infinite cyclic subgroup of G. By Lemma A.10, the number of such sequences
G is F(n). For every character ψ : nZ → Fq , IndGN×nZ

(χv ⊗ ψ) is an absolutely
irreducible representation of G defined over Fq . Since the orbit of χv contains exactly
n elements, we obtain

r∗(G, q, n) = (q − 1)
F(n)

n
.

��
Theorem A.11 Let G be the lamplighter group C2 � Z. Then

ζG(s) =
(
1 − 2−s

1 − 21−s

)
·
∏
p>2

(
1 − 2p−s

1 − 2p1−s

)
.

The abscissa of convergence is a(G) = 2.

Proof For p = 2 the local zeta function is

log ζG,2(s) = log(1 − 2−s) − log(1 − 21−s)

using the same calculation as for the infinite cyclic group. Let p be an odd prime.
Then log ζG,p(s) equals

∞∑
n=1

∞∑
k=1

r∗
n (G, pk)

k
p−skn|Pn−1(Fpk )| =

∞∑
n=1

∞∑
k=1

(pk − 1)F(n)

nk
p−skn|Pn−1(Fpk )|
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=
∞∑
n=1

∞∑
k=1

(pnk − 1)F(n)

nk
p−skn =

∞∑
m=1

∑
n|m

(pm − 1)F(n)

m
p−sm

=
∞∑

m=1

(pm − 1)

m
p−sm

⎛
⎝∑

n|m
F(n)

⎞
⎠ =

∞∑
m=1

(pm − 1)2m

m
p−sm

= log(1 − 2p−s) − log(1 − 2p1−s).

Note that we used (A.1) in the chain of equalities above. ��
The calculation for the lamplighter groupC3 �Z is very similar, albeitmore involved,

and here we only report the result of our calculation.

Theorem A.12 Let G be the lamplighter group C3 � Z. Then

ζG(s) = 1 − 3−s

1 − 31−s

∏
p≡1 mod 3

1 − 3p−s

1 − 3p1−s

∏
p≡2 mod 3

(1 − 3p−2s)(1 + p1−s)

(1 − 3p2−2s)(1 + p−s)
.

In particular, the abscissa of convergence of C3 � Z is 2.

Appendix B: Comparing two zeta functions

What is the effect of using absolutely irreducible representations in the definition of the
zeta function? That is, UBERG can be measured in terms of the growth of irreducible
representations, instead of absolutely irreducible ones. What would happen if we
defined the Weil representation zeta function in those terms?

Let ηG be the complex function defined by

log(ηG)(s) =
∑

p prime

∞∑
n=1

rn(G, Fp j )

j
p−sn j |Pn−1(Fp j )|,

i.e. just replacing r∗ with r in the definition of ζG .
Clearly ζG(s) ≤ ηG(s) for real s, where they both converge. But in general, they

need not have the same abscissa of convergence. We omit the proof of the following
theorem for conciseness, as it follows the lines of the proof of Theorem E.

Theorem B.1 Let G = ∏
p prime ≥3 SL(2, pp)p

p
. Then ηG has abscissa of conver-

gence ≥ 3/2, while ζG has abscissa of convergence ≤ 11/8.

As we saw in Sects. 8 and 9, for several groups we have a nice form for the Weil
representation zeta function, with properties like meromorphic continuation and ratio-
nality of local factors. In contrast, the next example illustrates that the zeta function
ηG(s) defined via irreducible representations can be ‘wild’ even for virtually abelian
groups.
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Example B.2 Let G = Z �C2. By repeating word for word the calculations in example
A.5 with all irreducible representations, we get

ηG(s) ∼ ζ(s − 1)2

ζ(s)2
· ζ(2s)

ζ(2s − 2)

√
ζ(2s − 3)

ζ(2s − 1)
.

As we can see, this function does not have rational local factors and its analytic
properties are more difficult to understand compared to the ones of ζG(s).
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