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Abstract
We establish inequalities that constrain the genera of smooth cobordisms between
knots in 4-dimensional cobordisms. These “relative adjunction inequalities” improve
the adjunction inequalities for closed surfaces which have been instrumental in many
topological applications of gauge theory. The relative inequalities refine the latter by
incorporating numerical invariants of knots in the boundary associated to Heegaard
Floer homology classes determined by the 4-manifold. As a corollary, we produce a
host of concordance invariants for knots in a general 3-manifold, one such invariant
for every non-zero Floer class. We apply our results to produce analogues of the
Ozsváth–Szabó–Rasmussen concordance invariant for links, allowing us to reprove
the link version of the Milnor conjecture, and, furthermore, to show that knot Floer
homology detects strongly quasipositive fibered links.

Mathematics Subject Classification 57K18 · 57K10 · 57K41 · 57K31 · 57R58 ·
57R65 · 57K33

1 Introduction

A complex curve embedded in a complex surface satisfies a so-called “adjunction
formula” that computes its Euler characteristic in terms of its self-intersection number
and pairing with the first Chern class of the complex structure; see, for example, [10].
Applied to a smooth algebraic curve Vd ⊂ CP

2, one obtains the classical formula
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expressing its genus in terms of the degree d of its defining homogenous polynomial:
2g = (d − 1)(d − 2). The Thom conjecture asserts that any smoothly embedded
surface in the homology class of Vd has genus at least this large.

The advent of gauge theory brought tools that could tackle this surprising conjec-
ture. These take the form of “adjunction inequalities”, which constrain the genera
of smoothly embedded surfaces in 4-manifolds possessing non-vanishing gauge-
theoretic invariants:

Adjunction inequality [29, 36, 51]. Let X be a smooth, closed, oriented 4-manifold
satisfying b+

2 (X) > 1, and let t be a Spinc structure on X with non-zero Seiberg-Witten
or Ozsváth-Szabó invariant. Then

|〈c1(t), [�]〉| + [�]2 ≤ 2g(�) − 2,

where � ⊂ X is any smoothly embedded oriented surface satisfying [�]2 ≥ 0.

Here, b+
2 (X) denotes the dimension of a maximal subspace on which the intersection

form on H2(X; R) is positive definite and g(�) denotes the genus. A similar inequal-
ity, predating the above, holds for manifolds with non-trivial Donaldson polynomial
invariant [28, 30]. These theorems have been generalized in several directions, most
notably to the situation where b+

2 (X) = 1 and the square of � is arbitrary [42, 43].
It is difficult to overstate the importance of these inequalities in the study of smooth

4-manifolds. A particular triumph was their affirmation of a general Thom conjecture:

Symplectic thom conjecture [43]. Let � ⊂ (X , ω) be a smoothly embedded symplec-
tic surface in a symplectic 4-manifold. Then � minimizes genus amongst all smoothly
embedded surfaces in its homology class.

In this generality, the theorem was proved by Ozsváth and Szabó [43], but important
special cases were proved by a collection of authors, most notably the case of holo-
morphic curves in CP

2 by Kronheimer and Mrowka [29].

The purpose of this article is to prove a relative version of the adjunction inequality
for properly embedded surfaces in 4-manifolds with boundary. Such a surface inter-
sects the boundary 3-manifold in a knot or link, and our theorem refines the adjunction
inequality with numerical invariants of this link derived from knot Floer homology. A
knot K ⊂ Y determines a filtration of the Heegaard Floer homology Ĥ F(Y ). Given a
non-zero Floer class β ∈ Ĥ F(Y ), we thereby obtain a number τβ(Y , K ) that records
the filtration level of β. Our main theorem implies that τβ(Y , K ) bounds the genera
of properly embedded surfaces with boundary K .

As in the closed case, we need a nontriviality condition, depending on the 4-
manifold, in order to obtain a genus bound. In the closed case, this condition was
a non-vanishing Seiberg-Witten or Ozsváth-Szabó invariant. Here, in the relative set-
ting, we want the 4-manifold to induce a nontrivial map between the Floer homologies
of its boundary 3-manifolds. Specifically, we prove the following:
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Theorem 1 Let W be a smooth, compact, oriented 4-manifold with ∂W = −Y1 � Y2.
Let K1 ⊂ Y1 and K2 ⊂ Y2 be rationally null-homologous knots. If FW ,t(α) = β 	= 0,
then

〈c1(t), [�]〉 + [�]2 + 2(τβ(Y2, K2) − τα(Y1, K1)) ≤ 2g(�) (1)

where � is any oriented surface, smoothly and properly embedded with ∂� = −K1 �
K2.

If� is disconnectedwe interpret its genus to be the sumof the genera of its components.
Note that a surfacewith ∂� = −K1�K2 exists if andonly if [K1] = [K2] in H1(W ; Z).

The left two terms of Eq. (1) warrant some explanation. To define them, we lift
[�] to a class in H2(W ; Q), and consider the relevant Q-valued pairing and self-
intersection number. The existence of a lift is guaranteed by our hypothesis that the
knots are rationally null-homologous, i.e. that 0 = [Ki ] ∈ H1(Yi ; Q). If the knots
are null-homologous, then we can lift [�] to a class in H2(W ; Z) and the terms on
the left will be integers. Note, though, that in both cases the lift of [�] is typically
not canonical; there is an ambiguity coming from H2(∂W ) ∼= H2(Y1)⊕ H2(Y2). This
ambiguity is present in the definition of the filtration on Floer homology and we show
that the sum of the terms on the left hand side of Eq. (1) is independent of the lift.
Details are discussed in Sect. 4.

Special cases of Theorem1 have appeared throughout the literature. The first, which
was the initial inspiration for this work, is due to Rasmussen [56] and Ozsváth and
Szabó [46] and treats the case of knots in the 3-sphere, S3. In this setting, there is a
unique non-zero Floer class, and the corresponding invariant is denoted τ(K ). They
prove the relative adjunction inequality for surfaces in negative definite 4-manifolds
with boundary S3, and show that τ(K ) is a concordance invariant (indeed a concor-
dance homomorphism). Since then, genus bounds and concordance invariance have
been established in various settings for the τα invariant corresponding to the subspace
of Floer homology arising from the stable image of U n [13, 23, 55]. Our theorem
encompasses all these results.

We note that the theorem above, in the null-homologous case, can alternatively be
deduced from the functoriality of knot Floer homology with respect to cobordisms
and its grading shift formula7808p [67, 68], which appeared during the course of our
work. Our proof is significantly simpler, avoiding as it does most of the numerous
subtleties involved with establishing the full functoriality of knot Floer homology. It
also establishes the inequalities for rationally null-homologous knots, though Zemke’s
grading shift formula should readily adapt to this setting. Furthermore, it allows us to
correct and clarify an issue in the literature (see Remark 3.7). We cannot, however,
recover some of the beautiful applications that the full functoriality of knot Floer
homology has recently afforded [24, 26, 27, 35, 66].

1.1 Applications

Our primary motivation for pursuing the general relative adjunction inequality stems
from a number of topological applications pursued here and in subsequent papers. In
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the remainder of the introduction, we briefly describe some of these applications, and
conclude with an outline of the paper.

Theorem 1 allows us to define concordance invariants of links, using Ozsváth and
Szabó’s “knotification” procedure [47, Subsection 2.1]. For an |L| component link,
these invariants are indexed by elements in the cohomology of an |L|−1 dimensional
torus, H∗(T|L|−1), a graded F-vector space of rank 2|L|−1 corresponding to the Floer
homology of #|L|−1S1 × S2. The natural grading is shifted down so that the bottom
graded summand lives in degree 1

2 (1 − |L|). Each element of H∗(T|L|−1)gives rise to a
link concordance invariant which generalizes the Ozsváth-Szabó-Rasmussen invariant
for knots. We summarize our results in the following theorem, whose parts are proved
in Sect. 5.3. In the case that |L| = 1, and L is a knot, then we replace H∗(T|L|−1)with
reduced cohomology, a vector space of rank one. Restricting to the case of knots in
the 3-sphere (|L| = 1 and Y = S3) the theorem recovers previously known results on
τ(K ), but for a general manifold the results are new regardless of the number of link
components.

Theorem 2 Let L ⊂ Y be a rationally null-homologous knot or link with |L| compo-
nents. Then, given any non-trivial element α ⊗� ∈ Ĥ F(Y )⊗F H∗(T|L|−1), we have
an invariant τα⊗�(Y , L) satisfying:

(a) Corollary 5.12 (Concordance invariance). If L is concordant to L ′ in Y × [0, 1],
then

τα⊗�(Y , L) = τα⊗�(Y , L ′).

(b) Corollary 5.13 (Crossing change inequalities). If L−, L+ ⊂ Y differ at a single
crossing, which is positive in L+ and negative in L−, then

τα⊗�(Y , L−) ≤ τα0p⊗�(Y , L+) ≤ τα⊗�(Y , L−) + 1.

(c) Proposition 5.14 (Slice-genus bounds). If � ⊂ Y ×[0, 1] is a smoothly embedded
oriented surface with boundary L ⊂ Y ×{1}, then its Euler characteristic satisfies

2|τα⊗�(Y , L)| ≤ |L| − χ(�).

(d) Proposition 5.16 (Monotonicity). If �′ = ιx (�), where ιx denotes the interior
product with a class x ∈ H1(T

|L|−1), then

τα⊗�′(Y , L) ≤ τα⊗�(Y , L) ≤ τα⊗�′(Y , L) + 1.

In particular, if L ⊂ S3 and τtop(L) and τbot (L) denote the invariants corre-
sponding to the unique elements in H∗(T|L|−1) of maximal and minimal grading,
respectively, then

τbot (L) ≤ τ�(L) ≤ τtop(L) ≤ τbot (L) + |L| − 1.
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(e) Theorem 5.17 (Definite 4-manifold bound). Let W be a smooth, oriented 4-
manifold with b+

2 (W ) = b1(W ) = 0, and ∂W = S3. If � ⊂ W is a smoothly
embedded oriented surface with boundary a link L ⊂ ∂W , then

2τ�(L) + [�]2 + |[�]| ≤ |L| − χ(�).

Here |[�]| is the L1-norm of the homology class [�] ∈ H2(W , ∂W ) ∼= H2(W ).
(f) Theorem 5.18 (Alternating links). Suppose L ⊂ S3 is an alternating link of

|L| components, and � ∈ Ĥ F(#|L|−1S1 × S2) is a class with grading k. Then
τ�(L) = k − σ

2 , where σ(L) is the signature. In particular,

τtop(L) = |L| − σ(L) − 1

2
and τbot (L) = −|L| − σ(L) + 1

2
.

(g) Proposition 5.19 (The Local Thom and Milnor Conjectures). For a link L ⊂ S3

bounding a complex curve in B4 ⊂ C
2 or, equivalently, possessing a quasipositive

braid representative, we have

τtop(L) = g4(L)

:= min

{ |L| − χ(�)

2

∣∣∣ � ⊂ B4, smooth, oriented,with ∂� = L

}
,

and the minimum is realized by any complex curve in B4 bounded by L.
(h) Theorem 5.22 (Detection of fibered strongly quasipositive links). If L ⊂ S3 is

fibered, then L is strongly quasipositive if and only if

τtop(L) = g4(L) = g3(L),

where g3(L) is defined analogously to g4(L), but with surfaces embedded in S3.

During the course of our work, other definitions of τ were formulated for links in
S3 using grid homology by Ozsváth-Szabó-Stipsicz [41] and Cavallo [4], respectively,
and several of the properties and applications listed above have been established in that
context. We compare the specialization of our invariants to links in S3 with theirs in
Sect. 5.4 and prove that τtop(L) equals Cavallo’s invariant τ(L) and Ozsváth-Szabó-
Stipsicz’s invariant τmax (L). See Theorem 5.26.

An additional feature of our invariants is a Bennequin type inequality. In the special
case of links in the 3-sphere, it states that:

tb(L) + rot(L) + |L| − 1 ≤ 2τtop(L) − 1,

for any Legendrian representative L of L in the standard contact structure on S3.
Combined with the slice-genus bound for τtop(L) above, we obtain a refinement of
Rudolph’s well-known slice-Bennequin bound [59]. We will establish the Bennequin
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bound for τtop(L) in [21], where we use the relative adjunction inequality in combi-
nation with a Bennequin bound from [15] to prove a slice-Bennequin inequality for
contact manifolds with non-vanishing contact invariants.

In another direction, we can extend Theorem 1 to the situation where K1 and K2 are
only rationally homologous, i.e. some multiples of their respective homology classes
agree in H1(W ). This allows us to study an analogue of the slice genus for knots
that don’t bound any surface in a given 4-manifold with boundary. This extension is
motivated by the case of a rational homology 3-sphere times an interval, and the study
of a rational analogue of slice genus for knots in a non-trivial homology class. Ni and
Wu [40] proved the remarkable result that Floer simple knots in L-spaces minimize
the rational Seifert genus of any knot in their homology class. The general version of
Theorem 1 allows us to considerably strengthen their conclusion, showing that Floer
simple knots have rational slice genus equal to their rational Seifert genus which,
moreover, minimizes rational slice genus amongst all knots in their homology class.
The proof of this extension is more technical, and will be taken up in a forthcoming
paper.

Outline The paper is organized as follows. In Sect. 2, we define and recall some ele-
mentary properties of our invariants, and compute them for a simple example. In
Sect. 3, we outline the strategy for our proof of Theorem 1 and establish some key
tools for its implementation. Specifically, we extend the Künneth theorem for the
Floer homology of connected sums of 3-manifolds to cobordisms, prove a vanishing
result for the cobordism maps in the presence of a homologically essential surface,
and describe the relationship between τβ invariants and the maps on Floer homology
induced by 2-handle cobordisms. Section4 proceeds with the proof of Theorem 1 and
Sect. 5 includes applications and examples, including the results listed in Theorem 2.

2 Background on Heegaard Floer theory

In this article, all manifolds are assumed to be oriented and knots are assumed to
be both oriented and rationally null-homologous. Knots and 3-manifolds will also be
assumed to be pointed, though we will typically omit this structure from the notation
and discussion. Similarly, cobordisms between pointed 3-manifolds will implicitly be
equipped with an oriented path between basepoints. The role of the basepoints and
paths is essential for the functoriality of Heegaard Floer homology, see [25, 65].

We assume the reader has a basic familiarity with Heegaard Floer theory and knot
Floer homology at the level of [46, 47, 49]. This article is, in a sense, the sequel of
[15]. Here, however, we use the more general construction of knot Floer homology for
rationally null-homologous knots, and in the first subsection we recall and clarify the
structure of the theory in this setting; see [18] for further details. Having done this, we
turn to the definition and elementary properties of the generalized τ invariants, which
we collect in Sect. 2.2. We then compute a simple example of our invariants for a knot
in S1 × S2, which will ground the discussion moving forward.
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2.1 Heegaard Floer homology and the knot filtration

In [49], Ozsváth and Szabó define a complex C F∞(Y ) associated to a pointed Hee-
gaard diagram (�,α,β, w) for a (pointed) 3-manifold Y . This complex is generated
overF = Z/2Z by elements [x, i], where x ∈ Tα ∩Tβ is an intersection point between
Lagrangian tori specified by the Heegaard curves in the g-fold symmetric product of
�, and i is an integer. The differential is given by

∂[x, i] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
μ(φ)=1

#M̂(φ)[y, i − nw(φ)],

where #M̂(φ) denotes the number of points, modulo two, in the unparameterized
moduli space of pseudo-holomorphic disks connecting x to y in the homotopy class φ,
and nw(φ) is the algebraic intersection number of such a disk with the complex codi-
mension one subvariety Vw of the symmetric product consisting of unordered tuples
of points that contain the basepoint w. This complex is the Lagrangian Floer complex
of the pair (Tα, Tβ) with a twisted coefficient system coming from a distinguished
Z summand of the fundamental group of the path space. As such, it has the struc-
ture of a free F[Z] = F[U , U−1] module, determined by the action of the generator:
U · [x, i] = [x, i − 1]. The complex admits a direct sum decomposition indexed by
Spinc structures on Y , and we denote the summand corresponding to a Spinc structure
s by C F∞(Y , s)

Positivity of intersections between complex subvarieties of complementary dimen-
sion implies that pseudo-holomorphic disks intersect Vw positively, provided that
the family of almost complex structures used in defining the boundary operator
is integrable in a neighborhood of Vw. Hence C F∞(Y , s) is naturally filtered by
the i parameter of the generators [x, i]. Ozsváth and Szabó prove that the filtered
homotopy type of C F∞(Y , s) is an invariant of the pair (Y , s) and, as a conse-
quence, they obtain a number of invariants derived from this homotopy type. Most
notably, the complex C F−(Y , s) is the subcomplex generated by elements [x, i]
where i < 0 and C F+(Y , s) is the resulting quotient complex. Also featuring promi-
nently in the theory is Ĉ F(Y , s), defined as the kernel complex of the chain map
U : C F+(Y , s) → C F+(Y , s), or, alternatively, as the associated graded complex
at filtration level 0. This “hat” complex is the central object of study in the present
article. The homologies of these complexes are denoted H F∞(Y , s), H F−(Y , s),
H F+(Y , s) and Ĥ F(Y , s), respectively.

In [47] and [53] Ozsváth and Szabó show that an oriented rationally null-
homologous knot K ⊂ Y gives rise to an additional filtration of the above complexes.
The filtration can be interpreted geometrically in terms of relative Spinc structures
on the knot complement. To understand this, let (�,α,β, w, z) be a doubly pointed
(admissible) Heegaard diagram for (Y , K ). The splitting of the complex C F∞(Y )

along Spinc structures is defined by a map sw(−) : Tα ∩ Tβ → Spinc(Y ). In [53],
Ozsváth and Szabó refine thismap to take values in relative Spinc structures, defined as
Spinc structures on the knot complement with prescribed restriction to the boundary.
The refined map, denoted sw,z(−) : Tα ∩ Tβ → Spinc(Y , K ), fits in a commutative
diagram
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Tα ∩ Tβ

sw,z

sw

Spinc(Y , K )

GY ,K

Spinc(Y ).

where GY ,K : Spinc(Y , K ) → Spinc(Y ) is a filling map described in Section 2 of
[53]. The preimage of a Spinc structure s under the map GY ,K is endowed with a free
and transitive Z action by the subgroup of H2(Y , K ) generated by the Poincaré dual
of the class of the meridian μK . This action identifies the fibers G−1

Y ,K (s) with Z and,
here again, positivity of intersections (now between pseudo-holomorphic disks and
Vz) implies that the complex is relatively filtered by the additional Z parameter. We
denote the corresponding Z ⊕ Z-filtered complex by C F K ∞(Y , K , s).

It is convenient and useful to turn the relative Z filtration induced by the affine
identification Z ∼= G−1

Y ,K (s) into an absolute filtration. This identification, called the
Alexander filtration, has the added benefit of offering a comparison between relative
Spinc structures in different orbits of the action by PD[μ] or, equivalently, different
fibers of GY ,K . To do this, we use a rational Seifert surface S for K .

Definition 2.1 A rational Seifert surface for a knot K ⊂ Y of order q is a compact,
oriented surface S with boundary, along with a map S → Y that is an embedding on
the interior of S and whose restriction to ∂S is a map ∂S → K , which is a covering
map of degree q. We let S denote the singular surface in Y arising as the image of the
defining map.

A rational Seifert surface gives rise to a properly embedded surface in the complement
of K that intersects the boundary of its tubular neighborhood in a cable link. One can
alternatively define rational Seifert surfaces in these terms. See also [1, 3].

Now, define the Alexander grading of a relative Spinc-structure ξ ∈ Spinc(Y , K )

by

AY ,K ,[S](ξ) = 〈c1(ξ), [S]〉 + [μ] · [S]
2[μ] · [S] ∈ Q.

Here [μ] · [S] denotes the intersection pairing between H1(Y\K ) and H2(Y , K )

induced by Lefschetz duality and excision, and c1(ξ) ∈ H2(Y , K ) is the relative
Chern class of the relative Spinc structure. For a generator x ∈ Tα ∩ Tβ , define

Aw,z(x) = AY ,K ,[S](sw,z(x)).

We write C F K ∞(Y , [S], K , s) to denote C F K ∞(Y , K , s) with absolute filtration
coming from AY ,K ,[S].

Remark 2.2 A couple of remarks are in order. First, if Y is not a rational homology
3-sphere, the Alexander grading depends on the relative homology class of the chosen
rational Seifert surface S for K , but only up to an overall shift, given by 1

2[μ]·[S] times
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〈c1(ξ), [S] − [S′]〉 = 〈c1(ξ), i∗([S − S′])〉 = 〈i∗c1(ξ), [S − S′]〉
= 〈c1(GY ,K (ξ)), [S − S′]〉 ∈ 2Z.

Here, we use that [S]− [S′] ∈ H2(Y , K ) is in the image of the inclusion induced map
i∗ from H2(Y ), together with naturality of relative Chern classes.

Second, there are different conventions for the definition of the Alexander grading
in the literature [18, 20, 39, 40]. Ours is consistent with [18].

2.2 � invariants and their properties

Consider the complex Ĉ F(Y , s) equipped with its Alexander filtration. For r ∈ Q

there is a subcomplex generated by x ∈ Tα ∩Tβ whose Alexander grading is less than
or equal to r :

Fr (Y , [S], K ) =
⊕

{x | Aw,z(x)≤r}
F〈x〉.

This subcomplex includes into Ĉ F(Y , s) by ιr : Fr (Y , [S], K ) ↪−→ Ĉ F(Y , s).

Definition 2.3 For a nontrivial class α in Ĥ F(Y , s),

τα(Y , [S], K ) = min{r ∈ Q | α ∈ Im(Ir )}

where Ir is the map induced on homology by ιr .

We write simply τα(Y , K ) or τα(K ) when the context is clear. Note that we could
equivalently define τα(Y , K ) as the minimum Alexander grading of any cycle homol-
ogous to α. Using a duality pairing on Floer homology we also define τ ∗

ϕ (Y , K ):

Definition 2.4 For a nontrivial class ϕ in Ĥ F∗(Y , s) ∼= Ĥ F∗(−Y , s),

τ ∗
ϕ (Y , [S], K ) = min{r ∈ Q | there exists β ∈ Im(Ir ) such that 〈ϕ, β〉 	= 0}

where 〈−,−〉 denotes the pairing on Floer homology between Ĥ F∗(Y , s) and
Ĥ F∗(Y , s). For details about this pairing see Section 2 of [15].

The quantities defined above are related in the following way:

Proposition 2.5 (Duality). [15, Proposition 28] Let β be a nontrivial class in
Ĥ F(−Y , s) then

τβ(−Y , [S], K ) = −τ ∗
β (Y , [S], K ).

In addition, τα and τ ∗
ϕ are additive under connected sum. Specifically, let K1 and K2

be knots in 3-manifolds Y1 and Y2, respectively, and let K1#K2 denote their connected
sum inside Y1#Y2.
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Proposition 2.6 (Additivity). [46, Proposition 3.2] For any pair of non-trivial Floer
classes αi ∈ Ĥ F(Yi , si ),

τα1⊗α2(Y1#Y2, K1#K2) = τα1(Y1, K1) + τα2(Y2, K2),

where α1 ⊗ α2 specifies a Floer class for the connected sum under the isomorphism

Ĥ F(Y1, s1) ⊗F Ĥ F(Y2, s2) ∼= Ĥ F(Y1#Y2, s1#s2).

Similarly, for τ ∗,

τ ∗
ϕ1⊗ϕ2

(Y1#Y2, K1#K2) = τ ∗
ϕ1

(Y1, K1) + τ ∗
ϕ2

(Y2, K2),

for any pair of non-trivial classes ϕi ∈ Ĥ F∗(Yi , si ).

Remark 2.7 For null-homologous knots, a Seifert surface for K1#K2 is given by the
boundary sum S1�S2 of Seifert surfaces S1 and S2 used for K1 and K2, respectively.
More generally, if K1 and K2 are rationally null-homologous of orders q1 and q2
respectively, a rational Seifert surface for K1#K2 can be constructed as a band sum of
lcm(q1,q2)

q1
copies of S1 and

lcm(q1,q2)
q2

copies of S2 along lcm(q1, q2) bands.

Since τα and τ ∗
ϕ are defined in terms of the Alexander filtration, whose homotopy type

is an invariant of the knot, they are also invariant in an appropriate sense. We clarify
this with the following proposition.

Proposition 2.8 (Functoriality). Let f : (Y , K , w) → (Y ′, K ′, w′) be a diffeomor-
phism of pointed knots, and α ∈ Ĥ F(Y , w) be a non-trivial Floer homology class.
Then

τα(Y , [S], K ) = τ f∗(α)(Y
′, [S′], K ′),

where f∗(α) is the image of α under the diffeomorphism-induced map on Floer homol-
ogy f∗ : Ĥ F(Y , w) → Ĥ F(Y ′, w′), and [S′] = f∗[S].
Proof This is a consequence of the naturality of knot Floer homology under diffeo-
morphisms established by Juhász–Thurston–Zemke [25]. More precisely, that article
shows how to use the Heegaard Floer construction to associate a transitive system of
groups to a knot complement, regarded as a sutured manifold with two parallel merid-
ional sutures, and describes how diffeomorphisms act on this invariant [25, Definition
2.42]. The transitive system and diffeomorphism action can be lifted to the homotopy
category, and indeed to theZ⊕Z-filtered homotopy category. See [22, Proposition 2.3]
for details on lifting the “infinity” invariant of a pointed 3-manifold to the Z-filtered
homotopy category, where the filtration is given by powers of U . The extension to
the Z ⊕ Z-filtered homotopy category follows in a similar manner. Specializing to the
induced Z-filtration of the hat complex induced by the pointed knot, from whence the
τ invariants are derived, we obtain the claimed result. ��
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(A) (B)
(C)

Fig. 1 An example computation

In general, knowing τα(Y , K ) and τβ(Y , K ) does not determine τα+β(Y , K ). The
following proposition, however, follows easily from the definition.

Proposition 2.9 (Subadditivity). For classes α, β ∈ Ĥ F(Y ) and any knot K ⊂ Y , we
have

τα+β(Y , K ) ≤ max{τα(Y , K ), τβ(Y , K )}

When using this, one should extend the definition so that τα(K ) = −∞ when α = 0.

2.3 Calculations for knots in #�S1 × S2

We briefly describe our invariants for knots in #�S1×S2 and provide a simple example
calculation that will be used as a guide throughout the paper.

In [49, Section 9] Ozsváth and Szabó compute Ĥ F(S1 × S2) and show that it
is generated by two elements in the Spinc structure with trivial Chern class, one
of Maslov grading 1

2 and one of Maslov grading − 1
2 . Let θ+ and θ− denote the

generators of highest and lowest Maslov gradings, respectively. The Künneth formula
for the Heegaard Floer homology of connected sums [48, Theorem 1.5] implies that
Ĥ F(#�S1 × S2) is generated by �-fold tensor products θε1 ⊗ . . . ⊗ θε�

where each
εi ∈ {+,−}.

Example 2.10 Given a knot K in #�S1 × S2, each generator of Floer homology has
a corresponding invariant: τθε1⊗...⊗θε�

(#�S1 × S2, K ). Since the Maslov grading is
additive under tensor products, there is a unique generator of highest Maslov grading,
which we call�top = θ+ ⊗ . . .⊗θ+ and a unique generator of lowest Maslov grading,
�bot = θ− ⊗ . . . ⊗ θ−. We write τtop(#�S1 × S2, K ) for the invariant associated to
�top and τbot (#�S1 × S2, K ) for the invariant associated to �bot .

Figure 1a is a diagram of the positively clasped Whitehead knot W h+ in S1 × S2

and Fig. 1b is an admissible, doubly pointed Heegaard diagram for this knot. This knot
is an example of a (1, 1) knot and therefore it’s Floer Homology can be calculated
combinatorially from the Heegaard diagram – see, for instance, [12, Section 2]. The
relative Alexander gradings can be computed, for φ ∈ π2(x, y), by

Aw,z(x) − Aw,z(y) = nz(φ) − nw(φ).
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Moreover, all holomorphic disks (there are eight) are determined by the Riemann
mapping theorem.After a filtered change of basiswe obtain the complex in Fig. 1c. The
absolute Alexander gradings of the generators can be computed using [18, Proposition
1.3] or, alternatively, by requiring the associated graded homology to be symmetric
about Aw,z = 0. Examining disks in the diagram shows that [d + f ] has higher
relative Maslov grading than [a] – for instance, in the diagram we see a disk φ from d
to a that passes over the z basepoint thus the relative grading is given by gr(d, a) =
μ(φ) − 2nw(φ) = 1. Thus, τtop(W h+) = 1 and τbot (W h+) = 0.

3 Collecting themain ingredients

Given a cobordism from Y1 to Y2 containing a properly embedded surface �, the
strategy for proving Theorem 1 is to “cap” both ends with 2-handle cobordisms,
attached along neighborhoods of the knots −K1 � K2 on the boundary of �. We then
use our assumption that the cobordism map sends α to β in conjunction with a result
indicating that the τ invariants control the maps on Floer homology induced by 2-
handle cobordisms with sufficiently large framings. This yields conditions, expressed
in terms of the difference τβ(K2) − τα(K1), for the capped cobordism map to be
non-trivial.

We can factor the capped cobordism, however, through a neighborhood of its incom-
ing end joined to the closed surface one gets from � by capping −K1 and K2 with the
core disks of the 2-handles. We then employ a vanishing result for the cobordism map
associated to this factorization, expressed in terms of the genus of �, in conjunction
with the conditions for its non-triviality above. This bounds the difference of τ invari-
ants by the genus of � and the homological terms appearing in the relative adjunction
inequality.

In this section, we pave the way for employing the strategy outlined above by estab-
lishing the requisite technical tools. The first is a product formula, Theorem 3.2, for
the cobordism maps associated to 4-manifolds obtained by a surgery operation along
properly embedded paths which we call the arc sum. The second is the vanishing result
for cobordisms containing a homologically essential surface, Theorem 3.8. Finally,
we describe the manner in which the τ invariants constrain the behavior of cobordism
maps associated to 2-handle attachments. This is the content of Proposition 3.10.

3.1 Splittings of Spinc structures

It will be useful throughout to understand when a Spinc structure on a 4-manifold can
be determined by its restrictions to pieces glued along a separating 3-manifold.

Lemma 3.1 Let W be a 4-manifold, and suppose that Y is a separating 3-manifold
embedded in W such that W = W1∪Y W2. EachSpinc structure t on W has restrictions
t1 = t|W1 and t2 = t|W2 . If the map

(ι1)
∗ − (ι2)

∗ : H1(W1) ⊕ H1(W2) → H1(Y )
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in the Mayer-Vietoris sequence is surjective, then t is uniquely determined by its
restrictions to W1 and W2. That is, we may unambiguously write t = t1#t2.

Proof Spinc(−) is an affine H2(−; Z)-set. Furthermore, restriction of Spinc struc-
tures to codimension zero submanifolds is in affine correspondence with restriction of
cohomology classes. Consider the Mayer-Vietoris sequence:

· · · (ι1)
∗−(ι2)

∗
−−−−−−→ H1(Y )

δ−−−−→ H2(W )
j∗−−−−→ H2(W1) ⊕ H2(W2) −−−−→ H2(Y ) · · ·

If (ι1)
∗ − (ι2)

∗ is surjective, then δ ≡ 0 and j∗ is injective. Thus, each element of
H2(W ) has a unique decomposition as a class in H2(W1) ⊕ H2(W2). It follows from
the affine identifications that the same holds for Spinc structures. ��

One particular instance of Lemma 3.1 is at the heart of our applications. Consider

W = W1 ∪Y W2

whereW2 = Wλ(K ) is the 4-manifold obtainedby adding a 2-handle toY ×[0, 1] along
a rationally null-homologous knot K with framing λ. Consider the exact sequence in
homology associated to the pair (Wλ(K ), Y ),

H2(Wλ(K ), Y )
∂−→ H1(Y ) → H1(Wλ(K )) → 0.

The boundary map sends the generator of H2(Wλ(K ), Y ) ∼= Z to [K ]. Since K
is rationally null-homologous, the image of ∂ is contained in the torsion subgroup
of H1(Y ). This implies that the map Hom(H1(Wλ(K )); Z) → Hom(H1(Y ); Z) is
surjective and, therefore, the map H1(Wλ(K )) → H1(Y ) is as well. Thus, Lemma 3.1
applies to W .

3.2 A Künneth theorem for cobordisms

For both the proof of Theorem 1 and for the vanishing result for cobordism maps in
the next subsection, it will be useful to have a 4-dimensional analogue of Ozsváth
and Szabó’s formula for the Floer homology of a connected sum of 3-manifolds [48,
Theorem 1.5].

A cobordism between pointed 3-manifolds (Y1, w1) and (Y2, w2) is a pair (W , �)

consisting of a cobordism and a smooth properly embedded path � fromw1 tow2. Let
(W , �) be such a cobordism, and let (W ′, �′) be another cobordism between pointed
3-manifolds (Y ′

1, w
′
1) and (Y ′

2, w
′
2). Define the arc sum of (W , �) and (W ′, �′) to be

the 4-manifold

W ⊗ W ′ := W\ν(�) ∪
S2×I

W ′\ν(�′)

obtained by removing tubular neighborhoods of the paths and gluing the remainder
using an orientation reversing diffeomorphism of the resulting S2 × I in their bound-
aries. The arc sum is naturally a cobordism between the pointed 3-manifolds Y1#Y ′

1
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and Y2#Y ′
2, endowed with a proper arc along the S2 × I where the identification is

made.
We have the following Künneth-type theorem for cobordism maps.

Theorem 3.2 (Product formula for arc sums). Given Spinc-cobordisms (W , t) and
(W ′, t′) from (Y1, s1) to (Y2, s2) and (Y ′

1, s
′
1) to (Y ′

2, s
′
2), respectively, equipped with

properly embedded arcs � ⊂ W , �′ ⊂ W ′, we have a commutative diagram:

Ĥ F(Y1, s1) ⊗ Ĥ F(Y ′
1, s

′
1)

FW ,t⊗FW ′,t′−−−−−−−→ Ĥ F(Y2, s2) ⊗ Ĥ F(Y ′
2, s

′
2)

∼=
⏐⏐
 ∼=

⏐⏐

Ĥ F(Y1#Y ′

1, s1#s
′
1)

FW⊗W ′,t#t′−−−−−−−−→ Ĥ F(Y2#Y ′
2, s2#s

′
2)

where W ⊗ W ′ is the arc sum of W and W ′ along � and �′.

Remark 3.3 According to [25], Heegaard Floer homology groups depend on the choice
of basepoint. Similarly, the cobordism-induced maps depend on the path connecting
them [65]. Despite this, we suppress this data from the notation.

Proof Pick a handle decomposition H of W relative to Y1, and adapted to � in the
following sense: there is a pointw ∈ Y1 in the complement of the attaching regions for
all the handles ofH, such that� is the properly embedded arc from Y1 to Y2 obtained as
the trace of w. Such a decomposition can be obtained from a generic Morse function
with gradient vector field for which � is a flowline. Similarly, let H′ be a handle
decomposition of W ′ adapted to �′. Since � and �′ are in the complement of the
attaching regions for all of the handles of W and W ′, there is a handle decomposition
of W ⊗ W ′ given by adding handles, in turn, to either W\ν(�) or W ′\ν(�′). Thus,
it suffices to prove the statement in the special cases where W is a 1, 2, or 3-handle
addition andW ′ is the product cobordismY ′

1× I , endowedwith the canonical extension
of s′

1 (whose associated map is the identity).
First, suppose W is a 1-handle addition and, therefore, a cobordism from Y1 to

Y1#(S1 × S2). Ozsváth and Szabó define the map induced by W as follows: there is a
uniqueSpinc structure tonW extending s1 ∈ Spinc(Y1)which restricts toY1#(S1×S2)

as s1#s0 where s0 is the unique Spinc-structure on S1 × S2 with c1(s0) = 0. Given a
Heegaard diagram (�,α,β, w) for Y1 and the standard (weakly admissible) genus one
Heegaard diagram for S1 × S2 with two generators, (E, α, β,w0), there is a Heegaard
diagram (�#E,α ∪ α,β ∪ β,w) for Y1#(S1 × S2). The map FW ,t induced by W is
defined by a chain map which, for x ∈ Ĉ F(Y1, s1), is given by fW ,t(x) = x ⊗ θ+.
Here, θ+ is the element of higher relativeMaslov grading in (E, α, β,w0). At the same
time, the chain map fW⊗W ′,t#t′ is defined by sending x ⊗ y in Ĉ F(Y1#Y ′

1, s1#s
′
1) to

x⊗θ+⊗y in Ĉ F(Y1#(S1×S2)#Y ′
1, s1#s0#s

′
1). Here,we are using quasi-isomorphisms

provided by the Künneth theorem [48, Theorem 1.5]. Considering the induced maps
on homology, we have: FW ,t ⊗ Id = FW⊗W ′,t#t′ . The case of a 3-handle addition
is formally the same, since the maps in that case are dual to the 1-handle maps. See
Section 4.3 of [51] for more details.
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Next, we consider the case where W is a 2-handle addition. In this case, Y2 is
given by integral surgery along a framed knot K ⊂ Y1, and the map induced on Floer
homology by W is defined by counting pseudo-holomorphic triangles associated to
an adapted Heegaard triple diagram. To describe this, let (�,α,β, w) be a Heegaard
diagram for Y1 where the final β-curve is the meridian of the framed knot K . Then
we have a related Heegaard diagram (�,α, γ , w) for Y2 where the first (g − 1) γ -
curves are small Hamiltonian translates of the first (g − 1) β-curves and γg is the
longitude for K corresponding to the 2-handle addition. Together, this data yields a
Heegaard triple diagram (�,α,β, γ , w) specifying a 4-manifold Xαβγ with ∂ Xαβγ =
−Yαβ − Yβγ + Yαγ , where Yαβ = Y1, Yβγ = #g−1S1 × S2 and Yαγ = Y2. For further
details about the construction of Xαβγ see [51, Section 4.1]. Observe that W can
be recovered from Xαβγ by capping off the #g−1S1 × S2 boundary component with
�g−1S1 × B3. Ozsváth and Szabó associate a chain map to W by

fW ,t(x) := fαβγ (x ⊗ �top),

where the latter is a sum, over all y generating Ĉ F(Y2), of the number of pseudo-
holomorphic triangles in Symg(�)\Vw whose homotopy class represents t and whose
verticesmap tox,�top andy (here, and throughout the proof,we conflate the homology
class �top with its unique chain representative on the given Heegaard diagram). The
map induced on homology is denoted FW ,t.

Themap induced by W ⊗W ′ on Floer homology admits a similar description. Given
a Heegaard diagram (�′,α′,β ′, w′) for Y ′

1, we construct a Heegaard triple diagram
(�′,α′,β ′, γ ′, w′), where the curves γ ′ are small Hamiltonian translates of the curves
β ′. We then form the connected sum of this latter Heegaard triple diagram with the
one associated to the 2-handle cobordism above:

(�,α,β, γ , w) #
w=w′(�

′,α′,β ′, γ ′, w′).

That is,we form the connected sumof�with�′ alongneighborhoods of the basepoints
w and w′, and let the curves from the constituent diagrams descend to �#�′. The
basepoints naturally descend to a basepointw, living in the region of the triple diagram
corresponding to the regions containing the basepoints. This triple diagram describes
a 4-manifold with boundary components

Yα∪α′,β∪β ′ = Y1#Y ′
1,

Yβ∪β ′,γ∪γ ′ = #g−1+g′
(S1 × S2),

and

Yα∪α′,γ∪γ ′ = Y2#Y ′
1,

where g is the genus of � and g′ is the genus of �′. A chain map induced by W ⊗ W ′
is defined by
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fW⊗W ′,t#t′(x ⊗ y) := fα∪α′,β∪β ′,γ∪γ ′((x ⊗ y) ⊗ �top).

Here, �top is the top graded generator of Ĉ F(#g−1+g′
(S1 × S2)) coming from the

Heegaard diagram (�#�′,β ∪ β ′, γ ∪ γ ′, w). This generator decomposes as �top =
�

g−1
top ⊗ �

g′
top where �

g−1
top is the top graded generator for (�,β, γ , w) and �

g′
top is

the top graded generator in (�,β ′, γ ′, w).
Like the chain complexes associated to the connected sum of Heegaard diagrams,

the chain map fα∪α′,β∪β ′,γ∪γ ′ splits as a tensor product:

fα∪α′,β∪β ′,γ∪γ ′((x ⊗ y) ⊗ �top) = fα,β,γ (x ⊗ �
g−1
top ) ⊗ fα′,β ′,γ ′(y ⊗ �

g′
top)

where fα′,β ′,γ ′ is the chain map associated to the Heegaard triple (�′,α′,β ′, γ ′, z′).
This splitting, as with the Künneth theorem for the hat Floer homology of a connected
sum, can be easily proved by appealing to the “localization principle” for holomorphic
triangles whose domains split as a disjoint union (see [56, Section 9.4]). Since the
connected sum of diagrams is performed near the basepoint w, and the hat theory
prohibits the domains of disks and triangles from entering this region, all moduli
spaces split as a cartesian product of moduli spaces associated to the two Heegaard
triple diagrams. Finally, since the γ ′ curves are translates of the β ′ curves,

fα′,β ′,γ ′(y ⊗ �
g′
top) = ỹ + lower order terms with respect to symplectic area,

where ỹ is the generator associated to the “closest” point map. It follows that the map
on homology can be taken to be the identity; see [49, Section 9] for more details on
the symplectic area filtration, specifically the discussion starting on pg. 1122 of op.
cit. ��
Remark 3.4 The product formula extends to the other versions of Floer homology,
either by using a more sophisticated degeneration and gluing argument for holomor-
phic triangles, or by invoking an argument similar to the one in [44, Section 4]. Another
proof can be obtained using Zemke’s graph cobordism TQFT [65]. In that context,
one considers the 3-handle cobordism from Y1#Y ′

1 to Y1�Y ′
1, composed with W � W ′,

composed with the 1-handle cobordism from Y2#Y ′
2 to Y2 � Y ′

2. The resulting graph
cobordism (where the graphs in the 1- and 3-handles are the obvious trivalent graphs
with 3-edges) satisfies the product formula given. One can surger this cobordism along
a neighborhood of the cycle arising from � � �′ joined to the vertices in the 1- and
3-handles. This results in the arc sum, equipped with the given path, and the resulting
maps are easily argued to agree. We opted for the proof given, as it is elementary and
self-contained.

3.3 Vanishing of maps on Floer homology

In this subsection we prove the vanishing result (Theorem 3.8) which is central to our
proof of the relative adjunction inequality.
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Let � be a closed surface embedded in a cobordism W whose incoming end is a
3-manifold Y , and let γ be a properly embedded arc connecting Y to �. Let N =
N (Y ∪ γ ∪ �) be a regular neighborhood of Y ∪ γ ∪ �. Then

∂ N = −Y � (Y#∂ν(�)),

where ∂ν(�) is the circle bundle over � with Euler number [�]2.
Lemma 3.5 The 4-manifold N described above is diffeomorphic to the boundary con-
nected sum

(Y × [0, 1]) � ν(�)

where ν(�) is the disk bundle over � with Euler number [�]2. Alternatively, N can
be smoothly decomposed as an arc sum

(Y × I )\(B3 × I )
⋃

S2×I

(ν(�) − B4)\(B3 × I ).

Proof Given handle descriptions for the disjoint manifolds Y × I and ν(�) arising as
neighborhoods of Y and �, respectively, a handle description for (Y × I ) � ν(�) is
given by attaching a 4-dimensional 1-handle to connect them. This 1-handle can be
identified with the part of the neighborhood of γ outside the neighborhoods of Y and
�, verifying the first claim. Note that the resulting handle description corresponds to
a Morse function on (Y × I ) � ν(�) where the index 1 critical point corresponding to
the connecting 1-handle has largest critical value. See Fig. 2a.

As illustrated by Fig. 2a, the belt sphere S2 of the 1-handle separates the “upper”
boundary Y#∂ν(�) into its (punctured) summands, Y − B3 and ν(�) − B3. The
image of a boundary parallel sphere S2+ in Y − B3 under the downward gradient flow
of the Morse function is a properly embedded S2+ × I . Removing this separates N
into two pieces (Y × I ) − (B3 × I ) and (B3 × I ) � ν(�). It remains to show that
(B3 × I ) � ν(�) ∼= (ν(�) − B4)\(B3 × I ).

To this end, change the Morse function on (B3 × I ) � ν(�) so that handles are
added in order of index. Specifically, begin with B3 × I and B4 and add a 1-handle
to connect them. Then to the boundary of B4 attach the remaining 1- and 2-handles
of ν(�).

Now B4 cancels the connecting 1-handle, so this manifold is diffeomorphic to
one with a handle decomposition built from B3 × I by attaching 1- and 2-handles
along B3 × {1}. But, B3 × I union the 1- and 2-handles is easily identified with
(ν(�) − B4)\(B3 × I ). See Figs. 2b, c for a schematic. ��

We are now ready to give a proof of Lemma 3.5 of [46]. Our statement and proof
differ from (and correct) the one given there. See the remark below the proof.

Lemma 3.6 Let ν(�) be the disk bundle over a closed oriented connected surface �

of genus g = g(�). The map

Fν(�)−B4,t : Ĥ F(S3) → Ĥ F(∂ν(�), t|∂ν(�))
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(A)

(B)
(C)

Fig. 2 Pictorial guide for the proof of Lemma 3.5

is trivial for all t ∈ Spinc(ν(�) − B4) such that

〈c1(t), [�]〉 + [�]2 > 2g(�).

Proof The disk bundle ν(�) has a handle decomposition with a single 0-handle, 2g
1-handles and a single 2-handle. This decomposition is described explicitly via a
handlebody diagram obtained from a diagram for �

2g
S1× B3 by attaching a 2-handle

along the Borromean knot Bg (see [10, Figure 12.5] or [47, Figure 16] for pictures of
B3 and B1, respectively).

Thus, ν(�)− B4 = W1 ∪#2g S1×S2 W2, where W1 = (�
2g

S1 × B3)− B4 and W2 is
the cobordism associated to the 2-handle addition along Bg . By Lemma 3.1, t = t1#t2
and the map Fν(�)−B4,t factors as

Ĥ F(S3)
GW1,t1−−−−→ Ĥ F(#2g S1 × S2)

GW2,t2−−−−→ Ĥ F(∂ν(�), t|∂ν(�)).

Consider the map GW2,t2 . In Section 9 of [47], Ozsváth and Szabó calculate
C F K ∞(Bg). There they show that in Alexander grading k,

Ĥ F K (#2g S1 × S2, Bg, k) = �g+k H1(�),
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supported in Maslov grading k. Moreover, they show

C F K ∞(Bg) = Ĥ F K (#2g S1 × S2, Bg) ⊗F2 F2[U , U−1].

Theorem 4.1 of [47], also known as the Large Surgery Theorem, implies that if the
framing of the 2-handle (which equals the Euler number of the disk bundle) is negative
and less than or equal to −2g + 1 then the map

GW2,t2 : Ĥ F(#2g S1 × S2) → Ĥ F(∂ν(�)), t|∂ν(�))

can be calculated from the map

C F K ∞(Bg){i = 0} → C F K ∞(Bg){min(i, j − k) = 0},

which is a composition of a quotient followed by an inclusion. Here we have enumer-
ated Spinc-structures on #2g S1 × S2 that extend over the 2-handle addition so that
〈c1(t2), [�]〉 + [�]2 = 2k. If k > g, then GW2,t2 is trivial, since the generators of
C F K ∞(Bg){i = 0} have Alexander grading less than or equal to g. Finally, observing
that

〈c1(t), [�]〉 + [�]2 = 〈c1(t2), [�]〉 + [�]2,

the result follows in the special case that the Euler number of the disk bundle is less
than or equal to −2g + 1. Note that [47, Theorem 4.1] only states that the surgery
formula holds provided that the framing is sufficiently negative. That −2g + 1 is
negative enough follows from the argument discussed in [47, Remark 4.3], applied
in the context of the integer surgeries exact sequence with negative framings, [48,
Remark 9.20].

The result for general Euler number follows from this special case using the blow-
up formula. Indeed, assume there is a Spinc structure t on the punctured Euler number
n disk bundle with Fν(�)−B4,t 	= 0 and which satisfies 〈c1(t), [�]〉 + [�]2 > 2g(�).

Then we can blow up the disk bundle p times, so that n − p ≤ −2g + 1. The blow-
up formula [51, Theorem 3.7] indicates that on the blown-up disk bundle ν̂(�) =
ν(�)#p

CP
2
there is a Spinc structure t̂ satisfying

• 〈c1(t̂), [�]〉 = 〈c1(t), [�]〉
• 〈c1(t̂), [Ei ]〉 = 1, for the class of each exceptional sphere Ei , i = 1, . . . , p.
• F

ν̂(�)−B4 ,̂t
= Fν(�)−B4,t 	= 0.

Tubing� to each of the exceptional spheres produces another genus g surface �̂whose
homology class is [�̂] = [�]+[E1]+ . . .+[E p]. Noting that [Ei ] · [E j ] = 0 if i 	= j
and −1 if i = j , it follows that the self-intersection of �̂ equals n − p ≤ −2g + 1,
and we can apply the previous case to its neighborhood. But

〈c1(t̂), [�̂]〉 + [�̂]2 = 〈c1(t), [�]〉 + [�]2 > 2g(�),
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and therefore Fν(�̂)−B4 ,̂t = 0. But the cobordism map for ν̂(�) − B4 (the punctured
blown-up disk bundle) factors through themap associated to ν(�̂)− B4 (the punctured
neighborhood of �̂), hence must also be zero, a contradiction. ��
Remark 3.7 Lemma 3.5 of [46] states that the map on Floer homology induced by the
punctured disk bundle vanishes whenever

〈c1(t), [�]〉 + [�]2 ≥ 2g(�).

Examination of our proof shows that when the Euler number is sufficiently negative
the map is actually non-trivial for the Spinc structure satisfying 〈c1(t), [�]〉+ [�]2 =
2g(�). Indeed, themapGW1 associated to the 1-handles has image�top . But this latter
class lives in Alexander grading g in the filtration of Ĉ F(#2g S1×S2) associated to Bg .
Hence it survives in the quotient and inclusion to C F K ∞(Bg){min(i, j − g) = 0}.
The corrected vanishing result, when traced through the arguments of [46], leads to
the following 4-genus bound for τ , which is weaker than the bound asserted in op.
cit.:

τ(K ) ≤ g4(K ) + 1.

We will establish the asserted bound τ(K ) ≤ g4(K ) used throughout the literature
by exploiting the product formula for arc sums of cobordisms in conjunction with the
additivity of τ invariants under connected sum.

Together with the product formula for arc sums, the previous two lemmas yield the
following vanishing result, which will play a key role in the proof of Theorem 1.

Theorem 3.8 (Vanishing Theorem). Let � be a closed, oriented, surface, smoothly
embedded in a 4-manifold W such that ∂W = −Y � Y ′. Then

FW ,t : Ĥ F(Y , t|Y ) → Ĥ F(Y ′, t|Y ′)

is the zero map for all t satisfying 〈c1(t), [�]〉 + [�]2 > 2g(�).

Proof Let N = N (Y ∪ γ ∪ �) be a regular neighborhood of Y , the surface, and an
arc connecting them, and write W as N ∪∂ N W ′ where W ′ is the complement of N .
We have identifications (coming from, say, the Mayer-Vietoris sequence)

H1(N ) ∼= H1(Y ) ⊕ H1(ν(�))

and

H1(∂ N ) ∼= H1(Y ) ⊕ H1(∂ν(�)),

which are natural with respect to the restriction maps. Since the restriction map
H1(ν(�)) → H1(∂ν(�)) is surjective, the map H1(N ) → H1(∂ N ) is also sur-
jective. Lemma 3.1 then implies that t = t1#t2 where t1 = t|N and t2 = t|W ′ . The
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composition law for cobordism maps [51, Theorem 3.4] shows that FW ,t factors as
FW ′,t2 ◦ FN ,t1 , and

〈c1(t), [�]〉 + [�]2 = 〈c1(t1), [�]〉 + [�]2,

as the surface is contained in N . It therefore suffices to show that FN ,t1 vanishes
whenever 〈c1(t1), [�]〉 + [�]2 > 2g(�).

Lemma 3.5 implies that N smoothly decomposes as an arc sum

(Y × I )\(B3 × I )
⋃

S2×I

(ν(�) − B4)\(B3 × I ).

Applying Lemma 3.1 to this decomposition, t1 = u#u′ where u = t1|Y×I and u′ =
t1|ν(�). Furthermore, 〈c1(t1), [�]〉 + [�]2 = 〈c1(u′), [�]〉 + [�]2.

Now, suppose 〈c1(u′), [�]〉+[�]2 > 2g(�) and consider the commutative diagram
given by the product formula, Theorem 3.2:

Ĥ F(Y , u|Y ) ⊗ Ĥ F(S3)
FY×I ,u⊗F

ν(�)−B4,u′−−−−−−−−−−−−→ Ĥ F(Y , u|Y ) ⊗ Ĥ F(∂ν(�), u′|∂ν(�))

∼=
⏐⏐
 ∼=

⏐⏐

Ĥ F(Y , u|Y )

FN ,u#u′−−−−−−−−−−→ Ĥ F(Y#∂ν(�), u#u′|Y#∂ν(�))

Lemma 3.6 now implies that Fν(�)−B4,u′ is trivial. Thus, FN ,u#u′ is also trivial. ��
The remainder of this section is aimed at specifying themanner inwhich τ invariants

constrain the 2-handle cobordism maps, constraints laid out in Proposition 3.10. To
make this precise, it will be helpful to establish some numerology derived from the
algebraic topology of a handle attachment along a rationally null-homologous knot.
The next two subsections accomplish this, with the final subsection proving the key
proposition.

3.4 Framings for rationally null-homologous knots

Regardless of its homology class, a knot K has a well-defined meridian μ which is
given by the isotopy class of the boundary of a disk intersecting K in a single point. A
framing for K is equivalent to a choice of curve λ in ∂ν(K ) so that the pair ([μ], [λ])
forms a basis for H1(∂ν(K )) ∼= Z⊕Z. Given an initial choice of λ, every other choice
of framing is given, on the level of homology, by λ + nμ for some n ∈ Z.

Let K ⊂ Y be a knot whose homology class has order q. In the long exact sequence
of the pair (Y − ν(K ), ∂ν(K )), the kernel of i∗ : H1(∂ν(K )) → H1(Y − ν(K )) is
isomorphic to Z and is generated by the homology class of S ∩ ∂ν(K ) where S is
a rational Seifert surface for K . Returning to the preceding paragraph, for an initial
choice of λ, we can write S ∩ ∂ν(K ) = qλ + rμ and the choices of λ are in bijection
with representatives of the congruence class of r modulo q.
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Definition 3.9 The canonical longitude, λcan, of K is the unique choice of framing
such that S ∩ ∂ν(K ) = qλcan + rμ with 0 ≤ r < q.

Equivalently, for any choice of λ the fraction r
q , viewed in Q/Z, is the self-pairing of

[K ] under the linking form on H1(Y ), and λcan is the unique choice of longitude so
that r

q ∈ Q is the coset representative of the self-pairing lying in the interval [0, 1). If
K is null-homologous, then q = 1, r = 0 and λcan is the usual Seifert framing.

3.5 Integer surgery and surgery cobordisms

For a rationally null-homologous knot K in a 3-manifold Y , we define integral surgery
along K with respect to the canonical longitude. Concretely, let Yn(K ) be the 3-
manifold obtained by removing ν(K ) from Y and filling Y −ν(K ) along the n-framed
longitude, λcan + nμ. Attaching a 4-dimensional 2-handle to Y × {1} ⊂ Y × [0, 1]
along K × {1} with framing n determines a cobordism Wn(K ) from Y to Yn(K ). As
an oriented manifold, Wn(K ) has boundary −Y � Yn(K ).

Two variations of this cobordism interest us here: W−n(K ) and −W †
n (K ). The

manifold W−n(K ) is the cobordism described above from Y to Y−n(K ) where we
assume −n < 0. On the other hand, −W †

n (K ) is Wn(K ) with its orientation reversed
and viewed as a cobordism in the other direction so that −W †

n (K ) has boundary
−Yn(K )� Y and, viewed as a cobordism, it goes from Yn(K ) to Y . Both W−n(K ) and
−W †

n (K ) are negative definite for n > 0.
The surgery cobordisms W−n(K ) and −W †

n (K ) induce maps on Floer homology:

FW−n(K ),t : Ĥ F(Y , t|Y ) → Ĥ F(Y−n(K ), t|Y−n(K ))

and

F−W †
n (K ),r

: Ĥ F(Yn(K ), r|Yn(K )) → Ĥ F(Y , r|Y )

for each t ∈ Spinc(W−n(K )) and r ∈ Spinc(−W †
n (K )). It will be useful to enumerate

these maps.
To this end, observe that the set of extensions of a fixed Spinc structure s ∈ Spinc(Y )

over W−n(K ) is in affine bijection with classes in H2(W−n(K ), Y ) ∼= Z. We will
establish a preferred bijection using (rational) Chern class evaluations. To do this, first
note that the Alexander gradings of the lifts G−1

Y ,K (s) under the filling map GY ,K :
Spinc(Y , K ) → Spinc(Y ) form a coset in Q/Z, denoted AY ,K ,[S](s). Let ks denote
the coset representative in the interval (− 1

2 ,
1
2 ]. In these terms, we let

F−n,s,m := FW−n(K ),tsm

denote the map induced on Floer homology by W−n(K ), equipped with the unique
Spinc structure tsm for which tsm |Y = s and

〈c1(tsm), [DS]〉 + [DS]2 = 2(ks + m), (2)
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where [DS] ∈ H2(W−n(K ); Q) is the homology class represented by the core of
the 2-handle, “capped-off” with the rational Seifert surface. To describe this class,
let D denote the core disk of the 2-handle, whose class in H2(W−n(K ), Y ) is the
generator with ∂ D = −K . Then [DS] is the lift of [D] (regarded as a rational class)
to H2(W−n(K ); Q) represented by D capped off with the rational 2-chain 1

q S, where

S is a rational Seifert surface; that is, [DS] = [ 1q S + D]. Strictly speaking, to interpret
1
q S+D as a 2-cycle inC2(W−n(K ); Q)wemust pick a homology inC2(K ; Q)between

the rational 1-cycles 1
q ∂S and ∂ D, but the ambiguity introduced by this choice lives

in H2(K ) = 0.
Similarly, define

F†
n,s,m := F−W †

n (K ),rsm
,

where rsm is the unique Spinc-structure on −W †
n (K ) such that rsm |Y = s and

〈c1(rsm), [DS]〉 − [DS]2 = 2(ks + m). (3)

Again, [D] is the generator of H2(−W †
n (K ), Y ) with ∂ D = −K and [DS] denotes

the lift of [D] to H2(−W †
n (K ); Q) associated to the rational Seifert surface S for K .

3.6 The � invariant from a 4-dimensional perspective

For knots in the 3-sphere, the τ invariant indicates a threshold in the enumeration of
Spinc structures before which the cobordism maps F−n,s,m mentioned above must be
nontrivial [46]. For rationally null-homologous knots K ⊂ Y , analogous results hold
for both F−n,s,m and F†

n,s,m .

Proposition 3.10 Let α be a nontrivial element of Ĥ F(Y , s). For n positive and suf-
ficiently large, we have the following:

• if m > τα(Y , K ) − ks then α ∈ Im(F†
n,s,m);

• if m < τα(Y , K ) − ks then α /∈ Im(F†
n,s,m).

• if m < τα(Y , K ) − ks then F−n,s,m(α) 	= 0;
• if m > τα(Y , K ) − ks then F−n,s,m(α) = 0.

Here, as above, ks denotes the unique element in (− 1
2 ,

1
2 ] arising as an Alexander

grading of a relative Spinc structure in G−1
Y ,K (s).

Proof The proof relies on the “Large Surgery Theorem” for rationally null-
homologous knots; see [53, Theorem 4.1] and [18, Theorem 5.8] for the case of
positive surgeries and [55, Theorem 4.2] for the statement for negative surgeries.

Let Cs denote the complex C F K ∞(Y , [S], K , s) and assume n is large enough so
that the Large Surgery Theorem holds for n-surgery as well as −n-surgery along K .

For n-surgery, the Large Surgery Theorem implies that the map

F†
n,s,m : Ĥ F(Yn(K ), tsm |Yn(K )) → Ĥ F(Y , s)
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can be identified with the map induced on homology by

fm : Cs{max(i, j − m) = 0} → Cs{i = 0}
where fm = ιm ◦ qm is the composition of the quotient map

qm : Cs{max(i, j − m) = 0} → Cs{i = 0, j ≤ m}
followed by the inclusion

ιm : Cs{i = 0, j ≤ m} = Fm(Y , [S], K ) ↪→ Cs{i = 0} = Ĉ F(Y , s).

Now observe that if m < τα(Y , [S], K ) − ks, then α is not in the image of Im and
hence not in the image of F†

n,s,m .
On the other hand, Cs{i = 0, j ≤ m − 1} naturally includes into the complex

Cs{max(i, j − m) = 0}. This gives a factorization of the map fm through

ιm−1 : Cs{i = 0, j ≤ m − 1} → Cs{i = 0}.
If m > τα(Y , [S], K )− ks then α is in the image of Im−1 and is thus also in the image
of F†

n,s,m .
The argument for −n-surgery is similar and is the same as the one given in [46,

Proposition 3.1] and [15, Proposition 24]. ��
Remark 3.11 Changing [S] to the class [S′] of a different rational Seifert surface
changes τα(Y , K ) according to Remark 2.2. However, changing [S] to [S′] also
changes the labeling of tsm ∈ Spinc(W−n(K )), and the two changes coincide. Indeed,
according to Eq. (2), if we let mS and mS′ denote the numbers associated to S and S′
by a fixed extension of s ∈ Spinc(Y ) over the 2-handle cobordism then

mS − mS′ = 1

2
〈c1(t), [DS ] − [DS′ ]〉 = 1

2

〈
c1(t), i∗

(
1

q
[S − S′]

)〉
= 1

2q
〈c1(s), [S − S′]〉.

4 Proof of the relative adjunction inequality

Armed with the tools from the previous section, we can now precisely state and prove
the relative adjunction inequality, Theorem1.Consider a surface� properly embedded
in a 4-dimensional cobordism W from Y1 to Y2, so that ∂� = −K1 � K2 is a pair of
rationally null-homologous knots. In the long exact sequence of the pair (W , ∂W ), we
have ∂∗[�] = 0 ∈ H1(∂W ; Q). By exactness, we can therefore lift [�] to H2(W ; Q).
The lift has an ambiguity stemming from classes in H2(∂W ) (again, by exactness),
but we can fix a lift by choosing rational Seifert surfaces S1 and S2 for K1 and K2,
respectively. Given such surfaces, we obtain a geometric lift as the homology class of
the rational 2-chain

�S1,S2 := 1

q1
S1 + � − 1

q2
S2,
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where qi denotes the order of Ki in H1(Yi ; Z). To interpret the latter as a rational
2-cycle, we may need to add an auxiliary 2-chain realizing a homology between the
rational 1-cycles ∂� and ∂( 1

q1
S1 − 1

q2
S2). This choice is canonical up to homology,

however, as it is provided by a rational 2-chain in C2(K1 � K2).

Theorem 4.1 Let W be a smooth compact oriented 4-manifold with ∂W = −Y1 � Y2
and K1 ⊂ Y1 and K2 ⊂ Y2 be rationally null-homologous knots. If FW ,t(α) = β 	= 0,
then

〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 + 2(τβ(Y2, [S2], K2) − τα(Y1, [S1], K1)) ≤ 2g(�)(4)

where � is any smooth oriented properly embedded surface with boundary −K1� K2,
Si are rational Seifert surfaces for Ki , and [�S1,S2 ] is the lift of [�] to H2(W ; Q)

obtained from Si as above.
Furthermore, the left side of the inequality is independent of S1 and S2.

In the above statement, we emphasize that all the terms on the left-hand side are,
in general, rational numbers. In the special case that both Ki are null-homologous,
however, all the terms will be integral.

Proof If � is disconnected, tube together the components to form a new connected
surface with the same genus, which we continue to denote by �.

Let Ŵ be the 4-manifold obtained from W by attaching 2-handles along K1 and
K2 with appropriate framings so that Ŵ is diffeomorphic to

−W †
n1(K1) ∪ W ∪ W−n2(K2)

for some positive integers n1 and n2, where framings are equated with integers using
the canonical longitude from Definition 3.9. Then Ŵ is a cobordism from Yn1(K1) to
Y−n2(K2).

Assume that n1 and n2 are both large enough that Proposition 3.10 holds. Let s1 =
t|Y1 and s2 = t|Y2 . Then Proposition 3.10 implies that for m1 > τα(Y1, K1) − ks1 we
have α ∈ Im(F†

n1,s1,m1) and for m2 < τβ(Y2, K2) − ks2 , we have F−n2,s2,m2(β) 	= 0.
Therefore the composition

FŴ = F−n2,s2,m2 ◦ FW ,t ◦ F†
n1,s1,m1

is non-trivial.
Let �D1,D2 denote the smoothly embedded closed surface obtained by capping

off � with the cores of the added 2-handles, so that [�D1,D2 ] = [−D1 ∪ � ∪ D2].
Applying the vanishing theorem, Theorem 3.8, to �D1,D2 implies

〈c1(rs1m1
#t#ts2m2

), [�D1,D2 ]〉 + [�D1,D2 ]2 ≤ 2g(�D1,D2) = 2g(�). (5)
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Observe that

[�D1,D2 ] =
[
−D1 − 1

q1
S1

]
+ [�S1,S2 ] +

[
1

q2
S2 + D2

]

= −[D1,S1] + [�S1,S2 ] + [D2,S2 ]

and

[�D1,D2 ]2 = [D1,S1]2 + [�S1,S2 ]2 + [D2,S2 ]2.

Therefore, we can rewrite the left hand side of the inequality in Eq. (5) as

− 〈c1(rs1m1
), [D1,S1 ]〉 + [D1,S1]2 + 〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2

+ 〈c1(ts2m2
), [D2,S2 ]〉 + [D2,S2 ]2

= −2(ks1 + m1) + 〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 + 2(ks2 + m2).

Thus,

2((ks2 + m2) − (ks1 + m1)) + 〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 ≤ 2g(�)

whenever −(ks1 + m1) < −τα(Y1, K1) and ks2 + m2 < τβ(Y2, K2). Maximizing the
left hand side gives

2(τβ(Y2, K2) − τα(Y1, K1) − 2) + 〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 ≤ 2g(�). (6)

To finish the proof, we exploit the additivity of the non-constant terms in our
inequality. Let � be an arc on � with endpoints in K1 and K2 respectively. Take
d copies of W labeled W1, . . . , Wd . In W1 fix d − 1 parallel copies of � labeled
�2, . . . �d . Form the arc sum of W1 and W2 along �2 in W1 and � in W2. To the
resulting manifold, form an arc sum along �3 with � in W3. Continue this process to
obtain a connected manifold W ⊗d , which is a successive arc sum of the d copies of
W . This manifold contains a surface �⊗d that is the result of arc summing d copies of
� with itself along the � arcs. This surface has boundary −#d K1 � #d K2 and genus
given by g(�⊗d) = dg(�).

Now note that #d Ki has a rational Seifert surface obtained by banding d copies of
the rational Seifert surface Si for Ki ; see Remark 2.7. Let [�⊗d

S1,S2
] denote the class

obtained by capping off the ends of �⊗d with these rational Seifert surfaces for #d Ki .
Naturality of Chern classes, together with a Mayer-Vietoris argument, shows that

〈
c1(#

d t),
[
�⊗d

S1,S2

]〉 = d〈c1(t), [�S1,S2 ]〉

and

[
�⊗d

S1,S2

]2 = d[�S1,S2 ]2.
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The product formula for arc sums, Theorem 3.2, applied to W ⊗d shows that the
map on Floer homology in the Spinc structure #d t satisfies FW⊗d (α⊗d) = β⊗d . This
allows us to apply Eq. (6) to W ⊗d , yielding

2(τβ⊗d (#dY2, #
d K2) − τα⊗d (#dY1, #

d K1) − 2) + 〈c1(#d t),
[
�⊗d

S1,S2

]〉 + [
�⊗d

S1,S2

]2
= 2d(τβ(Y2, K2) − τα(Y1, K1)) − 4 + d〈c1(t), [�S1,S2 ]〉 + d[�S1,S2 ]2 ≤ 2dg(�).

Thus for any choice of d we have,

2(τβ(Y2, K2) − τα(Y1, K1)) − 4

d
+ 〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 ≤ 2g(�).

Since all the terms in our inequality are rational, taking d sufficiently large yields
Inequality (4).

Finally, we demonstrate the independence of the bound in (4) on the choices of
rational Seifert surfaces. If S′

1 and S′
2 are different choices of rational Seifert surfaces

for K1 and K2, respectively, then

[
�S′

1,S
′
2

] = 1

q1
[S′

1 − S1] + [�S1,S2 ] + 1

q2
[S2 − S′

2]

where S′
1 − S1 ⊂ Y1 × I and S2 − S′

2 ⊂ Y2 × I . Since [Si − S′
i ]2 = 0 in Yi × I ,

〈
c1(t),

[
�S′

1,S
′
2

]〉 + [
�S′

1,S
′
2

]2 =〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2

+ 1

q1
〈c1(s1), [S′

1 − S1]〉 − 1

q2
〈c1(s2), [S′

2 − S2]〉.

On the other hand, by Remark 2.2

2τβ(Y2, [S′
2], K2) = 2τβ(Y2, [S2], K2) + 1

q2
〈c1(s2), [S′

2 − S2]〉

and,

2τα(Y1, [S′
1], K1) = 2τα(Y1, [S1], K1) + 1

q1
〈c1(s1), [S′

1 − S1]〉.

��
We also have a corresponding dual statement, which could be useful in applications

involving the contact invariant (see [15, 21]).

Theorem 4.2 Let W be a smooth compact oriented 4-manifold with ∂W = −Y1 � Y2.
Let K1 ⊂ Y1 and K2 ⊂ Y2 be rationally null-homologous knots. If F∗

W ,t(ϕ) = ψ then

〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 + 2(τ ∗
ϕ (Y2, [S2], K2) − τ ∗

ψ(Y1, [S1], K1)) ≤ 2g(�)
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where � is any smooth oriented properly embedded surface with boundary −K1� K2.

As above, the sum on the left side is independent of the choices of S1 and S2.

Proof Let W † denote the 4-manifold W , viewed as a cobordism from −Y2 → −Y1
instead of Y1 → Y2. Then by Theorem 1, if FW †,t(ϕ) = ψ ,

〈c1(t), [�S1,S2 ]〉 + [�S1,S2 ]2 + 2(τψ(−Y1, [S1], K1) − τϕ(−Y2, [S2], K2)) ≤ 2g(�).

The result now follows from [51, Theorem 3.5], which indicates FW †,t = F∗
W ,t,

together with Proposition 2.5. ��

5 Applications and examples

In this section we explore specific instances of the relative adjunction inequality, and
their consequences.We begin by considering the trivial cobordism Y × I , and pointing
out some immediate corollaries of Theorem 1: concordance invariance, “slice-genus”
bounds, and crossing change inequalities. In Sect. 5.2 we turn to the next simplest
cobordisms: boundary connected sums of copies of D2× S2 and S1× B3, and knots in
their boundary #�S1×S2. There, we also establish a general inequality for τ invariants
under the H1(Y )/Tor action on Floer homology (Proposition 5.8), and use this to give
bounds on the minimal geometric intersection number of knots in a given concordance
class with the essential 2-sphere in S1 × S2 (Proposition 5.9). In Sect. 5.3 we use our
understanding of the inequality for connected sums of S1× S2 in conjunction with the
“knotification” procedure to produce invariants of links, and establish their properties
listed in Theorem 2. In addition, we use the concordance intersection number bound
mentioned above to show that there are knots in S1 × S2 which are not concordant
to knotified links, Proposition 5.25. We conclude with Sect. 5.4, where we compare
our invariants of links with those introduced by Cavallo and Ozsváth-Szabó-Stipsicz
in the special case of grid diagrams.

5.1 The case of Y× I

The trivial cobordismY ×I induces the identitymaponFloer homology.Consequently,
the relative adjunction inequality yields genus information in Y × I for any non-trivial
Floer class. The following corollaries of Theorem 1 are immediate.

Corollary 5.1 (Concordance invariance). Let α be a nontrivial Floer class in Ĥ F(Y ).
If K1 and K2 are concordant in Y × [0, 1] then τα(Y , K1) = τα(Y , K2).

Corollary 5.2 (Slice-genus bounds). Let α be a nontrivial Floer class in Ĥ F(Y ). Then

|τα(Y , K )| ≤ g(�),

where � ⊂ Y × [0, 1] is any smoothly embedded “slice” surface with ∂� = K ⊂
Y × {1}.
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Fig. 3 Knots differing by a crossing change

The inequality above shows that the genus boundsweobtain for surfaceswith boundary
K in Y × I are better than any other 4-manifold with Y ⊂ ∂W 1. This should come as
no surprise, since any smooth and proper embedding of a surface in Y × I induces an
embedding in W by the collar neighborhood theorem.

We can also apply Theorem 1 to yield a general crossing change inequality for our
invariants.

Proposition 5.3 (Crossing change inequalities). Let K+, K− ⊂ Y be rationally null-
homologous knots that are equal outside a 3-ball, in which they differ by a crossing
change as in Fig.3. Then for any α ∈ Ĥ F(Y )

τα(Y , [S−], K−) ≤ τα(Y , [S+], K+) ≤ τα(Y , [S−], K−) + 1,

where the relative homology classes used to define the Alexander grading are repre-
sented by rational Seifert surfaces which agree outside the ball.

Proof There is a smooth genus one cobordism in Y × [0, 1] between K+ and K−
obtained by attaching a band to the incoming knot to change the crossing, followed
by an additional band that rejoins the additional meridional component. Applying
Theorem 1 to this cobordism shows |τα(Y , K+) − τα(Y , K−)| ≤ 1.

To establish τα(Y , K−) ≤ τα(Y , K+), observe that K+ is concordant to K− inside
Y × [0, 1], blown up in the interior. The blow-up formula, [51, Theorem 3.7], implies

there are two Spinc structures on Ŷ = (Y ×[0, 1])#CP
2 that induce the identitymap on

Ĥ F(Y ). Hence, FŶ (α) = α for these Spinc structures, and we can apply Theorem 1.
Since the concordance intersects the exceptional sphere zero times algebraically, the
terms on the left side of the relative adjunction inequality not involving τ vanish. ��

5.2 Genus bounds for knots in #�S1 × S2

There are some particularly simple 4-manifolds bounded by #�S1 × S2 whose maps
on Floer homology are understood. In this section we apply the relative adjunction
inequality to study the genus problem in this context.

1 Here, we are implicitly assuming the relative homology class of the surface in W equals that of the Seifert
surface used to define τ , under the inclusion induced map H2(Y , K ) → H2(W , K ).
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We first describe a family of 4-manifolds, labeled by elements in Floer homology.
To do so, fix an ordering on the components of the connect sum #�S1 × S2. Under the
Künneth Theorem, generators of Ĥ F(#�S1 × S2) are of the form θε1 ⊗ . . . ⊗ θε�

for
εi ∈ {+,−}. For each element � = θε1 ⊗ . . . ⊗ θε�

there is an associated 4-manifold
W� = Wε1� . . . �Wε�

where W+ = S1 × B3 and W− = D2 × S2.

Corollary 5.4 Let W� be the boundary connected sum of copies of S1×B3 and D2×S2,
specified by �, as above, and K a knot in the boundary of W�. Then

τ�(K ) ≤ g(�),

where � ⊂ W� is any smooth and properly embedded surface with boundary K .

Proof Suppose � ⊂ W� is a properly embedded oriented surface with boundary K
in #�S1 × S2. Remove a 4-ball from W� and tube � to the S3 boundary component.
This gives a cobordism from the unknot U to K inside W� − B4.

The notation for W� reflects that the map on Floer homology induced by W� − B4

sends the generator of Ĥ F(S3) to � ∈ Ĥ F(#�S1 × S2). Indeed, this follows from the
definition of the maps associated to 4-dimensional 1-handle attachment [51, Section
4.3] and a calculation of the map induced on Floer homology by attaching a 2-handle
along a zero framed unknot. This latter calculation can be done directly via adapted
Heegaard triple diagrams, or using the surgery exact triangle together with the grading
shift formula. Thus, � ∈ Im(FW�−B4,t0).

Applying Theorem 1 yields:

〈c1(t0), [�]〉 + [�]2 + 2(τ�(K ) − τ(U )) ≤ 2g(�).

Now τ(U ) = 0, 〈c1(t0), [�]〉 = 0 and [�]2 = 0. The result follows. ��
Example 5.5 Our calculation in Sect. 2.10, together with Corollary 5.4, implies that
the positive Whitehead knot is not slice in S1 × B3, since τtop(W h+) = 1. On the
other hand, W h+ bounds a disk D2× S2. Indeed, viewed as a knot in S3, W h+ bounds
a twisted disk which intersects the zero-framed unknot in two points, from which one
can obtain a smoothly embedded disk in D2 × S2 bounded by W h+.

That W h+ doesn’t bound a disk in S1 × B3 can also be seen with far less sophisti-
cated techniques, and indeed one can show it does not even bound a locally flat disk.
Perhaps the first treatment of this can be attributed to Goldsmith [9, Page 136], who
obstructs null-concordance of the Whitehead link using linking numbers between the
lifts of one component to the infinite cyclic cover of the other, an approach which
also obstructs null-concordance of W h+ in S1 × S2 × [0, 1] (which, in turn obstructs
sliceness in S1 × B3). Closely related is Wall’s self-intersection number over Z[Z],
which can be used to provide an invariant of immersed disks bounded by W h+ in
S1 × B3 which obstructs finding a locally flat embedded disk [64]. Equivalently, one
can use Schneiderman’s concordance invariants for knots in S1× S2, which stem from
Wall’s intersection number [62].

For knots in #�S1 × S2 the invariants τ� depend on the ordering of the εi . While
the ordering of the εi does not impact the diffeomorphism type of W�, the genus
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Fig. 4 (S1 × S2, W h+)#(S1 ×
S2, K )

bound corresponding to τ� does depend on the ordering of the factors of W�. Indeed,
while a diffeomorphism between W� and W�′ induces a diffeomorphism between
their boundaries, this map may not preserve a given knot. Our invariants can therefore
potentially distinguish the surfaces a knot bounds in, say, (S1 × B3)�(D2 × S2) from
those it bounds in (D2 × S2)�(S1 × B3). The following example illustrates this point.

Example 5.6 Consider the knot (S1 × S2, W h+)#(S1 × S2, K ) shown in Fig. 4. The
band attachment indicated by the dotted arc in the figure provides a pair of pants
cobordism from K to a two component unlink. Attaching a disk to one component of
the unlink shows K ⊂ S1 × S2 is concordant in S1 × S2 × I to the unknot, hence
τθ+(K ) = τθ−(K ) = 0. Additivity of τ under connected sum shows

τθ−⊗θ+(W h+#K ) = 0 and τθ+⊗θ−(W h+#K ) = 1.

Thus, W h+#K is not slice in (S1× B3)�(D2×S2). On the other hand, the construction
of the slice disk in Example 5.5, together with the above, shows that W h+#K is slice
in (D2 × S2)�(S1 × B3).

The τ� invariants for knots in #�S1 × S2 satisfy a type of monotonicity.

Proposition 5.7 Let � = θε1 ⊗ . . .⊗θε�
and �′ = θε′

1
⊗ . . .⊗θε′

�
, and suppose εi ≤ ε′

i

for all i , where we order signs by − < +. Then τ�(#�S1×S2, K ) ≤ τ�′(#�S1×S2, K )

for all knots K .

The proposition will follow from a more general inequality concerning the
H1(Y )/Tor-action on Heegaard Floer homology:

Proposition 5.8 Let Y be a 3-manifold, and γ ∈ H1(Y )/Tor be a class in the free part
of its first homology. If Aγ (α) = β, then we have

τβ(Y , K ) ≤ τα(Y , K )

for any knot K . Here, Aγ denotes the action of γ on the Floer homology of Y .

Proof Pick an immersed curve on a pointed Heegaard diagram for the (pointed) 3-
manifold whose associated homology class represents γ ∈ H1(Y )/Tor. By abuse of
notation, denote this curve by γ as well. The H1(Y )/Tor action is defined by chain
maps aγ , specified on generators by:



7 Page 32 of 48 M. Hedden, K. Raoux

aγ (x) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
μ(φ)=1

(
γ · (∂αφ)

)
#M̂(φ) · y

where γ · (∂αφ) is the algebraic intersection number of γ with the subset of the
boundary of the domain of the Whitney disk lying on the α curves. Here, we consider
the action on Ĉ F(Y ), so we count only pseudo-holomorphic Whitney disks that avoid
the hypersurface specified by the basepoint, i.e. nw(φ) = 0. Since nz(φ) ≥ 0 for any
disk counted in the operator above, it follows that

A(x) − A(y) = nz(φ) − nw(φ) ≥ 0

where (x, y) is any pair of generators such that y appears with non-zero coefficient in
aγ (x). Passing to homology, the result follows. ��
Proposition 5.8 implies the inequalities for τ� given in Proposition 5.7, since the Floer
homology of #�S1×S2 is isomorphic, as a module over H1/Tor, to�∗ H1(#�S1×S2),
with module structure given by the pairing between homology and cohomology. In
this setting, or the general situation where a 3-manifold contains an S1× S2 connected
summand in its prime decomposition, we also obtain bounds in the opposite direction
in terms of the geometric intersection number of the knot with the 2-sphere.

Proposition 5.9 Let α ∈ Ĥ F(Y ), and consider α ⊗ θ± ∈ Ĥ F(Y#S1 × S2), under the
isomorphism Ĥ F(Y#S1 × S2) ∼= Ĥ F(Y ) ⊗ Ĥ F(S1 × S2). Then for any rationally
null-homologous K ⊂ Y#S1 × S2

τα⊗θ+(Y#S1 × S2, K ) ≤ τα⊗θ−(Y#S1 × S2, K ) + N ,

where N is half the geometric intersection number between K and the sphere in
S1 × S2.

Proof Assume the sphere and K have been isotoped to be transverse and to have
minimal intersection number. Since K is rationally null-homologous, the algebraic
intersection number with the sphere is zero, hence the intersections come in pairs of
opposite signs. Let N be the number of such pairs. Attach N bands to K along arcs
pairing these points, to arrive at a link that is disjoint from a neighborhood of the the
2-sphere. Now attach a 4-dimensional 3-handle along this neighborhood, yielding a
cobordism with outgoing end diffeomorphic to Y . According to [51, Section 4.3], the
associated cobordismmap sendsα⊗θ− toα ∈ Ĥ F(Y ). Next attach a 4-dimensional 1-
handle to produce a cobordismwhoseoutgoing end is againY#S1×S2. The cobordism-
induced map on Floer homology [51, Section 4.3] maps α to α ⊗ θ+. Finally, attach N
bands to the link to recover the original knot K ⊂ Y#S1 × S2. This produces a knot
cobordism from K to itself of genus N , in a 4-dimensional cobordism X , whose map
on Floer homology satisfies FX (α ⊗ θ−) = α ⊗ θ+. Theorem 1 implies:

2(τα⊗θ+(Y#S1 × S2, K ) − τα⊗θ−(Y#S1 × S2, K )) ≤ 2N ,

yielding the desired inequality. ��
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Remark 5.10 It is interesting to compare our invariantswith recentwork ofManolescu-
Marengon-Sarkar-Willis [32], which develops invariants for links in #�S1 × S2 from
versions of Khovanov and Lee homology adapted to this setting. Their invariants
satisfy similar genus bounds in W� and agree for many knots and links. They will
differ in general, however, due to the behavior of both theories under connect sums
and the fact that they differ in the special case of knots in S3 [19].

5.3 Knotification and invariants of links

Our genus bounds for null-homologous knots in #�S1 × S2 produce genus bounds for
links in S3 via Ozsváth and Szabó’s knotification construction. We summarize their
construction below. See [47, Section 2.1] for more details.

Let L ⊂ Y be an oriented |L|-component link in a 3-manifold Y . The knotification
of L is an oriented knot κ(L) in Y#|L|−1S1 × S2 formed in the following way. The
idea is to turn L into a knot by attaching bands that connect all the components. To
make this well-defined, before banding a pair of link components together, first fix a
pair of points, one on each component, and attach a 4-dimensional 1-handle to Y × I
along Y × {1}, whose attaching region S0 × B3 is identified with a neighborhood of
the pair of points. Now, band the components together via a band that passes through
the 1-handle. Since L has |L| components, choosing our bands optimally produces
a knot κ(L) after |L| − 1 band attachments. By isotopy of the attaching regions and
handleslide amongst the 1-handles and bands, one sees that κ(L) ⊂ Y#|L|−1S1 × S2

is well-defined up to diffeomorphism [47, Proposition 2.1].
Now, given a link L in a 3-manifold Y and a pair of nonzero elements α in Ĥ F(Y )

and � in Ĥ F(#|L|−1S1 × S2) define

τα⊗�(Y , L) := τα⊗�(Y#|L|−1S1 × S2, κ(L)).

For links in the 3-sphere, we denote these invariants simply by τ�(L), since Ĥ F(S3)

contains a single nontrivial element.
The τ invariants of links inherit an additivity property from the τ invariants of their

knotifications.

Proposition 5.11 (Additivity). Given a pair of links L1 ⊂ Y1 and L2 ⊂ Y2,

τα1⊗�1(Y1, L1) + τα2⊗�2(Y2, L2) = τα1⊗�1⊗α2⊗�2(Y1#Y2, L1#L2).

Here L1#L2 denotes the link resulting from the connect sum of any component of L1
with any component of L2.

Proof First, we claim that κ(L1#L2) is isotopic to κ(L1)#κ(L2). To see this, observe
that L1#L2 is constructed by first forming the connect sum Y1#Y2 and then band
summing L1 and L2 together along an arc passing through the separating 2-sphere.
The resulting link has |L1|+|L2|−1 components. To form its knotification, κ(L1#L2),
we must choose a collection of |L1| + |L2| − 2 arcs along which to knotify. Since the
result does not depend on the choice of arcs, we can choose a collection of arcs, none
of which intersect the separating 2-sphere in Y1#Y2.
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On the other hand, using the same collection of arcs as above, we can first form
κ(L1) and κ(L2) and then form the connect sum. The resulting knots are isotopic
since we have used the same collection of arcs in both constructions.

The result now follows from the additivity of the τ invariants of the knotifications.
��

We can easily extend the results from Sect. 5.1 to the case of links. Corollary 5.1
implies that if a pair of knotified links are concordant, then their τ invariants coincide.
If a pair of links in Y are concordant, Hedden and Kuzbary [17] describe how to surger
the concordance to yield a concordance between their knotifications. Theorem 2(a)
follows immediately.

Corollary 5.12 (Concordance invariance [17]). If links L ⊂ Y and L ′ ⊂ Y are con-
cordant, then for any choices of α ∈ Ĥ F(Y ) and � ∈ Ĥ F(#|L|−1S1 × S2)

τα⊗�(Y , L) = τα⊗�(Y , L ′).

Observe that if two links differ by a crossing change, then so do their knotifications.
This gives the crossing change inequalities stated in Theorem 2(b).

Corollary 5.13 (Crossing change inequalities). If L−, L+ ⊂ Y differ at a single cross-
ing, which is positive in L+ and negative in L−,

τα⊗�(Y , L−) ≤ τα⊗�(Y , L+) ≤ τα⊗�(Y , L−) + 1,

where the relative homology classes of Seifert surfaces used in the knotifications
(suppressed) agree, as before.

We also recover the slice-genus bounds for links stated in Theorem 2(c):

Proposition 5.14 (Slice-genus bounds). If � ⊂ Y × [0, 1] is a smoothly embedded
surface with boundary L ⊂ Y × {1} its Euler characteristic satisfies

2|τα⊗�(Y , L)| ≤ |L| − χ(�),

for any choices of α ∈ Ĥ F(Y ) and � ∈ Ĥ F(#|L|−1S1 × S2).

Proof By attaching 1- and 2-handles to the outgoing end of Y × [0, 1] (with the latter
attached along 0-framed unknots), we can find cobordisms from Y to Y#|L|−1S1 × S2

which map α to α⊗� for any generating decomposable tensor� = θε1 ⊗ . . .⊗θε|L|−1

(equivalently, we can take an arc sum of W� − B4 with Y ×[0, 1]). Attach bands to �

in the 1- and 2-handles to yield a cobordism�� from L to κ(L) of Euler characteristic
equal to minus the number of bands, χ(��) = 1−|L|. Puncturing�∪�� and tubing
the new boundary to the incoming end Y × {0}, yields a cobordism from the unknot
U to κ(L) with Euler characteristic equal to χ(� ∪ ��) − 1 = χ(�) + 1− |L| − 1.
Theorem 1 implies

2(τα⊗�(Y#|L|−1S1 × S2, κ(L)) − τα(Y , U )) ≤ |L| − χ(�)
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The above holds for any generating decomposable tensor. To obtain the inequality
for arbitrary �, we observe that such a vector can be written as a sum of generating
elements to which the inequality applies, and then appeal to the subadditivity of τ

invariants, Proposition 2.9.
For the reverse inequality, note that we can alternatively produce a cobordism

from Y#|L|−1S1 × S2 to Y which maps α ⊗ � to α, again for any choices of α and
decomposable tensor � = θε1 ⊗ . . . ⊗ θε|L|−1 . Such a cobordism is obtained from
(Y#|L|−1S1× S2)×[0, 1] by attaching 3- and 2-handles to kill the apparent 2-spheres,
with the choice of handle used to kill a 2-sphere determined by decomposable tensor.
This shows −2τα⊗�(Y , L) ≤ |L| − χ(�) for such �. For an arbitrary non-zero class
�, we appeal to the monotonicity of τ invariants with respect to the H1/Tor action,
Proposition 5.8. Given any non-zero � one can find a sequence of curves γ1, ..., γn

for which Aγn ◦ . . . ◦ Aγ1(α ⊗ �) = α ⊗ �bot . This shows that τα⊗�bot ≤ τα⊗�

which, when negated, yields the reverse inequality for arbitrary � (see the proof of
Proposition 5.16 for further details) ��
We define the smooth “slice-genus” of an oriented link in S3 to be

g4(L) := min

{ |L| − χ(�)

2

∣∣∣ � ↪→ B4, smooth,with ∂� = L

}
.

This definition of genusmay seem strange, placed in comparison to the standard notion
of the number of “holes”. However, the definition here better captures distinctions
in complexity (in the spirit of the Thurston norm), and is more tightly connected
to Floer-type invariants, e.g. [37, Theorem 1.1]. Indeed, specializing to links in S3,
Proposition 5.14 shows that all the τ invariants of links produce slice-genus bounds.

Corollary 5.15 If L ⊂ S3 is an oriented link, and � any class in Ĥ F(#|L|−1S1 × S2)

|τ�(L)| ≤ g4(L).

Different choices of � potentially give different genus bounds. However, the bounds
obtained via �top and �bot will always be the best. We make this precise with the
monotonicity property, Theorem 2(d), which we now establish.

Proposition 5.16 (Monotonicity). If �′ = ιx (�), where ιx denotes the interior product
with a class x ∈ H1(T

|L|−1), then

τα⊗�′(Y , L) ≤ τα⊗�(Y , L) ≤ τα⊗�′(Y , L) + 1.

In particular, if τtop(L) and τbot (L) denote the invariants corresponding to the unique
elements in H∗(T|L|−1) of maximal and minimal grading, respectively, then

τbot (L) ≤ τ�(L) ≤ τtop(L) ≤ τbot (L) + |L| − 1.

Proof The H1/Tor action on Floer homology is natural with respect to connected
sums in the following sense. If γ1 ∪ γ2 is represented by a curve which decomposes
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as a union along a connected sum of Heegaard diagrams, then under the resulting
isomorphism of complexes

Ĉ F(Y1#Y2, s1#s2) ∼= Ĉ F(Y1, s1) ⊗ Ĉ F(Y2, s2)

provided by the Künneth theorem, the action of γ1 ∪ γ2 is given by

aγ1∪γ2 = aγ1 ⊗ id + id ⊗ aγ2 .

This can be used to show that the identification of Ĥ F(#|L|−1S1×S2)with H∗(T|L|−1)

intertwines the H1(#|L|−1S1 × S2)/Tor action with the action by interior product, and
that x ∈ H1(T

|L|−1) acts on α ⊗� by (ax )∗(α ⊗�) = Id(α)⊗ ιx (�) = α ⊗�′. The
left-hand inequality in the first part now follows immediately from Proposition 5.8.

To show τα⊗�(Y , L) ≤ τα⊗�′(Y , L) + 1, we observe that a knotified link inter-
sects each essential 2-sphere created by the 1-handle attachments in at most two points
(arising from where the band passes through the handles). We then appeal to Proposi-
tion 5.9. Iterating the inequalities in the first line and using the fact that�top generates
Ĥ F(#|L|−1S1× S2) as a module with respect to the H1/Tor action yields the inequali-
ties for links in S3 stated in the second line in the case that� = θε1 ⊗ . . .⊗θε|L|−1 . The
inequality for general � follows from Proposition 2.9, and the fact that any non-zero
class maps to �bot under iteration of the H1/Tor action. ��

In [46, Theorem 1.1], Ozsváth and Szabó establish a general bound for the genera
of surfaces in negative definite 4-manifolds bounded by a knot in the 3-sphere. Armed
with the relative adjunction inequality,we can easily extend their result to our invariants
for links. This is the content of Theorem 2(e):

Theorem 5.17 (Definite 4-manifold bound). Let W be a smooth, oriented 4-manifold
with b+

2 (W ) = b1(W ) = 0, and ∂W = S3. If � is any smoothly embedded surface in
W with boundary a link L ⊂ S3, then

2τ�(L) + [�]2 + |[�]| ≤ |L| − χ(�),

where |[�]| is the L1-norm of the homology class [�] ∈ H2(W , ∂W ) ∼= H2(W ).

Proof Suppose � ⊂ W is a properly embedded, oriented surface with boundary
L ⊂ ∂W = S3. In addition, suppose�� is the cobordism in W� − B4 from L to κ(L)

obtained by attaching |L| − 1 bands to L . Gluing W to W� − B4 along S3, we form
a 4-manifold Ŵ = W ∪S3 (W� − B4) containing the surface � ∪ �� with boundary
κ(L).

Now, fix a Spinc structure t on W satisfying c1(t) = −b2(W ) and 〈c1(t), [�]〉 =
|[�]| and observe that any generator � = θε1 ⊗ . . . ⊗ θε|L|−1 is in the image of

FŴ−B4,t#t0 = FW�−B4,t0 ◦ FW−B4,t.

This follows from Lemma 3.4 of [46], which implies that for such t the map FW−B4,t

is nontrivial, together with the argument made in the proof of Corollary 5.4, which
implies that � is in the image of FW�−B4,t0 .
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Tubing � ∪�� to the S3 boundary component of Ŵ − B4 gives a cobordism from
the unknot U to κ(L) and applying Theorem 1 we obtain:

〈c1(t#t0), [� ∪ ��]〉 + [� ∪ ��]2 + 2(τ�(κ(L)) − τ(U ))

≤ 2g(� ∪ ��) = 1 − χ(� ∪ ��).

Since τ(U ) = 0, c1(t0) = 0 and [��]2 = 0, the left side simplifies as

|[�]| + [�]2 + 2τ�(κ(L)).

At the same time, χ(�∪��) = χ(�)−|L|+1. Thus, 1−χ(�∪��) = |L|−χ(�).

The result follows at once for the generating decomposable tensors, and extends to
arbitrary � using subadditivity, Proposition 2.9, as before. ��

There are several classes of links where general structural theorems hold for our τ

invariants. For instance, we can establish Theorem 2(f), which says that the invariants
for alternating links, like alternating knots, are determined by their signature:

Theorem 5.18 (Alternating links). Suppose L ⊂ S3 is an alternating link of |L|
components, and � ∈ Ĥ F(#|L|−1S1 × S2) is a class with grading k. Then τ�(L) =
k− σ

2 , where σ(L) is the signature. In particular, τtop(L) = |L|−σ(L)−1
2 and τbot (L) =

−|L|−σ(L)+1
2

Proof This is a straightforward consequence of [45, Theorem 4.1]. That theorem indi-
cates the knot Floer homology of alternating links which, by definition, is the knot
Floer homology of their knotification, is determined by the Alexander polynomial and
signature in much the same manner as the better known result from loc. cit. regarding
knots. In particular, the knot Floer homology of an alternating link is “thin”, with the
Alexander grading s group supported entirely inMaslov grading s + σ

2 . It follows that,
given a Floer homology class � ∈ Ĥ F(#|L|−1S1 × S2) of Maslov grading k = s + σ

2 ,
the only place in the Z-filtered homotopy type of the complex corresponding to κ(L)

where such a class can arise is in Alexander grading s = k − σ
2 . For the statement

about τtop and τbot , we observe that the highest and lowestMaslov gradings supporting
non-trivial Floer groups for Ĥ F(#|L|−1S1×S2) occur at |L|−1

2 and 1−|L|
2 , respectively.

��
The 4-genus bound provided by τ is known to be sharp for quasipositive knots [54].

We can show, more generally, that the 4-genus bound provided by τtop is also sharp
for quasipositive links. Recall, then, that a quasipositive link is the closure of a braid
of the form

β =
m∏

k=1

wkσik w
−1
k ,

where wk is a braid word in the n-strand braid group Bn and σik denotes a standard
generator. Rudolph introduced this notion in [57], where he showed that such links
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arise as the intersection of a plane algebraic curve with the boundary of the bidisk
D2 × D2 ⊂ C

2. In [58], Rudolph explains how to push these algebraic curves into
the boundary 3-sphere to a positively braided ribbon surface. A link is called strongly
quasipositive if it bounds a positively braided ribbon surface which is embedded, i.e.
is a Seifert surface.

Proposition 5.19 If L is a quasipositive link in S3 then τtop(L) = g4(L). Moreover,
if L is strongly quasipositive then τtop(L) = g4(L) = g3(L).

The proof of Proposition 5.19 will take a detour through some contact geometric
features of the theory, upon which we now embark. We will primarily relegate our
exploration of the interaction between the relative adjunction inequality and contact
geometry to another paper (see [21]), and here draw on only what we need for studying
τtop(L).

To begin, we recall from [15] that one can define an invariant of knots in contact 3-
manifolds by τξ (Y , K ) := τ ∗

c(ξ)(Y , K )where c(ξ) denotes the Ozsváth-Szabó contact
class associated to ξ [50,Definition1.2].Wewill need the following fact,which equates
τtop(#�S1 × S2, K ) and τξstd (#

�S1 × S2, K ).

Proposition 5.20 Let K be a knot in #�S1 × S2. Then

τtop(K ) = τξstd (K ) = τ ∗
c(ξstd )(K )

where ξstd is the unique tight contact structure on #�S1 × S2.

Proof First observe that the classes �top and c(ξstd) are both decomposable tensors
in the Floer homology of #�S1 × S2, under the identification of the latter as an iterated
tensor product provided by the Künneth formula [48, Theorem 1.4]. This is immediate
from the discussions above for �top. For the contact class it follows from the fact that
ξstd is the iterated contact connected sum of the unique tight contact structure on
S1 × S2, together with the product formula for c(ξ) under contact connected sums,
[15, Property 4, pg. 105]. It therefore suffices to prove the result in the case � = 1.

For this, we first establish that c(ξstd) is dual to θ+. This can be verified in a number
of ways; for instance, through the calculation in Example 2.10. W h+ is a fibered knot
in S1×S2, a fact implied by having rank one knot Floer homology in the topAlexander
grading [38] c.f. [8]. Figure1c shows the complex Ĉ F(S1×S2)with filtration induced
by W h+. The contact invariant of the contact structure associated to the open book
coming from W h+ is, by definition, the element in the homology of the dual complex
arising via inclusion of the bottommost non-trivial filtered subcomplex. The dual
complex and dual filtration are computed by reversing arrows and negating Alexander
gradings, respectively, so in the case at hand [d + f ]∗ = θ∗+ ∈ Ĥ F∗(S1 × S2) and
c(ξW h+) = θ∗+ since θ∗+ is in the bottommost filtration level in the dual complex. Since
c(ξW h+) 	= 0, the contact structure ξW h+ is tight [50, Theorem 1.4], andmust therefore
be isotopic to ξstd , as the latter is the unique tight contact structure on S1 × S2 [7].
Thus, c(ξstd) = c(ξW h+) = θ∗+.

Now let K ⊂ S1 × S2 be any knot. If τ ∗
c(ξstd )(K ) = n then, by definition, there

exists a class α ∈ Im(In) such that 〈c(ξstd), α〉 	= 0. Moreover, since τ ∗
c(ξstd )(K ) is the
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minimumfiltration index for which there exists such a class, it follows that τα(K ) = n.
Monotonicity now implies τα(K ) ≤ τtop(K ). On the other hand, since

〈c(ξstd), α〉 = 〈θ∗+, α〉 	= 0,

α decomposes as a sum θ+ + α′ for some class α′ pairing trivially with θ∗+. But any
such class is a linear combination of classes in the image in the H1 action which, by
monotonicity, are represented in filtration levels less than or equal to the minimum
filtration level representing θ+. By the subadditivity of τ (Proposition 2.9)we therefore
have

τtop(K ) := τθ+(K ) = τθ++α′+α′(K ) ≤ max{τα(K ), τα′(K )} = τα(K ),

and hence τtop(K ) ≤ τα(K ) ≤ τtop(K ). We conclude τtop(K ) = τα(K ) = n =
τ ∗

c(ξstd )(K ). ��
The proof of Proposition 5.19 relies on a Bennequin type inequality for links proved

by the authors in [21], which we state here for the special case of links in S3:

Theorem 5.21 (τ -Bennequinbound [21]). Suppose L ⊂ S3 is a link of |L| components.
Then for any Legendrian representative L of L in the standard tight contact structure
on S3 we have

tb(L) + rot(L) + |L| − 1 ≤ 2τξstd (κ(L)) − 1. (7)

The calculation of τtop for quasipositive links will now follow quickly. The strategy,
adapted from the case of knots from that in [16] was employed independently by
Cavallo in [5, Theorem 1.4]

Proof of Proposition 5.19 We have τξstd (κ(L)) = τtop(κ(L)) from Proposition 5.20,
and the latter is the definition of τtop(L). Substituting this in the τ -Bennequin bound,
and recalling the adjunction inequality, we obtain:

tb(L) + rot(L) + |L| − 1 ≤ 2τtop(L) − 1 ≤ |L| − χ(�) − 1

for any smoothly embedded surface � with ∂� = L . For quasipositive links, we
demonstrate a Legendrian representative and surface � for which the outer terms
agree, following the proof of [16, Theorem 1.5].

Letβ be a quasipositive braid representative for L . Let n+ and n− denote the number
of positive and negative generators, respectively, used in the braid word and let b be
the braid index. Since β is of the form

∏m
k=1 wkσik w

−1
k , we have n+ = n− + m.

To obtain a Legendrian representative for the closure of β, stabilize at each negative
generator; see [16, Figure 3]. Calculation for this Legendrian representative produces

tb(L) = {writhe} − #{left cusps} = n+ − 2n− − b
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and

| rot(L)| = |#{down left cusps} − #{up right cusps}| = n−

Thus tb(L) + rot(L) = n+ − n− − b = m − b.
On the other hand, the expression of L as the closure of a product of m conjugates

of generators of the b stranded braid group gives rise to a braided ribbon surface
bounded by L of Euler characteristic χ(�) = b − m [58, Figure 2.5]. It follows that
2τtop(L) − 1 = |L| − χ(�) − 1, hence τtop(L) = |L|−χ(�)

2 = g4(L). Moreover,
if L is strongly quasipositive, then the ribbon surface for L is a Seifert surface, so
τtop(L) = g4(L) = g3(L). ��

Proposition 5.19 implies Theorem 2(g) stated in the introduction, by a result of
Boileau and Orevkov [2] c.f. [14]. Their result yields a converse to Rudolph’s con-
struction which, with Rudolph’s, equates the set of isotopy classes of links bounding
complex curves in the round 4-ball with the set arising as the closures of quasipositive
braids. From their work, one sees that the Euler characteristic of any complex curve
bounded by L is given by b − m for any quasipositive representative. Theorem 2(g)
follows at once.

In the special case of fibered knots, [16, Theorem 1.2] provides a partial converse to
Proposition 5.19; namely, if a fibered knot satisfies τ(K ) = g(K ), then it is strongly
quasipositive. We extend this result to links, yielding Theorem 2(h):

Theorem 5.22 Suppose L ⊂ S3 is fibered. L is strongly quasipositive if and only if

τtop(L) = g4(L) = g3(L).

Before proving this, we recall some definitions and facts about fibered knots and
contact structures.

Denote by (F, L) the open book decomposition induced by a fibered link L ⊂ Y
with fiber surface F . Such an open book decomposition induces a contact structure
on the 3-manifold and we write ξL for the contact structure induced by (F, L).

Lemma 5.23 If L ⊂ S3 is a fibered link, then κ(L) ⊂ #|L|−1S1 × S2 is also fibered
and ξκ(L) � ξL#ξstd where ξstd is the unique tight contact structure on #|L|−1S1× S2.

Proof Fix a fiber surface F for L . Since F is a fiber in a fibration of a connected
3-manifold (the link complement), it is necessarily connected. Hence we can choose
|L|−1 disjoint arcs embedded in F with boundary in ∂ F so that the union of ∂ F with
this collection of arcs is connected. Fix points p and q in S2 and let B ⊂ S1 × S2 be
the fibered 2-component link S1 × {p} ∪ −S1 × {q} with fiber surface an untwisted
annulus. To a neighborhood of each arc in F , plumb a copy of the fiber surface for B.
The result is an open book decomposition of #|L|−1S1 × S2 where κ(L) is a fibered
knot whose fiber surface is F with |L| − 1 bands attached.

It follows from [63, Theorem 1.3] that the contact structure ξκ(L) induced by the
open book coming from κ(L) is ξL#(#|L|−1ξB). It remains to show that ξB is the unique
tight contact structure on S1×S2. This iswell-known, as themonodromyof the annular
open book is the identity. One can alternatively provide a Floer homological proof.
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To this end, recall that the Giroux correspondence implies that the contact structure
induced by an open book decomposition is unchanged by plumbing positive Hopf
bands. Plumbing a single positive Hopf band to the fiber surface for B yields a surface
whose boundary is the positive Whitehead knot, W h+. The calculation of its knot
Floer homology in Example 2.10 shows that c(ξW h+) 	= 0 (as discussed in the proof
of Proposition 5.20), and this implies that ξW h+ is tight. Since S1 × S2 supports a
unique tight contact structure, we conclude that ξW h+ , and therefore ξB , is isotopic to
ξstd . ��

Theorem 5.22 is now a consequence of the following proposition.

Proposition 5.24 Let L ⊂ S3 be a fibered link with fiber surface F. Then the following
are equivalent:

(1) L is strongly quasipositive.
(2) The open book decomposition associated to (F, L) induces the unique tight contact

structure on S3.
(3) c(ξL) 	= 0 where c(ξL) is the Ozsváth-Szabó contact invariant of the contact

structure induced by the open book decomposition of S3 associated to (F, L).
(4) L satisfies τtop(L) = g3(L).

Proof Our argument is similar to [16, Proposition 2.1]. Proposition 5.19 showed that
(1) ⇒ (4). We now show that (4) ⇒ (3) ⇒ (2) ⇒ (1).
(4) ⇒ (3). Assume τtop(L) := τtop(#|L|−1S1 × S2, κ(L)) = g. By Proposition 5.20,
we therefore have τ ∗

c(ξstd )(#
|L|−1S1 × S2, κ(L)) = g. The duality Proposition 2.5

implies

τc(ξstd )(−#|L|−1S1 × S2, κ(L)) = −τ ∗
c(ξstd )(#

|L|−1S1 × S2, κ(L)) = −g,

which implies c(ξstd) is the image of H∗(F−g(−#|L|−1S1 × S2, κ(L))) ∼= F under
the map induced on homology by the inclusion

ι : F−g(−#|L|−1S1 × S2, κ(L)) ↪→ Ĉ F(−#|L|−1S1 × S2).

By the definition of the contact invariant, this means that the invariant of the contact
structure associated to the fibered knot κ(L) equals c(ξstd). But ξκ(L) � ξL#ξstd by
Lemma 5.23, and the product formula for the contact invariant [15, Property 4, pg.
105] therefore yields

c(ξκ(L)) = c(ξL#ξstd) = c(ξL) ⊗ c(ξstd).

Since c(ξκ(L)) = c(ξstd) 	= 0, it follows that c(ξL) 	= 0 ∈ Ĥ F(−S3).
(3) ⇒ (2). Non-vanishing of c(ξL) implies tightness, which shows the contact struc-
ture induced by L is isotopic to the (unique) tight contact structure on S3.
(2) ⇒ (1). Since the unknot and L both induce the tight contact structure on S3,
the Giroux correspondence implies L is stably equivalent to the unknot; that is, the
fiber surface for L is obtained from a disk by plumbing and deplumbing positive Hopf
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bands. Rudolph showed, however, that a Murasugi sum of surfaces is quasipositive if
and only if each of the summands is quasipositive [60]. In particular, plumbing and
deplumbing of positive Hopf bands preserves strong quasipositivity of the bounding
links. Thus, L must be strongly quasipositive. ��

The first author and Kuzbary impose a group structure on link concordance classes
by defining such a structure on concordance classes of knots in S1 × S2, and showing
that knotification descends to concordance [17]. It is natural to ask whether the image
of links in S3 under knotification generates the concordance group of knots in S1× S2,
i.e. is every knot in S1 × S2 (or its connected sums) concordant to the knotification of
a link? The following answers this question negatively.

Proposition 5.25 There are null-homologous knots in S1 × S2 which are not concor-
dant to the knotification of any link in S3.

Proof If κ(L) ⊂ S1 × S2, then L must be a 2-component link and by Proposition 5.9,

τtop(κ(L)) ≤ τbot (κ(L)) + |L| − 1 = τbot (κ(L)) + 1. (8)

Consider a sequence of knots Kn where K1 = W h+, and a diagram for Kn is given
by n concentric copies of W h+ in S1 × S2 joined by n − 1 positive bands. Figure5
shows the knot K3. The knots Kn are all null-homologous in S1 × S2, and each Kn

bounds a disk in D2 × S2 analogous to the one constructed for W h+ in Example 2.10.
Thus τbot (Kn) ≤ 0. If Kn is concordant to κ(L), then τbot (Kn) = τbot (κ(L)) ≤ 0
and Eq. (8) gives τtop(Kn) = τtop(κ(L)) ≤ 1.

Fig. 5 The knot K3 in S1 × S2. Calculation shows τtop(K3) = 3
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On the other hand, we can produce a Legendrian representative Kn for Kn in the
standard contact structure on S1 × S2 satisfying

tb(Kn) + rot(Kn) = 2n − 1.

Indeed, such a representative is obtained by trading the 0-framed unknot in Fig. 5 for
a Stein 1-handle, over whom the 2n strands of Kn pass, and replacing the vertical
tangencies of the n positive clasps of Kn with cusps. The resulting Legendrian knot
in (S1 × S2, ξstd) has

tb(Kn) = writhe(Kn) − #cusps(Kn)

2
= (2n + n − 1) − 2n

2
= 2n − 1

and vanishing rotation number, according to the adaption of these invariants to the
setting at hand, see [10, Chapter 11].

Applying the main theorem of [15], we have tb(Kn) + rot(Kn) ≤ 2τξstd (Kn) − 1,
so that n ≤ τξstd (Kn)

2. But τξstd (Kn) = τtop(Kn), by Proposition 5.20. Thus, for each
n > 1, τtop(Kn) > 1 and Kn is therefore not concordant to a knotified link. ��

5.4 Comparison with other definitions of �(L)

In [52], Ozsváth and Szabó define an invariant of a link L ⊂ S3 taking the form
of a graded, Z

|L| filtered complex whose graded Euler characteristic recovers the
multivariable Alexander polynomial. There are versions of this invariant for base
ring F or F[U ], corresponding to the “hat” and “minus” versions of Floer homology,
respectively. Over either ring, the total homology of the complex has rank 2|L|−1 and,
using this, one can derive numerical invariants in the spirit of our definition of τ�(L). It
is natural to ask how they compare. In the special case of links in the 3-sphere, one can
also define and compute the link Floer homology complex from a grid diagram [33, 34,
41].Within the context of grid homology, Cavallo defines a numerical invariant of links
and shows that it satisfies many of the same properties of the τ invariants we define
here. In particular, he shows it is a concordance invariant [4, Theorem 1.2], bounds
the genera of surfaces bounded by the link in B4 [4, Proposition 1.4], detects strongly
quasipositive fibered links [6, Theorem 1.2], refines the slice-Bennequin inequality
[4, Proposition 1.5] and is determined by the signature of L for quasi-alternating links
[4, Proposition 1.1(iv)].

Theorem 5.26 The invariant τtop(L) defined above is equal to the invariant τ(L)

defined by Cavallo [4] which, in turn, is equal to the invariant τmax (L) defined by
Ozsváth–Szabó–Stipsicz [41, Definition 8.3.3].

Proof Cavallo defines τ(L) as the (Alexander) filtration level that supports the highest
(Maslov) graded subspace of the total homology of the “simply blocked, bigraded
grid complex of a knot” [41, Definition 8.2.7], while Ozsváth–Szabó–Stipsicz define

2 In fact n = τξstd (Kn), since τ invariants are bounded by the Seifert genus, and there is a genus n Seifert
surface for Kn by construction.
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τmax (L) as negative theminimal Alexander grading of any homogeneous element gen-
erating a free F[U ] submodule of the “collapsed grid homology”. Here, the “simply
blocked, bigraded grid complex of a knot” is Z-filtered chain homotopy equivalent to
the knot Floer homology “hat” complex (Ĉ F K (L), ∂), and the “collapsed grid homol-
ogy” is isomorphic as a bigraded F[U ]-module to the knot Floer “minus” groups of
the link, H F K −(L). These equivalences are immediate from the stabilization invari-
ance of Floer homology with respect to index 0/3 Heegaard diagram stabilizations,
together with the fact that a grid diagram is a suitably stabilized genus one Heegaard
diagram adapted to a link, see [33]. In both instances, the Alexander grading on the
knot Floer homology of the link is obtained by picking a Seifert surface compatible
with the (implicit) orientation, and collapsing the Alexander multi-grading using this
choice to a Z-grading. In [4, Section 5], Cavallo shows that the τ -sets coming from
the hat complex and minus homology coincide, where the former records the filtra-
tion levels where the homology changes dimension and the latter the negative of the
Alexander gradings of generators of the free F[U ] submodules of H F K −(L). This
has, as consequence, the equality τ(L) = τmax (L).

It remains to identify our invariant, τtop(L), defined with respect to the filtration
on the hat complex of the knotification of L , with the former. For this, we appeal to
an argument similar to the proof of [52, Theorem 1.1]. That theorem posits a graded
isomorphism between the hat Floer homology groups of κ(L) ⊂ #|L|−1S1 × S2 and
the hat knot Floer homology groups of the link. The proof of this isomorphism goes
by way of a degeneration (and implicit gluing) argument for J -holomorphic curves in
Lipshitz’s cylindrical formulation of Heegaard Floer homology [31].

More precisely, they consider a multi-pointed Heegaard diagram adapted to the
link L , and from it derive a doubly pointed Heegaard diagram for the knotification
κ(L) by surgering the initial Heegaard diagram along |L|−1 pairs of basepoints, each
lying on different components of L . They then consider a 2-parameter sequence of
complex structures on this latter diagram, parametrized according to the neck length
of the annulus glued in via the surgery and the placement of the basepoints along
which the surgery is performed. Taking independent Gromov limits with respect to
the two parameters, they argue that for some complex structures on both diagrams,
holomorphic curvesmissing both the basepoints in the diagram for κ(L)must coincide
with those missing all the basepoints on the diagram for L .

This argument does not extend, however, to give a correspondence between the
holomorphic curves relevant to the collapsed Alexander multi-filtration for the multi-
pointed diagram for L and the Alexander filtration for κ(L). Indeed, the Gromov limit
taken shows that a pseudo-holomorphic curve arising from the diagram for κ(L),
which drops the Alexander filtration by k, gives rise to a curve for the multi-pointed
diagram for L satisfying:

|L|∑
i=1

(nzi (φ) − nwi (φ)) = k

and the additional requirement that nzi (φ) = nwi+1(φ) for all i = 1, ..., |L|−1.While
these curves are included in the filtered boundary operator for L , the latter requirement
is not present and hence the collapsed filtration for L appears to count more curves.
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We deal with this using an idea suggested by Sucharit Sarkar, which is to instead
surger the Heegaard diagram along pairs of w basepoints for L , and simultaneously
perform 0/3 stabilizations by adding an α/β pair of Hamiltonian isotopic curves run-
ning along each of the newly created necks. We then place w basepoints in the small
bigons bounded by the new curves in the neck. The result is a multi-pointed Heegaard
diagram for κ(L). See [61, Figure 2.2]. In this case, since we have not eliminated
any basepoints, the definitions of the collapsed filtration for L and the filtration for
κ(L) agree, and the Gromov limit and gluing arguments identify pseudo-holomorphic
curves in the appropriate moduli spaces. See [61, Theorem 2.7] for more details. This
shows that theZ-filtered homotopy type of the hat complex for κ(L) and the collapsed
filtration of L agree, after performing a sequence of 0/3-stabilizations to both. But the
effect of such a stabilization on the filtered homotopy type is to tensor both complexes
with a filtered vector space of rank two, with summands differing in both filtration
and homological grading by one. It follows that the filtration indices of the top graded
summands of both complexes, and hence those of the complexes before stabilization,
are equal. But these indices are equivalent to the definitions of τtop(κ(L)) := τtop(L)

and Cavallo’s τ(L), respectively. ��
Remark 5.27 Since the definitions of τ used by Cavallo and Ozsváth-Szabó-Stipsicz
take place in the context of grid diagrams, they do not admit a straightforward extension
to yield the definite 4-manifold bound, Theorem 5.17. Moreover, an intrinsic proof
of functoriality for grid homology has not appeared (though see [11] for results in
this direction). This necessitates the usage of τ sets (or Cavallo’s T -function) in that
context, rather than τ invariants associated to specific Floer classes �. We can define
analogues of τ sets in our context, as the ordered collection of τ invariants associated
to our basis elements θε1 ⊗ . . . ⊗ θε|L|−1 , and the proof of Theorem 5.26 should show
that we will obtain the same set as Ozsváth-Szabó-Stipsicz.

Remark 5.28 The equivalence of invariants established in Theorem 5.26 may be of
computational significance for τmax (L). On its own this invariant is somewhat difficult
to extract from grid homology. Cavallo’s τ(L), on the other hand, can be derived solely
from the subgroup in homological grading zero, and is therefore significantly simpler
to compute.
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