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Abstract

The v*-equivalence is an equivalence relation on the knot concordance group. This
relation can be seen as a certain stable equivalence on knot Floer complexes C F K,
and many concordance invariants derived from Heegaard Floer theory are invariant
under the relation. In this paper, we show that any genus one knot is v -equivalent to
one of the trefoil, its mirror and the unknot.
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1 Introduction

Throughout this paper, all manifolds are assumed to be smooth, compact, connected,
orientable and oriented unless otherwise stated.

1.1 Background and the main theorem

Heegaard Floer homology [16] is a powerful set of invariants for 3- and 4-manifolds
and knots in 3-manifolds. In particular, the Z>-filtered chain complex C F K> (K)
[15] associated to any knot K in S is a very effective tool in studying knots and Dehn
surgeries along knots. Indeed, from C F K°°(K), we can compute

e The knot Floer homology I-Tﬁ( (K) [15], and so we can detect the genus and
fibredness of K [6, 11, 14], /\

e The Floer homology groups H F, HF* and H F* and correction terms d(—, 5)
of all Dehn surgeries along K [18, 19], and
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e Many knot concordance invariants including v, T, Y, Y2, and so on. (See [4, 8]
for details.)

In this paper, to improve the understanding of CFK®°, we study vt -equivalence

(denoted lii) introduced by Hom [4] and Kim-Park [7]. Here, two knots K and K> are
vt -equivalent if v (K #(—K3)) = v (Ko#(—K7)) = 0, where —K and K* denote
the inverse and the mirror of K respectively, and v is a Z>-valued concordance
invariant defined by Hom-Wu [5]. This relation is an equivalence relation on knots,
and if two knots are concordant then they are v -equivalent. (We call the equivalence
classes vt-classes.) By the following Hom’s theorem, v -equivalence can be seen as
a ‘stable’ filtered chain homotopy equivalence on C F K°.

Theorem 1.1 (Hom [4]) Two knots K| and K, are v*-equivalent if and only if we
have the following Zz—ﬁltered chain homotopy equivalence:

CFK® (K1) ® A ~CFK>™(K2) & Az,

where A1, Ay are acyclic, i.e., H.(A1) = H.(Az) = 0.

This theorem shows that determining the v -class of knots is meaningful in terms
of C F K™®. Moreover, the vt-class of a knot K determines all correction terms of all
Dehn surgeries along K and many concordance invariants including vt, 7, Y and Y2
of K, and hence classifying the vt-classes is useful for computing these invariants.
(These arguments are explained carefully in Sect. 2.10.)

The aim of this paper is to classify the v -classes of genus one knots by using the
r-invariant [13]; in fact, we will see that only three vT-classes are realized by genus
one knots. To state our theorem, we set some notations. For any knot K, let [K],+
denote the vt-class of K and g(K) the genus of K. For coprime integers p, ¢ > 0,
let T}, 4 denote the (p, g)-torus knot.

Theorem 1.2 For any knot K with g(K) = 1, we have

(T3], if ©(K)=1
[K],+ = { [unknot],+ if 7T(K)=0

[(123)*],« if ©(K)=—1

In other words, any genus one knot is v -equivalent to one of the trefoil, its mirror
and the unknot.

Since the t-invariant is relatively understood, Theorem 1.2 enables us to determine
the vT-class of many concrete examples. For instance, Hedden [2] gives a formula
for the t-invariant of the positive ¢-twisted Whitehead double of a knot K (denoted
by D4+ (K, t)). By Theorem 1.2, we can generalize his formula to a formula for the
vT-class of D (K, 1).

Corollary 1.3 For any knot K and t € Z, we have

[unknot] ,+ for t > 2t(K)

[D1(K, )]+ = [T23],,  for t<2t(K)’
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Next, let us consider the quotient set C,+ := {knots in S}/ ‘z Note that since 2
is weaker than knot concordance and the v -invariant has the sub-additivity, we can
identify C,+ with a quotient group of the knot concordance group C. So it is natural to
ask how different these groups are. To give an observation of the question, we set F to
be the subgroup of C generated by the knots with genus at most g. Let w,+ : C — C,+
be the projection, and then the sequence {Fg}¢cz., gives filtrations

O=FocFckHhc---CC
and
0=m+(Fo) Cmy+(F1) Cmy+(F2) C--- CCph+.

It is easy to show that | contains Z* as a summand. (For instance, compute the
w-signature for the “twisted doubles” of the unknot. We refer to [9].) Therefore,
combining it with Theorem 1.2, we have the following proposition, which shows a
big gap between C and C+.

Proposition 1.4 F| contains Z°° as a summand, while 1w+ (F) is isomorphic to Z.

In knot concordance theory, there are few kinds of filtrations with each level finitely
generated. Hence we suggest the following question.

Question For each g € Zxo, is m,+(Fy) finitely generated?

1.2 The idea of proof: estimating v*-classes

In order to prove Theorem 1.2, we use a partial order on C,+ (denoted <) introduced
in the author’s paper [22]. We first study this partial order geometrically to give the
following estimate for the v*-class of any knot K. Here g4(K) denotes the 4-genus
of K, and we note that this estimate depends on g4(K) rather than g(K).

Theorem 1.5 For any knot K, we have

—84(K)[T23]y+ = [K]y+ = g4(K)[T23],+.

Next, we study the Z>-filtered structure of C F K> with g(K) = 1 algebraically to
obtain another estimate, and combine it with Theorem 1.5 to prove Theorem 1.2. As
another consequence of such estimates, we have the following discriminant using the
Y -invariant [17].

Theorem 1.6 The equality [K],+ = —g(K)[T23],+ holds if and only if Tk (1) =
g(K).

1.3 Formal knot complexes and new concordance invariants

To study the algebraic aspects of v+ -classes deeply, we consider an algebraic general-
ization of C F K called formal knot complexes. (The notion is originally considered
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Fig.1 A formal knot complex
C" with
with genus one n X, &Y

2 X
v '
1 o /xl
j=0 X
i=0 1 2 n-1 n

in [8].) In particular, we establish the category of such complexes, and obtain the for-
mal knot monoid K/ and the formal knot concordance group Cf, which are analogies
of the knot monoid K and the knot concordance group C, respectively. Concretely,
these monoids are related as follows.

Theorem 1.7 We have the following commutative diagram:

o et
[K]H[K],l l[C]H[C]ﬁ
of

[K]e—[CFK>(K)],+
Here, the bottom map coincides with m,+. In particular, the image of the bottom map
is C+.

Moreover, we also introduce the genus of formal knot complexes, and define the
genus filtration

0=F,cFlcFlc...cd.

where m,+(Fg) C F éf,'. For example, Fig. 1 depicts an infinite family of genus one
formal knot complexes, and hence [C"],+ € F { for each n € Z- (. Here we note that
Clis CFK™®(Ty3).

We prove that the [C"],+ are mutually distinct, which implies that Theorem 1.2
cannot be proved purely algebraically.
Theorem 1.8 The v™-classes {[C"],+ }o2 | are mutually distinct in Cf whilet(C") = 1
for any n. In particular, the complement .7-"{ \m,+(F1) is infinite.
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In addition, we will show that if a formal knot complex C is realized as CF K™
for some knot K, then the genus of C is at least g(K). Since C" has genus one and
T(C™) = 1 but cannot be realized by any genus one knot, we have the following result,
which is related to the geography problem discussed in [3].

Corollary 1.9 The formal knot complexes {C"},° , cannot be realized by any knot in
S3.

In order to distinguish the complexes {C"}, we introduce an infinite family {Gi}}2, of
invariants of v*-classes, where Gi(C) consists of finitely many subsets of 72 Since
the vt-class of knots is a knot concordance invariant, the family {gk},‘?io also gives a

new family of knot concordance invariants. In particular, the primary invariant Gy has
the following property.

Theorem 1.10 For any knot K, the following assertions hold:

1. Go(K) determines all correction terms of all Dehn surgeries along K.

2. Go(K) determines all of v™, T and Y.

3. [K1ly+ = 0 ifand only if Go(K) has {(i, j) € Z* | i <0, j < 0} as the unique
element.

The definition of G and explicit formulas for computing the above invariants from
Go(K) are given in Sect.5. In the section, we also discuss the relationship between
our secondary invariant G; and the Y2-invariant [8].

Organization

In Sect.2, we establish the category of formal knot complexes, and construct the
monoid A/ and the abelian group /. Theorem 1.7 is also proved in this section.
In Sect. 3, we prove Theorem 1.5. In Sect.4, we discuss algebraic estimates for v™-
classes, and prove Theorems 1.2 and 1.6. In Sect. 5, we introduce the invariants {Gy},
and prove Theorem 1.8, Corollary 1.9 and Theorem 1.10.

2 Category of formal knot complexes

In this section, we establish the category of formal knot complexes.

2.1 Poset filtered chain complexes

Let P be a poset, i.e. a set P with partial order <. For example, we often consider the
partial order < on 7? given by (i, j) < (k,1)if i <k, j <. For a given poset P, a
closed region R C P is a subset such that for any x € P, if there exists an element
Yy € R satisfying x < y, then x € R. We denote the set of closed regions of P by
CR(P).

LetF :=7Z /2 7Z and & be an F-algebra. In this paper, we say that (C, 9) is a chain
complex C over Z if (C, 9) satisfies the following:

e Cisan Z-module and 9: C — C is an Z-linear map with d 0 3 = 0.
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e Asan F-vector space, C is decomposed into @n <7 Cn and satisfies 9(C,) C Cy—1.

(Remark that the Z-action does not preserve the grading in general. We often abbre-
viate (C, d) to C.) Then, we say that C is P-filtered if a subcomplex Cg of C over F
is associated to each closed region R C P so thatif R C R’ then Cg C Cgs. (Here we
remark that C is not an Z-submodule of C in general.) We call the set {Cr}recr(P)
a P-filtration on C. For instance, a Z-filtration {Cy; <} }(i <m}eCR (z) 18 identified with
an increasing sequence

0C--- CFuCFpp1C---CC

of subcomplexes by F,, = Cji<m}. Moreover, For two Z-filtrations {F }}ieZ and
{f?}jez on C, the set

— 1A £2
@.))eR ReCR(Z%)

defines a Z>-filtration on C. We call it the Z2—ﬁltrati0n induced by the ordered pair
{FNiez, {}‘3 }jez). For a complex C with an induced Z>-filtration ({F}}, {]-‘§ h,C"
denotes C with the induced Z>-filtration ({F?}, {Fib.

For any two P-filtered chain complexes C and Cl,a map f : C — C'is P-filtered
if f(Cr) C C% for any closed region R. Two P-filtered chain complexes C and
C' are P-filtered homotopy equivalent (and denoted C =~ C’) if there exists a chain
homotopy equivalence map f : C — C’ over & such that the map, its inverse and all
chain homotopies are P-filtered and graded. (Then f is called a P-filtered homotopy
equivalence map. Particularly, we call the above f a P-filtered isomorphism if f is
a chain isomorphism.) The following lemma immediately follows from the definition
of P-filtered homotopy equivalence.

Proposition 2.1 Let C and C' be P-filtered chain complexes. If C >~ C’, then for any
closed regions R C R’, we have an isomorphism between the long exact sequences of
Z-modules:

3* '* * 3*
. —* > H.(Cg) —— H,(Cg) —X— H,(Cg/Cg) —— -

=| =| =|

s HA(C) —E Hu(Clp) —2 Ho(Cl/Clp) —2s -

Here,i: CR — Cp (resp. p: Cgrr — Cpr//CR) denote the inclusion (resp. the pro-
Jection). Moreover, the above isomorphism induces an isomorphism between the long
exact sequences of graded F-vector spaces:

W Birkhauser
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a*n '*.)l *,1 3*.)1
", Hy(Cr) —2> Hy(Cp) —=> H,(Cr/Cr) —2 -

=| =| =|

Og nt1 , bx,n ’ Px.n ’ ’ Os.n
——— Hy(CR) ——> Hy(Ch) ——> Hy(CR/Cl) ——> -+

2.2 Formal knot complexes

Now we state the precise definition of formal knot complex, and discuss several basic
properties of it.

2.2.1 Definition
Let A := F[U, U~']. We call a tuple
1
(€. 8. {Culnez. (FY™Y jez AF T Yien)

a formal knot complex if it satisfies the following seven conditions;

1. (C, d) is a chain complex over A with decomposition C = €p,, .5, C,. The grading
of a homogeneous element x is denoted gr(x) and called the Maslov grading of x.

2. {F ]Alex} jez is a Z-filtration on C. This filtration is called Alexander filtration, and
the filtration level of an element x € C is denoted Alex(x) (i.e. Alex(x) := min{; |
x € FH).

3. Similarly, {F"®};cz is a Z-filtration on C, called the algebraic filtration,
and filtration levels of elements are denoted Alg(x). When we regard C as
a Z’-filtered complex, we use the Z’-filtration induced by the ordered pair
(F ez (FNY je).

4. The action of U lowers Maslov grading by 2 and Alexander and algabraic filtration
levels by 1.

5. As a A-module, C is freely and finitely generated by elements {xj}1<k<, such that

e cach x; is homogeneous with respect to the Maslov grading,
o [UAXCH) x1 1) 4o, is a free basis for F5!** as an F[U]-module, and

. {UAlg("k)xk}lka, is a free basis for ]__glg as an F[U]-module.

We call such {xi}1<k<, a filtered basis.

6. There exists a Z>-filtered homotopy equivalence map ¢ : C — C”.

7. Regard A as a chain complex with trivial boundary map, and define the Maslov
grading by

A — {0,U™/2} (n : even)
"o (n : odd)

and the Alexander and algebraic filtrations by
Al Al —i
FMNX(A) = F; 2 (A) = U -F[UI.

) Birkhauser
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Then there exists a Z-filtered homotopy equivalence map falex (resp. faig) : C —
A over A with respect to the Alexander (resp. algebraic) filtration.

We often abbreviate the tuple
(C. 0. {Cu} (F e} (F18))

to C or (C, 9).

Remark Note that {UAlex(xk)_-"xk}lﬁkSr (resp. {UAlg(""')_"xk}1

for F ?lex (resp. F lAlg) as an F[U]-module. In particular, the equalities

sksr) is a free basis

UK (FRe) = FAS and UK FNE) = FRE

hold for any i, j, k € Z. (These facts also imply that for any element x € C, both
grixg)—n

Alex(x) and Alg(x) are finite.) Similarly, {U 2 X }k o] is a basis for C,, as an F-
eln

vector space, where [n] is a subset of {1, . ..r} consisting of elements with gr(x;) = n
(mod 2), and the equality U k(Cn) = C,,_7; holds.

As the simplest example, the tuple
1
(A, zero map, {Anlnez. (FH* (M)} jez AF] 2 (M)}iez)

is a formal knot complex. In addition, it is easy to see that the following lemmas hold.

Lemma 2.2 For any formal knot complex C, the complex C" is also a formal knot
complex.

Lemma 2.3 Let (C, ) be a chain complex over F generated by a finite basis {xr}1<k<r
with functions

Alex: {xih<k<r = Z and Alg: {xih<k<r = Z

satisfying the following:

e The sequences
}_"f‘lex := spanp{x; | Alex(xx) < j} and .7:'1A1g := spanp{x; | Alg(xy) < i}

define Z-filtrations on C, respectively.
o For the induced 7*-filtration ({f?lg}, {.7:';\1""‘}) on C, we have a 7*-filtered

homotopy equivalence C ~ C".
® Regard F as a chain complex over F with trivial boundary map and grading
F = o, and define a Z-filtration by F; (IF) = F if and only if i > 0. Then we have

Z-filtered homotopy equivalences C ~ T with respect to both {F jAle"} and {.7:"1-Alg }.

W Birkhauser



The vt -equivalence classes of genus one knots Page9of57 63

If we set

° C::C’@]FAqndazz(‘_i@l,
o C, =,,c7(Criom ®r U™), and |
~ Ale

o TN =3 7 (FNS @p UM F[U]) and FME =3 o (FAE @p UM FIUY),

then the tuple

Al
(C, 0, {Culnez AF Y'Y jez, AT Fhien)
is a formal knot complex.

In [15], Ozsvith and Szab6 associate the Z>-filtered homotopy type of a formal
knot complex C F K°°(K) to any knot K, and prove that it is an isotopy invariant. To
simplify notation, we write CX for CF K (K).

Theorem 2.4 ([15]) If two knots K and J are isotopic, then CX ~ C”/.

Moreover, it is proved that the inverse has the same homotopy type as the original one.

Theorem 2.5 ([15]) For a knot K, we have C~K ~ (C¥)" ~ CX.

2.2.2 Relationship to abstract infinity complex

Here, we compare formal knot complex with Hedden-Watson’s abstract infinity com-
plex. First, a graded, bifiltered complex is a chain complex over FF which admits a basis
B with functions:

m:B—7Z and F: B — 7*
such that for any a, b € B, if the coefficient of a in 9b is non-zero, then
m(a) =m(b) — 1 and F(a) < F(b).
In other words, C,, := spanp{a € B | m(a) = n} (n € Z) defines a grading and

Cg := spanp{a € B | F(a) € R} (R € CR(Z?)) defines a Z>-filtration.

Definition ([3, Definition 6.1]) An abstract infinity complex is a graded, bifiltered
complex (C, 9, F) satisfying

1. (C, d) is freely generated as a chain complex over A by a finite set of graded,
bifiltered homogeneous generators.

2. Acting by U shifts the grading by —2 and the bifiltration by (—1, —1).

3. H.(C,0) = A, where 1 € A has grading 0.

4. The complex (C, 3, F"), where F" is the bifiltration function F” (i, j) := F(j, i),
is Z*-filtered homotopy equivalent to (C, 9, F).

Proposition 2.6 Any formal knot complex is an abstract infinity complex.

) Birkhauser
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Proof For a given formal knot complex C, we take a filtered basis {x;}1<x<, and set

o B:={Ux ;5.
em:B—>7Z:Ulx > gr(lek), and
o F:B— ZxZ:Ux— (Alg(U'xy), Alex(U'xp)).

Then (C, 9, F) satisfies the all conditions for being an abstract infinity complex. O

On the other hand, in general, an abstract infinity complex does not satisfy the
condition (7) in the definition of formal knot complex. For instance, A with grading
shifted by 2 is an abstract infinity complex, but it is not Z-filtered homotopy equivalent
to the original A with respect to either Alexander or algebraic filtration.

2.2.3 Basic properties

Here, we discuss several basic properties of formal knot complexes. We first consider
a change of filtered basis.

Lemma 2.7 Let C be a formal knot complex and {xi}1<k<, a filtered basis for C.

1. Foranyl € Z and a € {1,...,r}, the set {xk}};ﬁy U {U'x,} is also a filtered
basis for C.
2. Fora,b e {l,...,r}witha # b, lfgrlgxa) = gr(xp), Alex(x,) > Alex(xp) and
<

a

C. Moreover, Alex(x, + xp) = Alex(x,) and Alg(x, + xp) = Alg(xg).

Alg(x,) > Alg(xp), then the set {xk}k;é ="' U {x,4 + xp} is also a filtered basis for

Proof 1Itis obvious that both {x }iiﬁsr U{U"x,} and {x; };iﬁsr U{x,+xp} are free bases

for C as a A-module. Therefore, the first assertion follows from U'x, € Cor(xg)—21>
Alex(Ulx,) = Alex(x,) — [ and Alg(U'x,) = Alg(x,) — I.

We consider the second assertion. Since x; + xp € Cgr(x,) = Cer(x;)» the element
Xa +xp is homogeneous. Next, let j, := Alex(x,), and then x, + xp lies in F ‘}\ale". Here
we claim that x, +x; ¢ fﬁle_xl. Assume that x, +x;, € fﬁlle_xl. Then U’e = (x,4xp) =

Ule=lx, + Ula=lx, € F, é]e", and we have a linear combination

Ul + Uy = > @)Uy

1<k<r

where py(U) € F[U]. However, the mipimal degree of py(U)UAlcx("a) = pa(U)U
is at least j,, and hence we have U/~! # p,(U)UJ«. This contradicts the fact

that {xx}1<k<r is a free basis for C as a A-module. Therefore, we have x, + x; ¢
F 213"1 and Alex(x, + xp) = ja. Now, it is easy to check that {UAX0%) x 3 ,lciﬁfr U
(UAIXGat30) (x4 x)) is a free basis for F, OAICX as an F[U]-module. Similarly, we

can check that {UAlg(Xk)xk}}ci’;S’ U {UARCa+) (x4 xp,)} is a free basis for ]-"OAlg as
an F[U ]-module. O

Next we consider the rank of formal knot complexes.

W Birkhauser
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Lemma 2.8 For any formal knot complex C, the rank of C as a A-module is odd.

Proof Since there exists a chain homotopy equivalence map from C to A such that
the map, its inverse and all chain homotopies are graded and filtered with respect

to the Maslov grading and the algebraic filtration, we have H, (]—'glg / }"fllg) =
Alg

Hy(F, glg /F éllg) = F. In particular, the Euler characteristic of F, g‘lg / F_7 is 1. Here,

as an [F-vector space, {UAlg(xk)xk} 1<k<r 18 a basis for ]__glg / Féllg, and hence k is odd.

This completes the proof. O

Finally, by using a fixed filtered basis {xi}i1<k<,, we consider a decomposition
C= @U’j)ezz C,j) as an F-vector space, where Cy; ;) is defined by

Ci.j) = spang {lek | (Alg(U'x0), Alex(U'xp)) = (i, j)} .

We call it the decomposition of C induced by {xr}1<k<r-

Lemma 2.9 Forany R € CR(Z?), the equality

Cr= P Caj

(i,j)ER
holds.

Proof By the definitions of Cg and filtered basis, we see that

Al
Cr= Y (F EnF{
(i,j)ER

and

]:?lg m]_-?lex = spangu) {Umax{Alg(xk)—i,Alex(xk)—/}xk}1 o
<ks<r
Therefore, if (i, j) € R and lek € C, ), then
[ = Alg(xy) — i = Alex(xx) — j = max{Alg(xy) — i, Alex(xx) — j},

I Alg Al .. .
and hence U'xy € F; = NF;" C Cg. This implies Cr D D j)er Caij)-

Conversely, if (i, j) € R and ]l > max{Alg(xx) — i, Alex(xx) — j}, then
Ulxi € C(Alg(xp)—1, Alex(xp)—1)
and
(Alg(xx) — 1, Alex(xx) — 1) < (@, j).
This implies U'xx € @ ; j)cg Cai.jy» and hence Cr € @B jyer Cai.jy- i

) Birkhauser
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As a corollary, we have the following useful lemma.

Lemma2.10 Forany R, R’ € CR(Z?), we have Crugr = Cr + Cg.
Proof By Lemma 2.9, we see that

Crur' = @ Cij=( @ Ci.j) +( @ Ci,j)) = Cr+Cr.

(i,J))ERUR’ (i.j)eR (i, ))erR

2.3 Commutative monoid structure

In this subsection, we check that the tensor product of formal knot complexes is also
a formal knot complex.

Let K/ be the set of the Z>-filtered homotopy equivalence classes of formal knot
complexes.

Proposition 2.11 For any two formal knot complexes C, C’, the tuple

(C RrC,IR1+1®39, {spanﬂ:p( U Cn X C;,_m)},

mez

[spanlp » ( Fhex f?lex>] { spang p ( ]_-Alg ]_-Alg) })

is a formal knot complex, where p : ACXC s C@p Cis the projection. Moreover,
the set K/ with product

K'x i - K ([C1,[C']) — [C ®4 C']

is a commutative monoid.

Remark Note that p (]—'Alex X }'Alex) =p (FAleX X ]—'Ale"> if j1 + j2» = j{ + Jj3, and
hence the definition of the Alexander (resp. algebraic) filtration is symmetric.

Proof The fact that (C ® C’, 9 ® 1+ 1®d) is a chain complex follows from ordinary

arguments in homological algebra. Let {xi}1<x<, (resp. {xl/ }1<i<s) be a filtered basis
1<k=<r

for C (resp. C’). Then {x; ® x/ 2= } is a free basis for C ®4 C’, and
U @x) |1 <k<r, 1<I<s, neZ}

is a basis for C ® o C’ as an [F-vector space. In particular, the subspace

(C ®a C’ In = Spang p( U Cm X Cn m)

mez

W Birkhauser
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is generated by

gr(xg)+gr(x)—n ,
{Uiz (xx ®x,)]

(k.Delm’

where [n] is a subset of {1,...,7r} x {1,..., s} such that (k,l) € [n] if and only if
gr(xx) + gr(x;) = n (mod 2). This implies that C @ 5 C' = @P,,7(C ®4 C'), as an
F-vector space, d((CRA C)yp) C (CROAC),—1andU((C®AC"),) C(CROAC ), —2.
Therefore, the first condition and a part of the fourth and fifth conditions hold.

Next, it is obvious that {spanF p (]—" Alex o F ‘}-“e")} . gives an increasing
je
lkar}

sequence of subcomplexes, and we see that {U Alex () +Alex () —j () @ D E

is a free basis for spany p (}" S‘Iex x F ;“lex) as a F[U]-module. Hence the second con-
dition and a part of the fourth and fifth conditions hold. Similarly, we can verify that
the third condition and the remaining part of the fourth and fifth conditions hold.

Next we consider the seventh condition. Here we note that it is easy to check that
for the trivial case (i.e. the case of C = C’ = A), the seventh condition holds. Indeed,
the canonical identification A ® , A = A and its inverse are graded and filtered chain
isomorphisms (with respect to both filtrations).

Let falex (resp. fr.x) be a chain homotopy equivalence map from C (resp. C’) to
A satisfying the seventh condition with respect to the Alexander filtration. Then the
composition of falex ® faex : C ®a C' — A ®a A with the canonical identification
A®p A = Aisachain homotopy equivalence map such that the map, its inverse and all
chain homotopies are graded and filtered with respect to the grading {(C ® A C)y}nez

and the filtration lspan[g p (.7’-'6*lex X ]—'?lex)} . Therefore, the seventh condition
holds with respect to the Alexander filtration. IJn the same way, we can also prove the
seventh condition with respect to the algebraic filtration, and verify that C @ A >~ C,
CRNC' ~C' @7 C,andif C =~ C"then C @, C' =~ C" @ C'.

Now, to prove the proposition, it suffices to prove the sixth condition, and this
follows from taking ¢ ® ¢/, where ¢t : C — C" (resp. !/ : C' — (C’)") is a map
satisfying the sixth condition for C (resp. C’). This completes the proof. O

Now, let K be the monoid of the isotopy class of knots. Then we see that the connected
sum formula of C F K gives a monoid homomorphism X — k.

Theorem 2.12 ([15, Theorem 7.1]) The map K — K/ : [K] — [CX] is a monoid
homomorphism. Equivalently, the equality [CE#* = [CK @, C7] holds.

2.4 The dual of a formal knot complex

In this subsection, we check that the dual of a formal knot complex is also a formal
knot complex.

Let C be a formal knot complex. Since C is freely generated by a filtered basis
{xk}1<k<r as a A-module, the dual C* := Homy (C, A) is freely generated by the
dual basis {x,’:}lsksr. We use the dual basis to define the Maslov grading and two
filtrations on C*.
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Here we note that C* is an F-vector space and {le |l e Z,1 <k <r}is
a basis for C* as an F-vector space. Hence we can define an F-linear isomorphism
O:C— C*by ®(Ulxp) =U _lx,f. (Remark that since C is infinite-dimensional -
vector space, C* is not isomorphic to Homp(C, F).) We call ® the dual isomorphism
induced by {xi}1<k<r.

Next, let C/ F ?lex (resp. C/ F Alg) denote the subspace of C (as an [F-vector space)

I<Alex(xx)—j—1 I<Alg(xy)—i—1

I<k<r I<k<r ). Then we have

generated by {U'x;} (resp. {U'xy)
C=Fixg(C/FN*)  (resp. C = F B a(C/ FME)),
(C/FNE) c (C) FRe)  (resp. (C/ Fiy8 ) < (€/ FM€)), and
U(C/FN*) = (C) FR) (resp. U(C/ F¥) = (C) FY)).

In particular, we see that ®(C/ f?lex) (resp. ®(C/ .7-'Alg ) is a free F[U]-module
generated by {U‘Ale"("k)ﬂ“x,’;}]skg (resp. {U~ Alg(x)-+i+1 x5 ). Now, the
formal knot complex structure of C* is described as follows.

Proposition 2.13 Ler 3* : C* — C* denote the dual of the differential 3 on C. Then,
the tuple

1<k<r

Al
(e om @ fo(c/ PR ) fo(c/ 7))
is a formal knot complex. Moreover, for any formal knot complexes C1, Ca, if C1 =~ C3
then C{ ~ Cj.

We call the formal knot complex C* the dual of C. Before proving Proposition 2.13,
we prove the following lemmas. Here, ¢ : A — T is an F-linear map defined by
e(p(U)) = p(0) foreach p(U) € A (i.e. e maps a Laurent polynomial to its constant
term).

Lemma 2.14 We have the equalities

(€)= f¢ € C* 20 9@, Cu) = 0}}.
o(C/ ) =g e C* e og(FA) = (0}}, and
o(c/F) = o e creop(FM) = ).

In particular, the subspaces ®(C_,), @(C/ félffl ) and @(C/ féligil ) are indepen-
dent of ®. (We often denote them by C}, f?lex(C*) and ff%lex(C*) respectively.)

gr(xg)—n

Proof We first note that ®(C,,) is generated by {U T2 x,f}k o’ Now, Suppose
€ln

that ¢ is in ®(C},), and then we have an [F-linear combination

_gr(xk)—n
0= Z axU™ 7 xf.
ke(ln]
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Thus, for any element x =, px(U)xk € D, Cm, We have

_gr(xk)fn
) =Y aU™ T p(U).

keln]

. .. . grig)—n . .. .
Here, since x isin €p,,, +n Cm, the coefficient of U2 in px(U) is zero. This implies

that

or(xy, )—n
cop) =Y e <U—” 5 pk(U)) —0

ke[n]

Conversely, suppose that ¢ = Zlikir qr(U)x;; € C* satisfies € o go(@m?é_n Cpn) =

{0}. Here we note that the coefficient of U’ in qr(U) is zero if and only if

) go(U_lxk) = 0. In addition, for any k € [n], U~!x; is in @k#_n Cy if and
— r(xg)—n

only if [ # —W, and hence we have g;(U) = akU_g 5= for some q; € F.

Otherwise, Ulxy € @k £-n Cy for any [, and hence g; (U) = 0. As a consequence, we

_glbp)-n - .
have ¢ = Zke[n] arU 2 x;. In a similar way, we can also prove the assertions

for ®(C/ FA) and &(C/ F}'¢). o

Lemma 2.15 Let C, C’ be formal knot complexes and f : C — C' be a A-linear map.
Defineamap f*: C* — C*bygp+— @o f.

1. Fixk e Z. If f(Cp) C C’+kforanyn then f*(®(C’ +k)) C D(Cy).
2. If F(FHN(C)) € FHN(C), then f*(®(C'/ FH™)) € &(C/ FH).
3. Iff(f?lg(C)) C f?]g(C/), then f*( (C /]:A]g)) C (D(C/ fA]g)

Proof Lemma 2.14 implies that for any ¢ € ®(C), 14)» the equalities

so(f*) | P Cn|=coo|r|PCu||ceoe| P Cn]|=10}

m#n m#n mz#n—+k

hold, and hence f*¢ € ®(C,). Similarly, we can prove the second and third assertions
in Lemma 2.15. O

Proof of Proposition 2.13 The first, second, third and forth conditions immediately fol-
low from the arguments above Proposition 2.13, the above two lemmas and the equality
U® = ®U !, and so we next consider the fifth condition. We prove that {x <k<r is
a filtered basis. First, x,f is in @ (C_ g(x)) and hence it is homogeneous. Next, since

Uo(C/FAX ) = oUu! (C/ FASX ) = o(C/ FAY) c o(C/ FAY) ),

@(C/Félj-efl) is a F[U]-module. In addition, {U‘Alex("k)x:}lfkg is a free basis
for ®(C/ FAF*) as a F[U]-module, and xj € ®(C/FA* ) if and only if j =

) Birkhauser
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— Alex(xy). This implies that {x;}; <<, satisfies the fifth condition with respect to
the Alexander filtration. In a similar way, we can also prove that {x,f}likir satisfies
the condition with respect to the algebraic filtration. Thus, the fifth condition holds.

Next, we consider the seventh condition. Let falex : C — A be a chain homo-
topy equivalence map satisfying the seventh condition with respect to the Alexander
filtration, and galex the inverse of fajex. Then the dual g3,., : C* — A*is a chain
homotopy equivalence map over A, and Lemma 2.15 implies that the duals of fajex,
galex and all chain homotopies are graded with respect to the pair

({q)(c—n)}neZ’ {Q(A—n)}neZ)a

and filtered with respect to the pair

({o(c/ 7)) {0 (A FX2)) )

Moreover, if we define a A-linearmap ¥ : A — A* by W(1) = 1%, then W is a chain
isomorphism satisfying

] {0, U~"%.1%} (n : even)
V(A = {O (n : odd)

[ {0, U™} (n : even)
Y (n: odd)

= O(A-p)
and
W (FAEX(A)) = spang |U’ SEITES —i}
= spang {o(U") |1 < i}
= o(C/ FA)).

These imply that ¥ and the inverse W' are graded with respect to the pair

({An}neZ, {CD(A—n)}neZ),

and filtered with respect to the pair
-Alex -Alex
<{~7_—i iz, {®(A/ FET, )}i€Z>'
As a consequence, the composition W~! o 8hlex . C* — A satisfies the seventh
condition with respect to the Alexander filtration. In the same way, we can prove
the seventh condition with respect to the algebraic filtration. In addition, the sixth

condition also follows from similar arguments.
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Finally, we consider the last assertion in Proposition 2.13. Suppose that Cy, C5 are
formal knot complexes and f : C; — C» is a Z>-filtered homotopy equivalence map.
Then Lemma 2.15 implies that the dual f* : C; — C{isa 7.*filtered homotopy
equivalence map. This completes the proof. O

For knot complexes, the dual complex corresponds to the mirror. (Note that the

knot Floer homology I-Tﬁ( is treated in [15, Proposition 3.7], while the same proof
can be applied to CFK®.)

Theorem 2.16 ([15, Proposition 3.7]) For any knot K, the equality [CX"] = [(C¥)*]
holds.

In particular, by combining the above theorem with Theorem 2.5, we have
[c=*1=1c*".

This fact is important in terms of knot concordance. About dual complexes, we give
three more lemmas.

Lemma 2.17 Let C be a formal knot complex. Then the F-linear map ¢, : C*, —
Homp (C,, F) defined by ¢ — ¢og is a cochain isomorphism (where we see {C* , } ¢z,
as a graded cochain complex over ). In particular, we have F-linear isomorphisms

H_,(C*) = H"(Cy; F) = Homp(H,(Cy), ),

where the first isomorphism is the isomorphism induced from &,.

Proof The equalities 9*(e,¢0) = € 0o @ 0 0 = &,4+1(0%) show that {e,},cz is a
cochain map. We prove that &, is an F-linear isomorphism. Let {x}1<x<, be a filtered

basis for C and ® the dual isomorphism induced by {x;}i<x<,. Then we see that
T(xX)—n r(x;)—n
{8 o (U_g 5 x,i‘)} coinsides with the dual basis for {Ug 5 xk} . Here
keln] keln]

gr(xg)—n

we note that {U - x,f} is a basis for C*
keln]

* .» and hence ¢, is an isomorphism.

]

Lemma 2.18 For any formal knot complex C, the A-linearmap & : C — C™* defined
by E(x)(@) = ¢(x) (x € C, ¢ € C*) is a Z*-filtered isomorphism. In particular,
C** ~ C.

Proof 1t is easy to check that E is a chain isomorphism over A. Moreover, for a fixed
filtered basis {xx}1<k<, for C,let & : C — C* (resp. ®* : C* — C**) be the dual
isomorphism induced by {xx}1<k<, (resp. {x,j‘}1§k5r), and then ®* o ® = Z. Hence
we have

E(Cy) = O*(®(Cy)) = ®*(C*,) = C;,
B(FN0) = @M@ (FFHO)) = @X(C*/ FAX ) = FHH(C™), and

E(FME(C)) = (@ (FIE(C))) = o*(C*/ FRE ) = FME (™).

This completes the proof. O
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Lemma 2.19 Any two formal knot complexes C and C’, the A-linear map T : C* ®
C™" — (C®C')" definedby I'(9p @ Y)(x ® y) = ()Y (y) (p € C*, ¢y € C*, x €
C,y € C') is a Z*-filtered isomorphism. In particular, (C @ C')* ~ C* @ C’*.

Proof The proof is similar to Lemma 2.18. O

2.5 Stabilizers

Let (A, d) be a chain complex over A. We call a tuple

(4.0, (Adnez, AFY) ez (F) ™ hien)

a stabilizer if it satisfies the conditions (1) to (6) in the definition of formal knot
complex and the following:

Condition There exists a chain homotopy ®ajex (resp. ®ajg) on C connecting the
identity and the zero-map which is Z-filtered with respect to the Alexander filtration
(resp. the algebraic filtration).

Remark The above condition does not imply A =~ 0. The relation A ~ 0 is corre-
sponding to the existence of chain homotopies ®alex and ®ajg satisfying the above
condition and ®pjex = Pajg.

Let C (resp. C’) be a chain complex over A satisfying the conditions (1) to (6) for
being a formal knot complex and {xi}1<k<, (resp. {xl’ }1<i<s) a filtered basis for C
(resp. C’). Then the tuple

(c BC. DY {Co®Cllnez.

(FHC) @ FH(C) e (F](C) @ F™(C)ier)

also satisfies the conditions (1) to (6) for being a formal knot complex, where
{(xks O} <k<r U{(O, xl/)}lsls is a filtered basis for the tuple. We abbreviate the tuple
toC & C'.

Lemma 2.20 Let A be a chain complex over A satisfying the conditions (1) to (6)
for being a formal knot complex. Then A is a stabilizer if and only if H,(F élex) =

HJ(Fy'®) =0.

Proof 1t is obvious that if A is a stabilizer, then H, (]—'OAleX) = H.(F OAlg) = 0. We
prove the converse. Suppose that the equalities H. (F OAIC") = H.(F, OAlg) = 0 hold.
Then, since U : f(’)“ex — F ’i]f" is a chain isomorphism, we have H*(]-'élf") =0
and H*(fOAlex/f‘fle) = 0. Let {xx}1<k<r be a filtered basis for A. By Lemma
2.7, we may assume that Alex(x;) = O for any k. Then we see fOAle" / ]—"élle" =
spang{pxi}1<k<r, where p : Folex . Fhlex ) FAlex ig the projection. Moreover,
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it follows from H*(]-'élex /F ’flf") = 0 that r is even and there exists a subset
{k1,ka, ..., krp2} of {1, ..., 7} such that

Alg | Al
Spang { pxays ..o PXiy s 0(PXRy)s -0 3(pxn )} = Fo o / FoY

This implies that Alex(dxy,) =0 forany 1 <i <r/2 and
Spana {xkl, e ,xkr/z, 8xkl, ey axk,ﬂ} = A.

Now, define a A-linear map ®ajex : A — A by x;;, — 0 and dxy, +— xi,. Then, it
is not hard to check that ®(C,) C Cyy1, @(f?lex) C ]-'lAlex, and Pod + 9o dis
equal to the identity on A. This proves the condition for being a stabilizer with respect
to the Alexander filtration. In the same way, we can prove the condition for being a
stabilizer with respect to the algebraic filtration. O

In addition, we can easily check that the following lemmas hold.

Lemma 2.21 For two stabilizers A and A, the direct sum A @& A’ is also a stabilizer.
Moreover, for a formal knot complex C, the direct sum C @ A is also a formal knot
complex.

Lemma 2.22 For two stabilizers A and A’, and a formal knot complex C, the tensor
products A @x A’ and C ® 5 A are also stabilizers.

Lemma 2.23 For a stabilizer A, the dual A* is also a stabilizer.
2.6 vt-invariant
For any formal knot complex C, we have

F (n : even)

H,(C) = Hy(A) = { 0 (otherwise)

In particular, Hy(C) = F. A cycle x € C is called a homological generator if x is
homogeneous with gr(x) = 0 and the homology class [x] € Hy(C) is non-zero. We
define the v -invariant of C by

vH(C) :==min{m € Z=¢ | Ci<o, j<m) contains a homological generator}.

Remark The above definition of v is originally that of v~. However, these invariants
are the same, and hence we may define v™ as above.

Note that the equality
vH(C) =min{m € Zxo | is0: Ho(Cli<o, j<m)) = Ho(C) is surjective}

holds, and hence the value v* (C) is invariant under Z -filtered homotopy equivalence.
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Proposition 2.24 vt (C ®, C') < v (C) + v (C).

Proof Note that C(;<o, j<m) = F glg N FAX and hence there exists a homological

generator x € C (resp. x’ € C’) lying in fglg ﬁi‘“‘("c) (resp. .7-"0 ﬁ\l"("c, ). This

implies that x ® x" € C ® C’ is lying in
Alg Alg Al Al Alg Al
P(Fo " xFo o) N p(F ey X Fusien ) € Fo - NF eyt )

= (C ®n CNji<0, j<v+ ()1 (C))-

Moreover, it is easily seen that x ® x’ is a homogeneous cycle with gr(x ® x’) = 0
(and so [x ® x'] € Hy(C ®4 C")), and the Kiinneth formula H,(C) ® 5 H,(C') —
H,(C ®, C’) implies that [x ® x'] is non-zero. Therefore, x ® x’ is a homological
generator, and this completes the proof. O

It is easy to see that the value of v is unchanged under stabilization.

Lemma 2.25 For any formal knot complex C and stabilizer A, we have v (C @ A) =
v (O).

Moreover, v also has the following property.

Lemma 2.26 For any formal knot complex C, we have
vT(C ®p C*) =0.

Proof Let {xx}1<k<, be a filtered basis for C. Then, the element x = Zl<k<r X xk
is lying in (C ® A C*){i<0, j<0y and homogeneous with gr(x) = 0. We prove that this
x is a homological generator.

Let (aix)1<i.k<r be the matrix of 9 : C — C with respect to {xg}1<k<r, 1.€. 0xx =
> 1<j<y aiex;. Then its transpose (ax) 1</ k<r is the matrix of 8* : C* — C* with
respect to {x; }1<k<r, and we have

OR1+1Q3)(xk @x) = Z anex; @ xj + Z agxe Q x;.

I<i<r I<i=r
This implies that
(the coefficient of x; @ x{ in (@ 1 +1Q® 8*)(x)) =2a; =0

forany 1 <,k <r.Hence x is a cycle.

Next, we prove that the homology class of x is non-zero. It is obvious that
lekir x; ®x; € C* @4 Cis also a cycle. Here, by using the chain isomorphisms
E and I' in Lemmas 2.18 and 2.19, we can identify C* @ C with (C ® C*)* by
(eRy)z2RY) = @)Y (y) (y,z € C, ¢, ¥ € C*). (In other words, Zl<k<r X @ xy
can be seen as a cocycle.) Now, it follows from Lemma 2.8 that r is odd, and hence
we have
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Z X ®@x | (x) = Z (x,f(xk))zzr:leA.

I<k=r I<k<r
This implies that the homology class of x is non-zero. O

The following proposition is originally proved by Hom [4] in the case of knot
complexes.

Proposition 2.27 ([4, Proposition 3.11]) For a formal knot complex C, the equali-
ties vH(C) = vT(C*) = 0 holds if and only if we have the Z>-filtered homotopy
equivalence

C>ADA,

where A is a stabilizer.

The proof in [4] is naturally generalized to the case of formal knot complexes. To
prove Proposition 2.27, we use the following lemma.

Lemma 2.28 The inequality vt (C*) < m holds if and only if the projection py :
Hy(C) — Ho(C/Cl{i<—1o0r j<—m—1}) is injective.

Proof Let {xx}1<k<, be a filtered basis for C and & denote the dual isomorphism
induced by {xx}1<k<,. We first assume that vT(C*) < m. Then there exists a
homological generator ¢ € Cjj lying in

.7-'6\15:’ (€N FNex(c*) = @(C/]:f}g) A ®(C/]_-A1ex )

—m—1

= spanf[y] {Umax{fA]g(xk),fAlex (xk)fm}x;(k | 1< k < }’}.

In particular, we have & 0 9(Cii<—1or j<—m—1}) = €0 go(féllg +.7:é1,fl’:1) = 0, and

£ o ¢ is decomposed as € o ¢ = ¢ o p where ¢ € Homp(C/Cli<—10r j<—m—1}, F) is
acocycleand p : C — C/C{i<—1or j<—m—1y 18 the projection. Now, let x € Cp be
a homological generator. Then we have @(p(x)) = (¢ o ¢)(x) = 1. This implies that
the homology class [p(x)] € Hyo(C/C{i<—1or j<—m—1}) is non-zero, and hence ps o
is injective.

Conversely, suppose that p, o is injective. Let x € Cp be a homological gener-
ator, and then we have p, o([x]) # 0. In addition, dimp(C/C{i<—1or j<—m—1})0 1S
finite, and hence we can take a finite IF-basis for Hy(C/Cyi<—1 or j<—m—1}) containing
P+.0([x]). Thus, by using the identification

Homp (Ho(C/Cli<—1or je—m—1})s F) = HY(C/Cliz—1 or je—m—-1; F),

we can take a cocycle ¥ € Homp((C/Ci<—1or j<—m—1})0, F) whose cohomology
class is the dual (p. o([x]))*. Moreover, the map g in Lemma 2.17 is bijective, and
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hence we can take the inverse ¢ := g, l(w o p) € C;. Note that since € o p(x) =
Y (p(x)) = 1,theelementp € C;jisahomological generator. Moreover, the equalities

sog(FUE+FAN ) =y o p(FEE+FAE ) = 1{0)

hold, and hence ¢ lies in CD(C/ ]_-él]g) N CI>(C/ FAlex ) = C{*igo, j<m)- This proves

m—1
that vH(C*) < m. ]

Proof of Proposition 2.27 Tt immediately follows from Lemma 2.25 that if C ~ A@ A
where A is a stabilizer, then v (C) = vT(C*) = 0. To prove its converse, we will
prove that if vT(C) = v (C*) = 0, then there exists a filtered basis {x;}1<x<, such
that C is decomposed into spanp {x1} @ spanp {xx}2<k<r as a chain complex. In the
situation, the restriction of d on spanp{x;} is the zero map, and hence it follows
from Lemma 2.20 that spany {x1} is a formal knot complex with spanp {x;} >~ A and
spanp {xx }2<k<r 1s a stabilizer.

Suppose that v (C) = v (C*) = 0, and let {xx}1<x<, be a filtered basis for C. By
Lemma 2.7, we may assume that gr(x;) = 0 for k € {1, ..., ro} and gr(xx) = 1 for
k e {ro+1,...r}.Setry :=r—rgand y; := x,,4; (1 <1 < r1). Then, by the definition
of vt and Lemma 2.28, there exists a homological generator x = ), <k<ro %Xk € Co
such that x € Cy; <o, j<0}, and the homology class of p(x) is non-zero, where p : C —
C/Cli<—1or j<—1) is the projection. This implies that

o If ar # 0, then x; € Cyi<o, <0}, and
o There exists anumber k € {1, ..., ro} withay # O and x; ¢ Cli<—10r j<—1)-

As a consequence, we have k' € {l,...,rg} such that ap # 0 and Alg(xy) =
Alex(x;) = 0. Moreover, since the inequalities

Alg(xg) < 0= Alg(xy)
and

Alex(xg) < 0 = Alex(xyr)

hold for any k € {1,...,ro} with ax # 0, it follows from Lemma 2.7 that {x} U
{xk}}(i]]f"’ U {y}1<i<r, 1s a filtered basis. We reorder {xk}}(i],z,gro as {xx}2<k<rg-

Next, we will change {x }2<k<r, into {x; }a<x<r, S0 that {x}U{x; }2<x<r, U{¥1}1<1<r,
is still a filtered basis and 8({y1}1§1§r1) C span]F{x,’c}szfro. Then, we can conclude
that both spany {x} and spany ({x,’(}szsro U {yl}lgsrl) are subcomplexes, and this
will complete the proof. To obtain such {x; }, we first note that

{px} U {pxk ’ 2 <k <rgand Alg(xg), Alex(xy) > 0}

is a basis for p(Cp). We reorder {xx}2<k<r, so that {px} U {ka}2§k§r() is a basis

for p(Co). (Here r}, == dimg p(Co).) Let (), == be the matrix of p o (3c,) :
C1 — p(Co) withrespect to the pair ({yi}1<1<r. {Pxkba<i<ry U{Px}), 1e. pod(y) =
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lekir_l ay; pXr+1+a, px. Then we can replace {y;}1<;<, withabasis {y/}1</<,

. . I<k=<ry . .
so that the corresponding matrix (ay,),Z l<_rr10 is in reduced column echelon form. Here,
since [px] # 0in Hy(C/C{i<—1 or j<—1}), pX is not contained in p 0d(C1) and the last
1<k=<r . . . . .
row of (a,’d)lgl;rrlo does not contain any leading coefficient. In particular, if ay # 0,
then there exists a number k; in {1, ..., r() — 1} such the k;-th row contains the [-th

leading coefficient. (Namely, ay,;» = &7, where &y is the Kronecker delta.) Now, we
define a set {x; }o<x<r, by

o = xp +x (f k =k — 1 forsome / € {1,...,ri}witha,, #0)
L (otherwise) ’

Then, it follows from Lemma 2.7 that {x} U {x,’c}zgkfro U {1} 1<i<r, 1s a filtered basis.
. I<k<r
Moreover, the replacement of {pxi}y<i<,, With { px,’c}szsré changes (ay;) 15 ='o

<i<r; SO
that the last row is a zero vector. This implies that
pod({yi}izi=rn) C pod(spang{y}i<i<r)
= p o d(spanp{y}1<i<r) C SpanF{pxl/g}zgkgr(’)’
and hence we have
d({ywh=i=n) C P_l(spanF{le/c}kagré) = spang {x; }o<k<r-
This completes the proof. O

Corollary 2.29 Let C and C’ be formal knot complexes. If vT(C) = v (C*) = 0, then
vT(C' @ C) = v (C).

Proof By Proposition 2.27, we have C >~ A @ A. Here, Lemma 2.22 says that C' ®, A
is a stabilizer, and it is easy to show that C' ®x (A® A) >~ C' @ (C’ @4 A). Therefore,
by Lemma 2.25, we have

vH(C 84 O) =vH(C'e (C'@n A)) = v (),
O

Here we refer to the following theorem of Hom and Wu, which is one of the most
important facts for obtaining concordance invariants from C F K*°.

Theorem 2.30 ([5]) For a knot K, the inequality v (CX) < g4(K) holds. In
particular, if K is a slice knot, then vt (CX) = vF((C¥)*) = 0.
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2.7 v*t-equivalence

+ +
Two elements [C], [C] € K/ are vt -equivalent (and denoted [C] ~[C’] or C ~ C') if
VT(C®4C™) = v (C*®4 C") = 0. Note that by Propositions 2.11 and 2.13, the val-
ues v (C®p C*) and v (C*®4 C') are independent of the choice of representatives.

v
Proposition 2.31 The relation ~ isan equivalence relation on K.

.

Proof The reflexivity (i.e. [C] liv[C ]) follows from Lemma 2.26. The symmetry
+ +

([C] VN[C '1if and only if [C’] VN[C ]) directly follows from the definition. We prove

+ +
the transitivity. Suppose that [C1] VN[Cz] and [C3] v~[C3]. Then, Proposition 2.24,
Lemma 2.26 and Corollary 2.29 imply

vH(C1 @A C)) = v ((C1 @A CF) 84 (€284 C)))

=" ((C1 @A C) @ (C204 C)
<vT(C1 ®a C3) +vT(C2®4 CF) = 0.

Similarly, we can prove that v (C} ® C3) = 0 holds. O

+
We call the equivalence class of a formal knot complex C under ~ the vt- equivalence
class or vF-class of C, and denote it by [C],+. Then, we can see that Hom’s stable
homotopy theorem in [4] is naturally generalized to formal knot complexes.

Theorem 2.32 ([4]) Two formal knot complexes C and C' are v*-equivalent if and
only if we have the 7°-filtered homotopy equivalence

CHA>C' A,
where A, A’ are stabilizers.

+
Proof 1t follows from Lemma 2.25 and Proposition 2.27 that C ~ C'if and only if

N
C®pC* ~ A® A where A is a stabilizer. Thus, if C ~ C’, then there exist stabilizers
Ay, Ay sothat C* @, C' >~ AP A and C @, C* >~ A @ A,, and we have

COHCRNA)=C R (ADA) ~C®p(C*R4C)
> (CRANCH®ANC = (ADA) ®)C' ~C' @ (C'®,) A2).

Conversely, if C® A >~ C' @ A’, then

vHC®r C*) = vH((C@r C @ (48s ) =v* ((C @A) @4 )
= v+<(C/ ®A)®a C’*) - u+((c’ ®r C™*) @ (A’ @a c/*))
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=vH(C’' @ C™) =0.

Similarly, we can prove vH(C* ®@p C) =0. O

Here, due to Theorem 2.30, the v*-class of CX can be seen as a knot concordance
invariant of K.

Corollary 2.33 ([4]) For a knot K, [K],+ := [CK]V+ is a knot concordance invariant
of K.

Proof If two knots K and J are concordant, then both K#(—J*) and (—K*)#J are
slice knots. Thus, by Theorem 2.30, we have

v+<CK ®n (CJ)*> _ v-‘r(cK#(—j*)) _0
and

v+((CK)* ®a CJ) = v*(C(*K*)#J) =0.

2.8 Formal knot concordance group
Now, the formal knot concordance group C! is obtained as follows.
Proposition 2.34 The quotient set C/ := K/ / 2 with product

Ix — ' (1C1+, [C']+) = [C ®A C',+

is an abelian group. In particular, the projection K — C/ is a monoid homomorphism.

Proof We first verify that the product is well-defined. Suppose that [C],+ = [C"],+,
and then v (C®, C"*) = v (C*®4 C”) = 0. Thus, it follows from Proposition 2.24
and Lemma 2.26 that

u+((c ®a C) ®a (C" @4 C/)*) - v+((c ®a C"™) @4 (C' @4 c’*)) —0
and

u+((c ®a C)* @ (C” @ C’)) - v+((c* ®a C") @4 (C' ®4 C/*)) —0.
Similarly, we can prove that if [C'],+ = [C”],+ then [C @4 C'],+ = [C @ C"],+.

Now, the commutativity immediately follows from C®, C’ >~ C’® 5 C, and obviously
the projection K — C/ is a monoid homomorphism. O

As a consequence, we have the following theorem, which is stated in Sect.1 as
Theorem 1.7.
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Theorem 2.35 The map C — C : [K]. +— [CK1,+ is a well-defined group
homomorphism. As a consequence, we have the following commutative diagram:

2.9 Partial order on Cf

In this subsection, we introduce a partial order on ¢/, which is a generaliza-
tion of the partial order on C,+ defined in [22]. Here, as a new observation, we
give an interpretation of the vt-equivalence and the partial order on C/ using
quasi-isomorphisms.

For two vT-classes [C],+, [C'],+ € €/, we denote [C],+ < [C'],+ if the equality
v (C ®4 C™*) = 0 holds.

Proposition 2.36 The relation < is a partial order on C/.

Proof Thisimmediately follows from Proposition 2.24, Lemma 2.26 and the definition
vt
of ~. O

For two formal knot complexes, a chain map f : C — C’ over A is a Z*-
filtered quasi-isomorphism if f is 7 filtered, graded, and induces an isomorphism

fe : Hy(C) — H,(C’). Then, the vT-equivalence and the partial order on ¢/ can be
translated into the words of the existence of Z>-filtered quasi-isomorphisms.

Theorem 2.37 Two formal knot complexes C and C' are v™ -equivalent if and only if
there exist Zz-ﬁltered quasi-isomorphisms

f:C—>Cuandg:C — C.

Theorem 2.38 Two v -classes [Cl,+ and [C'],+ satisfy [Cl,+ > [C'l,+ if and only
if there exists a Zz-ﬁltered quasi-isomorphism C — C’.

To prove these theorems, we first prove the following lemma.

Lemma2.39 Let C and C’ be formal knot complexes. If there exists a Z*-filtered
quasi-isomorphism f : C — C’, then [C],+ > [C'],+.

Proof Note that under the hypothesis of the lemma, f Qidc+ : C®p C* — C'®4 C*
is also a Z’-filtered quasi-isomorphism. Moreover, by Lemma 2.26, we can take a
homological generator x of C ® 4 C* lying in (C @A C*){i<0, j<0}. Now, we see that
f ®idc+(x) is a homological generator of C’ ® 4 C* lying in (C’ ® C*){i<o, j<0}»
and hence v (C’' ® C*) = 0. |
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Proof of Theorem 2.37 1t directly follows from Lemma 2.39 that the existence of

+ +
f and g implies C ~C'. We prove the converse. Suppose that C ~C. Then, by
Theorem 2.32, we have a Z>-filtered homotopy equivalence map

fiCaA—=CaA,
where A, A’ are stabilizers. Leti : C — C@ A be theinclusionand p : C'® A" — C’

the projection. Then, all of i, f’ and p are Z-filtered quasi-isomorphisms, and hence
we have the Z>-filtered quasi-isomorphism

fi=pofoi:C—C.
Similarly, we can construct a 7> filtered quasi-isomorphism g : ¢’ — C. O
Proof of Theorem 2.38 By Lemma 2.39, we only need to prove that [C],+ > [C'],+
implies the existence of a Z>-filtered quasi-isomorphism C — C’. Suppose that

[C],+ > [C’],+. Then the equality vV (C’ ® C*) = 0 holds, and hence (C’ ®x
C*){i<o0, j<0y contains a homological generator x. Hence, if we define a A-linear map

fiA— C' ®)C*
so that f(1) = x, then f is a Z*-filtered quasi-isomorphism. In addition, the map

f®1:C—C QrC*®AC

+
is also a Z>-filtered quasi-isomorphism. Moreover, since (C’ ® C* @4 C) ~c,
Theorem 2.37 gives a Z*-filtered quasi-isomorphism

C'®pC*®pC— C.
By combining these maps, we obtain the desired quasi-isomorphism. O

When one wants to construct a Z>-filtered quasi-isomorphism concretely, the
following lemma is useful.

Lemma 2.40 Let C and C’' be formal knot complexes and f: C — C' be a chain map
over A such that

e f maps a homological generator C to that of C', and
o for a filtered basis {x}1<k<r of C and any k, we have

(Alg(fxe), Alex(fxp)) < (Alg(x), Alex(xp)).
Then, f is a Z*-filtered quasi-isomorphism.
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Proof Since f?]e"(C) = spang[y {UAlex(xk)fjxk}lfkir, we have

f(]_-jAlex(C)) = spangu) {UAlex(xk)—./ ka}]skir

C spang(u] {UAleX(ka)_j ka} C f]AleX(C/).

1<k<r

Similarly, we have f(}'f‘lg(C)) C }'?lg(C/). Now, for any R € CR(Z?), we see that

fen =1 Y FEe) nF©)
@, J)ER
c > f(FREO) N F(F0)
(i.j)ER
c Y FECHNFINC) = Cp.
(i, ))eER

It is easy to see that f is a quasi-isomorphism. O

Set C,+ :=Im(C — C: [K]. — [CX],+). Then C,+ is naturally identified with
a quotient group of C, and the partial order on C/ induces a partial order on C,+. We
note that the induced partial order coincides with the order defined in author’s paper
[22]. In particular, Proposition 1.5 in [22] is naturally generalized to C/.

Proposition 2.41 ([22, Proposition 1.5]) The partial order on C has the following
properties:

1. Forelementsx,y,z € C,ifx <y, thenx +z <y +z
2. For elements x, y € , ifx <y, then —y < —x.

On the other hand, for the case of C +, we also have the following geometric estimates.
(Here, full-twist operations are defined as follows. Let K be a knot and D a disk in §3
which intersects K in its interior. By performing (—1)-surgery along d D, we obtain
anew knot J in S3 from K. Let n = Ik(K, D). Since reversing the orientation of D
does not affect the result, we may assume that n > 0. Then we say that K is deformed
into J by a positive full-twist with n-linking, and call such an operation a full-twist
operation.)

Theorem 2.42 ([22, Theorem 1.6]) Suppose that a knot K is deformed into a knot J
by a positive full-twist with n-linking.

1. Ifn=0or1, then[J],+ <[K],+.
2. Ifn >3, then [J1,+ £ [K1,+. In particular, if the geometric intersection number
between K and D is equal to n, then [J],+ > [K],+.

2.10 Invariants of v*-classes

In this subsection, we review the Vi-sequence [12], the t-invariant [13], the Y-
invariant [17] and the Y2-invariant [8] as invariants of formal knot complexes under
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vt -equivalence. Here we use Z>-filtered quasi-isomorphisms to prove the invariance
of them.

2.10.1 Vy-sequence

The Vi-sequence defined by Ni and Wu [12] is a family of Zxo-valued invariants
which is parametrized by Zx (. Concretely, for a formal knot complex C and k € Z>o,
the value Vi (C) is defined by

Vi(C) = dime ( coker (i.: Hi(Cii<o, j<kp) = Ha(Ciizo)) ).
In particular, we have the equality
vH(C) = min {k € Zsg | Vi(C) = 0}.

Moreover, we can use homological generators to determine Vi (C).

Lemma 2.43 For any k € Z>, the equality
Vi (C) = min {m € Z >0 | Cii<m, j<k+m) contains a homological generator}

holds.

Proof Denote the value of the right-hand side of the equality in Lemma 2.43 by
V/(C). We first prove that Vi (C) > V/(C). Since Hy(Cyi<o)) = F[U] and the map
iv: He(Cli<o, j<k)) = Hy(Cii<oy) is a F[U]-linear map, if Im iy 2, = Hz» (Cyi<o))
then Im iy 2, = H2,(C{i<0y) for any n < m. This implies that

ix,—2v(0) - Hoav,(0)(Cli<o, j<k}) = H-2v,(c)(Cli<o})

is surjective. Moreover, the map iy ,: H,(C{i<0)) — H,(C) is an isomorphism for
any n < 0. Consequently, we see that there exists a cycle x € C_sy,(c) lying
in Cyi<o, j<k} such that the homology class [x] € H_3y,(c)(C) is non-zero. This
implies that U ~"*(©)x e C is a homological generator lying in Cli<Vi(C), j<k+Vi(C)}-
Therefore, we have Vi (C) > V/(C).

Conversely, since C{ingf(C),jsk +V/(C)) contains a homological generator x, the

©

cycle UVi©x ¢ C—zvk/(C) is lying in Cyj <o, j<k). This implies that the map

lv,—2v/(0)* Hoavy0)(Cli<o, j<kp) = H_av;)(Cli<op)

is surjective, and hence Vi (C) < V/(C). O

Now, we can easily see that V; is a well-defined map on ¢/ and preserve the partial
order.

Corollary 2.44 If[C],+ < [C']y+, then Vi.(C) < Vi(C') for any k > 0. In particular
Vi is a well-defined map ¢ — Z>y.
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Proof Suppose that [C],+ < [C'],+. Then we have a Z>-filtered quasi-isomorphism
f: C" — C.Here, by using Lemma 2.43, we can take a homological generator x € C’
lying in Cgika(c,)’ J<k Vi ()" Then, f(x) is a homological generator of C lying in
Cli<vi(C), j<k+Vi(cy- This completes the proof. O

In addition, we also have the following properties of Vj.
Corollary 2.45 For any k € Z=o, we have

Vi(€C) = 1 < Vi1 (C) = Vi (O).
In particular, for any 0 < k < v+ (C), the inequality V;,(C) +k < v (C) holds.
Proof The first assertion immediately follows from the fact that
Clizm—1, j=te++em—1) C Cli<m, j<k-+m)
C Cli<m, j<(k+1)+m}-
Next, for any 0 < k < v+ (C), we see that
Vi < Vir1 (O + 1<+ < Vyroy + (0T (C) —k) = v (C) — k.

This completes the proof. O

Moreover, we have a connected sum inequality for V. (For knot complexes, it is given

in [1].)

Corollary 2.46 For any formal knot complexes C, C' and k, k' € Z>o, we have
Vi (C @4 C') < Vi(C) + Vi (C)).

Proof By Lemma 2.43, we have a homological generator x € C (resp. x’ € C’)
which is lying in C{iSVk(C),j§k+Vk(C)} (resp. C{iSVk/(C’),j§k+Vk/(C’)})- This implies
that x ® x’ is a homological generator of C ® » C’ lying in

(C ®A C) i<V (C)+V (€1, j<k+K)+Vi(C) Vi (C) -
This completes the proof. O

For the case of knot complexes, Vi (K) := Vi (C Kyisan important invariant because
it completely determines all correction terms of all positive Dehn surgeries along K.
To state the fact precisely, we fix several notations. For coprime integers p, g > 0, let
SZ /q (K) denote the p/q-surgery along K. Note that there is a canonical identification

between the set of Spin® structures over S; / q(K Yand {i | 0 < i < p — 1}. This
identification can be made explicit by the procedure in [19, Sect.4, Section 7]. Let
d(S3, (K),i) denote the correction term of S; / q(K ) with the i-th Spin® structure

p/q
O=<i=<p-D.

W Birkhauser



The v -equivalence classes of genus one knots Page310of57 63

Proposition 2.47 ([12, Proposition 1.6]) The equality

d(Sp/q(K) i) = d(Sp/q(O), i) — 2 max {VL;J(K)’ VL”*"‘]”J(K)}
holds, where O denotes the unknot and | -] is the floor function.

2.10.2 T-invariant
Let C be a formal knot complex. Define

C = Cliz0)/Cli=—1)

and
Fm = Cli<o, j<m)/Cli<—1. j<m)

for any m € Z. Then we see H, (C) HO(C) = F, and {}'m bmez 1s an 1ncreasmg
sequence of subcomplexes on C, i.e. a Z-filtration on C. We call a cycle x € Ca hat-
generator if x is homogeneous with gr(x) = 0 and the homology class [x] € HO(C)
is non-zero. We define the t-invariant of C by

7(C) := min {m e | fm contains a hat-generator}.

We can use homological generators to determine 7 (C) like Vi (C).

Lemma 2.48 The equality
7(C) = min {m € Z>o | Cli<—1jui<0, j<m)contains a homological generator}

holds.

Proof Denote the value of the right-hand side of the equality in Lemma 2.48 by
7/(C). We first prove that 7(C) > 1/(C). By the definition of 7(C), there exists a
chain x € C{;;—l}u{igo,jgr((:)} such that p(x) € .7-:,((;) is a hat-generator, where
p: Cii<oy — Cis the projection. Moreover, since the induced map

D«0: Ho(Cii<o)) — Hy(©)

is an isomorphism, there exists a O-chain y € C;<_1j such that 9y = dx. In partic-
ular, x — y is a homological generator of C lying in C;<_1jui<o0, j<t(c)}- (Note that
p«o([x = yD) = [p(x — )] = [p(x)] # 0.) Therefore, we have 7(C) > 7/(C).
Conversely, since Cyj<_1jufi<o0, j<r'(c)} contains a homological generator x” and
the above map p, ¢ is an isomorphism, p(x’) is a hat-generator lying in F z/(c)- This
gives T(C) < ©/(C). O
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Now, by the same arguments as the proof of Corollary 2.44, we have the following.

Corollary 2.49 If[Cl,+ < [C'],+, thenT(C) < t(C"). Inparticular, T is awell-defined
map Cf — 7.

In addition, 7 is related to vT as follows.

Corollary 2.50 The inequality T(C) < v*(C) holds.

Proof This follows from C{i<q, j<y+(c); C Cli<—1jufi<0, j<v+(C)}- O
One of the most important properties of r-invariant is the following additivity.

Proposition 2.51 7 is a group homomorphism as a map C/ — 7.

Proof Let C and C’ be formal knot complexes. Then we can see from Proposition 2.11
that the Z-filtered homotopy equivalence

(CgA\C/, {fm}) ~ (6@]}‘6/, [ spang P( U Fux ﬁlﬂ)})
A =m

holds, where p: FCxC _, 6@11: C s the projection. Next, let x € f,(c) (resp.

~

x' e (7)) be ahat-generator. Then, in a similar way to the proof of Proposition 2.27,
we have the Z-filtered homotopy equivalence

C ~ spanp{x} @ A(resp. C =~ spanp{x'} & A),

where A and A’ are acyclic Z-filtered chain complexes. Consequently, the Z-filtered
homotopy equivalence

C®a C' ~ spanp{x ® x'} & A"

holds for some acyclic Z-filtered chain complex A”, and this implies that 1 (C®4 C’) =
7(C) + 7(C)). O

As a consequence, we have the original r-invariant for knots.

Corollary 2.52 ([13]) The map [K]. — t©(CK) is a group homomorphism as a map
C— 7.

2.10.3 Y-invariant

For any ¢ € [0, 2] and s € R, the set

R’(s);z{(i,j)ez2 | (1—%>i+%j§s}
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is a closed region. Hence, if we denote Cgi (s by ]-'g , then we have an R-filtration
{FL)ser of C. We define

ve(t) ;== min {s € R | % contains a homological generator}

and

Yc(t) := —2vc(t).

Remark This definition of Y is due to Livingston [10] rather than the original one
[17].

Since there exist finitely many homological generators of C and their Alexander and
algebraic filtrations are finite, vc (¢) and Y¢(¢) are finite values. In the same way as
Vi and 7, we can prove the following proposition.

Proposition 2.53 If [C],+ < [C'l,+, then Yc(t) > Yc/(t) for any t € [0,2]. In
particular, Y (t): [C],+ — Yc(t) is a well-defined map - R for any t € [0, 2].

In addition, we can see Y as a linear approximation of Vj in the following sense.

Proposition 2.54 Foranyt € [0, 2] and k € Z>o, the inequality
Ye(t) = —kt = 2Vi(C)
holds. In particular, Yc(t) > —vT(C)t holds.
Proof This follows from Cyi<v; (¢), j<k+V,(C)} C Cla—1)i+Lj<Vi(©)+5k} |

Moreover, The additivity of Y'(¢) is also obtained in the same way as t.
Proposition 2.55 Foranyt € [0, 2], Y (¢) is a group homomorphism as amap ¢/ — R.

We can generalize the following properties of the original Y'-invariant to formal
knot complexes. The proof is similar to [10, Theorem 8.1].

Proposition 2.56 For any formal knot complexes C, the following properties hold.

1. The map Yc: [0,2] - R, t — Yc(¢) is a continuous linear function.
2. For any regular point t of Y ¢ and filtered basis {xy}1<k<r, there exists an element
x1 € {xk}1<k<r with gr(x;) = 0 such that

Ye(t') = =2 Alg(x) + (Alg(xy) — Alex(x)))t’
at any point t’ nearby t.

3. Let t be a singular point of Yc and {xi}1<k<, a filtered basis. Then there exists
two elements xj, xp € {xi}1<k<r with gr(x;) = gr(xy) = 0 such that

o Alex(x) — Alex(x) = (1 = D) (Alg(x) — Alg(w)),
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e the equality
Ye(t') = —2 Alg(x) + (Alg(x) — Alex(x))r’

holds at any point t’ nearby t satisfying t' < t, and
e the equality

Yce(t') = =2 Alg(xy) + (Alg(xy) — Alex(xy))t’

holds at any point t' nearby t satisfying t’ > t.

As a consequence of the above arguments, we have the following corollaries. Here,
PL([0, 2], R) denotes the set of continuous piecewise linear functions on [0, 2].

Corollary 2.57 The map Y : [Cl,+ — Yc is a group homomorphism as a map C/ —
PL([0, 2], R).

Corollary 2.58 The map [K]. — Yk is a group homomorphism as a map C —
PL([0, 2], R).

Here we mention that the gradient of Y¢ nearby 0 is equal to —7(C). The proof is
the same as [10, Theorem 14.1].

Proposition 2.59 For any sufficiently small t > 0, we have Yc(t) = —t(C)t.
2.10.4 YZ-invariant

Let C be a formal knot complex, {x;}1<k<, a filtered basis and {C; j)} the induced
decomposition of C. Define the support of {C(; jy} by

Pi={.j) €2 | Cap #0}.

In addition, consider the support line for F' by

t . . . 2 _L . E_
ES.—{(Z,])EZ |<1 2)z+2]—s}.

Now, for any ¢ € [0, 2], set

Pl‘ :ZPOL:I

v (r)”

Then, we see that P; # ) for any t. Moreover, from Proposition 2.56, we have the
following proposition.

Proposition 2.60 The following assertions hold:

1. Foranyt € [0, 2] and small § > 0, the intersection P; N P;_s (resp. Py N Pi1s)
has exactly one point. (We denote these points by p, and pf , respectively.)
2. The function Y has a singularity at t if and only if p;” # p;'.
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In light of this proposition, for small § > 0, we set
Z#(C) := {homological generator in fﬁ)ﬂg‘zlﬂ) }.
IfZ-(C)n Zﬁ(C) = (, then for any s € [0, 2], we define
v, () :=min{r € R |3z € Z7(C), [z7] = [z"]in Ho(F,, () + FD)}.
Now, we can define the Y2-invariant of C as

—2(vg () —vc@) if Z7(C)NZT(C) =0
o0

2 e
e, () = ifZ=(C)NZTC)#0

From the view point of Z>-filtered quasi-isomorphism, we have the following
inequality.

Proposition 2.61 If [Cl,+ < [C'l,+ and Yc|j—e.t+¢] = Yc'ljt—e.1+e] for givent €
(0,2) and some & > 0, then Y2 ,(s) = Y%, (s) forany s € [0, 2].

Proof Take 0 < § < ¢ sufficiently small so that Propsition 2.60 holds at given ¢ for
both C and C'. Let z'* € ZF(C’) such that

(271 = [T in Ho(F ) (€ + Fha (€,

and f: C' — Ca 72 -filtered quasi-isomorphism. Since vc (t £ §) = v (t £ 65), we
see f(z/%) e Z,i(C ). Now, we have the equalities

[fE)]= £lZ7D) = £f(ZTD) =[]

as elements of Ho(fLC(t)(C) + .7-"‘;2 (C)). Hence, if Z, (C) N Zf(C) = ¢, then
C

1 (9)
C’ also satisfies Z; (C’) N Z;7(C") = ¥ and we have the inequality

e (8) < Vg, (9),
which gives the desired inequality. Otherwise, Té ,(8) = 00, and hence the desired
inequality obviously holds. O

As a corollary, we have the invariance of Y2. (Note that Y2 is originally given as
an invariant of formal knot complexes in [§].)

Theorem 2.62 ([8, Theorem 4.8]) For any t € (0,2) and s € [0, 2], the map
Y7(s): [Cly+ > Y&, (5)

2

is well-defined as a map C/ — R U{oo). In particular, TI%J(S) ="k,

concordance invariant.

(s) is a knot
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We also mention the following sub-additivity of Té (D).

Theorem 2.63 ([8, Theorem 5.11) For any formal knot complexes C, C' andt € (0, 2),
we have

Yo,y @) = min{YE (1), T (0}

3 Geometric estimates

In this section, we prove the following theorem.

Theorem 1.5 For any knot K, we have

—g4(K)[T2 3]+ < [K]p+ < ga(K)[T23],+.

To prove the theorem, we consider replacing a given knot K several times. We start
with the following lemma.

Lemma 3.1 For any knot K, there exists a knot K' concordant to K which bounds a
ribbon surface with genus g4(K).

Proof Let F be a surface in B* = (53 x [0, 1])/(S® x {1}) with genus g4(K) and
dF = K C S* x {0}. Then, a similar argument to [21, Lemma2.1] shows that F
can be isotoped to a surface F’ in B* such that the composition f : F’ < (S8 x

[0, 1])/(S3 x {1}) ﬁi [0, 1] is a Morse function, and f satisfies

. All births happen at time % (we denote the number of births by b),
. b saddles happen at time %,
. The time % is a regular value and f -1 (%) is connected,

. The remaining saddles happen at time %, and

WD A W N =

5
. All deaths happen at z.

In particular, we see that f ~1([0, %]) is a (ribbon) concordance from K to K’ :=
f’l(%), and f’l([%, 1] is a ribbon surface in (S3 x [%, 1])/(S3 x {1}) = B* whose
boundary is K’ and genus is g4(K). This completes the proof. O

Next, by using full-twists, we construct a surface embedded in S3,

Lemma 3.2 If a knot K bounds a genus g ribbon surface, then there exists a knot
K’ with genus g which is obtained from K only by adding positive full-twists with
1-linking.

Proof Suppose that K bounds a genus g ribbon surface F with n ribbon singularities.
Then, for proving the lemma, it suffices to find a positive full-twist with 1-linking
deforming K into a knot K’ which bounds a genus g ribbon surface with n — 1 ribbon
singularities.

Let X, be an abstract genus g surface with 90X, = s' and f : ¥, — $3 an
immersion with f(X,) = F. Choose a ribbon singularity b on F. Then f ~1(b)
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Fig.2 A local picture near

f@ub ‘

Fig.3 A disk D and a surface
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Fig.4 The (m, n)-twist knot K, 5,

consists of two arcs in X, one of which is properly embedded and the other is lying
in Int X¢. Denote the arc in Int X, by b, and take an arc a in X, such that Int a avoids
the preimage of all ribbon singularities on F, and one end of a is in db and the other
isin 0Xg. Then f(a) is an arc in F which connects b to d F, and Int f (a) avoids all
singularities on F. Thus, we can take a (small) tubular neighborhood N of f(a) U b
such that (N, F N N) is diffeomorphic to the pair of the 3-ball and the immersed
surface shown in Fig. 2.

Now, we take a twisting disk D as shown in the left-hand side of Fig. 3. After adding
a positive full-twist along D, we have a new ribbon surface F’ which coincides with F
in S3\N ,and (N, F' N N) is diffeomorphic to the pair of the 3-ball and the embedded
surface shown in the right-hand side of Fig. 3. By the construction, it is obvious that
K’ := 0 F’ is obtained from K by a positive full-twist with 1-linking, and F’ is a genus
g ribbon surface with n — 1 ribbon singularities. This completes the proof. O

For m,n € Z, let K, , denote the (m, n)-twist knot, whose diagram is shown in
Fig.4. Then, the final replacement is stated as follows.

Lemma 3.3 Any genus g knot is deformed into the knot Ky, n,# - - - #Kyn, n, only by
adding positive full-twists with 0-linking, where m;, n; € Z~q (foralli € {1, ..., g}).

Proof Let K be a genus g knot and F a genus g surface with boundary K. By an
isotopy, we can assume that F' is of the form of Fig.5, where L is obtained from a
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WA \

’ ’ ’
Lml ol | K \ | ”2! R A

Fig.5 A description of F by a string link

\ <
\/ positive / \ Posmve //“
(
N, full-twists \\\ \\\full tw1sts

Q)

Fig.6 Pass moves with framings changing

Fig.7 A surface F’

Fig.8 A positive full-twist | |
increasing a framing P ositive

— |+I
<|—|> full-twists | |

string link (with 4g strings) by parallelizing the string link with arbitrary framings.
(The framings are characterized by a choice of {m/, n}, ..., m;, n;}.) Then, as shown
in Fig. 6, positive full-twists with O-linking can realize both directions of pass moves
with framings changing, and hence such full-twists can deform F into a surface F’ with
new framings {my, ny, ..., mg, ng}, which is shown in Fig.7. Moreover, by adding
positive full-twists with 0-linking as shown in Fig. 8, we may assume that all m;, n;
are positive. Here it is obvious that the boundary of F’ is Ky, »,# - - HKmyongs and
this fact completes the proof. O
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Here we note that all K, , are 2-bridge knots and hence alternating knots. For
alternating knots, the following strong classification theorem of v*-classes follows
from [20, Section 3.1].

Theorem 3.4 ([20, Section 3.1]) For any alternating knot K, we have [K],+ =
—#[T2’3]U+, where o (K) is the knot signature of K.

Now we can determine the vT-classes of the K, .

Lemma3.5 Foranym,n > 0, [Kynl,+ = —[T2.3],+-

Proof 1t is easy to verify that for any m,n > 0, we have o(K,, ,) = 2. Therefore,
Theorem 3.4 completes the proof. O

Now we prove Theorem 1.5.

Proof of Theorem 1.5 Fix a knot K. Then, Lemma 3.1 provides a knot K’ such that
[K'],+ = [K],+ and K’ bounds a ribbon surface with genus g4(K). Moreover, it
follows from Lemmas 3.2 and 3.3 that there exists a sequence of finitely many posi-
tive full-twists with 0 or I-linking which deforms K into Ky, # - - - #Km, x).ng,x)
for some mj,n; € Z-o (i € {1,...,g4(K)}). Therefore, by Theorem 2.42 and
Lemma 3.5, we have

(K1t = (KTt = Y (K lor = —ga(K)[Ta 3]+
1<i<ga(K)

Since g4(—K™*) = g4(K), we also have
—[K]y+ = [-K*]y+ = —g4(K)[T23],+.

This completes the proof. O

4 Algebraic estimates

In this section, we establish several algebraic estimate for the v -classes, and prove
Theorems 1.2 and 1.6.

4.1 Genus of a formal knot complex
We first define the genus of formal knot complexes.
4.1.1 Maximal and minimal degrees
For a formal knot complex C, set
Mdeg(C) :=min {m € Z | F,, =C}
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and
mdeg(C) := min{m Y/ | j-:m * 0}.

(For the definition of {fm }mez, see Sect. 2.10.2.) Let {xx}1<k<, be a filtered basis for
C. The finiteness of the above values follows from the following lemma.

Lemma 4.1 The equalities

Mdeg(C) = le’?i(r{Alex(xk) — Alg(xr)}

and

mdeg(C) = llélljrslr{AleX(Xk) — Alg(x)}
hold.
Proof From the definition of {j':m}mez, we can see that

Fon= spang {UAlg(x")xk | Alex(xx) — Alg(xg) < m}

This completes the proof. O

Corollary 4.2 The equalities
Mdeg(C*) = — mdeg(C) and mdeg(C*) = —Mdeg(C)

hold.

Proof As shown in the proof of Proposition 2.13, we can take a filtered basis {x} }1 <k <,
such that

Alex(x;) = — Alex(xx) and Alg(x;) = — Alg(xx).

This completes the proof. O

Moreover, about the decomposition {Cy; j)} (.j)er? induced by a filtered basis {xx},
we have the following lemma.

Lemma 4.3 The support {(i, j) | C(,j) # 0} is contained in the set
{mdeg(C) = j —i = Mdeg(C)}.
Proof If U'xy is lying in C(; j), then
Alex(xy) — Alg(xx) = Alex(U'xp) — Alg(U'x) = j —i.
Therefore, by Lemma 4.1, we have mdeg(C) < j —i < Mdeg(C). O
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For a coordinate (k, ) € Zz, set
Ruy :={G,j)€Z?|i <kandj <},

and then R ;) € CR. For any subset S C Z2, define the closure of S by

cl(S) := U Ri.j)-

(i,j)es

Then we also have cl(S) € CR(Z2). In addition, the equality

cl(S) = ﬂ R

ReCR(Z?), SCR
holds. For any R € CR(ZZ) and m, M € Z withm < M, define
Smy={G, ) eR|m<j—i<M)

Then, as a corollary of Lemma 4.3, we have the following.

Corollary 4.4 For any formal knot complex C and R € CR(Z?), the equality

Cr=C,r
R €l (Sindeg(c) Mdeg(C))

holds.

Proof Since R D cl(SIﬁdeg(C)’Mdeg(C)), obviously we have
CrD CCI(SR

mdeg(C),Mdeg(C))
Next we prove the converse. Fix a filtered basis {x;}1<x<, and denote the induced
decomposition by {C; j)}. By Lemma 2.9, it suffices to show that for any (i, j) €
R\Cl(Srﬁdeg(C),Mdeg(C))’ the equa.li.ty C(,j) = Oholds. Indeed, for any such coordinate
(i, j), at least one of the inequalities

Jj —i <mdeg(C) and j —i > Mdeg(C)
holds. Therefore, it follows from Lemma 4.3 that C(; ;) = 0. a
4.1.2 Genus of a formal knot complex
Now we define the genus of a formal knot complex C by

g(C) := max{Mdeg(C), — mdeg(C)}.

Then it is obvious that g(C) > 0, and Corollary 4.2 gives g(C*) = g(C). Moreover,
for knot complexes, we have the following.
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Theorem 4.5 ([14], [15, Section 5]) For any knot K, the equality
g(K) =min{g(C) | C € [C¥]}

holds.

Moreover, by definition, we have —g(C) < mdeg(C) < Mdeg(C) < g(C). Hence
Corollary 4.4 gives the following.

Corollary 4.6 For any formal knot complex C and R € CR(Z?), the equality

Cr=C/cr
l(SZg0). g0

holds.

The following lemma is useful for reducing Cg in concrete situations.
Lemma 4.7 The following assertions hold:

1. Forany k € Z, we have Cyi<yy = CR(k,g(C)+k)'
2. Foranyl € Z, we have C{j<y = CR(g(c>+/,1>-

Proof Here we verify the assertion (1). For any k € Z, we see

S0 a0y = i K N{=g(C) < j —i < ()}

cli<kin{j =g +i}
Cli<kin{j <=g(C)+k} =Ry gc)+h-

Therefore, we have {i < k} D R ¢(c)+k) D cl(SﬁgS(]z}) g(c)), and hence Corollary 4.6

gives Ci<k) = CRy o0 - Similarly, we can verify the assertion (2). O

4.2 Comparison with [(T2,2g+1)*],+

For g € Z>, let T2 2041 be the (2,2g + 1)-torus knot. These knots are alternating
knots such that 0(7224+1) = —2g, and hence it follows from Theorem 3.4 that
[T22¢+1],+ = g[T2,3],+. In this subsection, we consider comparing vT-classes with
[(T24+1)*],+. First, we recall that the knot complex C (T2.2¢+1)" has a filtered basis

satisfying:

e gr(ax) =0and gr(b;) = —1.
o (Alg(ar), Alex(ay)) = (—g+k, —k) and (Alg(by), Alex(by)) = (—g+1, —1—1).
o day = by_1 + by and db; = 0, where b_| = b, = 0.

W Birkhauser



The vt -equivalence classes of genus one knots Page 43 of 57 63

Here we note thata := ap + - - - + a, is a unique homological generator of C (Ta2g+1)",
For any g € Z=>, define

Ré = U R—g+n,—n)-

O<n<g

Then we have the following sufficient condition for satisfying the inequality [C],+ <
[(T2,2g+1 )*]v""

Proposition 4.8 For any formal knot complex C, if Cgrs contains a homological
generator, then the inequality

[Clu+ < [(T22441) 0+
holds.

Proof Fix a filtered basis and denote the induced decomposition by {C; j)}. Define
the subsets Sy C Z> (k =0,1,..., g) by

SQ = R(—g,O)
and
Ski={i=—g+k, j<—k}

for 1 < k < g. Then R8 = Llp<x<gSk, and hence we can uniquely decompose
a homological generator z € Cge into a linear combination z = Zfzo Zk, where
Zx € ®(i,j)esk C,j)- Wedenote y; :=3(zo+ ...+ z) forany0 </ < g — 1.

Claim 1 y; is lying in CRgs1—1-1)-

Proof Since zisacycle,wesee y; = d(zo+---+2z;) = 3(zj+1+- - +24). Moreover,
since the relations

U Sk = U R(—g+k.—k)

0<k<lI 0<k<i

and

U Sk C U R(—g+k,—k)

I+1<k<g I+1<k<g
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hf)ld, we have yi € (CUy__, RCerriy) N (CU1+l§k5g Ri_giri)- Here, Lemma 2.9
gives

(CUOSksl R(fg+k.fk)) N (CU1+1sksg R(*&’*’k,*k))

= @ Cip|Nn @ Ca.j

(. /)€Uo<k<t Ri—g+k.~k) @ NEUir1<k<g Ri—gtk,—k)

= C(U0§k§l R—g+k,—k) WU p12k<g Ri—gk—k) = CR(—g+/,—l—l>’

Now, we define a A-linear map f: C"22e+1)" — C by
fak = zx and fb[ =Y.

Then we can check that f is a chain map over A. (Notice that dzx = d(z9 + - -- +
Zk—1) + d(zo + - - - + z&) = yr—1 + yk.) Moreover, by Claim 1, we have

(Alg(far), Alex(far)) < (—g +k, —k)

and

(Alg(fbr), Alex(fbr)) < (—g+1,—1—1).

In addition, f(a) = f(ap+---+ag) =z0+---+2zg = z. Now, Lemma 2.40 proves
that f isa 7> filtered quasi-isomorphism. O

4.3 An estimate of genus one complexes

Here, we consider an estimate for genus one formal knot complexes.
Theorem 4.9 Let C be a formal knot complex with g(C) = 1.

1. If t(C) =1, then [Cl,+ > [T23],+.
2. If1(C) =0, then [C],+ = 0.
3. If t1(C) = —1, then [C]+ < —[T23],+.

Proof By Lemma 2.48, we have a homological generator lying in Cfi<—1}UR+(c) -
Moreover, Lemmas 2.10 and 4.7 imply that

C{iS*I}UR(O,T(C)) =Clic—1ny + CR(O,r(C)) = CR(—I,O) + CR(O.I(C)) = CR(71.0> UR©,7(C))*
As a. result, we have a homological generator in C Ri—1.0UR0. ()" .
First, suppose that 7(C) = 0. Then Cr_, ,URq ), = CRy- This proves

vT(C) = 0. Moreover, since T(C*) = —1(C) = 0 and g(C*) = g(C) = 1, we
also have v (C*) = 0. Therefore, the assertion (2) holds.
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Next, suppose that t(C) = —1. Then CR1.0UR0zc)y = CRC10)UR0—1y = Cri-
Therefore, it follows from Proposition 4.8 that

[Cli+ < [(T2,3)*]y+ = —[T23],+,

and the assertion (3) holds.
Finally, the assertion (1) follows from the assertion (3) and the fact that T (C*) =
—1(C) = —1 and [C*],+ = —[C],+. O

Now we can prove the main theorem.

Theorem 1.2 For any knot K with g(K) = 1, we have

[723], ifT(K) =1
[K],+ = { [unknot] ,+ =0 ift(K)=0
[(T2.)*] + = —[Tasly+ ifT(K)=—1
In other words, any genus one knot is v*-equivalent to one of the trefoil, its mirror

and the unknot.

Proof Let K be a genus one knot. Then, by Theorem 1.5, we have
—[T23]p+ = [Klp+ = [T23]p+.

Moreover, by Theorem 4.5, we can take a knot complex CX with g(CX) = 1. Hence,
Theorem 4.9 gives

= [123],  ifrK) =1
(K1« {=0 ifr(K)=0
< —[T3]+ ift(K)=-1
This completes the proof. O

4.4 An estimate using Y

Here we show an estimate which is obtained by using Y.
Theorem 4.10 [f Yc (1) = g(C), then [Cl,+ < —g(C)[Ta3],+-

Proof By the definition of Y, we have a homological generator which lies in
Cli+j<—g(C))- Here, we note that

i+j<-g)})Cli<—gC}URC U <—g(C)).
Moreover, Lemmas 2.10 and 4.7 imply that
Cli<—g(0)urs© U j<—g(C)} = Cli=—g()) + Cre© + Cij<—g(0)}
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= CR_yc0 T Cre© + CRo _yc)) = Crec-

As a result, we have a homological generator in Cgec). Therefore, Proposition 4.8
proves that [C],+ < [(T2,2¢(c)+1)* ]+ = —g(O)[T2,3],+. mi

Now we can prove the following discriminant.

Theorem 4.11 The equality [K],+ = —g(K)[T23],+ holds if and only if Tk (1) =
8(K).

Proof If [K],+ = —g(K)[T>3],+, then T (1) = —g(K)Yp,5(1) = g(K). Let us
prove the converse. For any knot K, by Theorem 1.5, we have

[K]y+ = —g(K)[T23],+.

Moreover, by Theorem 4.5, we can take a knot complex CX with g(CX) = g(K).
Hence, if Tg (1) = g(K), then Theorem 4.10 gives

K]+ < —g(K)[T23],+.

This completes the proof. O

5 New concordance invariants

In this section, we discuss new invariants {G,} of vT-classes whose values are finite
subsets of CR(Z?).

5.1 Theinvariants 50 and Gy

As seen in Sect. 2.10, many invariants introduced in previous work can be translated
into the words of closed regions containing a homological generator. From the view
point, it is natural to consider the universal set

éo(c ):={R € CR(ZZ) | Cg contains a homological generator}.
In fact, it behaves very naturally in terms of filtered quasi-isomorphism.
Theorem 5.1 If[Cl,+ < [C'],+, then Go(C) D Go(C).

Proof By Theorem 2.38,wel1aveaZz-ﬁltered quasi-isomorphism f: C’ — C.There-
fore, for any element R € Go(C’) and a homological generator x € C 1/?’ we see that
Cr also contains a homological generator f(x), and hence R € Go(C). O

As a corollary, we have the invariance of QNQ. Here P(CR(ZZ)) denotes the power
set of CR(Z?).
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Corollary 5.2 Q~Q(C ) is invariant under v -equivalence. In particular,
Go: [Cly+ = Go(C)

is a well-defined map - P(C’R(Zz)).
By definition, (30(C ) obviously has the following property.
Proposition 5.3 Forany R € Go(C) and R' € CR(Z2), if R C R', then R’ € Go(C).

In particular, we see that §o(c ) is an infinite set. To extract an essential part of ’g},
we consider the minimalization of G.
For a subset S C CR(Z?), an element R € S is minimal in S if it satisfies

if " € Sand R C R, then R" = R.
Define the map
min: P(CR(Z?)) — P(CR(Z?))
by
S+ {R € §| Ris minimal in S}.
Now we define Gy(C) by

Go(C) := min Go(C).

+
The invariance of Gy(C) under ~ immediately follows from Corollary 5.2.
Here, for referring later, we prove the following lemma.

Lemma 5.4 Let S C CR(Z?) be a non-empty finite subset. Then, forany R € S, there
exists an element R’ € min S with R’ C R. In particular, min S is non-empty.

Proof We prove the lemma by the induction of the order of S. If |S| = 1, then
minS = &, and the assertion obviously holds.

Assume that for any subsets of CR(Zz) with order n, the assertion holds. Let
S C CR(Z?) be a subset with order n + 1. if any element of S is minimal in S,
then the assertion holds for S. Suppose that there exist elements R, R" C S such
that R” C R. Then, since S\{R} has order n, the assertion holds for S \ {R}. In
particular, we have an element R” € min(S\{R}) with R” C R’. Here we note that
R” € min S, since R ¢ R” and R” is not required to satisfy R = R”. Moreover, we
have R” C R’ C R. This implies that the assertion holds for S, and completes the
proof. O

5.2 Finiteness of Gy

In this subsection, we show that Gy(C) is a finite set for any formal knot complex C.
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5.2.1 The region of a chain

For a non-zero element p = p(U) € A, denote the lowest degree of p by I/(p). Let
C be a formal knot complex, and {x;}1<k<, a filtered basis for C. For any non-zero
chain x = ) ) i -, px(U)x, we define the region of x as

Ry :=cl {(Alg(U“l’k>xk>, Alex(U' P xp)) | ;f(zf)iro} '

Then we see that R, € CR(ZZ) and x € Cg, . The following lemma implies that R,
does not depend on the choice of {x;}.

Lemma 5.5 The equality

Rx:ﬂR

ReCR, xeCp

holds. In particular, x € Cg if and only if R, C R.

Proof It is obvious that R, D mReCR, xecy R- We prove the converse. Let {C;, )} be

the decomposition of C induced by {x;}, and take R € CR(Z?*) with x € Cg. Then,
since Cg = P j)er Ci,j) and

Ci.jy = spanr{U'x¢ | (Alg(U'xp), Alex(U'x0)) = (i, j)},
we see that
(Alg(Ul(p")xk), Alex(Ul(”")xk)) €R

forany k € {1, ..., r} with px(U) # 0. This completes the proof. O

Lemma5.6 For any Z*-filtered chain map f: C — C' and x € C, we have Ry C
R..

Proof Since x € Cg, , we see
f(x) € f(Cr) C Ch.
Hence, Lemma 5.5 proves Ry(y) C Ry. O
5.2.2 The regions of homological generators
For a formal knot complex C, define

geny(C) := {homological generator of C},
Go(C) := [Ry € CR(Z?) | x € Ehy(CO)},
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and
GH(C) := min Gy(C).
In addition, for R € Gy(C), set
geny(C; R) := {x € geny(C) | Ry = R},

and call x € geny(C; R) a realizer of R. Notice that since dimp Cp < oo, C has
finitely many homological generators, and hence both gg(c ) and Gy(C) are finite and
non-empty. Therefore, the following theorem implies the finiteness and non-emptiness

of Go(C).
Theorem 5.7 The equality Go(C) = G(C) holds.

Proof We first prove Go(C) D G,(C). Note that since x € Cg, for any homological
generator x, we have Go(C) O §S(C). Take R, € G,(C), and suppose that R €
go(C) and R C Ry. Then, there exists a homological generator x” in Cg, and hence
Lemma 5.5 implies R,y C R C R,. Here, since R,/ € Gg(c ) and R, is minimal in
gg(C), we have R,y = R = R,. This proves R, € Go(C), and hence Gy(C) D g(/)(C).

Next we prove Go(C) C g()(c ). For a given element R € Gy(C), we first need to
prove that R € §B(C ). Here, in a similar way to the above arguments, we see that
there exists a homological generator x such that Ry C R. Moreover, since Ry is also
in go(C) and R is minimal in 50 (C),wehave R = R, € gg(C). Now, the minimality
of Rin JE)(C ) immediately follows from the minimality in QNQ(C ). Therefore, we have
R € G((C), and hence Go(C) C G,(O). ]

As a corollary, we have the following useful property of Go(C).
Corollary 5.8 For any formal knot complex C and R € CR(Z?),the following holds:

R € Go(C) « 3R € Gy(C), R' C R.

Proof Supposethat R € .C'jo (C). Then, by the definition of g~o(C )and Lemma 5.5, there
exists a homological generator x € C with R, C R. Moreover, since R, € g~6(C ) and
QNZ)(C) is a non-empty finite set, Lemma 5.4 gives an element R’ € G(C) = Go(C)
with R" C R, C R. The converse follows from Proposition 5.3. O

Here we also mention the relationship of Gy(C) to the partial order on c.

Proposition 5.9 If[Cl,+ < [C’],+, then for any R’ € Go(C"), there exists an element
R € Go(C) with R C R'.

Proof For any R’ € Go(C’), Theorem 5.1 shows R’ € QN()(C). Now, by Corollary 5.8,
we have an element R € Gy(C) with R C R’. ]
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5.3 Higher invariants G,

Here, we discuss higher invariants.

5.3.1 The secondary invariant G,

For a formal knot complex C, suppose that Go(C) has distinct two elements R and
R>. Under the hypothesis, we define the secondary invariant G (C; Ry, R7) as follows.
First, set

2en,(C; Ry, Ry) :={x € C1 | 3z; € geny(C; R), dx = z1 + 22},
and
G1(C; Ri, Ro) := {Ry | x € &0(C; Ry, R2))}.
Then we define G1(C; Ry, R>) by
Gi(C; Ri, Ry) :=min G, (C; Ry, Ra).
Here, for R € Gi(C; Ry, R»), we also define the realizers of R by
gen (C; Ry, Ry; R) := {x € gen (C; R1, R2) | Rx = R}.

Note that the above notions are independent of the order of {R;, R;}.

Lemma5.10 G(C; Ry, R;) is a non-empty finite set.

Proof Take an arbitrary realizer z; € geny(C; R;) for each i = 1, 2. Then we see that
0 # [z1] = [22] € Hp(C) = F, and hence there exists a 1-chain x € C; such that
dx = z1 + z2. Moreover, dimp(C) < oo. These facts shows that gén; (C; Rj, R;) is
non-empty and finite. Combining this fact with Lemma 5.4, we see that G; (C; Ry, R2)
is non-empty and finite. O

Theorem 5.11 Suppose that [C],+ < [C'],+ and Go(C) N Go(C") has distinct two
elements Ry and Ry. Then, for any R’ € Gi(C’; Ry, R2), there exists an element
R e Gi(C; R, R))withRCR'.

Proof Take z; € geng(C’; R;) (i = 1,2) and x € gen;(C’; Ry, Ra; R’) such that
dx = z1 +20.Let f: C' — C be a Z*-filtered quasi-isomorphism. Then we see from
the assumption and Lemma 5.6 that

Ry, Ri € Go(C)
and
Ry C Ry, = R;.
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Moreover, R; is minimal in %(C), and hence we have Rr;) = R;. In particular,
f(z;i) € geny(C; R;). Here, note that

A(f(x)) = fOx) = f(z1) + f(z22),

and hence f(x) € gen;(C; Ry, Ry) and Rs(x) € Gi(C; Ry, R2). Now, Lemma 5.4
and Lemma 5.6 give an element R € G1(C; Ry, R;) with

R C Rf(x) C R, = R'.

O

Corollary 5.12 For any [Cl,+ € ¢! and distinct two elements Ry, Ry € Go(C),
G1(C; Ri, Ry) € P(CR(Z?)) is an invariant of the vt -class [C],+.

Proof Suppose that [C],+ = [C’],+. Then, since Go(C) = Go(C’), we have

R1, Ry € Go(C) N Go(C).
Let R € Gi(C; Ry, Ry). Since [C],+ > [C’'],+, Theorem 5.11 gives an element
R’ € Gi(C’; Ry, Ry) with R C R. Moreover, since [C],+ < [C'],+, we also have

R’ € Gi1(C; Ry, Ry) with R” C R’ C R. Here, since R is minimal in G;(C; Ry, R2),
we have

RNZRIZR,

and hence R = R’ € G1(C’; Ry, Ry). This proves G1(C; Ry, Ry) C Gi1(C'; Ry, R).
In the same way, we also have G;(C; Ry, R2) D Gi(C'; Ry, Ry). |

5.3.2 Higher invariants G, withn > 2

Now we construct more higher invariants G,, by induction. Let n be an integer with
n > 2, and assume that

IRY, RY € Go(C) with R) # RY,
IR!, R} € Gi(C; {RY, RYY) with R! # R,

IRY Ry € Gy (C5 R, RIYIZE) with Ry £ RS
Then, we define

sen J piyn—1 3z; € gen, 1 (C; {R], Ré};l;(%, Rinil)
gen,, (C; (R, R3Y!Z)) == yx € Cy | y {811 N ’

ox =21+ 22

G, (C: {R], RYIZ) = (Ry | x € §&0,,(C; (R], R]}'Z)}, and
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Ga(C: (R], RIYIZY) := min G, (C; {R]. R}Y'Z)).
In addition, for R € G, (C; {Rj, Ré}’};(l)), we define
gen, (C: {(R{, RJ)"Z3: R) := {x € @0, (C: (R], R3Y'Z)) | Ry = R}.

Unlike the cases of Gy and Gy, it is unknown whether G, (C; {Rj , Rg}’};é) is empty
or not, while we see that it is finite. (This is caused by the condition dz; = 9z>.)
However, if G, (C; {Rj , Ré };f;(l)) is non-empty, then we can show that it is invariant
under vt -equivalence. (As a consequence, the emptiness of G, is also an invariant of
vt-classes.)

Theorem 5.13 Suppose that [Cl,+ < [C'],+ and the intersection
G(Cs (R], RIVZD N Gu(C's (R, RIVSZD

has distinct two elements Rll‘ and Rlz‘ (Wherek =0,1, .. — 1, and {RJ, Rl
@). Then, for any R' € G, (C; {Rj, Ré}zf;}), there exists an element

10_

R € G,(C; (R], RIYIZ])
with R C R'. In particular, the non-emptiness of G, (C’; (RY, R'zj}ﬁ;i) implies the
non-emptiness of G, (C; {Rj, R]}" 1)

Proof The proof follows from arguments exactly the same as the proof of Theo-
rem 5.11. (We only need to care about the fact that

f(zi) € gen,_ (C; {R], RIYIZG: R,
but this also can be proved by induction.) O

Corollary 5.14 For any [Cl,+ € C' and sequence of distinct two elements R¥, R12< €
Gi(C; (R], R} }" o) (k=0,1,. — 1), the element

Ga(C: {R], RIYIZ]) € PCCR(Z?)

is an invariant of the v*-class [C],+.

Proof The proof follows from arguments exactly the same as the proof of Corol-
lary 5.12. (In fact, we only need to replace some symbols suitably.) O
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5.4 Relationship to other invariants

In this subsection, we study the relationship of the new invariants Gy and G to the
invariants reviewed in Sect. 2.10.

5.4.1 Relationship of Go tovt, Vi, Tand Y

We first discuss the relationship of Gy to v™. Here, recall that Rx,) is defined by

Runy =10, ) € Z* | G, j) < (k, D).

Proposition 5.15 For any formal knot complex C, the invariants v (C) and v (C*)
are determined from Gy(C) by the formulas

vT(C) = min{m € Z>o | IR € Go(C), R C Rio.m)}
and
vT(C*) = min{m € Z>o | YR € Go(C), R D R(.—m)}-
Proof We can see that the equality
vH(C) =min{m € Z=o | Rom) € GO(C)}

holds. Therefore, the first assertion immediately follows from Corollary 5.8.

Next, by Lemma 2.28, the inequality v (C*) > m holds if and only if there is a
homological generator x € C with R, C {i < —1lor j < —m — 1}. Here, we note
that R, C {i < —lorj < —m —1}ifand only if Ry 2 R(,—m). Therefore, we have

vH(C*) = min {m € Zso | YRy € Gy(C), Ry D Ro,—m)}-

Moreover, Lemma 5.4 implies that any R, € ,C'Z)(C ) includes R(o,—) if and only if
any Ry € Go(C) includes R(o,—m). This completes the proof. O

From Proposition 5.15, we see that Gy detects the zero element as a vt-class.

Theorem 5.16 For any formal knot complex C, the following holds:

[Cl,+ =04 Go(C) = {R0,0)}

Proof By the invariance of Gy under v and easy computation Go(A) = {R0,0)},
it is obvious that [C],+ = 0 implies Go(C) = {R(,0)}. Moreover, the converse
immediately follows from Proposition 5.15, since the unique element R := R(o,0) €
Go(C) satisfies R C R(0,0) and R D R(0,0)- O
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On the other hand, we will see in Sect. 5.5 that Gy is not a perfect invariant of vt-classes.
We can also translate the invariants Vi, v and Y as follows:

Vi(C) = min {m € Zo | Ronk+m) € Go(C)}
©(C) =min{m € Z | ({i < —1}U Rio.m)) € Go(C)}
Ye(t) = =2 (min {s € R | R'(s) € Go(C)})

(Here, recall R'(s) := {(i, j) € 77| (1 — t/2)i 4+ (t/2)j < s}.) Therefore, we have
the following formulas.

Proposition 5.17 For any formal knot complex C, the invariants Vi (C), t(C) and
Y (t) are determined from Gy(C) by the formulas:

Vi(C) = min {m € Z=o |IR € Go(C), R C Rim k+m)}
7(C) =min{m € Z |3R € Go(C), R C ({i < —1}U Ro.m))}
Yc(t) = =2 (min{s € R |3R € Go(C), R C R'(5)})

5.4.2 Relationship of G; to Y?

Next, we discuss the relationship of G; to T2, (Precisely, we compare G; with v?
rather than Y2.) Let

GoH(C) := (R € Go(C) | R C Fiiil i),

and then we see that the inequality

ZFO) > | een(CiR)
ReGEH(C)

holds for each sign. (Remark that it does not become the equality in general, since we

might have x € gény(C) suchthat R C R, C f;i?zis) for some R € Q(’)i(C). Such x

is lying in Z%(C) but not in the right-hand side.) In particular, Z, (C) N Z,JF(C) =0
only if G~ (C) N G§T(C) = 0.
For any ¢ € (0, 2), we set

Gi(C) := U Gi(C; R™, RY).

REECGIE(C),R-#RT

Then, we have the following inequality. (In light of the inequality, we can regard v% .
as a linear approximation of Qi ©))

Proposition 5.18 For any formal knot complex C, t € (0,2) and s € [0, 2], the
inequality

vg,(s) <min{r e R |IR € G{(C), R C (R (vc(®)) UR'(")}.
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holds.

Proof Denote the right-hand side of the inequality in Proposition 5.18 by the symbol
g’(C)(S) Then, we can take R € G| (C) with R C (R'(vc (1)) U R® (Ug,(c)(s)))

Moreover, by the definition of gl (C), there exist elements R e G jE(C) such that
R~ # R* and R € G(C; R™, R"). This implies that we have a homological
generator

7+ € geng(C; RE) c 2E(0)

for each sign and 1-chain x € Cr, C Cpi(y0(17)URs (s)) Such that dx =z~ —z™.
©

(U t
gl
Here, by Lemma 2.10, we see

C

RwemUR W2, o) = Creean +Crie2, o) = Frcn T2
1

bl
g’(C)( 5)

gt

andhence [z7]—[zt] =[0x] =0 ¢ HO(]:uc(t) + F* 2 ). This shows the desired

Q’(C)()

inequality UC [(8) =< g, ( C)( s). ]

5.5 Genus one complexes with no realizing knot

In this subsection, we define the complexes C" precisely, and prove Theorem 1.8 and
Corollary 1.9.

For any n € Z-(, we define an F-vector space C" with a basis {xk, x,/(, y}Z;(l) and
F-linear map d: C" — C" as follows:

gr(xy) =gr(x)) =k (0O<k<n-—-1)

gr(y) =n
3x0=5x0—0
dxg=0x, =x—1+x,_;, I1<k<n-1
8y—x,, 1—{—)cnl

(Alg(xg), Alex(xg)) = (k,k+1) O0<k=<n-1)
(Alg(x}), Alex(x)) = (k+1,k) O<k<n—1)
(Alg(y), Alex(y)) = (n, n)

Then we can check that (C' d) satisfies all conditions of Lemma 2.3. Figure 1 in Sect. 1
depicts the complex (C", 3.) Therefore, we have a formal knot complex (C, 9) which
is related to (C, 9) as described in Lemma 2.3. Note that C! coincides with the knot
complex for the right-hand trefoil 75 3. Moreover, g(C") = 1 for any n.

Proposition 5.19 For any n € Z~o, C" satisfies the following:
L. Go(C") = {R(,1), R(1,0)}-
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2. Gr(C" ARG, j+1)5 R(j+l,j)}];;(l)) = {R i+, R} 1 <k <n-—1).
3. Gu(C™"; {R(j, j+1)s R(j+1,j)}7;(1)) ={Ru.n}

Proof Obviously, we see that
geny(C") = {xo, xg}
and
Go(C™) = {Ry,, Ry} ={Ro.1, Raok
Moreover, both R 1y and R(j,0) are minimal in {R 1), R(1,0)}, and hence we have
Go(C™) = {R(0,1)» R(1,0)} and geny(C") = {xo, x;,}.

Next, fix m € {0, 1,...,n — 2}, and assume that the assertion (2) holds for any
1 < k < m. Then the equalities

gen,, (C"; {R¢j, j+1)» R(j+1,j)};’-1=_()1§ Rinma1y) = {xm}
and

gen,, (C"; {Rj.j41), Rj+1.pY1=0s Romt1.m) = {7}
must hold. Now we see

&, (C" R j41) Rj1. Y jm0) = (om1. Xy}

and hence we can conclude

Gn1(CY AR j+1)s R(j+1, )} =0) = {Rem+1,m+2)s Romt2,m+1)}-
This proves the assertion (2). Similarly, we can prove the assertion (3). ]
Now, we can easily prove the following theorems from the above computation.

Theorem 1.8 The vT-classes {[C"],+},2 | are mutually distinct in ¢, whilet(C") = 1

for any n. In particular, the complement f{ \7,+(F1) is infinite.

Proof The first half assertion directly follows from Proposition 5.19. Moreover, since
t(k[T23],+) = k, T(C") = 1 and [C"],+ # [Cl]u+ = [T>.3],+ for any k € Z and
n > 2, we have [C"],+ # k[T 3],+. This proves the second half assertion. O

Corollary 1.9 The formal knot complexes {C"}22 , cannot be realized by any knot in
3.

Proof If there exists a knot K with [CX] = [C"] for some n > 2, then it follows from
Proposition 5.19 and Theorem 4.5 that t(K) = t(C") = 1 and g(K) = 1. (Note that
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1 =g(C™ = min{g(C) | C € [C"] = [CX]} = g(K) > t(K) = 1.) Therefore, by
Theorem 1.2, we have

[C"ly+ = [K]p+ = [T23],+ = [C'],+,

which contradicts to Theorem 1.8. O
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