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Abstract
The ν+-equivalence is an equivalence relation on the knot concordance group. This
relation can be seen as a certain stable equivalence on knot Floer complexes CFK∞,
and many concordance invariants derived from Heegaard Floer theory are invariant
under the relation. In this paper, we show that any genus one knot is ν+-equivalent to
one of the trefoil, its mirror and the unknot.
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1 Introduction

Throughout this paper, all manifolds are assumed to be smooth, compact, connected,
orientable and oriented unless otherwise stated.

1.1 Background and themain theorem

Heegaard Floer homology [16] is a powerful set of invariants for 3- and 4-manifolds
and knots in 3-manifolds. In particular, the Z

2-filtered chain complex CFK∞(K )

[15] associated to any knot K in S3 is a very effective tool in studying knots and Dehn
surgeries along knots. Indeed, from CFK∞(K ), we can compute

• The knot Floer homology Ĥ FK (K ) [15], and so we can detect the genus and
fibredness of K [6, 11, 14],

• The Floer homology groups Ĥ F , HF∞ and HF± and correction terms d(−, s)
of all Dehn surgeries along K [18, 19], and
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• Many knot concordance invariants including ν+, τ , ϒ , ϒ2, and so on. (See [4, 8]
for details.)

In this paper, to improve the understanding of CFK∞, we study ν+-equivalence
(denoted

ν+
∼) introduced by Hom [4] and Kim-Park [7]. Here, two knots K1 and K2 are

ν+-equivalent if ν+(K1#(−K ∗
2 )) = ν+(K2#(−K ∗

1 )) = 0, where −K and K ∗ denote
the inverse and the mirror of K respectively, and ν+ is a Z≥0-valued concordance
invariant defined by Hom-Wu [5]. This relation is an equivalence relation on knots,
and if two knots are concordant then they are ν+-equivalent. (We call the equivalence
classes ν+-classes.) By the following Hom’s theorem, ν+-equivalence can be seen as
a ‘stable’ filtered chain homotopy equivalence on CFK∞.

Theorem 1.1 (Hom [4]) Two knots K1 and K2 are ν+-equivalent if and only if we
have the following Z

2-filtered chain homotopy equivalence:

CFK∞(K1) ⊕ A1 � CFK∞(K2) ⊕ A2,

where A1, A2 are acyclic, i.e., H∗(A1) = H∗(A2) = 0.

This theorem shows that determining the ν+-class of knots is meaningful in terms
of CFK∞. Moreover, the ν+-class of a knot K determines all correction terms of all
Dehn surgeries along K and many concordance invariants including ν+, τ , ϒ and ϒ2

of K , and hence classifying the ν+-classes is useful for computing these invariants.
(These arguments are explained carefully in Sect. 2.10.)

The aim of this paper is to classify the ν+-classes of genus one knots by using the
τ -invariant [13]; in fact, we will see that only three ν+-classes are realized by genus
one knots. To state our theorem, we set some notations. For any knot K , let [K ]ν+
denote the ν+-class of K and g(K ) the genus of K . For coprime integers p, q > 0,
let Tp,q denote the (p, q)-torus knot.

Theorem 1.2 For any knot K with g(K ) = 1, we have

[K ]ν+ =

⎧
⎪⎨

⎪⎩

[
T2,3
]

ν+ if τ(K ) = 1

[unknot]ν+ if τ(K ) = 0
[
(T2,3)∗

]

ν+ if τ(K ) = −1

.

In other words, any genus one knot is ν+-equivalent to one of the trefoil, its mirror
and the unknot.

Since the τ -invariant is relatively understood, Theorem 1.2 enables us to determine
the ν+-class of many concrete examples. For instance, Hedden [2] gives a formula
for the τ -invariant of the positive t-twisted Whitehead double of a knot K (denoted
by D+(K , t)). By Theorem 1.2, we can generalize his formula to a formula for the
ν+-class of D+(K , t).

Corollary 1.3 For any knot K and t ∈ Z, we have

[D+(K , t)]ν+ =
{

[unknot]ν+ for t ≥ 2τ(K )
[
T2,3
]

ν+ for t < 2τ(K )
.
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Next, let us consider the quotient set Cν+ := {knots in S3}/ ν+
∼. Note that since

ν+
∼

is weaker than knot concordance and the ν+-invariant has the sub-additivity, we can
identify Cν+ with a quotient group of the knot concordance group C. So it is natural to
ask how different these groups are. To give an observation of the question, we setFg to
be the subgroup of C generated by the knots with genus at most g. Let πν+ : C → Cν+
be the projection, and then the sequence {Fg}g∈Z≥0 gives filtrations

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ C

and

0 = πν+(F0) ⊂ πν+(F1) ⊂ πν+(F2) ⊂ · · · ⊂ Cν+ .

It is easy to show that F1 contains Z
∞ as a summand. (For instance, compute the

ω-signature for the “twisted doubles” of the unknot. We refer to [9].) Therefore,
combining it with Theorem 1.2, we have the following proposition, which shows a
big gap between C and Cν+ .

Proposition 1.4 F1 contains Z
∞ as a summand, while πν+(F1) is isomorphic to Z.

In knot concordance theory, there are few kinds of filtrations with each level finitely
generated. Hence we suggest the following question.

Question For each g ∈ Z≥0, is πν+(Fg) finitely generated?

1.2 The idea of proof: estimating �+-classes

In order to prove Theorem 1.2, we use a partial order on Cν+ (denoted ≤) introduced
in the author’s paper [22]. We first study this partial order geometrically to give the
following estimate for the ν+-class of any knot K . Here g4(K ) denotes the 4-genus
of K , and we note that this estimate depends on g4(K ) rather than g(K ).

Theorem 1.5 For any knot K , we have

−g4(K )[T2,3]ν+ ≤ [K ]ν+ ≤ g4(K )[T2,3]ν+ .

Next, we study the Z
2-filtered structure of CFK∞ with g(K ) = 1 algebraically to

obtain another estimate, and combine it with Theorem 1.5 to prove Theorem 1.2. As
another consequence of such estimates, we have the following discriminant using the
ϒ-invariant [17].

Theorem 1.6 The equality [K ]ν+ = −g(K )[T2,3]ν+ holds if and only if ϒK (1) =
g(K ).

1.3 Formal knot complexes and new concordance invariants

To study the algebraic aspects of ν+-classes deeply, we consider an algebraic general-
ization of CFK∞ called formal knot complexes. (The notion is originally considered
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Fig. 1 A formal knot complex
Cn with genus one

in [8].) In particular, we establish the category of such complexes, and obtain the for-
mal knot monoid Kf and the formal knot concordance group Cf, which are analogies
of the knot monoid K and the knot concordance group C, respectively. Concretely,
these monoids are related as follows.

Theorem 1.7 We have the following commutative diagram:

K [K ]�→[CFK∞(K )]−−−−−−−−−−−→ Kf

[K ]�→[K ]c
⏐
⏐



⏐
⏐

[C]�→[C]ν+

C −−−−−−−−−−−−−→[K ]c �→[CFK∞(K )]ν+
Cf

Here, the bottom map coincides with πν+ . In particular, the image of the bottom map
is Cν+ .

Moreover, we also introduce the genus of formal knot complexes, and define the
genus filtration

0 = F f
0 ⊂ F f

1 ⊂ F f
2 ⊂ · · · ⊂ Cf,

where πν+(F g) ⊂ F f
g . For example, Fig. 1depicts an infinite family of genus one

formal knot complexes, and hence [Cn]ν+ ∈ F f
1 for each n ∈ Z>0. Here we note that

C1 is CFK∞(T2,3).
We prove that the [Cn]ν+ are mutually distinct, which implies that Theorem 1.2

cannot be proved purely algebraically.

Theorem 1.8 The ν+-classes {[Cn]ν+}∞n=1 aremutually distinct inCf, while τ(Cn) = 1

for any n. In particular, the complement F f
1 \πν+(F1) is infinite.
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In addition, we will show that if a formal knot complex C is realized as CFK∞
for some knot K , then the genus of C is at least g(K ). Since Cn has genus one and
τ(Cn) = 1 but cannot be realized by any genus one knot, we have the following result,
which is related to the geography problem discussed in [3].

Corollary 1.9 The formal knot complexes {Cn}∞n=2 cannot be realized by any knot in
S3.

In order to distinguish the complexes {Cn}, we introduce an infinite family {Gk}∞k=0 of
invariants of ν+-classes, where Gk(C) consists of finitely many subsets of Z

2. Since
the ν+-class of knots is a knot concordance invariant, the family {Gk}∞k=0 also gives a
new family of knot concordance invariants. In particular, the primary invariant G0 has
the following property.

Theorem 1.10 For any knot K , the following assertions hold:

1. G0(K ) determines all correction terms of all Dehn surgeries along K .
2. G0(K ) determines all of ν+, τ and ϒ .
3. [K ]ν+ = 0 if and only if G0(K ) has {(i, j) ∈ Z

2 | i ≤ 0, j ≤ 0} as the unique
element.

The definition of Gk and explicit formulas for computing the above invariants from
G0(K ) are given in Sect. 5. In the section, we also discuss the relationship between
our secondary invariant G1 and the ϒ2-invariant [8].

Organization

In Sect. 2, we establish the category of formal knot complexes, and construct the
monoid K f and the abelian group Cf. Theorem 1.7 is also proved in this section.
In Sect. 3, we prove Theorem 1.5. In Sect. 4, we discuss algebraic estimates for ν+-
classes, and prove Theorems 1.2 and 1.6. In Sect. 5, we introduce the invariants {Gk},
and prove Theorem 1.8, Corollary 1.9 and Theorem 1.10.

2 Category of formal knot complexes

In this section, we establish the category of formal knot complexes.

2.1 Poset filtered chain complexes

Let P be a poset, i.e. a set P with partial order ≤. For example, we often consider the
partial order ≤ on Z

2 given by (i, j) ≤ (k, l) if i ≤ k, j ≤ l. For a given poset P , a
closed region R ⊂ P is a subset such that for any x ∈ P , if there exists an element
y ∈ R satisfying x ≤ y, then x ∈ R. We denote the set of closed regions of P by
CR(P).

Let F := Z /2Z andR be an F-algebra. In this paper, we say that (C, ∂) is a chain
complex C over R if (C, ∂) satisfies the following:

• C is an R-module and ∂ : C → C is an R-linear map with ∂ ◦ ∂ = 0.
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• As anF-vector space,C is decomposed into
⊕

n∈Z Cn and satisfies ∂(Cn) ⊂ Cn−1.

(Remark that the R-action does not preserve the grading in general. We often abbre-
viate (C, ∂) to C .) Then, we say that C is P-filtered if a subcomplex CR of C over F

is associated to each closed region R ⊂ P so that if R ⊂ R′ then CR ⊂ CR′ . (Here we
remark that CR is not anR-submodule of C in general.) We call the set {CR}R∈CR(P)

a P-filtration on C . For instance, a Z-filtration {C{i≤m}}{i≤m}∈CR(Z) is identified with
an increasing sequence

0 ⊂ · · · ⊂ Fm ⊂ Fm+1 ⊂ · · · ⊂ C

of subcomplexes by Fm = C{i≤m}. Moreover, For two Z-filtrations {F1
i }i∈Z and

{F2
j } j∈Z on C , the set

{CR}R∈CR(Z2) :=
⎧
⎨

⎩

∑

(i, j)∈R

F1
i ∩F2

j

⎫
⎬

⎭
R∈CR(Z2)

defines a Z
2-filtration on C . We call it the Z

2-filtration induced by the ordered pair
({F1

i }i∈Z, {F2
j } j∈Z). For a complex C with an induced Z

2-filtration ({F1
i }, {F2

j }), Cr

denotes C with the induced Z
2-filtration ({F2

i }, {F1
j }).

For any two P-filtered chain complexes C and C ′, a map f : C → C ′ is P-filtered
if f (CR) ⊂ C ′

R for any closed region R. Two P-filtered chain complexes C and
C ′ are P-filtered homotopy equivalent (and denoted C � C ′) if there exists a chain
homotopy equivalence map f : C → C ′ overR such that the map, its inverse and all
chain homotopies are P-filtered and graded. (Then f is called a P-filtered homotopy
equivalence map. Particularly, we call the above f a P-filtered isomorphism if f is
a chain isomorphism.) The following lemma immediately follows from the definition
of P-filtered homotopy equivalence.

Proposition 2.1 Let C and C ′ be P-filtered chain complexes. If C � C ′, then for any
closed regions R ⊂ R′, we have an isomorphism between the long exact sequences of
R-modules:

· · · ∂∗−−−−→ H∗(CR)
i∗−−−−→ H∗(CR′)

p∗−−−−→ H∗(CR′/CR)
∂∗−−−−→ · · ·

∼=
⏐
⏐

 ∼=

⏐
⏐

 ∼=

⏐
⏐



· · · ∂∗−−−−→ H∗(C ′
R)

i∗−−−−→ H∗(C ′
R′)

p∗−−−−→ H∗(C ′
R′/C ′

R)
∂∗−−−−→ · · ·

Here, i : CR → CR′ (resp. p : CR′ → CR′/CR) denote the inclusion (resp. the pro-
jection). Moreover, the above isomorphism induces an isomorphism between the long
exact sequences of graded F-vector spaces:
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· · · ∂∗,n+1−−−−→ Hn(CR)
i∗,n−−−−→ Hn(CR′)

p∗,n−−−−→ Hn(CR′/CR)
∂∗,n−−−−→ · · ·

∼=
⏐
⏐

 ∼=

⏐
⏐

 ∼=

⏐
⏐



· · · ∂∗,n+1−−−−→ Hn(C ′
R)

i∗,n−−−−→ Hn(C ′
R′)

p∗,n−−−−→ Hn(C ′
R′/C ′

R)
∂∗,n−−−−→ · · ·

2.2 Formal knot complexes

Now we state the precise definition of formal knot complex, and discuss several basic
properties of it.

2.2.1 Definition

Let � := F[U ,U−1]. We call a tuple

(C, ∂, {Cn}n∈Z, {FAlex
j } j∈Z, {FAlg

i }i∈Z)

a formal knot complex if it satisfies the following seven conditions;

1. (C, ∂) is a chain complex over � with decomposition C =⊕n∈Z Cn . The grading
of a homogeneous element x is denoted gr(x) and called theMaslov grading of x .

2. {FAlex
j } j∈Z is a Z-filtration on C . This filtration is called Alexander filtration, and

the filtration level of an element x ∈ C is denoted Alex(x) (i.e. Alex(x) := min{ j |
x ∈ FAlex

j }).
3. Similarly, {FAlg

i }i∈Z is a Z-filtration on C , called the algebraic filtration,
and filtration levels of elements are denoted Alg(x). When we regard C as
a Z

2-filtered complex, we use the Z
2-filtration induced by the ordered pair

({FAlg
i }i∈Z, {FAlex

j } j∈Z).
4. The action ofU lowers Maslov grading by 2 and Alexander and algabraic filtration

levels by 1.
5. As a �-module, C is freely and finitely generated by elements {xk}1≤k≤r such that

• each xk is homogeneous with respect to the Maslov grading,
• {UAlex(xk)xk}1≤k≤r is a free basis for FAlex

0 as an F[U ]-module, and

• {UAlg(xk )xk}1≤k≤r is a free basis for FAlg
0 as an F[U ]-module.

We call such {xk}1≤k≤r a filtered basis.
6. There exists a Z

2-filtered homotopy equivalence map ι : C → Cr .
7. Regard � as a chain complex with trivial boundary map, and define the Maslov

grading by

�n =
{ {0,U−n/2} (n : even)
0 (n : odd)

and the Alexander and algebraic filtrations by

FAlex
i (�) = FAlg

i (�) = U−i · F[U ].
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Then there exists a Z-filtered homotopy equivalence map fAlex (resp. fAlg) : C →
� over � with respect to the Alexander (resp. algebraic) filtration.

We often abbreviate the tuple

(C, ∂, {Cn}, {F Alex
j }, {FAlg

i })

to C or (C, ∂).

Remark Note that
{
UAlex(xk )− j xk

}

1≤k≤r (resp.
{
UAlg(xk)−i xk

}

1≤k≤r ) is a free basis

for FAlex
j (resp. FAlg

i ) as an F[U ]-module. In particular, the equalities

Uk(FAlex
j ) = FAlex

j−k and Uk(FAlg
i ) = FAlg

i−k

hold for any i, j, k ∈ Z. (These facts also imply that for any element x ∈ C , both

Alex(x) and Alg(x) are finite.) Similarly,
{
U

gr(xk )−n
2 xk

}

k∈[n] is a basis for Cn as an F-

vector space, where [n] is a subset of {1, . . . r} consisting of elements with gr(xk) ≡ n
(mod 2), and the equality Uk(Cn) = Cn−2k holds.

As the simplest example, the tuple

(�, zero map, {�n}n∈Z, {FAlex
j (�)} j∈Z, {FAlg

i (�)}i∈Z)

is a formal knot complex. In addition, it is easy to see that the following lemmas hold.

Lemma 2.2 For any formal knot complex C, the complex Cr is also a formal knot
complex.

Lemma 2.3 Let (C̄, ∂̄) be a chain complex overF generated by a finite basis {xk}1≤k≤r

with functions

Alex : {xk}1≤k≤r → Z and Alg : {xk}1≤k≤r → Z

satisfying the following:

• The sequences

F̄Alex
j := spanF{xk | Alex(xk) ≤ j} and F̄Alg

i := spanF{xk | Alg(xk) ≤ i}

define Z-filtrations on C̄, respectively.
• For the induced Z

2-filtration ({F̄Alg
i }, {F̄Alex

j }) on C̄, we have a Z
2-filtered

homotopy equivalence C̄ � C̄r .
• Regard F as a chain complex over F with trivial boundary map and grading

F = F0, and define a Z-filtration by F̄i (F) = F if and only if i ≥ 0. Then we have
Z-filtered homotopy equivalences C̄ � F with respect to both {F̄Alex

j } and {F̄Alg
i }.
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If we set

• C := C̄ ⊗F � and ∂ := ∂̄ ⊗ 1,
• Cn :=⊕m∈Z(C̄n+2m ⊗F Um), and

• FAlex
j :=∑m∈Z(F̄Alex

j+m ⊗F Um
F[U ]) and FAlg

i :=∑m∈Z(F̄Alg
i+m ⊗F Um

F[U ]),
then the tuple

(C, ∂, {Cn}n∈Z, {FAlex
j } j∈Z, {FAlg

i }i∈Z)

is a formal knot complex.

In [15], Ozsváth and Szabó associate the Z
2-filtered homotopy type of a formal

knot complex CFK∞(K ) to any knot K , and prove that it is an isotopy invariant. To
simplify notation, we write CK for CFK∞(K ).

Theorem 2.4 ([15]) If two knots K and J are isotopic, then CK � C J .

Moreover, it is proved that the inverse has the same homotopy type as the original one.

Theorem 2.5 ([15]) For a knot K , we have C−K � (CK )r � CK .

2.2.2 Relationship to abstract infinity complex

Here, we compare formal knot complex with Hedden-Watson’s abstract infinity com-
plex. First, a graded, bifiltered complex is a chain complex over Fwhich admits a basis
B with functions:

m : B → Z and F : B → Z
2

such that for any a, b ∈ B, if the coefficient of a in ∂b is non-zero, then

m(a) = m(b) − 1 and F(a) ≤ F(b).

In other words, Cn := spanF{a ∈ B | m(a) = n} (n ∈ Z) defines a grading and
CR := spanF{a ∈ B | F(a) ∈ R} (R ∈ CR(Z2)) defines a Z

2-filtration.

Definition ([3, Definition 6.1]) An abstract infinity complex is a graded, bifiltered
complex (C, ∂,F) satisfying

1. (C, ∂) is freely generated as a chain complex over � by a finite set of graded,
bifiltered homogeneous generators.

2. Acting by U shifts the grading by −2 and the bifiltration by (−1,−1).
3. H∗(C, ∂) ∼= �, where 1 ∈ � has grading 0.
4. The complex (C, ∂,Fr ), whereFr is the bifiltration functionFr (i, j) := F( j, i),

is Z
2-filtered homotopy equivalent to (C, ∂,F).

Proposition 2.6 Any formal knot complex is an abstract infinity complex.
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Proof For a given formal knot complex C , we take a filtered basis {xk}1≤k≤r and set

• B := {Ulxk |1≤k≤r
l∈Z },

• m : B → Z : Ulxk �→ gr(Ulxk), and
• F : B → Z × Z : Ulxk �→ (Alg(Ulxk),Alex(Ulxk)).

Then (C, ∂,F) satisfies the all conditions for being an abstract infinity complex. ��
On the other hand, in general, an abstract infinity complex does not satisfy the

condition (7) in the definition of formal knot complex. For instance, � with grading
shifted by2n is an abstract infinity complex, but it is notZ-filtered homotopy equivalent
to the original � with respect to either Alexander or algebraic filtration.

2.2.3 Basic properties

Here, we discuss several basic properties of formal knot complexes. We first consider
a change of filtered basis.

Lemma 2.7 Let C be a formal knot complex and {xk}1≤k≤r a filtered basis for C.

1. For any l ∈ Z and a ∈ {1, . . . , r}, the set {xk}1≤k≤r
k �=a ∪ {Ulxa} is also a filtered

basis for C.
2. For a, b ∈ {1, . . . , r} with a �= b, if gr(xa) = gr(xb), Alex(xa) ≥ Alex(xb) and

Alg(xa) ≥ Alg(xb), then the set {xk}1≤k≤r
k �=a ∪ {xa + xb} is also a filtered basis for

C. Moreover, Alex(xa + xb) = Alex(xa) and Alg(xa + xb) = Alg(xa).

Proof It is obvious that both {xk}1≤k≤r
k �=a ∪{Ulxa} and {xk}1≤k≤r

k �=a ∪{xa+xb} are free bases
for C as a �-module. Therefore, the first assertion follows from Ulxa ∈ Cgr(xa)−2 l ,
Alex(Ulxa) = Alex(xa) − l and Alg(Ulxa) = Alg(xa) − l.

We consider the second assertion. Since xa + xb ∈ Cgr(xa) = Cgr(xb), the element
xa+xb is homogeneous. Next, let ja := Alex(xa), and then xa+xb lies inFAlex

ja . Here

we claim that xa+xb /∈ FAlex
ja−1. Assume that xa+xb ∈ FAlex

ja−1. ThenU
ja−1(xa+xb) =

U ja−1xa +U ja−1xb ∈ FAlex
0 , and we have a linear combination

U ja−1xa +U ja−1xb =
∑

1≤k≤r

pk(U )UAlex(xk)xk

where pk(U ) ∈ F[U ]. However, the minimal degree of pa(U )UAlex(xa) = pa(U )U ja

is at least ja , and hence we have U ja−1 �= pa(U )U ja . This contradicts the fact
that {xk}1≤k≤r is a free basis for C as a �-module. Therefore, we have xa + xb /∈
FAlex

ja−1 and Alex(xa + xb) = ja . Now, it is easy to check that {UAlex(xk )xk}1≤k≤r
k �=a ∪

{UAlex(xa+xb)(xa + xb)} is a free basis for FAlex
0 as an F[U ]-module. Similarly, we

can check that {UAlg(xk)xk}1≤k≤r
k �=a ∪ {UAlg(xa+xb)(xa + xb)} is a free basis for FAlg

0 as
an F[U ]-module. ��

Next we consider the rank of formal knot complexes.
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Lemma 2.8 For any formal knot complex C, the rank of C as a �-module is odd.

Proof Since there exists a chain homotopy equivalence map from C to � such that
the map, its inverse and all chain homotopies are graded and filtered with respect
to the Maslov grading and the algebraic filtration, we have H∗(FAlg

0 /FAlg
−1 ) =

H0(FAlg
0 /FAlg

−1 ) ∼= F. In particular, the Euler characteristic ofFAlg
0 /FAlg

−1 is 1. Here,

as an F-vector space, {UAlg(xk)xk}1≤k≤r is a basis forFAlg
0 /FAlg

−1 , and hence k is odd.
This completes the proof. ��

Finally, by using a fixed filtered basis {xk}1≤k≤r , we consider a decomposition
C =⊕(i, j)∈Z2 C(i, j) as an F-vector space, where C(i, j) is defined by

C(i, j) := spanF
{
Ulxk

∣
∣ (Alg(Ulxk),Alex(U

lxk)) = (i, j)
}

.

We call it the decomposition of C induced by {xk}1≤k≤r .

Lemma 2.9 For any R ∈ CR(Z2), the equality

CR =
⊕

(i, j)∈R

C(i, j)

holds.

Proof By the definitions of CR and filtered basis, we see that

CR =
∑

(i, j)∈R

(FAlg
i ∩FAlex

j )

and

FAlg
i ∩FAlex

j = spanF[U]
{
Umax{Alg(xk )−i,Alex(xk )− j}xk

}

1≤k≤r
.

Therefore, if (i, j) ∈ R and Ulxk ∈ C(i, j), then

l = Alg(xk) − i = Alex(xk) − j = max{Alg(xk) − i,Alex(xk) − j},

and hence Ulxk ∈ FAlg
i ∩FAlex

j ⊂ CR . This implies CR ⊃⊕(i, j)∈R C(i, j).
Conversely, if (i, j) ∈ R and l ≥ max{Alg(xk) − i,Alex(xk) − j}, then

Ulxk ∈ C(Alg(xk)−l,Alex(xk )−l)

and

(Alg(xk) − l,Alex(xk) − l) ≤ (i, j).

This implies Ulxk ∈⊕(i, j)∈R C(i, j), and hence CR ⊂⊕(i, j)∈R C(i, j). ��
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As a corollary, we have the following useful lemma.

Lemma 2.10 For any R, R′ ∈ CR(Z2), we have CR∪R′ = CR + CR′ .

Proof By Lemma 2.9, we see that

CR∪R′ =
⊕

(i, j)∈R∪R′
C(i, j) = (

⊕

(i, j)∈R

C(i, j)) + (
⊕

(i, j)∈R′
C(i, j)) = CR + CR′ .

��

2.3 Commutative monoid structure

In this subsection, we check that the tensor product of formal knot complexes is also
a formal knot complex.

Let Kf be the set of the Z
2-filtered homotopy equivalence classes of formal knot

complexes.

Proposition 2.11 For any two formal knot complexes C,C ′, the tuple
(
C ⊗� C ′, ∂ ⊗ 1 + 1 ⊗ ∂,

{
spanF p

( ⋃

m∈Z
Cm × C ′

n−m

)}
,

{
spanF p

(
FAlex

0 ×FAlex
j

)}
,
{
spanF p

(
FAlg

0 ×FAlg
i

)} )

is a formal knot complex, where p : �C×C ′ � C ⊗� C ′ is the projection. Moreover,
the set Kf with product

Kf ×Kf → Kf : ([C], [C ′]) �→ [C ⊗� C ′]

is a commutative monoid.

Remark Note that p
(
FAlex

j1
×FAlex

j2

)
= p

(
FAlex

j ′1
×FAlex

j ′2

)
if j1 + j2 = j ′1+ j ′2, and

hence the definition of the Alexander (resp. algebraic) filtration is symmetric.

Proof The fact that (C⊗�C ′, ∂ ⊗1+1⊗∂) is a chain complex follows from ordinary
arguments in homological algebra. Let {xk}1≤k≤r (resp. {x ′

l }1≤l≤s) be a filtered basis

for C (resp. C ′). Then
{
xk ⊗ x ′

l |1≤k≤r
1≤l≤s

}
is a free basis for C ⊗� C ′, and

{
Un(xk ⊗ x ′

l )
∣
∣ 1 ≤ k ≤ r , 1 ≤ l ≤ s, n ∈ Z}

is a basis for C ⊗� C ′ as an F-vector space. In particular, the subspace

(C ⊗� C ′)n := spanF p
( ⋃

m∈Z
Cm × C ′

n−m

)
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is generated by

{
U

gr(xk )+gr(x ′l )−n
2 (xk ⊗ x ′

l )
}

(k,l)∈[n],

where [n] is a subset of {1, . . . , r} × {1, . . . , s} such that (k, l) ∈ [n] if and only if
gr(xk) + gr(x ′

l ) ≡ n (mod 2). This implies that C ⊗� C ′ = ⊕n∈Z(C ⊗� C ′)n as an
F-vector space, ∂((C⊗�C ′)n) ⊂ (C⊗�C ′)n−1 andU ((C⊗�C ′)n) ⊂ (C⊗�C ′)n−2.
Therefore, the first condition and a part of the fourth and fifth conditions hold.

Next, it is obvious that
{
spanF p

(
FAlex

0 ×FAlex
j

)}

j∈Z gives an increasing

sequence of subcomplexes, and we see that
{
UAlex(xk )+Alex(x ′

l )− j (xk ⊗ x ′
l )|1≤k≤r

1≤l≤s

}

is a free basis for spanF p
(
FAlex

0 ×FAlex
j

)
as a F[U ]-module. Hence the second con-

dition and a part of the fourth and fifth conditions hold. Similarly, we can verify that
the third condition and the remaining part of the fourth and fifth conditions hold.

Next we consider the seventh condition. Here we note that it is easy to check that
for the trivial case (i.e. the case of C = C ′ = �), the seventh condition holds. Indeed,
the canonical identification �⊗� � ∼= � and its inverse are graded and filtered chain
isomorphisms (with respect to both filtrations).

Let fAlex (resp. f ′
Alex) be a chain homotopy equivalence map from C (resp. C ′) to

� satisfying the seventh condition with respect to the Alexander filtration. Then the
composition of fAlex ⊗ f ′

Alex : C ⊗� C ′ → �⊗� � with the canonical identification
�⊗�� ∼= � is a chain homotopy equivalencemap such that themap, its inverse and all
chain homotopies are graded and filtered with respect to the grading {(C ⊗�C ′)n}n∈Z
and the filtration

{
spanF p

(
FAlex

0 ×FAlex
j

)}

j∈Z. Therefore, the seventh condition

holds with respect to the Alexander filtration. In the same way, we can also prove the
seventh condition with respect to the algebraic filtration, and verify thatC⊗� � � C ,
C ⊗� C ′ � C ′ ⊗� C , and if C � C ′′ then C ⊗� C ′ � C ′′ ⊗� C ′.

Now, to prove the proposition, it suffices to prove the sixth condition, and this
follows from taking ι ⊗ ι′, where ι : C → Cr (resp. ι′ : C ′ → (C ′)r ) is a map
satisfying the sixth condition for C (resp. C ′). This completes the proof. ��
Now, letK be the monoid of the isotopy class of knots. Then we see that the connected
sum formula of CFK∞ gives a monoid homomorphism K → Kf.

Theorem 2.12 ([15, Theorem 7.1]) The map K → Kf : [K ] �→ [CK ] is a monoid
homomorphism. Equivalently, the equality [CK#J ] = [CK ⊗� C J ] holds.

2.4 The dual of a formal knot complex

In this subsection, we check that the dual of a formal knot complex is also a formal
knot complex.

Let C be a formal knot complex. Since C is freely generated by a filtered basis
{xk}1≤k≤r as a �-module, the dual C∗ := Hom�(C,�) is freely generated by the
dual basis {x∗

k }1≤k≤r . We use the dual basis to define the Maslov grading and two
filtrations on C∗.
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Here we note that C∗ is an F-vector space and {Ulx∗
k | l ∈ Z, 1 ≤ k ≤ r} is

a basis for C∗ as an F-vector space. Hence we can define an F-linear isomorphism

 : C → C∗ by 
(Ulxk) = U−l x∗

k . (Remark that since C is infinite-dimensional F-
vector space, C∗ is not isomorphic to HomF(C, F).) We call 
 the dual isomorphism
induced by {xk}1≤k≤r .

Next, let C/FAlex
j (resp. C/FAlg

−i ) denote the subspace of C (as an F-vector space)

generated by {Ulxk}l≤Alex(xk)− j−1
1≤k≤r (resp. {Ulxk}l≤Alg(xk)−i−1

1≤k≤r ). Then we have

C = FAlex
j ⊕(C/FAlex

j

) (
resp. C = FAlg

i ⊕(C/FAlg
i

))
,

(
C/FAlex

j+1

) ⊂ (C/FAlex
j

) (
resp.

(
C/FAlg

i+1

) ⊂ (C/FAlg
i

))
, and

U
(
C/FAlex

j

) = (C/FAlex
j−1

) (
resp. U

(
C/FAlg

i

) = (C/FAlg
i−1

))
.

In particular, we see that 

(
C/FAlex

j

) (
resp. 


(
C/FAlg

i

))
is a free F[U ]-module

generated by
{
U−Alex(xk)+ j+1x∗

k

}

1≤k≤r (resp.
{
U−Alg(xk )+i+1x∗

k

}

1≤k≤r ). Now, the
formal knot complex structure of C∗ is described as follows.

Proposition 2.13 Let ∂∗ : C∗ → C∗ denote the dual of the differential ∂ on C. Then,
the tuple

(
C∗, ∂∗, {
(C−n)},

{


(
C/FAlex− j−1

)}
,
{


(
C/FAlg

−i−1

)})

is a formal knot complex. Moreover, for any formal knot complexes C1,C2, if C1 � C2
then C∗

1 � C∗
2 .

We call the formal knot complex C∗ the dual of C . Before proving Proposition 2.13,
we prove the following lemmas. Here, ε : � → F is an F-linear map defined by
ε(p(U )) = p(0) for each p(U ) ∈ � (i.e. ε maps a Laurent polynomial to its constant
term).

Lemma 2.14 We have the equalities


(Cn) =
{
ϕ ∈ C∗ ∣∣ ε ◦ ϕ(

⊕
m �=n Cm) = {0}

}
,



(
C/FAlex

j

) =
{
ϕ ∈ C∗ ∣∣ ε ◦ ϕ

(FAlex
j

) = {0}
}

, and



(
C/FAlg

i

) =
{
ϕ ∈ C∗ ∣∣ ε ◦ ϕ

(FAlg
i

) = {0}
}

.

In particular, the subspaces
(C−n),

(
C/FAlex− j−1

)
and


(
C/FAlg

−i−1

)
are indepen-

dent of 
. (We often denote them by C∗
n , FAlex

j (C∗) and FAlex
i (C∗) respectively.)

Proof We first note that 
(Cn) is generated by
{
U− gr(xk )−n

2 x∗
k

}

k∈[n]. Now, Suppose
that ϕ is in 
(Cn), and then we have an F-linear combination

ϕ =
∑

k∈[n]
akU

− gr(xk )−n
2 x∗

k .
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Thus, for any element x =∑1≤k≤r pk(U )xk ∈⊕m �=n Cm , we have

ϕ(x) =
∑

k∈[n]
akU

− gr(xk )−n
2 pk(U ).

Here, since x is in
⊕

m �=n Cm , the coefficient ofU
gr(xk )−n

2 in pk(U ) is zero. This implies
that

ε ◦ ϕ(x) =
∑

k∈[n]
akε

(

U− gr(xk )−n
2 pk(U )

)

= 0.

Conversely, suppose that ϕ =∑1≤k≤r qk(U )x∗
k ∈ C∗ satisfies ε ◦ ϕ(

⊕
m �=−n Cm) =

{0}. Here we note that the coefficient of Ul in qk(U ) is zero if and only if
ε ◦ ϕ(U−l xk) = 0. In addition, for any k ∈ [n], U−l xk is in

⊕
k �=−n Ck if and

only if l �= − gr(xk )−n
2 , and hence we have qk(U ) = akU− gr(xk )−n

2 for some ak ∈ F.
Otherwise,Ulxk ∈⊕k �=−n Ck for any l, and hence qk(U ) = 0. As a consequence, we

have ϕ = ∑
k∈[n] akU− gr(xk )−n

2 x∗
k . In a similar way, we can also prove the assertions

for 

(
C/FAlex

j

)
and 


(
C/FAlg

i

)
. ��

Lemma 2.15 Let C,C ′ be formal knot complexes and f : C → C ′ be a�-linear map.
Define a map f ∗ : C ′∗ → C∗ by ϕ �→ ϕ ◦ f .

1. Fix k ∈ Z. If f (Cn) ⊂ C ′
n+k for any n, then f ∗(
(C ′

n+k)) ⊂ 
(Cn).

2. If f
(FAlex

j (C)
) ⊂ FAlex

j (C ′), then f ∗(

(
C ′/FAlex

j

)) ⊂ 

(
C/FAlex

j

)
.

3. If f
(FAlg

i (C)
) ⊂ FAlg

i (C ′), then f ∗(

(
C ′/FAlg

i )
) ⊂ 


(
C/FAlg

i

)
.

Proof Lemma 2.14 implies that for any ϕ ∈ 
(C ′
n+k), the equalities

ε ◦ ( f ∗ϕ)

⎛

⎝
⊕

m �=n

Cm

⎞

⎠ = ε ◦ ϕ

⎛

⎝ f

⎛

⎝
⊕

m �=n

Cm

⎞

⎠

⎞

⎠ ⊂ ε ◦ ϕ

⎛

⎝
⊕

m �=n+k

C ′
m

⎞

⎠ = {0}

hold, and hence f ∗ϕ ∈ 
(Cn). Similarly, we can prove the second and third assertions
in Lemma 2.15. ��
Proof of Proposition 2.13 The first, second, third and forth conditions immediately fol-
low from the arguments above Proposition 2.13, the above two lemmas and the equality
U
 = 
U−1, and so we next consider the fifth condition. We prove that {x∗

k }1≤k≤r is
a filtered basis. First, x∗

k is in 
(C− gr(xk)) and hence it is homogeneous. Next, since

U

(
C/FAlex− j−1

) = 
U−1(C/FAlex− j−1

) = 

(
C/FAlex− j

) ⊂ 

(
C/FAlex− j−1

)
,



(
C/FAlex− j−1

)
is a F[U ]-module. In addition, {U−Alex(xk)x∗

k }1≤k≤r is a free basis

for 

(
C/FAlex−1

)
as a F[U ]-module, and x∗

k ∈ 

(
C/FAlex− j−1

)
if and only if j =
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−Alex(xk). This implies that {x∗
k }1≤k≤r satisfies the fifth condition with respect to

the Alexander filtration. In a similar way, we can also prove that {x∗
k }1≤k≤r satisfies

the condition with respect to the algebraic filtration. Thus, the fifth condition holds.
Next, we consider the seventh condition. Let fAlex : C → � be a chain homo-

topy equivalence map satisfying the seventh condition with respect to the Alexander
filtration, and gAlex the inverse of fAlex. Then the dual g∗

Alex : C∗ → �∗ is a chain
homotopy equivalence map over �, and Lemma 2.15 implies that the duals of fAlex,
gAlex and all chain homotopies are graded with respect to the pair

({
(C−n)}n∈Z, {
(�−n)}n∈Z
)
,

and filtered with respect to the pair

({


(
C/FAlex−i−1

)}

i∈Z,
{


(
�/FAlex−i−1

)}

i∈Z
)

.

Moreover, if we define a �-linear map  : � → �∗ by (1) = 1∗, then  is a chain
isomorphism satisfying

(�n) =
{ {0,U−n/2 · 1∗} (n : even)
0 (n : odd)

=
{ {0,
(Un/2)} (n : even)
0 (n : odd)

= 
(�−n)

and

(FAlex
i (�)) = spanF

{
Ul · 1∗ ∣∣ l ≥ −i

}

= spanF
{

(Ul)

∣
∣ l ≤ i

}

= 

(
C/FAlex−i−1

)
.

These imply that  and the inverse −1 are graded with respect to the pair

({�n}n∈Z, {
(�−n)}n∈Z
)
,

and filtered with respect to the pair

(
{FAlex

i }i∈Z,
{


(
�/FAlex−i−1

)}

i∈Z
)

.

As a consequence, the composition −1 ◦ g∗
Alex : C∗ → � satisfies the seventh

condition with respect to the Alexander filtration. In the same way, we can prove
the seventh condition with respect to the algebraic filtration. In addition, the sixth
condition also follows from similar arguments.
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Finally, we consider the last assertion in Proposition 2.13. Suppose that C1,C2 are
formal knot complexes and f : C1 → C2 is a Z

2-filtered homotopy equivalence map.
Then Lemma 2.15 implies that the dual f ∗ : C∗

2 → C∗
1 is a Z

2-filtered homotopy
equivalence map. This completes the proof. ��

For knot complexes, the dual complex corresponds to the mirror. (Note that the
knot Floer homology Ĥ FK is treated in [15, Proposition 3.7], while the same proof
can be applied to CFK∞.)

Theorem 2.16 ([15, Proposition 3.7]) For any knot K , the equality [CK ∗ ] = [(CK )∗]
holds.

In particular, by combining the above theorem with Theorem 2.5, we have

[C−K ∗ ] = [(CK )∗].

This fact is important in terms of knot concordance. About dual complexes, we give
three more lemmas.

Lemma 2.17 Let C be a formal knot complex. Then the F-linear map εn : C∗−n →
HomF(Cn, F) defined by ϕ �→ ε◦ϕ is a cochain isomorphism (where we see {C∗−n}n∈Z
as a graded cochain complex over F). In particular, we have F-linear isomorphisms

H−n(C
∗) ∼= Hn(C∗; F) ∼= HomF(Hn(C∗), F),

where the first isomorphism is the isomorphism induced from εn.

Proof The equalities ∂∗(εnϕ) = ε ◦ ϕ ◦ ∂ = εn+1(∂
∗ϕ) show that {εn}n∈Z is a

cochain map. We prove that εn is an F-linear isomorphism. Let {xk}1≤k≤r be a filtered
basis for C and 
 the dual isomorphism induced by {xk}1≤k≤r . Then we see that
{
ε ◦ (U− gr(xk )−n

2 x∗
k )
}

k∈[n] coinsides with the dual basis for
{
U

gr(xk )−n
2 xk

}

k∈[n]. Here

we note that
{
U− gr(xk )−n

2 x∗
k

}

k∈[n] is a basis for C
∗−n , and hence εn is an isomorphism.

��
Lemma 2.18 For any formal knot complex C, the�-linear map� : C → C∗∗ defined
by �(x)(ϕ) = ϕ(x) (x ∈ C, ϕ ∈ C∗) is a Z

2-filtered isomorphism. In particular,
C∗∗ � C.

Proof It is easy to check that � is a chain isomorphism over �. Moreover, for a fixed
filtered basis {xk}1≤k≤r for C , let 
 : C → C∗ (resp. 
∗ : C∗ → C∗∗) be the dual
isomorphism induced by {xk}1≤k≤r (resp. {x∗

k }1≤k≤r ), and then 
∗ ◦ 
 = �. Hence
we have

�(Cn) = 
∗(
(Cn)) = 
∗(C∗−n) = C∗∗
n ,

�(FAlex
j (C)) = 
∗(
(FAlex

j (C))) = 
∗(C∗/FAlex− j−1) = FAlex
j (C∗∗), and

�(FAlg
i (C)) = 
∗(
(FAlg

i (C))) = 
∗(C∗/FAlg
−i−1) = FAlg

i (C∗∗).

This completes the proof. ��
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Lemma 2.19 Any two formal knot complexes C and C ′, the �-linear map � : C∗ ⊗
C ′∗ → (C ⊗ C ′)∗ defined by �(ϕ ⊗ ψ)(x ⊗ y) = ϕ(x)ψ(y) (ϕ ∈ C∗, ψ ∈ C ′∗, x ∈
C, y ∈ C ′) is a Z

2-filtered isomorphism. In particular, (C ⊗ C ′)∗ � C∗ ⊗ C ′∗.

Proof The proof is similar to Lemma 2.18. ��

2.5 Stabilizers

Let (A, ∂) be a chain complex over �. We call a tuple

(
A, ∂, {An}n∈Z, {FAlex

j } j∈Z, {FAlg
i }i∈Z

)

a stabilizer if it satisfies the conditions (1) to (6) in the definition of formal knot
complex and the following:

Condition There exists a chain homotopy 
Alex (resp. 
Alg) on C connecting the
identity and the zero-map which is Z-filtered with respect to the Alexander filtration
(resp. the algebraic filtration).

Remark The above condition does not imply A � 0. The relation A � 0 is corre-
sponding to the existence of chain homotopies 
Alex and 
Alg satisfying the above
condition and 
Alex = 
Alg.

Let C (resp. C ′) be a chain complex over � satisfying the conditions (1) to (6) for
being a formal knot complex and {xk}1≤k≤r (resp. {x ′

l }1≤l≤s) a filtered basis for C
(resp. C ′). Then the tuple

(
C ⊕ C ′, ∂ ⊕ ∂ ′, {Cn ⊕ C ′

n}n∈Z,

{FAlex
j (C) ⊕ FAlex

j (C ′)} j∈Z, {FAlg
i (C) ⊕ FAlg

i (C ′)}i∈Z
)

also satisfies the conditions (1) to (6) for being a formal knot complex, where
{(xk, 0)}1≤k≤r ∪ {(0, x ′

l )}1≤l≤s is a filtered basis for the tuple. We abbreviate the tuple
to C ⊕ C ′.

Lemma 2.20 Let A be a chain complex over � satisfying the conditions (1) to (6)
for being a formal knot complex. Then A is a stabilizer if and only if H∗(FAlex

0 ) =
H∗(FAlg

0 ) = 0.

Proof It is obvious that if A is a stabilizer, then H∗(FAlex
0 ) = H∗(FAlg

0 ) = 0. We

prove the converse. Suppose that the equalities H∗(FAlex
0 ) = H∗(FAlg

0 ) = 0 hold.
Then, since U : FAlex

0 → FAlex−1 is a chain isomorphism, we have H∗(FAlex−1 ) = 0
and H∗

(FAlex
0 /FAlex−1

) = 0. Let {xk}1≤k≤r be a filtered basis for A. By Lemma
2.7, we may assume that Alex(xk) = 0 for any k. Then we see FAlex

0 /FAlex−1 =
spanF{pxk}1≤k≤r , where p : FAlex

0 → FAlex
0 /FAlex−1 is the projection. Moreover,
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it follows from H∗
(FAlex

0 /FAlex−1

) = 0 that r is even and there exists a subset
{k1, k2, . . . , kr/2} of {1, . . . , r} such that

spanF
{
pxk1 , . . . , pxkr/2 , ∂(pxk1), . . . , ∂(pxkr/2)

} = FAlg
0 /FAlg

−1 .

This implies that Alex(∂xki ) = 0 for any 1 ≤ i ≤ r/2 and

span�

{
xk1 , . . . , xkr/2 , ∂xk1 , . . . , ∂xkr/2

} = A.

Now, define a �-linear map 
Alex : A → A by xki �→ 0 and ∂xki �→ xki . Then, it
is not hard to check that 
(Cn) ⊂ Cn+1, 
(FAlex

i ) ⊂ FAlex
i , and 
 ◦ ∂ + ∂ ◦ 
 is

equal to the identity on A. This proves the condition for being a stabilizer with respect
to the Alexander filtration. In the same way, we can prove the condition for being a
stabilizer with respect to the algebraic filtration. ��
In addition, we can easily check that the following lemmas hold.

Lemma 2.21 For two stabilizers A and A′, the direct sum A ⊕ A′ is also a stabilizer.
Moreover, for a formal knot complex C, the direct sum C ⊕ A is also a formal knot
complex.

Lemma 2.22 For two stabilizers A and A′, and a formal knot complex C, the tensor
products A ⊗� A′ and C ⊗� A are also stabilizers.

Lemma 2.23 For a stabilizer A, the dual A∗ is also a stabilizer.

2.6 �+-invariant

For any formal knot complex C , we have

Hn(C) ∼= Hn(�) ∼=
{

F (n : even)
0 (otherwise)

.

In particular, H0(C) ∼= F. A cycle x ∈ C is called a homological generator if x is
homogeneous with gr(x) = 0 and the homology class [x] ∈ H0(C) is non-zero. We
define the ν+-invariant of C by

ν+(C) := min
{
m ∈ Z≥0

∣
∣ C{i≤0, j≤m} contains a homological generator

}
.

Remark The above definition of ν+ is originally that of ν−. However, these invariants
are the same, and hence we may define ν+ as above.

Note that the equality

ν+(C) = min
{
m ∈ Z≥0

∣
∣ i∗,0 : H0(C{i≤0, j≤m}) → H0(C) is surjective

}

holds, and hence the value ν+(C) is invariant underZ2 -filtered homotopy equivalence.
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Proposition 2.24 ν+(C ⊗� C ′) ≤ ν+(C) + ν+(C ′).

Proof Note that C{i≤0, j≤m} = FAlg
0 ∩FAlex

m , and hence there exists a homological

generator x ∈ C (resp. x ′ ∈ C ′) lying in FAlg
0 ∩FAlex

ν+(C)
(resp. FAlg

0 ∩FAlex
ν+(C ′)). This

implies that x ⊗ x ′ ∈ C ⊗� C ′ is lying in

p
(FAlg

0 ×FAlg
0

) ∩ p
(FAlex

ν+(C)
×FAlex

ν+(C ′)
) ⊂ FAlg

0 ∩FAlex
ν+(C)+ν+(C ′)

= (C ⊗� C ′){i≤0, j≤ν+(C)+ν+(C ′)}.

Moreover, it is easily seen that x ⊗ x ′ is a homogeneous cycle with gr(x ⊗ x ′) = 0
(and so [x ⊗ x ′] ∈ H0(C ⊗� C ′)), and the Künneth formula H∗(C) ⊗� H∗(C ′) ↪→
H∗(C ⊗� C ′) implies that [x ⊗ x ′] is non-zero. Therefore, x ⊗ x ′ is a homological
generator, and this completes the proof. ��
It is easy to see that the value of ν+ is unchanged under stabilization.

Lemma 2.25 For any formal knot complex C and stabilizer A, we have ν+(C ⊕ A) =
ν+(C).

Moreover, ν+ also has the following property.

Lemma 2.26 For any formal knot complex C, we have

ν+(C ⊗� C∗) = 0.

Proof Let {xk}1≤k≤r be a filtered basis for C . Then, the element x =∑1≤k≤r xk ⊗ x∗
k

is lying in (C ⊗� C∗){i≤0, j≤0} and homogeneous with gr(x) = 0. We prove that this
x is a homological generator.

Let (alk)1≤l,k≤r be the matrix of ∂ : C → C with respect to {xk}1≤k≤r , i.e. ∂xk =∑
1≤l≤r alk xl . Then its transpose (akl)1≤l,k≤r is the matrix of ∂∗ : C∗ → C∗ with

respect to {x∗
k }1≤k≤r , and we have

(∂ ⊗ 1 + 1 ⊗ ∂∗)(xk ⊗ x∗
k ) =

∑

1≤l≤r

alk xl ⊗ x∗
k +

∑

1≤l≤r

akl xk ⊗ x∗
l .

This implies that

(
the coefficient of xl ⊗ x∗

k in (∂ ⊗ 1 + 1 ⊗ ∂∗)(x)
) = 2alk = 0

for any 1 ≤ l, k ≤ r . Hence x is a cycle.
Next, we prove that the homology class of x is non-zero. It is obvious that∑
1≤k≤r x

∗
k ⊗ xk ∈ C∗ ⊗� C is also a cycle. Here, by using the chain isomorphisms

� and � in Lemmas 2.18 and 2.19, we can identify C∗ ⊗ C with (C ⊗ C∗)∗ by
(ϕ ⊗ y)(z⊗ψ) = ϕ(z)ψ(y) (y, z ∈ C, ϕ, ψ ∈ C∗). (In other words,

∑
1≤k≤r x

∗
k ⊗ xk

can be seen as a cocycle.) Now, it follows from Lemma 2.8 that r is odd, and hence
we have
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⎛

⎝
∑

1≤k≤r

x∗
k ⊗ xk

⎞

⎠ (x) =
∑

1≤k≤r

(
x∗
k (xk)

)2 = r = 1 ∈ �.

This implies that the homology class of x is non-zero. ��
The following proposition is originally proved by Hom [4] in the case of knot

complexes.

Proposition 2.27 ([4, Proposition 3.11]) For a formal knot complex C, the equali-
ties ν+(C) = ν+(C∗) = 0 holds if and only if we have the Z

2-filtered homotopy
equivalence

C � � ⊕ A,

where A is a stabilizer.

The proof in [4] is naturally generalized to the case of formal knot complexes. To
prove Proposition 2.27, we use the following lemma.

Lemma 2.28 The inequality ν+(C∗) ≤ m holds if and only if the projection p∗,0 :
H0(C) → H0(C/C{i≤−1 or j≤−m−1}) is injective.

Proof Let {xk}1≤k≤r be a filtered basis for C and 
 denote the dual isomorphism
induced by {xk}1≤k≤r . We first assume that ν+(C∗) ≤ m. Then there exists a
homological generator ϕ ∈ C∗

0 lying in

F Alg
0 (C∗) ∩ F Alex

m (C∗) = 

(
C/F Alg

−1

) ∩ 

(
C/F Alex−m−1

)

= spanF [U]
{
Umax{−Alg (xk),−Alex (xk)−m}x∗

k

∣
∣ 1 ≤ k ≤ r

}
.

In particular, we have ε ◦ ϕ(C{i≤−1 or j≤−m−1}) = ε ◦ ϕ(FAlg
−1 +FAlex−m−1) = 0, and

ε ◦ ϕ is decomposed as ε ◦ ϕ = ϕ̃ ◦ p where ϕ̃ ∈ HomF(C/C{i≤−1 or j≤−m−1}, F) is
a cocycle and p : C → C/C{i≤−1 or j≤−m−1} is the projection. Now, let x ∈ C0 be
a homological generator. Then we have ϕ̃(p(x)) = (ε ◦ ϕ)(x) = 1. This implies that
the homology class [p(x)] ∈ H0(C/C{i≤−1 or j≤−m−1}) is non-zero, and hence p∗,0
is injective.

Conversely, suppose that p∗,0 is injective. Let x ∈ C0 be a homological gener-
ator, and then we have p∗,0([x]) �= 0. In addition, dimF(C/C{i≤−1 or j≤−m−1})0 is
finite, and hence we can take a finite F-basis for H0(C/C{i≤−1 or j≤−m−1}) containing
p∗,0([x]). Thus, by using the identification

HomF

(
H0(C/C{i≤−1 or j≤−m−1}), F

) ∼= H0(C/C{i≤−1 or j≤−m−1}; F),

we can take a cocycle ψ ∈ HomF((C/C{i≤−1 or j≤−m−1})0, F) whose cohomology
class is the dual (p∗,0([x]))∗. Moreover, the map ε0 in Lemma 2.17 is bijective, and
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hence we can take the inverse ϕ := ε−1
0 (ψ ◦ p) ∈ C∗

0 . Note that since ε ◦ ϕ(x) =
ψ(p(x)) = 1, the elementϕ ∈ C∗

0 is a homological generator.Moreover, the equalities

ε ◦ ϕ
(FAlg

−1 +FAlex−m−1

) = ψ ◦ p
(FAlg

−1 +FAlex−m−1

) = {0}

hold, and hence ϕ lies in 

(
C/FAlg

−1

) ∩ 

(
C/FAlex−m−1

) = C∗{i≤0, j≤m}. This proves
that ν+(C∗) ≤ m. ��
Proof of Proposition 2.27 It immediately follows from Lemma 2.25 that if C � �⊕ A
where A is a stabilizer, then ν+(C) = ν+(C∗) = 0. To prove its converse, we will
prove that if ν+(C) = ν+(C∗) = 0, then there exists a filtered basis {xk}1≤k≤r such
that C is decomposed into span�{x1} ⊕ span�{xk}2≤k≤r as a chain complex. In the
situation, the restriction of ∂ on span�{x1} is the zero map, and hence it follows
from Lemma 2.20 that span�{x1} is a formal knot complex with span�{x1} � � and
span�{xk}2≤k≤r is a stabilizer.

Suppose that ν+(C) = ν+(C∗) = 0, and let {xk}1≤k≤r be a filtered basis for C . By
Lemma 2.7, we may assume that gr(xk) = 0 for k ∈ {1, . . . , r0} and gr(xk) = 1 for
k ∈ {r0+1, . . . r}. Set r1 := r−r0 and yl := xr0+l (1 ≤ l ≤ r1). Then, by the definition
of ν+ and Lemma 2.28, there exists a homological generator x =∑1≤k≤r0 akxk ∈ C0
such that x ∈ C{i≤0, j≤0}, and the homology class of p(x) is non-zero, where p : C →
C/C{i≤−1 or j≤−1} is the projection. This implies that

• If ak �= 0, then xk ∈ C{i≤0, j≤0}, and
• There exists a number k ∈ {1, . . . , r0} with ak �= 0 and xk /∈ C{i≤−1 or j≤−1}.

As a consequence, we have k′ ∈ {1, . . . , r0} such that ak′ �= 0 and Alg(xk′) =
Alex(xk′) = 0. Moreover, since the inequalities

Alg(xk) ≤ 0 = Alg(xk′)

and

Alex(xk) ≤ 0 = Alex(xk′)

hold for any k ∈ {1, . . . , r0} with ak �= 0, it follows from Lemma 2.7 that {x} ∪
{xk}1≤k≤r0

k �=k′ ∪ {yl}1≤l≤r1 is a filtered basis. We reorder {xk}1≤k≤r0
k �=k′ as {xk}2≤k≤r0 .

Next, wewill change {xk}2≤k≤r0 into {x ′
k}2≤k≤r0 so that {x}∪{x ′

k}2≤k≤r0∪{yl}1≤l≤r1
is still a filtered basis and ∂

({yl}1≤l≤r1

) ⊂ spanF{x ′
k}2≤k≤r0 . Then, we can conclude

that both span�{x} and span�

({x ′
k}2≤k≤r0 ∪ {yl}1≤l≤r1

)
are subcomplexes, and this

will complete the proof. To obtain such {x ′
k}, we first note that

{px} ∪ {pxk
∣
∣ 2 ≤ k ≤ r0 and Alg(xk),Alex(xk) ≥ 0

}

is a basis for p(C0). We reorder {xk}2≤k≤r0 so that {px} ∪ {pxk}2≤k≤r ′
0
is a basis

for p(C0). (Here r ′
0 := dimF p(C0).) Let (akl)

1≤k≤r ′
0

1≤l≤r1
be the matrix of p ◦ (∂|C1) :

C1 → p(C0)with respect to the pair
({yl}1≤l≤r1 , {pxk}2≤k≤r ′

0
∪{px}), i.e. p◦∂(yl) =
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∑
1≤k≤r ′−1 akl pxk+1+ar ′l px . Then we can replace {yl}1≤l≤r1 with a basis {y′

l }1≤l≤r1

so that the corresponding matrix (a′
kl)

1≤k≤r ′
0

1≤l≤r1
is in reduced column echelon form. Here,

since [px] �= 0 in H0(C/C{i≤−1 or j≤−1}), px is not contained in p◦∂(C1) and the last

row of (a′
kl)

1≤k≤r ′
0

1≤l≤r1
does not contain any leading coefficient. In particular, if ar ′

0l
�= 0,

then there exists a number kl in {1, . . . , r ′
0 − 1} such the kl -th row contains the l-th

leading coefficient. (Namely, akl l ′ = δll ′ , where δll ′ is the Kronecker delta.) Now, we
define a set {x ′

k}2≤k≤r0 by

x ′
k =

{
xk + x (if k = kl − 1 for some l ∈ {1, . . . , r1}wi th ar ′

0l
�= 0)

xk (otherwise)
.

Then, it follows from Lemma 2.7 that {x} ∪ {x ′
k}2≤k≤r0 ∪ {yl}1≤l≤r1 is a filtered basis.

Moreover, the replacement of {pxk}2≤k≤r ′
0
with {px ′

k}2≤k≤r ′
0
changes (a′

kl)
1≤k≤r ′

0
1≤l≤r1

so
that the last row is a zero vector. This implies that

p ◦ ∂
({yl}1≤l≤r1

) ⊂ p ◦ ∂
(
spanF{yl}1≤l≤r1

)

= p ◦ ∂
(
spanF{y′

l }1≤l≤r1

) ⊂ spanF{px ′
k}2≤k≤r ′

0
,

and hence we have

∂
({yl}1≤l≤r1

) ⊂ p−1( spanF{px ′
k}2≤k≤r ′

0

) = spanF{x ′
k}2≤k≤r0 .

This completes the proof. ��

Corollary 2.29 Let C and C ′ be formal knot complexes. If ν+(C) = ν+(C∗) = 0, then
ν+(C ′ ⊗� C) = ν+(C ′).

Proof By Proposition 2.27, we haveC � �⊕ A. Here, Lemma 2.22 says thatC ′⊗� A
is a stabilizer, and it is easy to show thatC ′ ⊗� (�⊕ A) � C ′ ⊕(C ′ ⊗� A). Therefore,
by Lemma 2.25, we have

ν+(C ′ ⊗� C) = ν+(C ′ ⊕ (C ′ ⊗� A)
)

= ν+(C ′).

��

Here we refer to the following theorem of Hom and Wu, which is one of the most
important facts for obtaining concordance invariants from CFK∞.

Theorem 2.30 ([5]) For a knot K , the inequality ν+(CK ) ≤ g4(K ) holds. In
particular, if K is a slice knot, then ν+(CK ) = ν+((CK )∗) = 0.
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2.7 �+-equivalence

Two elements [C], [C ′] ∈ Kf are ν+-equivalent (and denoted [C] ν+
∼[C ′] orC ν+

∼ C ′) if
ν+(C⊗�C ′∗) = ν+(C∗⊗�C ′) = 0. Note that by Propositions 2.11 and 2.13, the val-
ues ν+(C⊗�C ′∗) and ν+(C∗⊗�C ′) are independent of the choice of representatives.

Proposition 2.31 The relation
ν+
∼ is an equivalence relation on Kf.

Proof The reflexivity (i.e. [C] ν+
∼[C]) follows from Lemma 2.26. The symmetry

([C] ν+
∼[C ′] if and only if [C ′] ν+

∼[C]) directly follows from the definition. We prove

the transitivity. Suppose that [C1] ν+
∼[C2] and [C2] ν+

∼[C3]. Then, Proposition 2.24,
Lemma 2.26 and Corollary 2.29 imply

ν+(C1 ⊗� C∗
3 ) = ν+((C1 ⊗� C∗

3 ) ⊗� (C2 ⊗� C∗
2 )
)

= ν+((C1 ⊗� C∗
2 ) ⊗� (C2 ⊗� C∗

3 )
)

≤ ν+(C1 ⊗� C∗
2 ) + ν+(C2 ⊗� C∗

3 ) = 0.

Similarly, we can prove that ν+(C∗
1 ⊗ C3) = 0 holds. ��

We call the equivalence class of a formal knot complexC under
ν+
∼ the ν+- equivalence

class or ν+-class of C , and denote it by [C]ν+ . Then, we can see that Hom’s stable
homotopy theorem in [4] is naturally generalized to formal knot complexes.

Theorem 2.32 ([4]) Two formal knot complexes C and C ′ are ν+-equivalent if and
only if we have the Z

2-filtered homotopy equivalence

C ⊕ A � C ′ ⊕ A′,

where A, A′ are stabilizers.

Proof It follows from Lemma 2.25 and Proposition 2.27 that C
ν+
∼ C ′ if and only if

C⊗�C ′∗ � �⊕ Awhere A is a stabilizer. Thus, ifC
ν+
∼ C ′, then there exist stabilizers

A1, A2 so that C∗ ⊗� C ′ � � ⊕ A1 and C ⊗� C∗ � � ⊕ A2, and we have

C ⊕ (C ⊗� A1) � C ⊗� (� ⊕ A1) � C ⊗� (C∗ ⊗� C ′)
� (C ⊗� C∗) ⊗� C ′ � (� ⊕ A2) ⊗� C ′ � C ′ ⊕ (C ′ ⊗� A2).

Conversely, if C ⊕ A � C ′ ⊕ A′, then

ν+(C ⊗� C ′∗) = ν+((C ⊗� C ′∗) ⊕ (A ⊗� C ′∗)
)

= ν+((C ⊕ A) ⊗� C ′∗)

= ν+((C ′ ⊕ A′) ⊗� C ′∗) = ν+((C ′ ⊗� C ′∗) ⊕ (A′ ⊗� C ′∗)
)
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= ν+(C ′ ⊗� C ′∗) = 0.

Similarly, we can prove ν+(C∗ ⊗� C ′) = 0. ��
Here, due to Theorem 2.30, the ν+-class of CK can be seen as a knot concordance

invariant of K .

Corollary 2.33 ([4]) For a knot K , [K ]ν+ := [CK ]ν+ is a knot concordance invariant
of K .

Proof If two knots K and J are concordant, then both K#(−J ∗) and (−K ∗)#J are
slice knots. Thus, by Theorem 2.30, we have

ν+(CK ⊗� (C J )∗
)

= ν+(CK#(−J∗)) = 0

and

ν+((CK )∗ ⊗� C J
)

= ν+(C (−K ∗)#J ) = 0.

��

2.8 Formal knot concordance group

Now, the formal knot concordance group Cf is obtained as follows.

Proposition 2.34 The quotient set Cf := Kf /
ν+
∼ with product

Cf × Cf → Cf : ([C]ν+ , [C ′]ν+
)→ [C ⊗� C ′]ν+

is an abelian group. In particular, the projectionKf � Cf is a monoid homomorphism.
Proof We first verify that the product is well-defined. Suppose that [C]ν+ = [C ′′]ν+ ,
and then ν+(C⊗�C ′′∗) = ν+(C∗⊗�C ′′) = 0. Thus, it follows fromProposition 2.24
and Lemma 2.26 that

ν+((C ⊗� C ′) ⊗� (C ′′ ⊗� C ′)∗
)

= ν+((C ⊗� C ′′∗) ⊗� (C ′ ⊗� C ′∗)
)

= 0

and

ν+((C ⊗� C ′)∗ ⊗� (C ′′ ⊗� C ′)
)

= ν+((C∗ ⊗� C ′′) ⊗� (C ′ ⊗� C ′∗)
)

= 0.

Similarly, we can prove that if [C ′]ν+ = [C ′′]ν+ then [C ⊗� C ′]ν+ = [C ⊗� C ′′]ν+ .
Now, the commutativity immediately follows fromC⊗�C ′ � C ′⊗�C , and obviously
the projection Kf � Cf is a monoid homomorphism. ��
As a consequence, we have the following theorem, which is stated in Sect. 1 as
Theorem 1.7.
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Theorem 2.35 The map C → Cf : [K ]c �→ [CK ]ν+ is a well-defined group
homomorphism. As a consequence, we have the following commutative diagram:

K [K ]�→[CK ]−−−−−−→ Kf

[K ]�→[K ]c
⏐
⏐



⏐
⏐

[C]�→[C]ν+

C −−−−−−−−→
[K ]c �→[CK ]ν+

Cf

2.9 Partial order on Cf

In this subsection, we introduce a partial order on Cf, which is a generaliza-
tion of the partial order on Cν+ defined in [22]. Here, as a new observation, we
give an interpretation of the ν+-equivalence and the partial order on Cf using
quasi-isomorphisms.

For two ν+-classes [C]ν+ , [C ′]ν+ ∈ Cf, we denote [C]ν+ ≤ [C ′]ν+ if the equality
ν+(C ⊗� C ′∗) = 0 holds.

Proposition 2.36 The relation ≤ is a partial order on Cf.
Proof This immediately follows fromProposition 2.24, Lemma 2.26 and the definition

of
ν+
∼. ��
For two formal knot complexes, a chain map f : C → C ′ over � is a Z

2-
filtered quasi-isomorphism if f is Z

2-filtered, graded, and induces an isomorphism
f∗ : H∗(C) → H∗(C ′). Then, the ν+-equivalence and the partial order on Cf can be
translated into the words of the existence of Z

2-filtered quasi-isomorphisms.

Theorem 2.37 Two formal knot complexes C and C ′ are ν+-equivalent if and only if
there exist Z

2-filtered quasi-isomorphisms

f : C → C ′ and g : C ′ → C .

Theorem 2.38 Two ν+-classes [C]ν+ and [C ′]ν+ satisfy [C]ν+ ≥ [C ′]ν+ if and only
if there exists a Z

2-filtered quasi-isomorphism C → C ′.

To prove these theorems, we first prove the following lemma.

Lemma 2.39 Let C and C ′ be formal knot complexes. If there exists a Z
2-filtered

quasi-isomorphism f : C → C ′, then [C]ν+ ≥ [C ′]ν+ .

Proof Note that under the hypothesis of the lemma, f ⊗ idC∗ : C⊗�C∗ → C ′ ⊗�C∗
is also a Z

2-filtered quasi-isomorphism. Moreover, by Lemma 2.26, we can take a
homological generator x of C ⊗� C∗ lying in (C ⊗� C∗){i≤0, j≤0}. Now, we see that
f ⊗ idC∗(x) is a homological generator of C ′ ⊗� C∗ lying in (C ′ ⊗� C∗){i≤0, j≤0},
and hence ν+(C ′ ⊗ C∗) = 0. ��
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Proof of Theorem 2.37 It directly follows from Lemma 2.39 that the existence of

f and g implies C
ν+
∼ C ′. We prove the converse. Suppose that C

ν+
∼ C ′. Then, by

Theorem 2.32, we have a Z
2-filtered homotopy equivalence map

f ′ : C ⊕ A
�−→ C ′ ⊕ A′,

where A, A′ are stabilizers. Let i : C ↪→ C⊕ A be the inclusion and p : C ′⊕ A′ � C ′
the projection. Then, all of i, f ′ and p are Z

2-filtered quasi-isomorphisms, and hence
we have the Z

2-filtered quasi-isomorphism

f := p ◦ f ′ ◦ i : C → C ′.

Similarly, we can construct a Z
2-filtered quasi-isomorphism g : C ′ → C . ��

Proof of Theorem 2.38 By Lemma 2.39, we only need to prove that [C]ν+ ≥ [C ′]ν+
implies the existence of a Z

2-filtered quasi-isomorphism C → C ′. Suppose that
[C]ν+ ≥ [C ′]ν+ . Then the equality ν+(C ′ ⊗� C∗) = 0 holds, and hence (C ′ ⊗�

C∗){i≤0, j≤0} contains a homological generator x . Hence, if we define a �-linear map

f : � → C ′ ⊗� C∗

so that f (1) = x , then f is a Z
2-filtered quasi-isomorphism. In addition, the map

f ⊗ 1 : C → C ′ ⊗� C∗ ⊗� C

is also a Z
2-filtered quasi-isomorphism. Moreover, since (C ′ ⊗� C∗ ⊗� C)

ν+
∼ C ′,

Theorem 2.37 gives a Z
2-filtered quasi-isomorphism

C ′ ⊗� C∗ ⊗� C → C ′.

By combining these maps, we obtain the desired quasi-isomorphism. ��
When one wants to construct a Z

2-filtered quasi-isomorphism concretely, the
following lemma is useful.

Lemma 2.40 Let C and C ′ be formal knot complexes and f : C → C ′ be a chain map
over � such that

• f maps a homological generator C to that of C ′, and
• for a filtered basis {xk}1≤k≤r of C and any k, we have

(
Alg( f xk),Alex( f xk)

) ≤ (Alg(xk),Alex(xk)
)
.

Then, f is a Z
2-filtered quasi-isomorphism.
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Proof Since FAlex
j (C) = spanF[U]

{
UAlex(xk )− j xk

}

1≤k≤r , we have

f
(FAlex

j (C)
) = spanF[U]

{
UAlex(xk)− j f xk

}

1≤k≤r

⊂ spanF[U]
{
UAlex( f xk )− j f xk

}

1≤k≤r ⊂ FAlex
j (C ′).

Similarly, we have f
(FAlg

i (C)
) ⊂ FAlg

i (C ′). Now, for any R ∈ CR(Z2), we see that

f (CR) = f

⎛

⎝
∑

(i, j)∈R

FAlg
i (C) ∩ FAlex

j (C)

⎞

⎠

⊂
∑

(i, j)∈R

f
(FAlg

i (C)
) ∩ f

(FAlex
j (C)

)

⊂
∑

(i, j)∈R

FAlg
i (C ′) ∩ FAlex

j (C ′) = C ′
R .

It is easy to see that f is a quasi-isomorphism. ��
Set Cν+ := Im(C → Cf : [K ]c �→ [CK ]ν+). Then Cν+ is naturally identified with

a quotient group of C, and the partial order on Cf induces a partial order on Cν+ . We
note that the induced partial order coincides with the order defined in author’s paper
[22]. In particular, Proposition 1.5 in [22] is naturally generalized to Cf.
Proposition 2.41 ([22, Proposition 1.5]) The partial order on Cf has the following
properties:

1. For elements x, y, z ∈ Cf, if x ≤ y, then x + z ≤ y + z.
2. For elements x, y ∈ Cf, if x ≤ y, then −y ≤ −x.

On the other hand, for the case of Cν+ , we also have the following geometric estimates.
(Here, full-twist operations are defined as follows. Let K be a knot and D a disk in S3

which intersects K in its interior. By performing (−1)-surgery along ∂D, we obtain
a new knot J in S3 from K . Let n = lk(K , ∂D). Since reversing the orientation of D
does not affect the result, we may assume that n ≥ 0. Then we say that K is deformed
into J by a positive full-twist with n-linking, and call such an operation a full-twist
operation.)

Theorem 2.42 ([22, Theorem 1.6]) Suppose that a knot K is deformed into a knot J
by a positive full-twist with n-linking.

1. If n = 0 or 1, then [J ]ν+ ≤ [K ]ν+ .
2. If n ≥ 3, then [J ]ν+ � [K ]ν+ . In particular, if the geometric intersection number

between K and D is equal to n, then [J ]ν+ > [K ]ν+ .

2.10 Invariants of �+-classes

In this subsection, we review the Vk-sequence [12], the τ -invariant [13], the ϒ-
invariant [17] and the ϒ2-invariant [8] as invariants of formal knot complexes under
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ν+-equivalence. Here we use Z
2-filtered quasi-isomorphisms to prove the invariance

of them.

2.10.1 Vk -sequence

The Vk-sequence defined by Ni and Wu [12] is a family of Z≥0-valued invariants
which is parametrized by Z≥0. Concretely, for a formal knot complex C and k ∈ Z≥0,
the value Vk(C) is defined by

Vk(C) = dimF

(
coker

(
i∗ : H∗(C{i≤0, j≤k}) → H∗(C{i≤0})

))
.

In particular, we have the equality

ν+(C) = min
{
k ∈ Z≥0

∣
∣ Vk(C) = 0

}
.

Moreover, we can use homological generators to determine Vk(C).

Lemma 2.43 For any k ∈ Z≥0, the equality

Vk(C) = min
{
m ∈ Z ≥0

∣
∣ C{i≤m, j≤k+m} contains a homological generator

}

holds.

Proof Denote the value of the right-hand side of the equality in Lemma 2.43 by
V ′
k(C). We first prove that Vk(C) ≥ V ′

k(C). Since H∗(C{i≤0}) ∼= F[U ] and the map
i∗ : H∗(C{i≤0, j≤k}) → H∗(C{i≤0}) is a F[U ]-linear map, if Im i∗,2m = H2m(C{i≤0})
then Im i∗,2n = H2n(C{i≤0}) for any n ≤ m. This implies that

i∗,−2Vk (C) : H−2Vk (C)(C{i≤0, j≤k}) → H−2Vk (C)(C{i≤0})

is surjective. Moreover, the map i∗,n : Hn(C{i≤0}) → Hn(C) is an isomorphism for
any n ≤ 0. Consequently, we see that there exists a cycle x ∈ C−2Vk (C) lying
in C{i≤0, j≤k} such that the homology class [x] ∈ H−2Vk (C)(C) is non-zero. This
implies thatU−Vk (C)x ∈ C0 is a homological generator lying inC{i≤Vk (C), j≤k+Vk (C)}.
Therefore, we have Vk(C) ≥ V ′

k(C).
Conversely, since C{i≤V ′

k (C), j≤k+V ′
k (C)} contains a homological generator x , the

cycle UV ′
k(C)x ∈ C−2V ′

k (C) is lying in C{i≤0, j≤k}. This implies that the map

i∗,−2V ′
k (C) : H−2V ′

k (C)(C{i≤0, j≤k}) → H−2V ′
k (C)(C{i≤0})

is surjective, and hence Vk(C) ≤ V ′
k(C). ��

Now, we can easily see that Vk is a well-defined map on Cf and preserve the partial
order.

Corollary 2.44 If [C]ν+ ≤ [C ′]ν+ , then Vk(C) ≤ Vk(C ′) for any k ≥ 0. In particular,
Vk is a well-defined map Cf → Z≥0.
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Proof Suppose that [C]ν+ ≤ [C ′]ν+ . Then we have a Z
2-filtered quasi-isomorphism

f : C ′ → C . Here, by using Lemma 2.43, we can take a homological generator x ∈ C ′
lying in C ′

{i≤Vk (C ′), j≤k+Vk (C ′)}. Then, f (x) is a homological generator of C lying in
C{i≤Vk (C ′), j≤k+Vk (C ′)}. This completes the proof. ��
In addition, we also have the following properties of Vk .

Corollary 2.45 For any k ∈ Z≥0, we have

Vk(C) − 1 ≤ Vk+1(C) ≤ Vk(C).

In particular, for any 0 ≤ k ≤ ν+(C), the inequality Vk(C) + k ≤ ν+(C) holds.

Proof The first assertion immediately follows from the fact that

C{i≤m−1, j≤(k+1)+(m−1)} ⊂ C{i≤m, j≤k+m}
⊂ C{i≤m, j≤(k+1)+m}.

Next, for any 0 ≤ k ≤ ν+(C), we see that

Vk ≤ Vk+1(C) + 1 ≤ · · · ≤ Vν+(C) + (ν+(C) − k) = ν+(C) − k.

This completes the proof. ��
Moreover, we have a connected sum inequality for Vk . (For knot complexes, it is given
in [1].)

Corollary 2.46 For any formal knot complexes C,C ′ and k, k′ ∈ Z≥0, we have

Vk+k′(C ⊗� C ′) ≤ Vk(C) + Vk′(C ′).

Proof By Lemma 2.43, we have a homological generator x ∈ C (resp. x ′ ∈ C ′)
which is lying in C{i≤Vk (C), j≤k+Vk (C)} (resp. C{i≤Vk′ (C ′), j≤k+Vk′ (C ′)}). This implies
that x ⊗ x ′ is a homological generator of C ⊗� C ′ lying in

(C ⊗� C ′){i≤Vk (C)+Vk′ (C ′), j≤(k+k′)+Vk (C)+Vk′ (C ′)}.

This completes the proof. ��
For the case of knot complexes,Vk(K ) := Vk(CK ) is an important invariant because

it completely determines all correction terms of all positive Dehn surgeries along K .
To state the fact precisely, we fix several notations. For coprime integers p, q > 0, let
S3p/q(K ) denote the p/q-surgery along K . Note that there is a canonical identification

between the set of Spinc structures over S3p/q(K ) and {i | 0 ≤ i ≤ p − 1}. This
identification can be made explicit by the procedure in [19, Sect. 4, Section 7]. Let
d(S3p/q(K ), i) denote the correction term of S3p/q(K ) with the i-th Spinc structure
(0 ≤ i ≤ p − 1).
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Proposition 2.47 ([12, Proposition 1.6]) The equality

d(S3p/q(K ), i) = d(S3p/q(O), i) − 2max

{

V� i
q �(K ), V� p+q−1−i

q �(K )

}

holds, where O denotes the unknot and �·� is the floor function.

2.10.2 �-invariant

Let C be a formal knot complex. Define

Ĉ := C{i≤0}/C{i≤−1}

and

F̂m := C{i≤0, j≤m}/C{i≤−1, j≤m}

for any m ∈ Z. Then we see H∗(Ĉ) = H0(Ĉ) ∼= F, and {F̂m}m∈Z is an increasing
sequence of subcomplexes on Ĉ, i.e. a Z-filtration on Ĉ. We call a cycle x ∈ Ĉ a hat-
generator if x is homogeneous with gr(x) = 0 and the homology class [x] ∈ H0(Ĉ)

is non-zero. We define the τ -invariant of C by

τ(C) := min
{
m ∈ Z

∣
∣ F̂m contains a hat-generator

}
.

We can use homological generators to determine τ(C) like Vk(C).

Lemma 2.48 The equality

τ(C) = min
{
m ∈ Z≥0

∣
∣ C{i≤−1}∪{i≤0, j≤m}contains a homological generator

}

holds.

Proof Denote the value of the right-hand side of the equality in Lemma 2.48 by
τ ′(C). We first prove that τ(C) ≥ τ ′(C). By the definition of τ(C), there exists a
chain x ∈ C{i≤−1}∪{i≤0, j≤τ(C)} such that p(x) ∈ F̂ τ(C) is a hat-generator, where
p : C{i≤0} → Ĉ is the projection. Moreover, since the induced map

p∗,0 : H0(C{i≤0}) → H0(Ĉ)

is an isomorphism, there exists a 0-chain y ∈ C{i≤−1} such that ∂ y = ∂x . In partic-
ular, x − y is a homological generator of C lying in C{i≤−1}∪{i≤0, j≤τ(C)}. (Note that
p∗,0([x − y]) = [p(x − y)] = [p(x)] �= 0.) Therefore, we have τ(C) ≥ τ ′(C).

Conversely, since C{i≤−1}∪{i≤0, j≤τ ′(C)} contains a homological generator x ′ and
the above map p∗,0 is an isomorphism, p(x ′) is a hat-generator lying in F̂ τ ′(C). This
gives τ(C) ≤ τ ′(C). ��
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Now, by the same arguments as the proof of Corollary 2.44, we have the following.

Corollary 2.49 If [C]ν+ ≤ [C ′]ν+ , then τ(C) ≤ τ(C ′). In particular, τ is awell-defined
map Cf → Z.

In addition, τ is related to ν+ as follows.

Corollary 2.50 The inequality τ(C) ≤ ν+(C) holds.

Proof This follows from C{i≤0, j≤ν+(C)} ⊂ C{i≤−1}∪{i≤0, j≤ν+(C)}. ��
One of the most important properties of τ -invariant is the following additivity.

Proposition 2.51 τ is a group homomorphism as a map Cf → Z.

Proof LetC andC ′ be formal knot complexes. Then we can see from Proposition 2.11
that the Z-filtered homotopy equivalence

(
̂C ⊗� C ′, {F̂m}

)
�
(
Ĉ⊗F Ĉ

′
,
{
spanF p

( ⋃

μ+μ′=m

F̂μ × F̂ ′
μ′
)})

holds, where p : F
Ĉ× Ĉ′

� Ĉ⊗F Ĉ
′
is the projection. Next, let x ∈ F̂ τ(C) (resp.

x ′ ∈ F̂ ′
τ(C ′)) be a hat-generator. Then, in a similar way to the proof of Proposition 2.27,

we have the Z-filtered homotopy equivalence

Ĉ � spanF{x} ⊕ A( resp. Ĉ
′ � spanF{x ′} ⊕ A′),

where A and A′ are acyclic Z-filtered chain complexes. Consequently, the Z-filtered
homotopy equivalence

̂C ⊗� C ′ � spanF{x ⊗ x ′} ⊕ A′′

holds for some acyclicZ-filtered chain complex A′′, and this implies that τ(C⊗�C ′) =
τ(C) + τ(C ′). ��
As a consequence, we have the original τ -invariant for knots.

Corollary 2.52 ([13]) The map [K ]c �→ τ(CK ) is a group homomorphism as a map
C → Z.

2.10.3 7-invariant

For any t ∈ [0, 2] and s ∈ R, the set

Rt (s) :=
{

(i, j) ∈ Z
2
∣
∣

(

1 − t

2

)

i + t

2
j ≤ s

}
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is a closed region. Hence, if we denote CRt (s) by F t
s , then we have an R-filtration

{F t
s}s∈R of C . We define

υC (t) := min
{
s ∈ R

∣
∣ F t

s contains a homological generator
}

and

ϒC (t) := −2υC (t).

Remark This definition of ϒ is due to Livingston [10] rather than the original one
[17].

Since there exist finitely many homological generators of C and their Alexander and
algebraic filtrations are finite, υC (t) and ϒC (t) are finite values. In the same way as
Vk and τ , we can prove the following proposition.

Proposition 2.53 If [C]ν+ ≤ [C ′]ν+ , then ϒC (t) ≥ ϒC ′(t) for any t ∈ [0, 2]. In
particular, ϒ(t) : [C]ν+ �→ ϒC (t) is a well-defined map Cf → R for any t ∈ [0, 2].
In addition, we can see ϒ as a linear approximation of Vk in the following sense.

Proposition 2.54 For any t ∈ [0, 2] and k ∈ Z≥0, the inequality

ϒC (t) ≥ −kt − 2Vk(C)

holds. In particular, ϒC (t) ≥ −ν+(C)t holds.

Proof This follows from C{i≤Vk (C), j≤k+Vk (C)} ⊂ C{(1− t
2 )i+ t

2 j≤Vk(C)+ t
2 k}. ��

Moreover, The additivity of ϒ(t) is also obtained in the same way as τ .

Proposition 2.55 For any t ∈ [0, 2],ϒ(t) is a group homomorphismas amapCf → R.

We can generalize the following properties of the original ϒ-invariant to formal
knot complexes. The proof is similar to [10, Theorem 8.1].

Proposition 2.56 For any formal knot complexes C, the following properties hold.

1. The map ϒC : [0, 2] → R, t �→ ϒC (t) is a continuous linear function.
2. For any regular point t of ϒC and filtered basis {xk}1≤k≤r , there exists an element

xl ∈ {xk}1≤k≤r with gr(xl) = 0 such that

ϒC (t ′) = −2Alg(xl) + (Alg(xl) − Alex(xl))t
′

at any point t ′ nearby t.
3. Let t be a singular point of ϒC and {xk}1≤k≤r a filtered basis. Then there exists

two elements xl , xl ′ ∈ {xk}1≤k≤r with gr(xl) = gr(xl ′) = 0 such that

• Alex(xl) − Alex(xl ′) = (1 − 2
t )(Alg(xl) − Alg(xl ′)),
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• the equality

ϒC (t ′) = −2Alg(xl) + (Alg(xl) − Alex(xl))t
′

holds at any point t ′ nearby t satisfying t ′ < t , and
• the equality

ϒC (t ′) = −2Alg(xl ′) + (Alg(xl ′) − Alex(xl ′))t
′

holds at any point t ′ nearby t satisfying t ′ > t .

As a consequence of the above arguments, we have the following corollaries. Here,
PL([0, 2], R) denotes the set of continuous piecewise linear functions on [0, 2].
Corollary 2.57 The map ϒ : [C]ν+ �→ ϒC is a group homomorphism as a map Cf →
PL([0, 2], R).

Corollary 2.58 The map [K ]c �→ ϒCK is a group homomorphism as a map C →
PL([0, 2], R).

Here we mention that the gradient of ϒC nearby 0 is equal to −τ(C). The proof is
the same as [10, Theorem 14.1].

Proposition 2.59 For any sufficiently small t > 0, we have ϒC (t) = −τ(C)t .

2.10.4 72-invariant

Let C be a formal knot complex, {xk}1≤k≤r a filtered basis and {C(i, j)} the induced
decomposition of C . Define the support of {C(i, j)} by

P := {(i, j) ∈ Z
2
∣
∣ C(i, j) �= 0

}
.

In addition, consider the support line for F t
s by

Lt
s :=

{

(i, j) ∈ Z
2
∣
∣

(

1 − t

2

)

i + t

2
j = s

}

.

Now, for any t ∈ [0, 2], set

Pt := P ∩ Lt
υC (t).

Then, we see that Pt �= ∅ for any t . Moreover, from Proposition 2.56, we have the
following proposition.

Proposition 2.60 The following assertions hold:

1. For any t ∈ [0, 2] and small δ > 0, the intersection Pt ∩ Pt−δ (resp. Pt ∩ Pt+δ)
has exactly one point. (We denote these points by p−

t and p+
t , respectively.)

2. The function ϒK has a singularity at t if and only if p−
t �= p+

t .



The ν+-equivalence classes of genus one knots Page 35 of 57 63

In light of this proposition, for small δ > 0, we set

Z±
t (C) := {homological generator in F t±δ

υC (t±δ)

}
.

If Z−
t (C) ∩ Z+

t (C) = ∅, then for any s ∈ [0, 2], we define

υ2
C,t (s) := min

{
r ∈ R

∣
∣ ∃z± ∈ Z±

t (C), [z−] = [z+] in H0(F t
υC (t) +F s

r )
}
.

Now, we can define the ϒ2-invariant of C as

ϒ2
C,t (s) :=

{
−2(υ2

C,t (s) − υC (t)) if Z−(C) ∩ Z+(C) = ∅
∞ if Z−(C) ∩ Z+(C) �= ∅ .

From the view point of Z
2-filtered quasi-isomorphism, we have the following

inequality.

Proposition 2.61 If [C]ν+ ≤ [C ′]ν+ and ϒC |[t−ε,t+ε] = ϒC ′ |[t−ε,t+ε] for given t ∈
(0, 2) and some ε > 0, then ϒ2

C,t (s) ≥ ϒ2
C ′,t (s) for any s ∈ [0, 2].

Proof Take 0 < δ < ε sufficiently small so that Propsition 2.60 holds at given t for
both C and C ′. Let z′± ∈ Z±

t (C ′) such that

[z′−] = [z′+] in H0(F t
υC ′ (t)(C

′) + F s
υ2
C ′,t (s)

(C ′)),

and f : C ′ → C a Z
2-filtered quasi-isomorphism. Since υC (t ± δ) = υC ′(t ± δ), we

see f (z′±) ∈ Z±
t (C). Now, we have the equalities

[ f (z′−)] = f∗([z′−]) = f∗([z′+]) = [ f (z′+)]

as elements of H0(F t
υC (t)(C) + F s

υ2
C ′,t (s)

(C)). Hence, if Z−
t (C) ∩ Z+

t (C) = ∅, then
C ′ also satisfies Z−

t (C ′) ∩ Z+
t (C ′) = ∅ and we have the inequality

υ2
C,t (s) ≤ υ2

C ′,t (s),

which gives the desired inequality. Otherwise, ϒ2
C,t (s) = ∞, and hence the desired

inequality obviously holds. ��
As a corollary, we have the invariance of ϒ2. (Note that ϒ2 is originally given as

an invariant of formal knot complexes in [8].)

Theorem 2.62 ([8, Theorem 4.8]) For any t ∈ (0, 2) and s ∈ [0, 2], the map

ϒ2
t (s) : [C]ν+ �→ ϒ2

C,t (s)

is well-defined as a map Cf → R ∪{∞}. In particular, ϒ2
K ,t (s) := ϒ2

CK ,t
(s) is a knot

concordance invariant.
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We also mention the following sub-additivity of ϒ2
C,t (t).

Theorem 2.63 ([8, Theorem 5.1])For any formal knot complexes C,C ′ and t ∈ (0, 2),
we have

ϒ2
C⊗�C ′,t (t) ≥ min{ϒ2

C,t (t), ϒ
2
C ′,t (t)}.

3 Geometric estimates

In this section, we prove the following theorem.

Theorem 1.5 For any knot K , we have

−g4(K )[T2,3]ν+ ≤ [K ]ν+ ≤ g4(K )[T2,3]ν+ .

To prove the theorem, we consider replacing a given knot K several times. We start
with the following lemma.

Lemma 3.1 For any knot K , there exists a knot K ′ concordant to K which bounds a
ribbon surface with genus g4(K ).

Proof Let F be a surface in B4 ∼= (S3 × [0, 1])/(S3 × {1}) with genus g4(K ) and
∂F = K ⊂ S3 × {0}. Then, a similar argument to [21, Lemma2.1] shows that F
can be isotoped to a surface F ′ in B4 such that the composition f : F ′ ↪→ (S3 ×
[0, 1])/(S3 × {1}) p2� [0, 1] is a Morse function, and f satisfies

1. All births happen at time 1
6 (we denote the number of births by b),

2. b saddles happen at time 2
6 ,

3. The time 3
6 is a regular value and f −1( 36 ) is connected,

4. The remaining saddles happen at time 4
6 , and

5. All deaths happen at 5
6 .

In particular, we see that f −1([0, 3
6 ]) is a (ribbon) concordance from K to K ′ :=

f −1( 36 ), and f −1([ 36 , 1] is a ribbon surface in (S3 × [ 36 , 1])/(S3 × {1}) ∼= B4 whose
boundary is K ′ and genus is g4(K ). This completes the proof. ��
Next, by using full-twists, we construct a surface embedded in S3.

Lemma 3.2 If a knot K bounds a genus g ribbon surface, then there exists a knot
K ′ with genus g which is obtained from K only by adding positive full-twists with
1-linking.

Proof Suppose that K bounds a genus g ribbon surface F with n ribbon singularities.
Then, for proving the lemma, it suffices to find a positive full-twist with 1-linking
deforming K into a knot K ′ which bounds a genus g ribbon surface with n− 1 ribbon
singularities.

Let �g be an abstract genus g surface with ∂�g ∼= S1, and f : �g → S3 an
immersion with f (�g) = F . Choose a ribbon singularity b on F . Then f −1(b)
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Fig. 2 A local picture near
f (a) ∪ b

Fig. 3 A disk D and a surface
F ′

Fig. 4 The (m, n)-twist knot Km,n

consists of two arcs in �g , one of which is properly embedded and the other is lying
in Int�g . Denote the arc in Int�g by b̃, and take an arc a in �g such that Int a avoids
the preimage of all ribbon singularities on F , and one end of a is in ∂ b̃ and the other
is in ∂�g . Then f (a) is an arc in F which connects b to ∂F , and Int f (a) avoids all
singularities on F . Thus, we can take a (small) tubular neighborhood N of f (a) ∪ b
such that (N , F ∩ N ) is diffeomorphic to the pair of the 3-ball and the immersed
surface shown in Fig. 2.

Now, we take a twisting disk D as shown in the left-hand side of Fig. 3. After adding
a positive full-twist along D, we have a new ribbon surface F ′ which coincides with F
in S3\N , and (N , F ′ ∩ N ) is diffeomorphic to the pair of the 3-ball and the embedded
surface shown in the right-hand side of Fig. 3. By the construction, it is obvious that
K ′ := ∂F ′ is obtained from K by a positive full-twist with 1-linking, and F ′ is a genus
g ribbon surface with n − 1 ribbon singularities. This completes the proof. ��

For m, n ∈ Z, let Km,n denote the (m, n)-twist knot, whose diagram is shown in
Fig. 4. Then, the final replacement is stated as follows.

Lemma 3.3 Any genus g knot is deformed into the knot Km1,n1# · · · #Kmg,ng only by
adding positive full-twists with 0-linking, where mi , ni ∈ Z>0 (for all i ∈ {1, . . . , g}).
Proof Let K be a genus g knot and F a genus g surface with boundary K . By an
isotopy, we can assume that F is of the form of Fig. 5 , where L is obtained from a
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Fig. 5 A description of F by a string link

Fig. 6 Pass moves with framings changing

Fig. 7 A surface F ′

Fig. 8 A positive full-twist
increasing a framing

string link (with 4g strings) by parallelizing the string link with arbitrary framings.
(The framings are characterized by a choice of {m′

1, n
′
1, . . . ,m

′
g, n

′
g}.) Then, as shown

in Fig. 6, positive full-twists with 0-linking can realize both directions of pass moves
with framings changing, and hence such full-twists can deform F into a surface F ′ with
new framings {m1, n1, . . . ,mg, ng}, which is shown in Fig. 7. Moreover, by adding
positive full-twists with 0-linking as shown in Fig. 8, we may assume that all mi , ni
are positive. Here it is obvious that the boundary of F ′ is Km1,n1# · · · #Kmg,ng , and
this fact completes the proof. ��



The ν+-equivalence classes of genus one knots Page 39 of 57 63

Here we note that all Km,n are 2-bridge knots and hence alternating knots. For
alternating knots, the following strong classification theorem of ν+-classes follows
from [20, Section 3.1].

Theorem 3.4 ([20, Section 3.1]) For any alternating knot K , we have [K ]ν+ =
−σ(K )

2 [T2,3]ν+ , where σ(K ) is the knot signature of K .

Now we can determine the ν+-classes of the Km,n .

Lemma 3.5 For any m, n > 0, [Km,n]ν+ = −[T2,3]ν+ .

Proof It is easy to verify that for any m, n > 0, we have σ(Km,n) = 2. Therefore,
Theorem 3.4 completes the proof. ��
Now we prove Theorem 1.5.

Proof of Theorem 1.5 Fix a knot K . Then, Lemma 3.1 provides a knot K ′ such that
[K ′]ν+ = [K ]ν+ and K ′ bounds a ribbon surface with genus g4(K ). Moreover, it
follows from Lemmas 3.2 and 3.3 that there exists a sequence of finitely many posi-
tive full-twists with 0 or 1-linking which deforms K into Km1,n1# · · · #Kmg4(K ),ng4(K )

for some mi , ni ∈ Z>0 (i ∈ {1, . . . , g4(K )}). Therefore, by Theorem 2.42 and
Lemma 3.5, we have

[K ]ν+ = [K ′]ν+ ≥
∑

1≤i≤g4(K )

[Kmi ,ni ]ν+ = −g4(K )[T2,3]ν+ .

Since g4(−K ∗) = g4(K ), we also have

−[K ]ν+ = [−K ∗]ν+ ≥ −g4(K )[T2,3]ν+ .

This completes the proof. ��

4 Algebraic estimates

In this section, we establish several algebraic estimate for the ν+-classes, and prove
Theorems 1.2 and 1.6.

4.1 Genus of a formal knot complex

We first define the genus of formal knot complexes.

4.1.1 Maximal andminimal degrees

For a formal knot complex C , set

Mdeg(C) := min
{
m ∈ Z

∣
∣ F̂m = Ĉ

}



63 Page 40 of 57 K. Sato

and

mdeg(C) := min
{
m ∈ Z

∣
∣ F̂m �= 0

}
.

(For the definition of {F̂m}m∈Z, see Sect. 2.10.2.) Let {xk}1≤k≤r be a filtered basis for
C . The finiteness of the above values follows from the following lemma.

Lemma 4.1 The equalities

Mdeg(C) = max
1≤k≤r

{Alex(xk) − Alg(xk)}

and

mdeg(C) = min
1≤k≤r

{Alex(xk) − Alg(xk)}

hold.

Proof From the definition of {F̂m}m∈Z, we can see that

F̂m = spanF
{
UAlg(xk)xk

∣
∣ Alex(xk) − Alg(xk) ≤ m

}
.

This completes the proof. ��
Corollary 4.2 The equalities

Mdeg(C∗) = −mdeg(C) and mdeg(C∗) = −Mdeg(C)

hold.

Proof As shown in the proof of Proposition 2.13, we can take a filtered basis {x∗
k }1≤k≤r

such that

Alex(x∗
k ) = −Alex(xk) and Alg(x∗

k ) = −Alg(xk).

This completes the proof. ��
Moreover, about the decomposition {C(i, j)}(i, j)∈Z2 induced by a filtered basis {xk},
we have the following lemma.

Lemma 4.3 The support {(i, j) | C(i, j) �= 0} is contained in the set

{mdeg(C) ≤ j − i ≤ Mdeg(C)}.

Proof If Ulxk is lying in C(i, j), then

Alex(xk) − Alg(xk) = Alex(Ulxk) − Alg(Ulxk) = j − i .

Therefore, by Lemma 4.1, we have mdeg(C) ≤ j − i ≤ Mdeg(C). ��
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For a coordinate (k, l) ∈ Z
2, set

R(k,l) := {(i, j) ∈ Z
2 | i ≤ k and j ≤ l},

and then R(k,l) ∈ CR. For any subset S ⊂ Z
2, define the closure of S by

cl(S) :=
⋃

(i, j)∈S
R(i, j).

Then we also have cl(S) ∈ CR(Z2). In addition, the equality

cl(S) =
⋂

R∈CR(Z2), S⊂R

R

holds. For any R ∈ CR(Z2) and m, M ∈ Z with m ≤ M , define

SR
m,M := {(i, j) ∈ R | m ≤ j − i ≤ M}.

Then, as a corollary of Lemma 4.3, we have the following.

Corollary 4.4 For any formal knot complex C and R ∈ CR(Z2), the equality

CR = Ccl(SRmdeg(C),Mdeg(C)
)

holds.

Proof Since R ⊃ cl(SR
mdeg(C),Mdeg(C)), obviously we have

CR ⊃ Ccl(SRmdeg(C),Mdeg(C)
).

Next we prove the converse. Fix a filtered basis {xk}1≤k≤r and denote the induced
decomposition by {C(i, j)}. By Lemma 2.9, it suffices to show that for any (i, j) ∈
R\cl(SR

mdeg(C),Mdeg(C)), the equalityC(i, j) = 0 holds. Indeed, for any such coordinate
(i, j), at least one of the inequalities

j − i < mdeg(C) and j − i > Mdeg(C)

holds. Therefore, it follows from Lemma 4.3 that C(i, j) = 0. ��

4.1.2 Genus of a formal knot complex

Now we define the genus of a formal knot complex C by

g(C) := max{Mdeg(C),−mdeg(C)}.

Then it is obvious that g(C) ≥ 0, and Corollary 4.2 gives g(C∗) = g(C). Moreover,
for knot complexes, we have the following.
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Theorem 4.5 ([14], [15, Section 5]) For any knot K , the equality

g(K ) = min{g(C) | C ∈ [CK ]}

holds.

Moreover, by definition, we have −g(C) ≤ mdeg(C) ≤ Mdeg(C) ≤ g(C). Hence
Corollary 4.4 gives the following.

Corollary 4.6 For any formal knot complex C and R ∈ CR(Z2), the equality

CR = Ccl(SR−g(C),g(C)
)

holds.

The following lemma is useful for reducing CR in concrete situations.

Lemma 4.7 The following assertions hold:

1. For any k ∈ Z, we have C{i≤k} = CR(k,g(C)+k) .
2. For any l ∈ Z, we have C{ j≤l} = CR(g(C)+l,l) .

Proof Here we verify the assertion (1). For any k ∈ Z, we see

S{i≤k}
−g(C),g(C) = {i ≤ k} ∩ {−g(C) ≤ j − i ≤ g(C)}

⊂ {i ≤ k} ∩ { j ≤ g(C) + i}
⊂ {i ≤ k} ∩ { j ≤ g(C) + k} = R(k,g(C)+k).

Therefore, we have {i ≤ k} ⊃ R(k,g(C)+k) ⊃ cl(S{i≤k}
−g(C),g(C)), and hence Corollary 4.6

gives C{i≤k} = CR(k,g(C)+k) . Similarly, we can verify the assertion (2). ��

4.2 Comparison with [(T2,2g+1)
∗]�+

For g ∈ Z≥0, let T2,2g+1 be the (2, 2g + 1)-torus knot. These knots are alternating
knots such that σ(T2,2g+1) = −2g, and hence it follows from Theorem 3.4 that
[T2,2g+1]ν+ = g[T2,3]ν+ . In this subsection, we consider comparing ν+-classes with
[(T2g+1)

∗]ν+ . First, we recall that the knot complex C (T2,2g+1)
∗
has a filtered basis

{ak, bl | 0 ≤ k ≤ g, 0 ≤ l ≤ g − 1}

satisfying:

• gr(ak) = 0 and gr(bl) = −1.
• (Alg(ak),Alex(ak)) = (−g+k,−k) and (Alg(bl),Alex(bl)) = (−g+l,−l−1).
• ∂ak = bk−1 + bk and ∂bl = 0, where b−1 = bg = 0.
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Here we note that a := a0 +· · ·+ag is a unique homological generator of C (T2,2g+1)
∗
.

For any g ∈ Z≥0, define

Rg :=
⋃

0≤n≤g

R(−g+n,−n).

Then we have the following sufficient condition for satisfying the inequality [C]ν+ ≤
[(T2,2g+1)

∗]ν+ .

Proposition 4.8 For any formal knot complex C, if CRg contains a homological
generator, then the inequality

[C]ν+ ≤ [(T2,2g+1)
∗]ν+

holds.

Proof Fix a filtered basis and denote the induced decomposition by {C(i, j)}. Define
the subsets Sk ⊂ Z

2 (k = 0, 1, . . . , g) by

S0 := R(−g,0)

and

Sk := {i = −g + k, j ≤ −k}

for 1 ≤ k ≤ g. Then Rg = �0≤k≤gSk , and hence we can uniquely decompose
a homological generator z ∈ CRg into a linear combination z = ∑g

k=0 zk , where
zk ∈⊕(i, j)∈Sk C(i, j). We denote yl := ∂(z0 + . . . + zl) for any 0 ≤ l ≤ g − 1.

Claim 1 yl is lying in CR(−g+l,−l−1) .

Proof Since z is a cycle, we see yl = ∂(z0+· · ·+ zl) = ∂(zl+1+· · ·+ zg). Moreover,
since the relations

⋃

0≤k≤l

Sk =
⋃

0≤k≤l

R(−g+k,−k)

and

⋃

l+1≤k≤g

Sk ⊂
⋃

l+1≤k≤g

R(−g+k,−k)
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hold, we have yl ∈ (
C⋃

0≤k≤l R(−g+k,−k)

) ∩ (C⋃
l+1≤k≤g R(−g+k,−k)

)
. Here, Lemma 2.9

gives

(
C⋃

0≤k≤l R(−g+k,−k)

) ∩ (C⋃
l+1≤k≤g R(−g+k,−k)

)

=
⎛

⎝
⊕

(i, j)∈⋃0≤k≤l R(−g+k,−k)

C(i, j)

⎞

⎠ ∩
⎛

⎜
⎝

⊕

(i, j)∈⋃l+1≤k≤g R(−g+k,−k)

C(i, j)

⎞

⎟
⎠

= C(
⋃

0≤k≤l R(−g+k,−k))∩(
⋃

l+1≤k≤g R(−g+k,−k)) = CR(−g+l,−l−1) .

��
Now, we define a �-linear map f : C (T2,2 g+1)

∗ → C by

f ak = zk and f bl = yl .

Then we can check that f is a chain map over �. (Notice that ∂zk = ∂(z0 + · · · +
zk−1) + ∂(z0 + · · · + zk) = yk−1 + yk .) Moreover, by Claim 1, we have

(Alg( f ak),Alex( f ak)) ≤ (−g + k,−k)

and

(Alg( f bl),Alex( f bl)) ≤ (−g + l,−l − 1).

In addition, f (a) = f (a0 + · · ·+ ag) = z0 + · · ·+ zg = z. Now, Lemma 2.40 proves
that f is a Z

2-filtered quasi-isomorphism. ��

4.3 An estimate of genus one complexes

Here, we consider an estimate for genus one formal knot complexes.

Theorem 4.9 Let C be a formal knot complex with g(C) = 1.

1. If τ(C) = 1, then [C]ν+ ≥ [T2,3]ν+ .
2. If τ(C) = 0, then [C]ν+ = 0.
3. If τ(C) = −1, then [C]ν+ ≤ −[T2,3]ν+ .

Proof By Lemma 2.48, we have a homological generator lying in C{i≤−1}∪R(0,τ (C))
.

Moreover, Lemmas 2.10 and 4.7 imply that

C{i≤−1}∪R(0,τ (C))
= C{i≤−1} + CR(0,τ (C))

= CR(−1,0) + CR(0,τ (C))
= CR(−1,0) ∪R(0,τ (C))

.

As a result, we have a homological generator in CR(−1,0)∪R(0,τ (C))
.

First, suppose that τ(C) = 0. Then CR(−1,0)∪R(0,τ (C))
= CR(0,0) . This proves

ν+(C) = 0. Moreover, since τ(C∗) = −τ(C) = 0 and g(C∗) = g(C) = 1, we
also have ν+(C∗) = 0. Therefore, the assertion (2) holds.
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Next, suppose that τ(C) = −1. Then CR(−1,0)∪R(0,τ (C))
= CR(−1,0)∪R(0,−1) = CR1 .

Therefore, it follows from Proposition 4.8 that

[C]ν+ ≤ [(T2,3)∗]ν+ = −[T2,3]ν+ ,

and the assertion (3) holds.
Finally, the assertion (1) follows from the assertion (3) and the fact that τ(C∗) =

−τ(C) = −1 and [C∗]ν+ = −[C]ν+ . ��
Now we can prove the main theorem.

Theorem 1.2 For any knot K with g(K ) = 1, we have

[K ]ν+ =

⎧
⎪⎨

⎪⎩

[
T2,3
]

ν+ if τ(K ) = 1

[unknot]ν+ = 0 if τ(K ) = 0
[
(T2,3)∗

]

ν+ = −[T2,3]ν+ if τ(K ) = −1

.

In other words, any genus one knot is ν+-equivalent to one of the trefoil, its mirror
and the unknot.

Proof Let K be a genus one knot. Then, by Theorem 1.5, we have

−[T2,3]ν+ ≤ [K ]ν+ ≤ [T2,3]ν+ .

Moreover, by Theorem 4.5, we can take a knot complex CK with g(CK ) = 1. Hence,
Theorem 4.9 gives

[K ]ν+

⎧
⎪⎨

⎪⎩

≥ [T2,3
]

ν+ if τ(K ) = 1

= 0 if τ(K ) = 0

≤ −[T2,3]ν+ if τ(K ) = −1

.

This completes the proof. ��

4.4 An estimate using7

Here we show an estimate which is obtained by using ϒ .

Theorem 4.10 If ϒC (1) = g(C), then [C]ν+ ≤ −g(C)[T2,3]ν+ .

Proof By the definition of ϒ , we have a homological generator which lies in
C{i+ j≤−g(C)}. Here, we note that

{i + j ≤ −g(C)} ⊂ {i ≤ −g(C)} ∪ Rg(C) ∪ { j ≤ −g(C)}.

Moreover, Lemmas 2.10 and 4.7 imply that

C{i≤−g(C)}∪Rg(C)∪{ j≤−g(C)} = C{i≤−g(C)} + CRg(C) + C{ j≤−g(C)}
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= CR(−g(C),0) + CRg(C) + CR(0,−g(C))
= CRg(C) .

As a result, we have a homological generator in CRg(C) . Therefore, Proposition 4.8
proves that [C]ν+ ≤ [(T2,2g(C)+1)

∗]ν+ = −g(C)[T2,3]ν+ . ��
Now we can prove the following discriminant.

Theorem 4.11 The equality [K ]ν+ = −g(K )[T2,3]ν+ holds if and only if ϒK (1) =
g(K ).

Proof If [K ]ν+ = −g(K )[T2,3]ν+ , then ϒK (1) = −g(K )ϒT2,3(1) = g(K ). Let us
prove the converse. For any knot K , by Theorem 1.5, we have

[K ]ν+ ≥ −g(K )[T2,3]ν+ .

Moreover, by Theorem 4.5, we can take a knot complex CK with g(CK ) = g(K ).
Hence, if ϒK (1) = g(K ), then Theorem 4.10 gives

[K ]ν+ ≤ −g(K )[T2,3]ν+ .

This completes the proof. ��

5 New concordance invariants

In this section, we discuss new invariants {Gn} of ν+-classes whose values are finite
subsets of CR(Z2).

5.1 The invariants ˜G0 andG0

As seen in Sect. 2.10, many invariants introduced in previous work can be translated
into the words of closed regions containing a homological generator. From the view
point, it is natural to consider the universal set

G̃0(C) := {R ∈ CR(Z2) | CR contains a homological generator}.

In fact, it behaves very naturally in terms of filtered quasi-isomorphism.

Theorem 5.1 If [C]ν+ ≤ [C ′]ν+ , then G̃0(C) ⊃ G̃0(C ′).

Proof ByTheorem2.38,wehave aZ
2-filtered quasi-isomorphism f : C ′ → C . There-

fore, for any element R ∈ G̃0(C ′) and a homological generator x ∈ C ′
R , we see that

CR also contains a homological generator f (x), and hence R ∈ G̃0(C). ��
As a corollary, we have the invariance of G̃0. Here P(CR(Z2)) denotes the power

set of CR(Z2).
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Corollary 5.2 G̃0(C) is invariant under ν+-equivalence. In particular,

G̃0 : [C]ν+ �→ G̃0(C)

is a well-defined map Cf → P(CR(Z2)).

By definition, G̃0(C) obviously has the following property.

Proposition 5.3 For any R ∈ G̃0(C) and R′ ∈ CR(Z2), if R ⊂ R′, then R′ ∈ G̃0(C).

In particular, we see that G̃0(C) is an infinite set. To extract an essential part of G̃0,
we consider the minimalization of G̃0.

For a subset S ⊂ CR(Z2), an element R ∈ S is minimal in S if it satisfies

if R′ ∈ S and R′ ⊂ R, then R′ = R.

Define the map

min : P(CR(Z2)) → P(CR(Z2))

by

S �→ {R ∈ S | R is minimal in S}.

Now we define G0(C) by

G0(C) := min G̃0(C).

The invariance of G0(C) under
ν+
∼ immediately follows from Corollary 5.2.

Here, for referring later, we prove the following lemma.

Lemma 5.4 Let S ⊂ CR(Z2) be a non-empty finite subset. Then, for any R ∈ S, there
exists an element R′ ∈ min S with R′ ⊂ R. In particular, minS is non-empty.

Proof We prove the lemma by the induction of the order of S. If |S| = 1, then
minS = S, and the assertion obviously holds.

Assume that for any subsets of CR(Z2) with order n, the assertion holds. Let
S ⊂ CR(Z2) be a subset with order n + 1. if any element of S is minimal in S,
then the assertion holds for S. Suppose that there exist elements R, R′ ⊂ S such
that R′

� R. Then, since S\{R} has order n, the assertion holds for S \ {R}. In
particular, we have an element R′′ ∈ min(S\{R}) with R′′ ⊂ R′. Here we note that
R′′ ∈ minS, since R �⊂ R′′ and R′′ is not required to satisfy R = R′′. Moreover, we
have R′′ ⊂ R′ ⊂ R. This implies that the assertion holds for S, and completes the
proof. ��

5.2 Finiteness ofG0

In this subsection, we show that G0(C) is a finite set for any formal knot complex C .
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5.2.1 The region of a chain

For a non-zero element p = p(U ) ∈ �, denote the lowest degree of p by l(p). Let
C be a formal knot complex, and {xk}1≤k≤r a filtered basis for C . For any non-zero
chain x =∑1≤k≤r pk(U )xk , we define the region of x as

Rx := cl

{

(Alg(Ul(pk )xk),Alex(U
l(pk )xk))

∣
∣ 1 ≤ k ≤ r
pk(U ) �= 0

}

.

Then we see that Rx ∈ CR(Z2) and x ∈ CRx . The following lemma implies that Rx

does not depend on the choice of {xk}.
Lemma 5.5 The equality

Rx =
⋂

R∈CR, x∈CR

R

holds. In particular, x ∈ CR if and only if Rx ⊂ R.

Proof It is obvious that Rx ⊃⋂R∈CR, x∈CR
R. We prove the converse. Let {C(i, j)} be

the decomposition of C induced by {xk}, and take R ∈ CR(Z2) with x ∈ CR . Then,
since CR =⊕(i, j)∈R C(i, j) and

C(i, j) = spanF{Ulxk | (Alg(Ulxk),Alex(U
lxk)) = (i, j)},

we see that
(
Alg(Ul(pk)xk),Alex(U

l(pk )xk)
)

∈ R

for any k ∈ {1, . . . , r} with pk(U ) �= 0. This completes the proof. ��
Lemma 5.6 For any Z

2-filtered chain map f : C → C ′ and x ∈ C, we have R f (x) ⊂
Rx .

Proof Since x ∈ CRx , we see

f (x) ∈ f (CRx ) ⊂ C ′
Rx

.

Hence, Lemma 5.5 proves R f (x) ⊂ Rx . ��

5.2.2 The regions of homological generators

For a formal knot complex C , define

g̃en0(C) := {homological generator of C},
G̃′
0(C) := {Rx ∈ CR(Z2) | x ∈ g̃en0(C)},
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and

G′
0(C) := min G̃′

0(C).

In addition, for R ∈ G0(C), set

gen0(C; R) := {x ∈ g̃en0(C) | Rx = R},

and call x ∈ gen0(C; R) a realizer of R. Notice that since dimF C0 < ∞, C has
finitely many homological generators, and hence both G̃′

0(C) and G′
0(C) are finite and

non-empty. Therefore, the following theorem implies the finiteness and non-emptiness
of G0(C).

Theorem 5.7 The equality G0(C) = G′
0(C) holds.

Proof We first prove G0(C) ⊃ G′
0(C). Note that since x ∈ CRx for any homological

generator x , we have G̃0(C) ⊃ G̃′
0(C). Take Rx ∈ G′

0(C), and suppose that R ∈
G̃0(C) and R ⊂ Rx . Then, there exists a homological generator x ′ in CR , and hence
Lemma 5.5 implies Rx ′ ⊂ R ⊂ Rx . Here, since Rx ′ ∈ G̃′

0(C) and Rx is minimal in
G̃′
0(C), we have Rx ′ = R = Rx . This proves Rx ∈ G0(C), and hence G0(C) ⊃ G′

0(C).
Next we prove G0(C) ⊂ G′

0(C). For a given element R ∈ G0(C), we first need to

prove that R ∈ G̃′
0(C). Here, in a similar way to the above arguments, we see that

there exists a homological generator x such that Rx ⊂ R. Moreover, since Rx is also
in G̃0(C) and R is minimal in G̃0(C), we have R = Rx ∈ G̃′

0(C). Now, the minimality
of R in G̃′

0(C) immediately follows from the minimality in G̃0(C). Therefore, we have
R ∈ G′

0(C), and hence G0(C) ⊂ G′
0(C). ��

As a corollary, we have the following useful property of G0(C).

Corollary 5.8 For any formal knot complex C and R ∈ CR(Z2),the following holds:

R ∈ G̃0(C) ⇔ ∃R′ ∈ G0(C), R′ ⊂ R.

Proof Suppose that R ∈ G̃0(C). Then, by the definition of G̃0(C) andLemma5.5, there
exists a homological generator x ∈ C with Rx ⊂ R. Moreover, since Rx ∈ G̃′

0(C) and
G̃′
0(C) is a non-empty finite set, Lemma 5.4 gives an element R′ ∈ G′

0(C) = G0(C)

with R′ ⊂ Rx ⊂ R. The converse follows from Proposition 5.3. ��
Here we also mention the relationship of G0(C) to the partial order on Cf.

Proposition 5.9 If [C]ν+ ≤ [C ′]ν+ , then for any R′ ∈ G0(C ′), there exists an element
R ∈ G0(C) with R ⊂ R′.

Proof For any R′ ∈ G0(C ′), Theorem 5.1 shows R′ ∈ G̃0(C). Now, by Corollary 5.8,
we have an element R ∈ G0(C) with R ⊂ R′. ��
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5.3 Higher invariantsGn

Here, we discuss higher invariants.

5.3.1 The secondary invariantG1

For a formal knot complex C , suppose that G0(C) has distinct two elements R1 and
R2. Under the hypothesis, we define the secondary invariant G1(C; R1, R2) as follows.
First, set

g̃en1(C; R1, R2) := {x ∈ C1 | ∃zi ∈ gen0(C; Ri ), ∂x = z1 + z2},

and

G̃′
1(C; R1, R2) := {Rx | x ∈ g̃en1(C; R1, R2)}.

Then we define G1(C; R1, R2) by

G1(C; R1, R2) := min G̃′
1(C; R1, R2).

Here, for R ∈ G1(C; R1, R2), we also define the realizers of R by

gen1(C; R1, R2; R) := {x ∈ g̃en1(C; R1, R2) | Rx = R}.

Note that the above notions are independent of the order of {R1, R2}.
Lemma 5.10 G1(C; R1, R2) is a non-empty finite set.

Proof Take an arbitrary realizer zi ∈ gen0(C; Ri ) for each i = 1, 2. Then we see that
0 �= [z1] = [z2] ∈ H0(C) ∼= F, and hence there exists a 1-chain x ∈ C1 such that
∂x = z1 + z2. Moreover, dimF(C1) < ∞. These facts shows that g̃en1(C; R1, R2) is
non-empty and finite. Combining this fact with Lemma 5.4, we see that G1(C; R1, R2)

is non-empty and finite. ��
Theorem 5.11 Suppose that [C]ν+ ≤ [C ′]ν+ and G0(C) ∩ G0(C ′) has distinct two
elements R1 and R2. Then, for any R′ ∈ G1(C ′; R1, R2), there exists an element
R ∈ G1(C; R1, R2) with R ⊂ R′.

Proof Take zi ∈ gen0(C
′; Ri ) (i = 1, 2) and x ∈ gen1(C

′; R1, R2; R′) such that
∂x = z1 + z2. Let f : C ′ → C be a Z

2-filtered quasi-isomorphism. Then we see from
the assumption and Lemma 5.6 that

R f (zi ), Ri ∈ G̃′
0(C)

and

R f (zi ) ⊂ Rzi = Ri .
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Moreover, Ri is minimal in G̃′
0(C), and hence we have R f (zi ) = Ri . In particular,

f (zi ) ∈ gen0(C; Ri ). Here, note that

∂( f (x)) = f (∂x) = f (z1) + f (z2),

and hence f (x) ∈ g̃en1(C; R1, R2) and R f (x) ∈ G1(C; R1, R2). Now, Lemma 5.4
and Lemma 5.6 give an element R ∈ G1(C; R1, R2) with

R ⊂ R f (x) ⊂ Rx = R′.

��
Corollary 5.12 For any [C]ν+ ∈ Cf and distinct two elements R1, R2 ∈ G0(C),
G1(C; R1, R2) ∈ P(CR(Z2)) is an invariant of the ν+-class [C]ν+ .

Proof Suppose that [C]ν+ = [C ′]ν+ . Then, since G0(C) = G0(C ′), we have

R1, R2 ∈ G0(C) ∩ G0(C ′).

Let R ∈ G1(C; R1, R2). Since [C]ν+ ≥ [C ′]ν+ , Theorem 5.11 gives an element
R′ ∈ G1(C ′; R1, R2) with R′ ⊂ R. Moreover, since [C]ν+ ≤ [C ′]ν+ , we also have
R′′ ∈ G1(C; R1, R2) with R′′ ⊂ R′ ⊂ R. Here, since R is minimal in G1(C; R1, R2),
we have

R′′ = R′ = R,

and hence R = R′ ∈ G1(C ′; R1, R2). This proves G1(C; R1, R2) ⊂ G1(C ′; R1, R2).
In the same way, we also have G1(C; R1, R2) ⊃ G1(C ′; R1, R2). ��

5.3.2 Higher invariantsGn with n ≥ 2

Now we construct more higher invariants Gn by induction. Let n be an integer with
n ≥ 2, and assume that

∃R0
1, R

0
2 ∈ G0(C) with R0

1 �= R0
2,∃R1

1, R
1
2 ∈ G1(C; {R0

1, R
0
2}) with R1

1 �= R1
2,· · ·

∃Rn−1
1 , Rn−1

2 ∈ Gn−1(C; {R j
1 , R

j
2 }n−2

j=0) with Rn−1
1 �= Rn−1

2 .

Then, we define

g̃enn(C; {R j
1 , R

j
2 }n−1

i=0 ) :=
⎧
⎨

⎩
x ∈ Cn

∣
∣
∃zi ∈ genn−1(C; {R j

1 , R
j
2 }n−2

j=0; Rn−1
i )

s.t.

{
∂z1 = ∂z2
∂x = z1 + z2

⎫
⎬

⎭
,

G̃′
n(C; {R j

1 , R
j
2 }n−1

j=0) := {Rx | x ∈ g̃enn(C; {R j
1 , R

j
2 }n−1

j=0)}, and



63 Page 52 of 57 K. Sato

Gn(C; {R j
1 , R

j
2 }n−1

j=0) := min G̃′
n(C; {R j

1 , R
j
2 }n−1

j=0).

In addition, for R ∈ Gn(C; {R j
1 , R

j
2 }n−1

j=0), we define

genn(C; {R j
1 , R

j
2 }n−1

j=0; R) := {x ∈ g̃enn(C; {R j
1 , R

j
2 }n−1

j=0) | Rx = R}.

Unlike the cases of G0 and G1, it is unknown whether Gn(C; {R j
1 , R

j
2 }n−1

j=0) is empty
or not, while we see that it is finite. (This is caused by the condition ∂z1 = ∂z2.)
However, if Gn(C; {R j

1 , R
j
2 }n−1

j=0) is non-empty, then we can show that it is invariant
under ν+-equivalence. (As a consequence, the emptiness of Gn is also an invariant of
ν+-classes.)

Theorem 5.13 Suppose that [C]ν+ ≤ [C ′]ν+ and the intersection

Gk(C; {R j
1 , R

j
2 }k−1

j=1) ∩ Gk(C ′; {R j
1 , R

j
2 }k−1

j=1)

has distinct two elements Rk
1 and Rk

2 (where k = 0, 1, . . . , n − 1, and {R j
1 , R

j
2 }−1

j=0 =
∅). Then, for any R′ ∈ Gn(C ′; {R j

1 , R
j
2 }n−1

j=1), there exists an element

R ∈ Gn(C; {R j
1 , R

j
2 }n−1

j=1)

with R ⊂ R′. In particular, the non-emptiness of Gn(C ′; {R j
1 , R

j
2 }n−1

j=1) implies the

non-emptiness of Gn(C; {R j
1 , R

j
2 }n−1

j=1).

Proof The proof follows from arguments exactly the same as the proof of Theo-
rem 5.11. (We only need to care about the fact that

f (zi ) ∈ genn−1(C; {R j
1 , R

j
2 }n−2

j=0; Rn−1
i ),

but this also can be proved by induction.) ��

Corollary 5.14 For any [C]ν+ ∈ Cf and sequence of distinct two elements Rk
1, R

k
2 ∈

Gk(C; {R j
1 , R

j
2 }k−1

j=0) (k = 0, 1, . . . , n − 1), the element

Gn(C; {R j
1 , R

j
2 }n−1

j=1) ∈ P(CR(Z2))

is an invariant of the ν+-class [C]ν+ .

Proof The proof follows from arguments exactly the same as the proof of Corol-
lary 5.12. (In fact, we only need to replace some symbols suitably.) ��
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5.4 Relationship to other invariants

In this subsection, we study the relationship of the new invariants G0 and G1 to the
invariants reviewed in Sect. 2.10.

5.4.1 Relationship ofG0 to �+, Vk , � and7

We first discuss the relationship of G0 to ν+. Here, recall that R(k,l) is defined by

R(k,l) := {(i, j) ∈ Z
2 | (i, j) ≤ (k, l)}.

Proposition 5.15 For any formal knot complex C, the invariants ν+(C) and ν+(C∗)
are determined from G0(C) by the formulas

ν+(C) = min{m ∈ Z≥0 | ∃R ∈ G0(C), R ⊂ R(0,m)}

and

ν+(C∗) = min{m ∈ Z≥0 | ∀R ∈ G0(C), R ⊃ R(0,−m)}.

Proof We can see that the equality

ν+(C) = min
{
m ∈ Z≥0

∣
∣ R(0,m) ∈ G̃0(C)

}

holds. Therefore, the first assertion immediately follows from Corollary 5.8.
Next, by Lemma 2.28, the inequality ν+(C∗) > m holds if and only if there is a

homological generator x ∈ C with Rx ⊂ {i ≤ −1 or j ≤ −m − 1}. Here, we note
that Rx ⊂ {i ≤ −1 or j ≤ −m − 1} if and only if Rx �⊃ R(0,−m). Therefore, we have

ν+(C∗) = min
{
m ∈ Z≥0

∣
∣ ∀Rx ∈ G̃′

0(C), Rx ⊃ R(0,−m)

}
.

Moreover, Lemma 5.4 implies that any Rx ∈ G̃′
0(C) includes R(0,−m) if and only if

any Rx ∈ G0(C) includes R(0,−m). This completes the proof. ��
From Proposition 5.15, we see that G0 detects the zero element as a ν+-class.

Theorem 5.16 For any formal knot complex C, the following holds:

[C]ν+ = 0 ⇔ G0(C) = {R(0,0)}

Proof By the invariance of G0 under
ν+
∼ and easy computation G0(�) = {R(0,0)},

it is obvious that [C]ν+ = 0 implies G0(C) = {R(0,0)}. Moreover, the converse
immediately follows from Proposition 5.15, since the unique element R := R(0,0) ∈
G0(C) satisfies R ⊂ R(0,0) and R ⊃ R(0,0). ��
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On the other hand,wewill see inSect. 5.5 thatG0 is not a perfect invariant of ν+-classes.
We can also translate the invariants Vk , τ and ϒ as follows:

Vk(C) = min
{
m ∈ Z≥0

∣
∣ R(m,k+m) ∈ G̃0(C)

}

τ(C) = min
{
m ∈ Z

∣
∣ ({i ≤ −1} ∪ R(0,m)) ∈ G̃0(C)

}

ϒC (t) = −2
(
min

{
s ∈ R

∣
∣ Rt (s) ∈ G̃0(C)

})

(Here, recall Rt (s) := {(i, j) ∈ Z
2 | (1 − t/2)i + (t/2) j ≤ s}.) Therefore, we have

the following formulas.

Proposition 5.17 For any formal knot complex C, the invariants Vk(C), τ(C) and
ϒC (t) are determined from G0(C) by the formulas:

Vk(C) = min
{
m ∈ Z≥0

∣
∣ ∃R ∈ G0(C), R ⊂ R(m,k+m)

}

τ(C) = min
{
m ∈ Z

∣
∣ ∃R ∈ G0(C), R ⊂ ({i ≤ −1} ∪ R(0,m))

}

ϒC (t) = −2
(
min

{
s ∈ R

∣
∣ ∃R ∈ G0(C), R ⊂ Rt (s)

})

5.4.2 Relationship ofG1 to72

Next, we discuss the relationship of G1 to ϒ2. (Precisely, we compare G1 with υ2

rather than ϒ2.) Let

Gt±
0 (C) := {R ∈ G0(C) | R ⊂ F t±δ

υC (t±δ)},

and then we see that the inequality

Z±
t (C) ⊃

⋃

R∈Gt±
0 (C)

gen0(C; R)

holds for each sign. (Remark that it does not become the equality in general, since we
might have x ∈ g̃en0(C) such that R � Rx ⊂ F t±δ

υC (t±δ) for some R ∈ Gt±
0 (C). Such x

is lying in Z±(C) but not in the right-hand side.) In particular, Z−
t (C) ∩Z+

t (C) = ∅
only if Gt−

0 (C) ∩ Gt+
0 (C) = ∅.

For any t ∈ (0, 2), we set

Gt
1(C) :=

⋃

R±∈Gt±
0 (C),R−�=R+

G1(C; R−, R+).

Then, we have the following inequality. (In light of the inequality, we can regard υ2
C,t

as a linear approximation of Gt
1(C).)

Proposition 5.18 For any formal knot complex C, t ∈ (0, 2) and s ∈ [0, 2], the
inequality

υ2
C,t (s) ≤ min

{
r ∈ R

∣
∣ ∃R ∈ Gt

1(C), R ⊂ (Rt (υC (t)) ∪ Rs(r)
)}

.
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holds.

Proof Denote the right-hand side of the inequality in Proposition 5.18 by the symbol
υ2
Gt
1(C)

(s). Then, we can take R ∈ Gt
1(C) with R ⊂ (Rt (υC (t)) ∪ Rs(υ2

Gt
1(C)

(s))).

Moreover, by the definition of Gt
1(C), there exist elements R± ∈ Gt±

0 (C) such that
R− �= R+ and R ∈ G1(C; R−, R+). This implies that we have a homological
generator

z± ∈ gen0(C; R±) ⊂ Z±
t (C)

for each sign and 1-chain x ∈ CRx ⊂ CRt (υC (t))∪Rs(υ2
Gt
1(C)

(s)) such that ∂x = z− − z+.

Here, by Lemma 2.10, we see

CRt (υC (t))∪Rs(υ2
Gt
1(C)

(s)) = CRt (υC (t)) + CRs (υ2
Gt
1(C)

(s)) = F t
υC (t) +F s

υ2
Gt
1(C)

(s)
,

and hence [z−]−[z+] = [∂x] = 0 ∈ H0(F t
υC (t) +F s

υ2
Gt
1(C)

(s)
). This shows the desired

inequality υ2
C,t (s) ≤ υ2

Gt
1(C)

(s). ��

5.5 Genus one complexes with no realizing knot

In this subsection, we define the complexes Cn precisely, and prove Theorem 1.8 and
Corollary 1.9.

For any n ∈ Z>0, we define an F-vector space C̄n with a basis {xk, x ′
k, y}n−1

k=0 and
F-linear map ∂̄ : C̄n → C̄n as follows:

{
gr(xk) = gr(x ′

k) = k (0 ≤ k ≤ n − 1)

gr(y) = n
⎧
⎪⎨

⎪⎩

∂̄x0 = ∂̄x ′
0 = 0

∂̄xk = ∂̄x ′
k = xk−1 + x ′

k−1 (1 ≤ k ≤ n − 1)

∂̄ y = xn−1 + x ′
n−1

⎧
⎪⎨

⎪⎩

(Alg(xk),Alex(xk)) = (k, k + 1) (0 ≤ k ≤ n − 1)

(Alg(x ′
k),Alex(x

′
k)) = (k + 1, k) (0 ≤ k ≤ n − 1)

(Alg(y),Alex(y)) = (n, n)

Thenwe can check that (C̄, ∂̄) satisfies all conditions of Lemma 2.3. Figure1 in Sect. 1
depicts the complex (C̄n, ∂̄ .) Therefore, we have a formal knot complex (C, ∂) which
is related to (C̄, ∂̄) as described in Lemma 2.3. Note that C1 coincides with the knot
complex for the right-hand trefoil T2,3. Moreover, g(Cn) = 1 for any n.

Proposition 5.19 For any n ∈ Z>0, Cn satisfies the following:

1. G0(Cn) = {R(0,1), R(1,0)}.
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2. Gk(Cn; {R( j, j+1), R( j+1, j)}k−1
j=0) = {R(k,k+1), R(k+1,k)} (1 ≤ k ≤ n − 1).

3. Gn(Cn; {R( j, j+1), R( j+1, j)}n−1
j=0) = {R(n,n)}.

Proof Obviously, we see that

g̃en0(C
n) = {x0, x ′

0}

and

G̃′
0(C

n) = {Rx0 , Rx ′
0
} = {R(0,1), R(1,0)}.

Moreover, both R(0,1) and R(1,0) are minimal in {R(0,1), R(1,0)}, and hence we have
G0(Cn) = {R(0,1), R(1,0)} and gen0(C

n) = {x0, x ′
0}.

Next, fix m ∈ {0, 1, . . . , n − 2}, and assume that the assertion (2) holds for any
1 ≤ k ≤ m. Then the equalities

genm(Cn; {R( j, j+1), R( j+1, j)}m−1
j=0 ; R(m,m+1)) = {xm}

and

genm(Cn; {R( j, j+1), R( j+1, j)}m−1
j=0 ; R(m+1,m)) = {x ′

m}

must hold. Now we see

g̃enm+1(C
n; {R( j, j+1), R( j+1, j)}mj=0) = {xm+1, x

′
m+1},

and hence we can conclude

Gm+1(C
n; {R( j, j+1), R( j+1, j)}mj=0) = {R(m+1,m+2), R(m+2,m+1)}.

This proves the assertion (2). Similarly, we can prove the assertion (3). ��
Now, we can easily prove the following theorems from the above computation.

Theorem 1.8 The ν+-classes {[Cn]ν+}∞n=1 aremutually distinct inCf, while τ(Cn) = 1

for any n. In particular, the complement F f
1 \πν+(F1) is infinite.

Proof The first half assertion directly follows from Proposition 5.19. Moreover, since
τ(k[T2,3]ν+) = k, τ(Cn) = 1 and [Cn]ν+ �= [C1]ν+ = [T2,3]ν+ for any k ∈ Z and
n ≥ 2, we have [Cn]ν+ �= k[T2,3]ν+ . This proves the second half assertion. ��
Corollary 1.9 The formal knot complexes {Cn}∞n=2 cannot be realized by any knot in
S3.

Proof If there exists a knot K with [CK ] = [Cn] for some n ≥ 2, then it follows from
Proposition 5.19 and Theorem 4.5 that τ(K ) = τ(Cn) = 1 and g(K ) = 1. (Note that
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1 = g(Cn) ≥ min{g(C) | C ∈ [Cn] = [CK ]} = g(K ) ≥ τ(K ) = 1.) Therefore, by
Theorem 1.2, we have

[Cn]ν+ = [K ]ν+ = [T2,3]ν+ = [C1]ν+ ,

which contradicts to Theorem 1.8. ��
Acknowledgements The authors would like to thank Jennifer Hom, Min Hoon Kim and JungHwan Park
for many interesting conversations about the present work. The author was supported by JSPS KAKENHI
Grant Number 18J00808.

References

1. Bodnár, J., Celoria, D., Golla, M.: A note on cobordisms of algebraic knots. Algebr. Geom. Topol.
17(4), 2543–2564 (2017)

2. Hedden, M.: Knot Floer homology of Whitehead doubles. Geom. Topol. 11, 2277–2338 (2007)
3. Hedden, M., Watson, L.: On the geography and botany of knot floer homology. Selecta Math. 24(2),

997–1037 (2018)
4. Hom, J.: A survey on Heegaard Floer homology and concordance. J. Knot Theory Ramif. 26(2),

1740015 (2017)
5. Hom, J., Zhongtao, W.: Four-ball genus bounds and a refinement of the Ozváth-Szabó tau invariant. J.

Symplectic Geom. 14(1), 305–323 (2016)
6. Juhász, A.: Floer homology and surface decompositions. Geom. Topol. 12(1), 299–350 (2008)
7. Kim, M.H., Park, K.: An infinite-rank summand of knots with trivial Alexander polynomial. J.

Symplectic Geom. 16(6), 1749–1771 (2018)
8. Kim, S.-G., Livingston, C.: Secondary upsilon invariants of knots. Q. J. Math. 69(3), 799–813 (2018)
9. Lickorish, W.B.R.: An introduction to knot theory, volume 175 of Graduate Texts in Mathematics.

Springer-Verlag, New York, (1997)
10. Livingston, C.: Notes on the knot concordance invariant upsilon. Algebr. Geom. Topol. 17(1), 111–130

(2017)
11. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577–608 (2007)
12. Ni, Y., Zhongtao, W.: Cosmetic surgeries on knots in S3. J. Reine Angew. Math. 706, 1–17 (2015)
13. Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus. Geom. Topol. 7, 615–639 (2003)
14. Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. Geom. Topol. 8, 311–334 (2004)
15. Ozsváth, P., Szabó, Z.: Holomorphic disks and knot invariants. Adv. Math. 186(1), 58–116 (2004)
16. Ozsváth, P., Szabó, Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann.

Math. 159(3), 1027–1158 (2004)
17. Ozsváth, P.S., Stipsicz, A.I., Szabó, Z.: Concordance homomorphisms from knot Floer homology. Adv.

Math. 315, 366–426 (2017)
18. Ozsváth, P.S., Szabó, Z.: Knot Floer homology and integer surgeries. Algebr. Geom. Topol. 8(1),

101–153 (2008)
19. Ozsváth, P.S., Szabó, Z.: Knot Floer homology and rational surgeries. Algebr. Geom. Topol. 11(1),

1–68 (2011)
20. Petkova, I.:Cables of thin knots andborderedHeegaardFloer homology.QuantumTopol.4(4), 377–409

(2013)
21. Sarkar, S.: Grid diagrams and the Ozsváth-Szabó tau-invariant. Math. Res. Lett. 18(6), 1239–1257

(2011)
22. Sato, K.: A full-twist inequality for the ν+-invariant. Topol. Appl. 245, 113–130 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	The ν+-equivalence classes of genus one knots
	Abstract
	1 Introduction
	1.1 Background and the main theorem
	1.2 The idea of proof: estimating ν+-classes
	1.3 Formal knot complexes and new concordance invariants
	Organization

	2 Category of formal knot complexes
	2.1 Poset filtered chain complexes
	2.2 Formal knot complexes
	2.2.1 Definition
	2.2.2 Relationship to abstract infinity complex
	2.2.3 Basic properties

	2.3 Commutative monoid structure
	2.4 The dual of a formal knot complex
	2.5 Stabilizers
	2.6 ν+-invariant
	2.7 ν+-equivalence
	2.8 Formal knot concordance group
	2.9 Partial order on `3́9`42`"̇613A``45`47`"603AmathcalCf
	2.10 Invariants of ν+-classes
	2.10.1 Vk-sequence
	2.10.2 τ-invariant
	2.10.3 Υ-invariant
	2.10.4 Υ2-invariant


	3 Geometric estimates
	4 Algebraic estimates
	4.1 Genus of a formal knot complex
	4.1.1 Maximal and minimal degrees
	4.1.2 Genus of a formal knot complex

	4.2 Comparison with [(T2,2g+1)*]ν+
	4.3 An estimate of genus one complexes
	4.4 An estimate using Υ

	5 New concordance invariants
	5.1 The invariants `3́9`42`"̇613A``45`47`"603AwidetildemathcalG0 and mathcalG0
	5.2 Finiteness of mathcalG0
	5.2.1 The region of a chain
	5.2.2 The regions of homological generators

	5.3 Higher invariants mathcalGn
	5.3.1 The secondary invariant mathcalG1
	5.3.2 Higher invariants mathcalGn with n 2

	5.4 Relationship to other invariants
	5.4.1 Relationship of mathcalG0 to ν+, Vk, τ and Υ
	5.4.2 Relationship of mathcalG1 to Υ2

	5.5 Genus one complexes with no realizing knot

	Acknowledgements
	References




