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Abstract
For every integer g ≥ 1 we define a universal Mumford curve of genus g in the
framework of Berkovich spaces over Z. This is achieved in two steps: first, we build
an analytic space Sg that parametrizes marked Schottky groups over all valued fields.
We show that Sg is an open, connected analytic space over Z. Then, we prove that the
Schottky uniformization of a given curve behaves well with respect to the topology
of Sg , both locally and globally. As a result, we can define the universal Mumford
curve Cg as a relative curve over Sg such that every Schottky uniformized curve can
be described as a fiber of a point in Sg . We prove that the curve Cg is itself uniformized
by a universal Schottky group acting on the relative projective line P1

Sg
. Finally, we

study the action of the group Out(Fg) of outer automorphisms of the free group with
g generators on Sg , describing the quotient Out(Fg)\Sg in the archimedean and non-
archimedean cases. We apply this result to compare the non-archimedean Schottky
spacewith constructions arising from geometric group theory and the theory ofmoduli
spaces of tropical curves.
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1 Introduction

The uniformization of Riemann surfaces is one of the most central results in the theory
of analytic curves. Independently proven in 1907 by P. Koebe and H. Poincaré, this
theorem is the culmination of almost a century of work in complex geometry1, and
states that the universal cover of a connected compact complex analytic curve of genus
g is analytically isomorphic to:

– the projective line if g = 0;
– the affine line if g = 1;
– the open unit disc if g ≥ 2.

This fact bears important consequences in numerous fields ofmathematics, such as dif-
ferential equations, number theory (special functions, modular forms, elliptic curves),
Kleinian and Fuchsian group representations, and the theory of algebraic curves and
their fundamental groups. After proving the aforementioned theorem, Koebe went on
to show several related results that clarified many aspects of uniformization theory.
The most notorious one is the retrosection theorem, stating that every connected com-
pact complex analytic curve is the quotient of an open dense subset O ⊂ C by the

1 A complete account of the results and the mathematicians that made this breakthrough possible is given
with detailed proofs in the impressive collective work [16].
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action of a free, finitely generated subgroup � of PGL2(C) for which O is the region
of discontinuity. Any group � arising in this way is called a Schottky group, and the
resulting theory is usually referred to as Schottky uniformization of Riemann surfaces.

The quest for a non-archimedean analogue of uniformization theory is at the heart
of the establishment of non-archimedean analytic geometry. In fact, J. Tate developed
his theory of rigid analytic geometry to show that elliptic curves with split multiplica-
tive reduction over a non-archimedean field k are always of the formGm/qZ for some
element q ∈ k such that 0 < |q| < 1. In the early ’70s, D. Mumford had the intuition
that Tate’s uniformization could be extended to higher genus curves by building a
non-archimedean theory of Schottky uniformization. In his celebrated paper [42], he
defined a notion of non-archimedean Schottky group and, using tools from formal
geometry and Bruhat-Tits theory, showed that any such group acts on a suitable open
subset of the projective line, and that the quotient identifies to (the analytification
of) a projective curve. Finally, he characterized the curves that admit Schottky uni-
formization according to their reduction type. A further development of this theory in
the context of rigid geometry was subsequently carried out by several authors, most
notably by L. Gerritzen and M. van der Put in their book [24].

The non-archimedean theory is remarkable inmany aspects, and particularly for the
ways it addresses the issue of the lack of a nice topological structure: non-archimedean
fields are totally disconnected, hence it is highly nontrivial even to define what an open
dense subset of the projective line in this context should be. The solution of Tate’s rigid
geometry, in the late ’50s, is to consider non-archimedean spaces with a Grothendieck
topology instead of a classical topology. A more modern approach, developed by
V. Berkovich in the late ’80s, consists in defining non-archimedean analytic spaces as
spaces of absolute values. Since they contain many points beyond the classical ones,
they are not easily described explicitly, but they may be endowed with a structure of
topological space in the classical sense. Given a non-archimedean field k, the group
PGL2(k) acts naturally on the Berkovich projective line P

1,an
k and one can describe

Schottky uniformization of Mumford curves in complete analogy with the complex
case. A study of classical results on Schottky groups and Mumford curves in this new
framework was initiated in Berkovich’s first monograph (see [3, §4.4]) and has been
expanded in recent work by the authors [46], whose appendix contains a description
of striking applications of these results.

In this paper, we are interested in the interplay between the archimedean and non-
archimedean theories of Schottky uniformization. In order to construct a rigorous and
coherent common framework for these two theories, we adopted the viewpoint of
“Berkovich spaces over Z”. Let us introduce it in a few words.

Although the theory of Berkovich analytic geometry was originally geared towards
non-archimedean spaces, that is to say spaces over non-archimedean valued fields,
it is worth noting that Berkovich’s original definitions apply under less restrictive
assumptions, and allow to make sense of analytic spaces over arbitrary Banach rings.
For example, one may consider the base ring (C, | · |∞), where | · |∞ denotes the usual
absolute value. The Berkovich analytic spaces obtained in this way are nothing but
the familiar complex analytic spaces.

Note that the field C may be endowed with other absolute values. By considering
a power | · |ε∞ of the usual absolute value, with ε ∈ (0, 1], one still obtains a theory
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completely parallel to the complex analytic theory, but with a different normalization.
Passing to the limit when ε tends to 0, one is led to consider the field C endowed
with the trivial absolute | · |0 (defined by |a|0 = 0 if a = 0 and |a|0 = 1 otherwise),
which is a non-archimedean field, hence belongs to the realm of the usual theory of
Berkovich spaces.

By using the theory of Berkovich spaces over Banach rings, one may fit all the
preceding spaces into a common one. To be more precise, let us endow the field C

with the (non-multiplicative) hybrid norm ‖·‖hyb := max(| · |0, | · |∞). Its spectrum in
the sense of Berkovich is Mhyb := {| · |0} ∪ {| · |ε∞, 0 < ε ≤ 1}, and every Berkovich
space over (C, ‖·‖hyb) admits a natural morphism prhyb toMhyb. As one may expect,

the fibers pr−1
hyb(| · |ε∞) are complex analytic spaces, whereas the fiber pr−1

hyb(| · |0) is a
non-archimedean Berkovich space. As a result, such a hybrid spacewitnesses complex
analytic spaces converging towards a non-archimedean space. This rough idea actually
leads to concrete results and has allowed to investigate precisely various properties
of degeneration of families of complex spaces such as mixed Hodge structures [5],
volume forms [8], equilibrium measures of endomorphisms [18], etc. It also found
a striking arithmetic application to uniform Manin-Mumford bounds for a family of
genus 2 curves in [15]. From this same point of view, in this paper, we will observe
complex curveswith a Schottky uniformization converging to non-archimedean curves
with a Mumford uniformization.

It is possible to push further this line of thought and consider not only families
of complex spaces and their non-archimedean limits (lying over a trivially valued
field), but even p-adic spaces and, more generally, spaces over arbitrary valued fields.
To this end, one starts with the base ring (Z, | · |∞) and considers the space M(Z)

of all absolute values (and more generally multiplicative seminorms) on Z. Thanks
to Ostrowski’s theorem, up to a power, the latter are known to be exactly the usual
one | · |∞, the p-adic one | · |p, where p is a prime number, the trivial one | · |0 and the
multiplicative seminorm | · |p,0 induced by the trivial absolute value onFp , where p is a
prime number andFp is the finite fieldwith p elements. By the same reasoning as in the
hybrid case, Berkovich analytic spaces over Z are global objects that naturally admit
a morphism prZ to M(Z). The fibers or prZ may either be complex analytic spaces,
p-adic analytic spaces, or spaces over trivially valued fields. This is the framework
we will use to carry out our study of analytic uniformization of curves in a uniform
way. It will allow us to build a space parametrizing all uniformizable curves (or,
equivalently, Schottky groups) over all possible valued fields: archimedean or not, of
arbitrary characteristic and arbitrary residue characteristic.

The foundations of the theory of analytic spaces over Banach rings were laid by
Berkovich at the beginning of his manuscript [3], but he soon switched more specifi-
cally to non-archimedean spaces. Over base rings of a special type (including, among
others, Z, rings of integers of numbers fields, and the hybrid C), the theory was then
further developed by the first-named author in [43] (case of the affine line), [45] (local
algebraic properties such as Noetherianity of the stalks or coherence of the structure
sheaf) and [37] with Th. Lemanissier (definition of the category of analytic spaces,
local path-connectedness of the spaces, cohomological vanishing on disks). As an
example of application, let us mention that Berkovich spaces over Z were used in
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[44] to give a geometric proof of a result of D. Harbater [25] solving the inverse
Galois problem over a ring of convergent arithmetic power series (the subring of Z[[t]]
consisting of power series that converge on the complex open unit disc).

Let us go back to the construction of a common framework for Schottky uniformiza-
tion. Our first main new contribution in this direction is the definition of amoduli space
Sg of Schottky groups of rank g as a Berkovich space over Z. This comes as a gen-
eralization of the Schottky spaces that have been extensively investigated both over
the complex numbers and over non-archimedean fields. In order to simplify the nota-
tion, let us assume that g ≥ 2 (the case g = 1 is analogous in many aspects, though
much simpler). The complex Schottky space is defined by L. Bers in [2] as a complex
submanifold of C3g−3 and parametrizes complex Schottky groups together with the
choice of a basis up to conjugation by elements of PGL2(C). Its properties, general-
izations, and various applications have been studied ever since, for example in [36],
[23], and [28]. In analogy with the complex case, Gerritzen [21], [22] gave a definition
of Schottky space over a non-archimedean field k as a rigid analytic subspace of the
affine space of dimension 3g − 3 over k, i.e. k̄3g−3/Gal(k̄/k), where k̄ is an algebraic
closure of k. Both parametrizations are based on the notion of Koebe coordinates: a
hyperbolic element γ of PGL2(C) or PGL2(k) is uniquely determined by the datum
of its attracting fixed point α, its repelling fixed point α′, and its multiplier β, and,
conversely, any ordered triplet (α, α′, β) of elements of C or k satisfying

{
α 
= α′

0 < |β| < 1

gives rise to a hyperbolic element of PGL2(C) or PGL2(k). A Schottky group of rank g
admits a basis consisting of g elements, which gives rise to 3g Koebe coordinates.
Using aMöbius transformation to send the first three fixed points to 0, 1 and∞, which
amounts to some normalization, reduces the number to 3g − 3 coordinates.

The space Sg defined in this paper is a subset of an affine Berkovich space over Z,

namelyA3g−3,an
Z

. Recall that each point x inA3g−3,an
Z

naturally determines a complete
valued fieldH(x), its complete residue field, as well as 3g−3 elements in it (obtained
by evaluating the coordinate functions at x). The space Sg then consists of the points x

in A
3g−3,an
Z

whose associated (3g − 3)-tuple of elements in H(x) corresponds, up to
normalization, to the Koebe coordinates of a basis of a Schottky group of rank g
in PGL2(H(x)) (see Definition 4.2.1 for more precision). This definition allows us to
retrieve both the complex Schottky space and the Berkovich analogue of Gerritzen’s
space, as the complete residue fields H(x) may be complex, p-adic, etc. We first
establish some topological properties of the Schottky space over Z.

Theorem 1 (Theorems 4.3.4 and 5.2.1) The space Sg is open in A
3g−3,an
Z

and path-
connected.

As a result of its openness, the space Sg inherits a structure of analytic space. In
other words, the Mumford and Schottky uniformizations naturally fit together into
a well-behaved family. Under this new perspective, Mumford’s construction appears
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to be more than a mere analogue of the complex construction: both are particular
instances of a more general theory.

The properties of the spaceSg allow tomove continuously between the archimedean
and the non-archimedean constructions, as in the case of hybrid spaces mentioned
before. Similarly, there is a phenomenon of continuous degeneration from p-adic
Schottky spaces to Schottky spaces in characteristic p. We believe that these features
could be exploited to build interesting partial compactifications of Schottky spaces and
to establish analogies between the theory of Mumford curves in mixed characteristic
and in positive characteristic.

We then turn to the question of the connection between the space Sg and the moduli
space of curves. Let Out(Fg) be the group of outer automorphisms of the free group
with g generators. There is a natural action of Out(Fg) on Sg , whose orbits consist of
unmarked Schottky groups (i.e. with no chosen basis). Since a Mumford curve over
a non-archimedean field k determines a unique conjugacy class of Schottky groups,
it is natural to consider the quotient by this action of the non-archimedean part of the
Schottky space as a global space of Mumford curves. In order to do so, we let Sna

g be
the set of non-archimedean points of Sg . We prove the following result.

Theorem 2 (Corollaries 5.3.7 and 5.3.8) The action of Out(Fg) on Sna
g is proper

and has finite stabilizers. For each a ∈ M(Z), the quotient space Mumfg,a :=
Out(Fg)\(Sg ∩ pr−1

Z
(a)) inherits a structure of H(a)-analytic space.

The action of Out(Fg) is proper also over the space Sa
g of archimedean points

of Sg . The proof of this fact boils down to a globalized version of the analogous
result over the complex numbers, which is already known and can be proven using
Teichmüller theory, once one provides the connection between the Schottky space and
the Teichmüller space (see [30] for a detailed discussion of this connection). In the
non-archimedean framework, our proof is inspired by the work of Gerritzen [22], and
consists of applying Serre’s theory of free groups acting on trees [47, §3] to the case
of Schottky groups acting on the Berkovich projective line. This strategy is not easily
adapted to the archimedean case, and we are not able to prove the properness of the
action of Out(Fg) on the entire space Sg . This would be a first step in providing the
global quotient Out(Fg)\Sg with a structure of an analytic space over Z, a result that
we believe to hold true.

Evenwithout aZ-analytic structure on the global space of uniformizable curves, the
theory of Schottky spaces over Z allows us to construct a universal Mumford curve,
in the weak sense of a relative curve over Sg that encodes all possible archimedean
and non-archimedean uniformizations at once, even though the same curve can appear
more than once.

Theorem 3 There is a smooth proper morphism of analytic spaces over Z

Cg −→ Sg

that is of relative dimension 1 and satisfies the following: given a point x ∈ Sg, its
preimage in Cg is a curve over H(x) uniformized by the Schottky group �x .

It is important to note that the uniformization property which lies at the basis of
the theories of Schottky and Mumford carries over to our global setting. Indeed, the
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universal Mumford curve Cg can be uniformized by an open subset of the relative
projective line over Sg . The precise statement is as follows.

Theorem 4 (Corollary 6.1.3) There exists an open subset �g of P1
Sg

and a morphism

�g → Cg over Sg that is a local isomorphism. Over each point x in Sg, the restriction
of the morphism gives back the uniformization by the Schottky group �x .

To contextualize our result, let us mention a different construction of families of
Mumford curves over Z, due to T. Ichikawa. In [31], he introduces objects called
generalized Tate curves: stable curves defined over a Z-algebra mixing polynomials
and power series. A typical example is the curve C0, which, by specialization on the
base, gives back Mumford curves whose reduction graph is a rose with g petals. It is
defined over the ring R0 := Z[x,∏i 
= j

1
xi−x j

][[y]], where the multivariables x and y
are deformation parameters related to Schottky uniformization. A similar curve C�

exists for each stable graph� of genus g and is defined over a ring R� analogous to R0.
Ichikawa’s constructionmakes no use of Schottky spaces and is rather a generalization
ofMumford’s strategy to the case of a nonlocal base ring.More recently, in the preprint
[35], which appeared online after the first version of the present work, Ichikawa has
shown that the generalized Tate curves may be glued into a universal Mumford curve,
defined over a formal scheme over Z. Ichikawa’s approach has allowed him to study
objects of arithmetic interest, such as Teichmüller modular forms [33], periods of
Mumford curves [34], and p-adic solutions of certain systems of partial differential
equations, such as the Korteweg-deVries hierarchy [32].

There are several advantages in our construction of universal Schottky uniformiza-
tion over Z. First of all, the curve Cg admits a nice description as a global object:
the Schottky space Sg is a subspace of the affine space and therefore has canonical
global coordinates. Moreover, the presence of the analytic topology provides a finer
description of degenerations of families of Schottky groups, as well as a concrete way
of studying natural group actions on the universal Mumford curve. Finally, Berkovich
geometry brings out the connections between our construction and objects in neigh-
boring theories such as tropical geometry and geometric group theory.

A convenient way to study these connections is the notion of skeleton of a non-
archimedean analytic space, a combinatorial object that plays an important role in
Berkovich’s theory and that can be interpreted as a “tropical shadow” of such a space.
In the one-dimensional case, skeletons are finite graphs that capture fundamental prop-
erties of the curve they represent.2 They appear in this work as invariants that define
strata in the Schottky space, bringing out connections with tropical moduli spaces
as follows. Let us fix a non-archimedean point a ∈ M(Z), and recall that Mumfg,a
is the space of Mumford curves over extensions of H(a), as in Theorem 2. Then,
by assigning to each Mumford curve its skeleton, we can build a map of topological
spaces

ψ : Mumfg,a → M trop
g ,

2 For more details and a discussion of higher dimensional skeletons, we refer the reader to the excellent
survey by Werner [50].
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where M trop
g denotes the moduli space of tropical curves, parametrizing stable graphs

of genus g with weights assigned at vertices. The image of the map ψ consists of
unweighted metric graphs, and can be characterized as the quotient of the Culler-
Vogtmann outer spaceCV ′

g by the action of Out(Fg). The outer space is a fundamental
object of geometric group theory, and has been used to show many group theoretic
properties of Out(Fg) that were previously unknown. The reader can find more infor-
mation in the original paper [14], as well as in [49], which discusses more recent
advances. The space CV ′

g parametrizes graphs with an extra structure called a mark-
ing, and the action of the group Out(Fg) is nontrivial only at the level of the marking,
in a way that is reminescent of the action of Out(Fg) on Sg . It is therefore a very
natural problem to ask for a comparison between the two actions, which we are able
to provide with the following result.

Theorem 5 (Theorem 6.2.2) Let a ∈ M(Z) be a non-archimedean point and let
Sg,a = Sg ∩ pr−1

Z
(a) be the fiber of the Schottky space over a. Then, there is a

continuous surjective function

φ : Sg,a −→ CV ′
g ×M trop

g
Mumfg,a,

which is not injective for g ≥ 2.

The interplay between non-archimedean Schottky spaces, tropical geometry, and
the outer space is also the object of very recent work of M. Ulirsch. In [48],
which appeared online at the same time as the present work, he defines a non-
archimedean analytic Deligne-Mumford stack Tg , over a fixed algebraically closed
non-archimedean complete valued field K , which provides an analogue of Teich-
müller space in non-archimedean analytic geometry. The construction proceeds in two
steps. He first considers the logarithmic algebraic stack T log

g = Mlog
g ×M trop

g
T trop
g ,

whereMlog
g is the logarithmic algebraic stack of stable curves and T trop

g is the tropical
Teichmüller space defined in [13]. The desired space Tg is then obtained by taking

the algebraic stack underlying T log
g , base changing it to the value group of K , and

applying Raynaud’s generic fiber functor.
The space Tg parametrizes Berkovich stable curves over valued extensions of K ,

together with a choice of a basis of their topological fundamental group. It contains
a natural locus of marked Mumford curves, which is related to the Schottky space
Sg ×Z K . Even though the techniques of the present paper significantly differ from
those of [48], we can describe the extent of this relation by considering the connections
of the two constructions with the spaces M trop

g andCV ′
g . This is done in Remark 6.2.4,

as well as in Remark 5 in the introduction of [48].
Finally, let us note that other moduli spaces of arithmetic significance have been

extensively studied, over both archimedean and non-archimedean valued fields. It
seems natural to try to define a version over Z of these objects, the closest to the
present work being the moduli space Mumfg,n of pointed Mumford curves and the
moduli spaceAg of principally polarized abelian varieties.While the case ofMumfg,n
descends easily from the results already established by the authors, the space Ag and
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a version of the Torelli map over Z would require a bigger effort. We plan to address
these issues and related applications in future work.

The paper is structured as follows. Section 2 is a self-contained introduction to the
affine and projective Berkovich spaces over the Banach ring (Z, | · |∞), providing all
the definitions and basic material on the subject needed for the rest of the paper. In
Sect. 3, we formulate classical definitions and results of the theory of Schottky groups
in a way that applies to any valued field, archimedean and non-archimedean alike. We
adapt classical notions in the non-archimedean theory to the framework of Berkovich
spaces, relying on previous work [46] by the authors. In Sect. 4, we define the space
Sg as a Berkovich space over Z and we prove that it is open in A

3g−3,an
Z

. In Sect. 5,
we study the natural action of Out(Fg) on Sg: we establish some results that allow us
to complete the proof of Theorem 1 and determine the properties of the quotient as
stated in Theorem 2. Finally, in Sect. 6, we prove the universal uniformization theorem
(Theorems 3 and 4) and a result clarifying the connections with the outer space and
the moduli space of tropical curves (Theorem 5).

All the results proven in this paper remain valid if we replace (Z, | · |∞) with the
ring of integers of a number field.

2 Berkovich spaces over Z

2.1 Analytic spaces over Banach rings

Let (A, ‖·‖) be a Banach ring. In this section, we recall Berkovich’s definition of
analytic spaces over A (see [3, Section 1.5]).

We start with the affine analytic space of dimension n over A, denoted by An,an
A . It

is a locally ringed space and we define it in three steps: underlying set, topology and
structure sheaf.

The set underlying A
n,an
A is the set of bounded multiplicative seminorms on

A[T1, . . . , Tn] that are bounded on A, i.e. the set of maps

| · | : A[T1, . . . , Tn] −→ R≥0

that satisfy the following properties:

(i) |0| = 0 and |1| = 1;
(ii) ∀P, Q ∈ A[T1, . . . , Tn], |P + Q| ≤ |P| + |Q|;
(iii) ∀P, Q ∈ A[T1, . . . , Tn], |P + Q| = |P| |Q|;
(iv) ∀a ∈ A, |a| ≤ ‖a‖.
We set M(A) := A

0,an
A and call it the spectrum of A. Note that we have a projection

map prA : An,an
A → M(A) induced by the morphism A → A[T1, . . . , Tn].

Let x be a point of An,an
A . Denote by | · |x the multiplicative seminorm associated

to it. The ring A[T1, . . . , Tn]/ ker(| · |x ) is a domain and we can consider its field of
fractions. The seminorm | · |x induces an absolute value on the later it and we can
consider its completion, which we denote by H(x). We simply denote by | · | the
absolute value on H(x) induced by | · |x since no confusion may result.
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We have a natural morphism χx : A[T1, . . . , Tn] → H(x). For each P ∈
A[T1, . . . , Tn], we set P(x) := χx (P). Note that, by definition, we have |P(x)| =
|P|x .

The set An,an
A is endowed with the coarsest topology such that, for each P ∈

A[T1, . . . , Tn], the map

x ∈ A
n,an
A �−→ |P(x)| ∈ R≥0

is continuous. The resulting topological space is Hausdorff and locally compact. The
spectrum M(A) is even compact. The projection map prA is continuous.

For each open subset V of A
n,an
A , we denote by SV the set of elements of

A[T1, . . . , Tn] that do not vanish on V and set K (V ) := S−1
V A[T1, . . . , Tn].

Let U be an open subset of An,an
A . We define O(U ) to be the set of maps

f : U −→
⊔
x∈U

H(x)

such that

(i) for each x ∈ U , f (x) ∈ H(x);
(ii) each x ∈ U has an open neighborhood V onwhich f is a uniform limit of elements

of K (V ).

One may now define arbitrary analytic spaces over A as locally ringed spaces that
are locally isomorphic to some (V (I),OU/I), where U is an open subset of An,an

A
and I is a sheaf of ideals of OU .

A point x of an analytic space X over A is said to be archimedean or non-
archimedean if the associated absolute valued onH(x) is.We denote by X a (resp. Xna)
the set of archimedean (resp. non-archimedean) points of x and call it the archimedean
(resp. non-archimedean) part of X . It is well-known that an absolute value on a field
is archimedean if, and only if, its restriction to the prime field is. It follows that we
have

X a = {x ∈ X : |2(x)| > 1} and Xna = {x ∈ X : |2(x)| ≤ 1}

(and 2 could be replaced by any integer bigger than 1). In particular, the archimedean
and non-archimedean parts of X are respectively open and closed subsets of X .

To go further, one should define the category of analytic spaces over A. When A is
a complete non-archimedean valued field, this has been achieved by V. Berkovich in
[3, 4] (with a more general notion of analytic space). In [37, §2.1], Th. Lemanissier
and the first-named author gave a definition over an arbitrary Banach ring. However,
the category is shown to enjoy nice properties only under additional assumptions, for
instance when A is a discrete valuation ring (with some mild extra hypotheses) or
the ring of integers of a number field (see Sect. 2.3 for some definitions related to
this setting). For future use, we note that, in those cases, fiber products exist (see [37,
Théorème 4.3.8]).
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2.2 Relative projective line

In the rest of the text, we will not only need affine spaces, but also projective spaces
and, more precisely, relative projective lines over affine spaces. We explain here how
to construct them in a down-to-earth way. Let (A, ‖·‖) be a Banach ring. Let n ∈ N

and denote by S the analytic space An,an
A with coordinates T1, . . . , Tn .

Let U (resp. V ) be the affine space An+1,an
A with coordinates T1, . . . , Tn, Z (resp.

T1, . . . , Tn, Z ′) and denote by U0 (resp. V0) the open subset defined by the inequality
Z 
= 0 (resp. Z ′ 
= 0). The morphism

A[T1, . . . , Tn, Z , Z−1] −→ A[T1, . . . , Tn, Z ′, Z ′−1]
Ti �−→ Ti
Z �−→ Z ′−1

induces an isomorphism U0
∼−→ V0.

Wedenote byP1
S the analytic space obtainedbyglueingU andV alongU0 andV0 via

the previous isomorphism. It comes with a natural projection morphism π : P1
S → S.

For any open subset S′ of S, we denote by P
1
S′ the analytic space π−1(S′).

When n = 0, we will denote P1
M(A)

by P
1,an
A . Note that, for each s ∈ S, the fiber

π−1(s) is identified with P
1,an
H(s).

Let M :=
(
a b
c d

)
∈ GL2(O(S)). We may associate to it an endomorphism of P1

S

by the usual expression in coordinates

Z �−→ aZ + b

cZ + d
.

In this way, we get an action of GL2(O(S)) on P
1
S . It factors through PGL2(O(S)).

The image ofM in PGL2(O(S))will be denoted by [M] =
[
a b
c d

]
. Note that the action

restricts to an action on each fiber of π , hence also on P1
S′ for any open subset S′ of S.

2.3 Berkovich spaces overZ

In this section, we consider the special case where (A, ‖·‖) = (Z, | · |∞), where | · |∞
denotes the usual absolute value. We refer to [43], and especially Sect. 3.1 there, for
more details.

The spectrumM(Z) is easily described using Ostrowski’s theorem. It contains the
following points:

• a point a0, associated to the trivial absolute value | · |0, with residue field Q;
• for each ε ∈ (0, 1], a point aε∞ associated to the absolute value | · |ε∞, with residue
field R;

• for each prime number p and each ε ∈ (0,+∞), a point aε
p associated to the

absolute value | · |εp, with residue field Qp;
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• for each prime number p, a point ap,0 associated to the seminorm on Z induced
by the trivial absolute value on Z/pZ, with residue field Z/pZ.

We will sometimes drop the exponent 1 and write ap and a∞ instead of a1p and a1∞.
The archimedean part ofM(Z) is the open subset M(Z)a = {aε∞ | ε ∈ (0, 1]}.

The topology of M(Z) is quite simple. First, the branches are all homeomorphic
to segments: for each prime number p, the map

bp : η ∈ [0, 1] �−→

⎧⎪⎨
⎪⎩
ap,0 if η = 0;
a− log(η)
p if η ∈ (0, 1);

a0 if η = 1

is a homeomorphism and the map

β∞ : ε ∈ [0, 1] �−→
{
a0 if ε = 0;
aε∞ if ε ∈ (0, 1]

is a homeomorphism too. Moreover, a subset U of M(Z) containg a0 is open if, and
only if, the intersection of U with each bp([0, 1]) and β∞([0, 1]) is open and only
finitely many of those sets are not contained entirely in U . In other words, M(Z) is
homeomorphic to the Alexandroff one-point compactification of the disjoint union of
the bp([0, 1))’s and β∞((0, 1]), the point at infinity being a0.

We will often think about an analytic space over Z as a family of analytic spaces
over the different valued fields associated to the points ofM(Z). The spaces overQp,

Fig. 1 The analytic spectrum M(Z)
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Q, Z/pZ (the last two being endowed with the trivial absolute value) are then usual
Berkovich spaces. Recall that the analytic spaces over R in the sense of Berkovich
are the quotients of the corresponding usual analytic spaces over C by the complex
conjugation.

Let us be more precise in the case of an affine space An,an
R,| · |ε∞ , for some ε ∈ (0, 1].

The complex conjugation induces an automorphism of Cn given by

c : z = (z1, . . . , zn) ∈ C
n �−→ (z̄1, . . . , z̄n) ∈ C

n

and we have a homeomorphism

ρε : z ∈ C
n/〈c〉 �−→ vz,ε ∈ A

n,an
R,| · |ε∞,

where vz,ε : P(T ) ∈ R[T ] �→ |P(z)|ε∞. It follows that all the archimedean fibers are
the same. More precisely, the map

� : (v, ε) ∈ A
n,an
R,| · |∞ × (0, 1] �−→ ρε ◦ ρ−1

1 (v) ∈ (
A
n,an
Z

)a
is a homeomorphism.Note that�(v, ε)may also be defined explicitly as the seminorm
defined by

�(v, ε) : P(T ) ∈ R[T ] �−→ |P(v)|ε.

In particular, the seminorms v and �(v, ε) are equivalent.
As regards topology, analytic spaces overZ are known to be locally path-connected

thanks to [37, Théorème 7.2.17]. As one can expect, surprising phenomena occurwhen
passing from archimedean to the non-archimedean part. We illustrate this by giving
two examples of continuous sections of the projection prZ : A1,an

Z
→ M(Z).

Example 2.3.1 Let α be an element of C that is transcendental over Q. For each a ∈
M(Z)na, denote by ηa,1 the Shilov boundary of the disc of center 0 and radius 1, i.e.
the Gauß point, in the fiber pr−1

Z
(a). The map

σ : a ∈ M(Z) �−→
{

ηa,1 if a is non-archimedean;

ρε(α) if a = aε∞ with ε ∈ (0, 1].

is a continuous section of prZ : A1,an
Z

→ M(Z). For this it is enough to show that
ρε(α) tends to ηa0,1 when ε goes to 0. Remark that the point ηa0,1 corresponds to the
trivial absolute value on Z[T ] and that, for each P ∈ Z[T ] − {0}, we have

|P(ρε(α))| = |P(α)|ε∞ −−→
ε→0

1

since α is transcendental over Q. The result follows.



79 Page 14 of 53 J. Poineau, D. Turchetti

Example 2.3.2 Let r ∈ (0, 1). For each a ∈ M(Z)na, denote by ηa,r the Shilov
boundary of the disc of center 0 and radius r in the fiber pr−1

Z
(a). The map

τr : a ∈ M(Z) �−→
{

ηa,r if a is non-archimedean;

ρε(r1/ε) if a = aε∞ with ε ∈ (0, 1].

is a continuous section of prZ : A1,an
Z

→ M(Z). It is enough to show that ρε(r1/ε)
tends to ηa0,r when ε goes to 0. This is clear since, for each ε ∈ (0, 1], we have

|T (ρε(r
1/ε)| = |r1/ε|ε∞ = r

and ηa0,r is the only point of the fiber pr−1
Z

(a0) where T has absolute value r .

One can build a similar theory replacing Z by the ring of integers OK of a number
field K . To be more precise, let us denote by �K the set of complex embeddings of K
up to conjugation and endow OK with the norm

‖·‖K := max(|σ( ·)|∞, σ ∈ �K ).

Then, the spectrum M(OK ) looks very similar to M(Z): it is a tree with one point
associated to the trivial absolute value and, for each place of K , one branch emanating
from it.

Remark that the restriction of seminorms induces a map M(OK ) → M(Z), and
more generally a map An,an

OK
→ A

n,an
Z

. Those maps are continuous and open.
Note also that M(OK ) is an analytic space over Z in the sense of Sect. 2.1. In

particular, by [37, Théorème 4.3.8], it makes sense to consider the fiber product of
an analytic space over Z byM(OK ) overM(Z). We obtain canonical identifications
A
n,an
OK

= A
n,an
Z

×M(Z) M(OK ), P1,an
OK

= P
1,an
Z

×M(Z) M(OK ), etc.

2.4 Some useful inequalities

In this section, we fix a complete valued field (k, | · |), archimedean or not. We state a
few results that will be useful later.

Lemma 2.4.1 Let a, b ∈ k. We have

|a + b| ≤ max(|2|, 1) max(|a|, |b|).

If |a| > max(|2|, 1) |b|, then we have

|a + b| ≥ |a|
max(|2|, 1) .

Proof If (k, | · |) is non-archimedean, then max(|2|, 1) = 1, and those inequalities are
well-known.
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Assume that (k, | · |) is archimedean. Then (k, | · |) embeds isometrically into
(C, | · |ε∞) for some ε ∈ (0, 1] and it is enough to prove the result for the latter.
In this case, we have max(|2|, 1) = 2ε. For any a, b ∈ C, we have |a + b|∞ ≤
2 max(|a|∞, |b|∞) and the first result follows by raising the inequality to the power ε.

The inequality applied to a + b and −b gives |a| ≤ |2|max(|a + b|, |b|). As a
consequence, if we have |a| > |2| |b|, we must have |a| ≤ |2| |a + b|. ��

It will be useful to introduce a notation for discs. We consider here the Berkovich
affine line A1,an

k over k with coordinate T .

Notation 2.4.2 For a ∈ k and r ∈ R>0, we set

D+(a, r) := {x ∈ A
1,an
k | |T (x) − a| ≤ r},

D−(a, r) := {x ∈ A
1,an
k | |T (x) − a| < r}.

Lemma 2.4.3 Let a, b ∈ k and ρa, ρb ∈ R>0. If |a − b| > max(|2|, 1) max(ρa, ρb),
then the closed discs D+(a, ρa) and D+(b, ρb) are disjoint.

If | · | is non-archimedean, then the closed discs D+(a, ρa) and D+(b, ρb) are
disjoint if, and only if, |a − b| > max(ρa, ρb).

Proof If there exists a point x in D+(a, ρa)∩D+(b, ρb), thenwe have |T (x)−a| ≤ ρa
and |T (x) − b| ≤ ρb inH(x), hence

|a − b| = |(a − T (x)) + (T (x) − b)| ≤ max(|2|, 1) max(ρa, ρb)

by Lemma 2.4.1. The first part of the result follows.
The converse implication in the non-archimedean setting is well-known. ��

Lemma 2.4.4 Let a, b ∈ k. If |a + b|2 > max(|4|, 1) |ab|, then |a| 
= |b|.
If | · | is non-archimedean, then we have |a| 
= |b| if, and only if, |ab| < |a + b|2.

Proof If |a| = |b|, then, by Lemma 2.4.1, we have |a + b| ≤ max(|2|, 1) |a|, hence

|a + b|2 ≤ max(|2|2, 1) |a|2 = max(|4|, 1) |ab|.

The first part of the result follows.
Let us now assume that | · | is non-archimedean. Assume that |a| 
= |b|. Then, we

have |a + b| = max(|a|, |b|) > min(|a|, |b|), hence

|a + b|2 = max(|a|, |b|)2 > max(|a|, |b|) min(|a|, |b|) = |a| |b|.

The converse implication follows directly from the first part of the statement. ��

2.5 Metric structure

In this section, we fix a complete non-archimedean valued field (k, | · |). In the follow-
ing, we will often encounter the projective line P1,an

k and we gather here a few metric
properties.
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First recall thatP1,an
k has the structure of a real tree (see [17, (3.4.20)]). In particular,

for any two distinct points x, y ∈ P
1,an
k , there exists a unique segment [xy] joining x

to y. Recall also that each segment consisting of points of type 2 or 3 carries a multi-
plicative length (or modulus) that is invariant under isomorphisms of P1,an

k , i.e. under
Möbius transformations (see [17, (3.6.23)]). To define the length of such a segment I ,
one may proceed as follows.

Notation 2.5.1 For a ∈ k and r ∈ R>0, we denote by ηa,r the unique point is the
Shilov boundary of the closed disc D+(a, r).

There exist a finite extension k′ of k, a coordinate T on P
1,an
k , a ∈ k′ and r ≤

s ∈ R>0 such that I is the image of the segment [ηa,r , ηa,s] by the projection map
P
1,an
k′ → P

1,an
k . We then set

�(I ) := s

r
∈ [1,+∞).

It is independent of the choices made. It will convenient to set �(∅) := 1.

Lemma 2.5.2 Let a, b, c, d be distinct points of P1(k) and denote their cross-ratio
by [a, b; c, d].

Set I := [ab] ∩ [cd]. It is either a segment consisting of points of type 2 or 3 or the
empty set. If I is a non-trivial segment and if going from a to b and from c to d induces
the same orientation on I , then we set ε := −1. In all other cases, we set ε := 1.

Then, we have

|[a, b; c, d]| = �(I )ε.

Proof Since the cross-ratio is invariant underMöbius transformations, wemay assume
that b = 1, c = 0 and d = ∞. Assume that |a| < 1. Then [ab] ∩ [cd] = [η0,|a|, η0,1]
and going from a to b and from c to d induces the same orientation on it, hence ε = −1.
We have

�([ab] ∩ [cd])−1 = |a| = |[a, b; c, d]|

as desired. The other cases are dealt with similarly. ��

3 Schottky groups

The notion of Schottky group is classical over C (see [41]) and even over a complete
non-archimedean valued field (see [24]). The definitions, results and proofs that appear
in this section are adaptations of the standard ones to a relative setting. We will start
the section by describing a typical geometric situation giving rise to Schottky groups
before stating the general definition (Definition 3.5.1).

We would also like to refer the reader to the recent text [46] by the authors, which
provides a detailed exposition of the theory non-archimedean Schottky groups and
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Schottky uniformization in the setting of Berkovich spaces and fixes some gaps in the
existing literature. Our treatment here follows this reference quite closely.

3.1 Geometric situation

Let S be an analytic space over a Banach ring (archimedean or not). As in Sect. 2.2,
consider the analytic space P1

S and the projection morphism π : P1
S → S. In this sec-

tion, we describe geometric properties of the action of some groups of automorphisms
of P1

S . It follows the strategy of [24, I, 4.1], see also [46, §6.4.1].

Definition 3.1.1 Let (γ1, . . . , γg) ∈ PGL2(O(S))g . Let B = (
B+(γ ε

i ), 1 ≤ i ≤
g, ε = ±1

)
be a family of closed subsets ofP1

S that are disjoint. For each i ∈ {1, . . . , g}
and ε ∈ {−1, 1}, set

B−(γ ε
i ) := γ ε

i (P1
S − B+(γ −ε

i )).

For each s ∈ S, i ∈ {1, . . . , g}, ε ∈ {−1, 1} and σ ∈ {−,+}, set Bσ
s (γ ε

i ) :=
Bσ (γ ε

i ) ∩ π−1(s).
We say that B is a Schottky figure adapted to (γ1, . . . , γg) if, for each s ∈ S,

i ∈ {1, . . . , g} and ε ∈ {−1, 1}, B+
s (γ ε

i ) is a closed disc in π−1(s) � P
1
H(s) and

B−
s (γ ε

i ) is a maximal open disc inside it.

Remark 3.1.2 Let ϕ ∈ PGL2(O(S)). If B = (
B+(γ ε

i ), 1 ≤ i ≤ g, ε = ±1
)
is a

Schottky figure adapted to (γ1, . . . , γg), then
(
ϕ(B+(γ ε

i )), 1 ≤ i ≤ g, ε = ±1
)
is a

Schottky figure adapted to (ϕγ1ϕ
−1, . . . , ϕγgϕ

−1).

In this section, we assume that we are in the situation of Definition 3.1.1. For
σ ∈ {−,+}, we set

Fσ := P
1
S −

⋃
1≤i≤g
ε=±1

B−σ (γ ε
i ).

Note that, for γ0 ∈ {γ ±1
1 , . . . , γ ±1

g } and σ ∈ {−,+}, Bσ (γ0) is the unique disc
among the Bσ (γ )’s containing γ0Fσ .

Set � := {γ1, . . . , γg}. Denote by Fg the free group over the alphabet � and
by � the subgroup of PGL2(O(B)) generated by �. We have a natural morphism
ϕ : Fg → � sending each γ in � to γ . It induces an action of Fg on P1

S .
We now define subsets of P1

S associated to the elements of Fg . As usual, we will
identify those elements with the words over the alphabet �± := {γ ±1

1 , . . . , γ ±1
g }.

Notation 3.1.3 For a non-empty reduced word w = w′γ over �± and σ ∈ {−,+},
we set

Bσ (w) := w′ Bσ (γ ).

The following result is stated and proved in [46, Lemma 6.4.6].
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Lemma 3.1.4 Let u be a non-empty reduced word over �±. Then we have uF+ ⊆
B+(u).

Let v be a non-empty reduced word over�±. If there exists a wordw over�± such
that u = vw, then we have uF+ ⊆ B+(u) ⊆ B+(v). If, moreover, u 
= v, then we
have B+(u) ⊆ B−(v).

Conversely, if we have B+(u) ⊆ B+(v), then there exists a word w over �± such
that u = vw. ��
Corollary 3.1.5 The morphism ϕ is an isomorphism and the group � is free on the
generators γ1, . . . , γg. ��

As a consequence, we will now identify � with Fg and express the elements of �

as words over the alphabet �±. In particular, we will allow us to speak of the length
of an element γ of �. We will denote it by |γ |.

Set

On :=
⋃

|γ |≤n

γ F+.

Since the complement of F+ is the disjoint union of the open disks B−(γ ) with
γ ∈ �±, it follows from the description of the action that, for each n ≥ 0, we have

P
1
S − On =

⊔
|γ |=n+1

B−(γ ).

It follows from Lemma 3.1.4 that, for each n ≥ 0, On is contained in the interior
of On+1. We set

O :=
⋃
n≥0

On =
⋃
γ∈�

γ F+.

3.2 Over a valued field

Let (k, | · |) be a complete valued field. In this section, we will focus on the particular
case S = M(k). In this setting, the material of this section is classical: see [41,
Project 4.5] and [24, I, 4.1.3] (or [46, §6.4.1]) in the archimedean and non-archimedean
case respectively.

We still assume that we are in the situation of Definition 3.1.1. Set ι :=
[
0 1
1 0

]
∈

PGL2(k). It corresponds to the map z �→ 1/z on P
1,an
k . The first result follows from

an explicit computation.

Lemma 3.2.1 Let α ∈ k∗ and ρ ∈ [0, |α|). Then, we have

ιD+(α, ρ) =
⎧⎨
⎩

D+
(

ᾱ
|α|2−ρ2 ,

ρ

|α|2−ρ2

)
if k is archimedean;

D+
(
1
α
,

ρ

|α|2
)
otherwise.
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��

Lemma 3.2.2 Let r > 0 and let γ =
[
a b
c d

]
in PGL2(k) such that γ D+(0, r) ⊆ A

1,an
k .

Then, we have |d| > r |c| and

γ D+(0, r) =
⎧⎨
⎩

D+
(

bd̄−ac̄r2

|d|2−|c|2 r2 ,
|ad−bc| r

|d|2−|c|2 r2
)

if k is archimedean;
D+

(
b
d ,

|ad−bc| r
|d|2

)
otherwise.

Proof Let us first assume that c = 0. Then, we have d 
= 0, so the inequality |d| > r |c|
holds, and γ is affine with ratio a/d. The result follows.

Let us now assume that c 
= 0. In this case, we have γ −1(∞) = − d
c , which does

not belong to D(0, r) if, and only if, |d| > r |c|. Note that we have the following
equality in k(T ):

aT + b

cT + d
= a

c
− ad − bc

c2
1

T + d
c

.

ByLemma 3.2.1, there existβ ∈ k and σ > 0 such that ιD+( dc , r) = D+(β, σ ). Then,
we have γ D+(0, r) = D+( ac − ad−bc

c2
β,

∣∣ ad−bc
c2

∣∣ σ) and the result follows from an
explicit computation. ��
Lemma 3.2.3 Let D′ ⊆ D be closed concentric discs in A1,an

k . Let γ ∈ PGL2(k) such

that γ D′ ⊆ γ D ⊆ A
1,an
k . Then, we have

radius of γ (D′)
radius of γ (D)

≤ radius of D′

radius of D
,

with an equality if k is non-archimedean.

Proof Let p be the center of D and D′ and let τ be the translation sending p to 0. Up
to changing D into τD, D′ into τD′, γ into γ τ−1 and γ ′ into γ ′τ−1, we may assume
that D and D′ are centered at 0. The result then follows from Lemma 3.2.2. ��
Proposition 3.2.4 Assume that ∞ ∈ F−. Then, there exist R > 0 and c ∈ (0, 1) such
that, for each γ ∈ � − {id}, B+(γ ) is a closed disc of radius at most R c|γ |.

Proof Let δ, δ′ ∈ �±. By Lemma 3.1.4, we have an inclusion of discs B+(δ′δ) ⊆
B+(δ′). There exists fδ,δ′ ∈ PGL2(k) that sends those discs to concentric disks
inside A

1,an
k . In the non-archimedean case, the discs are already concentric, so one

may take fδ,δ′ = id, while, in the archimedean case, there is some work to be done,
for which we refer to [41, Project 3.4]. Set

cδ,δ′ := radius of fδ,δ′(B+(δ′δ))
radius of fδ,δ′(B+(δ′))

∈ (0, 1).
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For each γ ∈ � such that γ δ′ is a reduced word, by Lemma 3.2.3, we have

radius of B+(γ δ′δ)
radius of B+(γ δ′)

= radius of γ f −1
δ,δ′ fδ,δ′(B+(δ′δ))

radius of γ f −1
δ,δ′ fδ,δ′(B+(δ′))

≤ cδ,δ′ .

Set

R := max({radius of B+(γ ) | γ ∈ �±})

and

c := max({cγ,γ ′ | γ, γ ′ ∈ �±, γ ′ 
= γ −1}).

By induction, for each γ ∈ � − {id}, we have

radius of B+(γ ) ≤ R c|γ |.

��
Let us mention an easy consequence of that result (see [46, Corollary 6.4.12] for

details).

Corollary 3.2.5 Every element of � − {id} is loxodromic. ��
We now investigate the set O .

Corollary 3.2.6 Letw = (wn) 
=0 be a sequence of reducedwords over�± such that the
associated sequence of discs (B+(wn))n≥0 is strictly decreasing. Then, the intersection⋂

n≥0 B
+(wn) is a single k-rational point pw. Moreover, the discs B+(wn) form a

basis of neighborhoods of pw in P1,an
k .

Proof We include here the idea of the proof and refer the interested reader to [46,
Corollary 6.4.13] for the complete details (in the non-archimedean case, but the same
arguments apply when k is archimedean).
One checks that it is enough to prove the result after extending the scalars to a finite
extension k0 of k. As a result, we may assume that F− ∩ P

1,an
k (k) 
= ∅, and then, up

to changing coordinates, that ∞ ∈ F−. By Proposition 3.2.4, the radius of B+(wn)

tends to 0 when n goes to ∞, and the result follows. ��
Corollary 3.2.7 The set O is dense inP1,an

k and its complement is contained inP1,an
k (k).

��

3.3 Schottky uniformization

We return to the general case of Definition 3.1.1 with an arbitrary analytic space S.
Here again, we follow [46, §6.4.1].
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Definition 3.3.1 We say that a point x ∈ P
1
S is a limit point if there exist x0 ∈ P

1
S and

a sequence (γn)n≥0 of distinct elements of � such that limn→∞ γn(x0) = x .
The limit set L of � is the set of limit points of �.

Following [10, III, §4, Définition 1], we say that the action of � on a subset E of P1
S

is proper if the map

� × E −→ E × E
(γ, x) �−→ (x, γ · x)

is proper,where� is endowedwith the discrete topology.By [10, III, §4, Proposition 7],
it is equivalent to requiring that, for every x, y ∈ E , there exist neighborhoods Ux

andUy of x and y respectively such that the set {γ ∈ � : γUx ∩Uy 
= ∅} is finite. By
[10, III, §4, Proposition 3], in this case, the quotient �\E is Hausdorff.

We denote by C the set of points x ∈ P
1
S that admit a neighborhood Ux satisfying

{γ ∈ � : γUx ∩Ux 
= ∅} = {id}. ThenC is an open subset of P1
S and the quotient map

(P1
S − C) → �\(P1

S − C) is a local homeomorphism. In particular, the topological
space�\(P1

S −C) is naturally endowed with a structure of analytic space via this map.

Proposition 3.3.2 We have O = C = P
1
S − L. Moreover, the action of � on O is free

and proper and the quotient map �\O → S is proper.

Proof The proof is the same as that of [46, Theorem 6.4.18]. We include it for the
convenience of the reader.

Let x ∈ L . By definition, there exist x0 ∈ P
1
S and a sequence (γn)n≥0 of distinct

elements of � such that limn→∞ γn(x0) = x . Assume that x ∈ F+. Since F+ is
contained in the interior of O1, there exists N ≥ 0 such that γN (x0) ∈ O1, hence we
may assume that x0 ∈ O1. Lemma 3.1.4 then leads to a contradiction. It follows that L
does not meet F+, hence, by �-invariance, L is contained in P1

S − O .
Let y ∈ P

1
S − O . By definition, there exists a sequence (wn)n≥0 of reduced words

over �± such that, for each n ≥ 0, |wn| ≥ n and y ∈ B−(wn). Let y0 ∈ F−. By
Lemma 3.1.4, for each n ≥ 0, we have wn(y0) ∈ B−(wn) and the sequence of discs
(B+(wn))n≥0 is strictly decreasing. By Corollary 3.2.6, (wn(y0))n≥0 tends to y, hence
y ∈ L . It follows that P1

S − O = L .
Set

U := F+ ∪
⋃

γ∈�±
γ F− = P

1
S −

⊔
|γ |=2

B+(γ ).

It is an open subset of P
1
S and it follows from the properties of the action (see

Lemma 3.1.4) that we have {γ ∈ � | γU ∩ U 
= ∅} = {id} ∪ �±. Using the
fact that the stabilizers of the points ofU are trivial, we deduce thatU ⊆ C . Letting �

act, it follows that O ⊆ C . Since no limit point may belong to C , we deduce that this
is actually an equality.

We have already seen that the action is free on O . Let us prove that it is proper.
Let x, y ∈ O . There exists n ≥ 0 such that x and y belong to the interior of On .
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By Lemma 3.1.4, the set {γ ∈ � | γ On ∩ On 
= ∅} is made of element of length at
most 2n + 1. In particular, it is finite. We deduce that the action of � on O is proper.

Let K be a compact subset of S. Since π : P1
S → S is proper, π−1(K ) is compact,

hence its closed subset F+ ∩ π−1(K ) is compact too. Since F+ ∩ π−1(K ) contains
a point of every orbit of every element of π−1(K ), we deduce that �\(O ∩ π−1(K ))

is compact. ��

3.4 Koebe coordinates

Let (k, | · |) be a complete valued field and let γ be a loxodromic element of PGL2(k).
The eigenvalues of γ belong to a quadratic extension of k and have distinct absolute
values. If k is archimedean, it follows immediately that they both belong to k, hence
γ admits exactly two fixed points α, α′ ∈ P

1,an(k). If k is non-archimedean, then
the result still holds by the same argument in characteristic different from 2 and, in
general, as a consequence of Hensel’s lemma (see [24, I, 1.4]).

We can choose α so that the associated eigenvalue has minimal absolute value.
In this case, α and α′ will be respectively the attracting and repelling fixed points of
the Möbius transformation associated to γ . Denote by β the multiplier of γ , i.e. the
ratio of the eigenvalues such that |β| < 1. For ε ∈ PGL2(k) such that ε(0) = α

and ε(∞) = α′, we have ε−1γ ε(z) = βz. It follows that the parameters α, α′ and β

determine uniquely the transformation γ . They are called the Koebe coordinates of γ .
Conversely, given (α = [u : v], α′ = [u′ : v′], β) ∈ (P

1,an
k )3 with α 
= α′ (i.e.

uv′ 
= u′v) and 0 < |β| < 1, it is not difficult to determine explicitly the element
of PGL2(k) that has those Koebe coordinates. It is given by

M(α, α′, β) =
[
uv′ − βu′v (β − 1)uu′
(1 − β)vv′ βuv′ − u′v

]
∈ PGL2(k).

In the rest of the paper, we will sometimes abuse notation and allow ourselves to use
M(α, α′, β) in different contexts, for example when α, α′, β belong to a ring (provided
the conditions α 
= α′ and 0 < |β| < 1 are satisified at each point of its spectrum).
This should not cause any trouble.

The following interpretation of |β| will be useful later.
Lemma 3.4.1 Assume that k is non-archimedean. Let D be an open disc of P1,an

k
containing α′ and not α. Then γ (D) is an open disc containing α′ and the segment
joining the boundary point of D to that of γ (D) consists of points of type 2 or 3 and
has length equal to |β|−1.

Proof Möbius transformations preserve open discs, their boundary points, and the
lenght of segments. Since ε−1γ ε(ε−1(D)) = ε−1(γ (D)), it is enough to prove the
result for ε−1γ ε and ε−1(D). In this case, it is clear. ��

We now check that the Koebe coordinates depend analytically on the entries of the
corresponding matrix. In fact, this is true not only over a valued field, but even over Z.
To prove this, let us introduce some notation. Set

KZ := {(α, α′, β) ∈ (P
1,an
Z

)3 : α 
= α′, 0 < |β| < 1}.
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It is an open subset of (P
1,an
Z

)3. We also consider P3,an
Z

and write its elements in

coordinates in the form

[
a b
c d

]
instead of the usual [a : b : c : d]. Denote by LZ the set

of elements x ∈ P
3,an
Z

such that the matrix

[
a(x) b(x)
c(x) d(x)

]
∈ PGL2(H(x))

is loxodromic.

Lemma 3.4.2 The subset LZ is open in P3,an
Z

.

Proof Let us first consider the archimedean part La
Z
of LZ. By Sect. 2.3, it is enough

to prove that its intersection with the fiber over the point a1∞, corresponding to the
usual absolute value, is open. This allows to translate the statement into a statement
about P3(C) (since the set is clearly stable by complex conjugation), where it is a
consequence of the continuity of the roots of a (degree 2) polynomial.

Let us now handle the non-archimedean part Lna
Z
. By Lemma 2.4.4, we have

Lna
Z =

{[
a b
c d

]
∈ (

P
3,an
Z

)na : |ad − bc| < |a + d|2
}

.

Let x ∈ Lna
Z . There exists r > 1 such that r |ad − bc| < |a + d|2. The open subset of

P
3,an
Z

defined by the inequality

r max(|4|, 1) |ad − bc| < |a + d|2

contains x and sits inside LZ, by Lemma 2.4.4 again. The result follows. ��
Proposition 3.4.3 The morphism

M : (α, α′, β) ∈ KZ �−→ M(α, α′, β) ∈ LZ

is an isomorphism of analytic spaces over Z. Its inverse is the map that associates to
a loxodromic matrix its Koebe coordinates.

Proof The map M is clearly analytic and it follows from the discussion above that it
is a bijection. Let us prove that its inverse is also analytic.

Let m ∈ LZ. We may work in an affine chart of P3,an
Z

containing m and identify it

toA3,an
Z

. As a result, wemay assume that the coefficients a(m), b(m), c(m), d(m) ofm
are well-defined. Denote by λ(m) and λ′(m) the eigenvalues of the matrix associated
to m, chosen so that |λ(m)| < |λ′(m)|. Remark that the inequality on the absolute
values implies that (a + d)(m) 
= 0. The elements λ(m) and λ′(m) are then the two
roots of the characteristic polynomial of the matrix:

X2 − (a + d)(m)X + (ad − bc)(m) = (a + d)2(m)
(
Y 2 − Y + ad − bc

(a + d)2
(m)

)
,
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where Y = 1
(a+d)(m)

X .

Note that the polynomial P(Y ) := Y 2 −Y + (ad−bc)/(a+d)2 (which is actually
well-defined on the whole LZ) has analytic coefficients. We claim that λ and λ′ are
analytic functions of m. If m is archimedean and the discriminant �(m) of P(m)(Y )

is not real, this follows from the fact that there exists a branch of the square-root
that is analytic in a neighborhood of �(m). If m is archimedean and �(m) is real,
then �(m) > 0, since otherwise λ(m) and λ′(m) would be complex conjugates hence
would have the same absolute value. The result then follows from the fact that there
exists a branch of the square-root that is analytic in a neighborhood of �(m) and
commutes with the complex conjugation.

Assume that m is non-archimedean. The stalk Om of the structure sheaf is a local
ring (whose maximal ideal is the set of elements that vanish at m). Denote its residue
field by κ(m) and set

κ(m)◦ := { f ∈ κ(m) : | f (m)| ≤ 1}
and

κ(m)◦◦ := { f ∈ κ(m) : | f (m)| < 1}.
The set κ(m)◦ is a local ring with maximal ideal κ(m)◦◦. We denote its residue field
by κ̃(m). By Lemma 2.4.4, the image of P(Y ) in κ(m)[Y ] has coefficients in κ(m)◦
and its reduction is Y 2−Y . The roots λ(m) and λ′(m) of P(m)(Y ) reduce respectively
to the roots 0 and 1 of Y 2−Y . By [45, Corollaire 5.3] and [43, Corollaire 2.5.2], κ(m)◦
and Om are henselian, and it follows that λ and λ′ are analytic in the neighborhood
of m.

It is now clear that β = λ/λ′ is analytic in the neighborhood of m. Note that
we can also recover α and α′ from λ and λ′ since they correspond to the associated
eigenline. More precisely, we have α(m) = [b(m) : (λ − a)(m)] if λ(m) 
= a(m) and
α(m) = [(λ − d)(m) : c(m)] otherwise, and similarly for α′. It follows that α and α′
are analytic in the neighborhood of m. ��

3.5 Group theory

Let (k, | · |) be a complete valued field. In this section, we give the general definition of
Schottky group over k and explain how it relates to the geometric situation considered
in Sect. 3.1. Here, we borrow from [46, §6.4.2 and §6.4.3].

Definition 3.5.1 A discrete subgroup � of PGL2(k) is said to be a Schottky group
over k if

(i) it is free and finitely generated;
(ii) all its non-trivial elements are loxodromic;
(iii) there exists a non-empty �-invariant connected open subset of P1,an

k on which
the action of � is free and proper (cf. Sect. 3.3).

Amarked Schottky group over k is the datum of a Schottky group � over k together
with a basis of � (as a free group).
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Remark 3.5.2 The notion of Schottky group over k is left unchanged if one replaces
the absolute value on k by an equivalent one.

Remark 3.5.3 Let (k′, | · |′) be an extension of (k, | · |). A subgroup � of PGL2(k) is a
Schottky group over k if, and only if, it is a Schottky group over k′.

Schottky groups arise naturally from Schottky figures, as the following proposition
shows.

Proposition 3.5.4 Let � be a discrete subgroup of PGL2(k) generated by finitely many
elements γ1, . . . , γg. If there exists a Schottky figure adapted to (γ1, . . . , γg), then �

is a Schottky group, and (γ1, . . . , γg) is a basis of it.

Proof The group � satisfies (i) by Corollary 3.1.5, (ii) by Corollary 3.2.5 and (iii)
by Corollary 3.2.7. The fact that (γ1, . . . , γg) is a basis follows from Corollary 3.1.5
again. ��
Definition 3.5.5 Let � be a Schottky group of rank g. We say that a basis B =
(γ1, . . . , γg) of � is a Schottky basis if there exists a Schottky figure that is adapted to
it.

If k is archimedean, it is a classical result of Marden [38] that there exist Schottky
groups with no Schottky bases. On the contrary, in the non-archimedean case, a the-
orem of Gerritzen ensures that Schottky bases always exist (see [20, §2, Satz 1]). We
rephrase it here using the notation of the present paper (see [46, Corollary 6.4.32] for
a proof using Berkovich geometry). We first introduce some terminology.

Definition 3.5.6 Let γ =
[
a b
c d

]
∈ PGL2(k), with c 
= 0, be a loxodromic matrix and

let λ ∈ R>0 be a positive real number. We call open and closed twisted Ford discs
associated to (γ, λ) the sets

D−
(γ,λ) :=

{
z ∈ k

∣∣∣ λ|γ ′(z)| = λ
|ad − bc|
|cz + d|2 > 1

}

and

D+
(γ,λ) :=

{
z ∈ k

∣∣∣ λ|γ ′(z)| = λ
|ad − bc|
|cz + d|2 ≥ 1

}
.

Lemma 3.5.7 Let α, α′, β ∈ k with |β| < 1 and let λ ∈ R>0. Set γ = M(α, α′, β) =[
a b
c d

]
. The twisted Ford discs D−

(γ,λ) and D+
(γ,λ) have center

α′ − βα

1 − β
= −d

c

and radius

ρ = (λ|β|)1/2|α − α′|
|1 − β| = (λ |ad − bc|)1/2

|c| .
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The twisted Ford discs D−
(γ −1,λ−1)

and D+
(γ −1,λ−1)

have center

α − βα′

1 − β
= a

c

and radius ρ′ = ρ/λ. ��
Lemma 3.5.8 For every loxodromic γ ∈ PGL2(k) that does not fix ∞ and every
λ ∈ R>0, we have γ (D+

(γ,λ)) = P
1,an
k − D−

(γ −1,λ−1)
. ��

Theorem 3.5.9 (Gerritzen) Assume that k is non-archimedean. Let � be a Schottky
group over k whose limit set does not contain∞. Then, there exist a basis (δ1, . . . , δg)

of � and positive real numbers λ1, . . . , λg ∈ R>0 such that the family of twisted
Ford discs

(
D+

δ1,λ1
, . . . , D+

δg,λg
, D+

δ−1
1 ,λ−1

1
, . . . , D+

δ−1
g ,λ−1

g

)
is a Schottky figure adapted

to (δ1, . . . , δg). ��
Despite the different behaviour of Schottky groups in the archimedean and non-

archimedean cases, we will see in the next section that a uniform construction of
a parameter space over Z comprising the two worlds still enjoys nice topological
properties.

4 The Schottky space over Z

In this section, we define a parameter space for marked Schottky groups of a given
rank (where the marking is given by the choice of a basis, see Definition 3.5.1) over
all complete valued fields, archimedean and non-archimedean. Already for Schottky
groups of rank one, one gets an interesting construction, but most uniformization
phenomena that are at the center of our interest become apparent only when the rank
is at least two.

4.1 The spaceS1

Let � = 〈γ 〉 be a Schottky group of rank one over a complete valued field (k, | · |).
Then, γ is conjugated in PGL2(k) to a unique matrix of the form M(0,∞, β) with
0 < |β| < 1 (which corresponds to the multiplication by β as an endomorphism
of P1,an

k ; see Sect. 3.4 for the notation).

Consider the affine line A1,an
Z

with coordinate Y and set

S1 := {x ∈ A
1,an
Z

: 0 < |Y (x)| < 1}.

With each point x ∈ S1, one can canonically associate a Schottky group of rank one

�x := 〈M(0,∞,Y (x))〉 ⊂ PGL2(H(x)).
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The condition imposed on S1 ensures that M(0,∞,Y (x)) is a loxodromic transfor-
mation of P1,an

H(x) having 0 as attracting point and ∞ as repelling point.
Given a Schottky group of rank one overQp, we can retrieve it as 〈M(0,∞,Y (x))〉

for a unique x ∈ S1 withH(x) = Qp. For a general valued field (k, |·|) and an element
β ∈ k such that 0 < |β| < 1, the group generated by M(0,∞, β) can be retrieved as
above from a point of S1 ×Z k. This can be seen as a consequence of Lemma 4.2.5
below in the special case where g = 1.

4.2 Construction ofSg and equivalent definitions

Fix g ≥ 2. Consider the space A
3g−3,an
Z

and denote its coordinates by
X3, . . . , Xg, X ′

2, . . . , X
′
g,Y1, . . . ,Yg . For notational convenience, set X1 := 0,

X2 := 1 and X ′
1 := ∞ (seen as morphisms from A

3g−3,an
Z

to P
1,an
Z

). Denote

by prZ : A3g−3,an
Z

→ M(Z) the projection morphism. Let Ug be the open subset

of A3g−3,an
Z

defined by the inequalities

{
0 < |Yi | < 1 for 1 ≤ i ≤ g;
Xσi
i 
= X

σ j
j for i, j ∈ {1, . . . , g} and σi , σ j ∈ {∅,′ }.

For i ∈ {1, . . . , g}, consider the transformations

Mi := M(Xi , X
′
i ,Yi ) ∈ PGL2(O(Ug)).

Definition 4.2.1 The Schottky space of rank g over Z, denoted by Sg , is the set of
points x ∈ Ug such that the subgroup �x of PGL2(H(x)) defined by

〈M1(x), M2(x), . . . , Mg(x)〉

is a Schottky group of rank g.

Notation 4.2.2 Recall that a Schottky group over a complete valued field (k, | · |)
gives rise to a unique k-analytic curve by means of the uniformization described in
Sect. 3.3. Given x ∈ Sg , we denote by �x the marked Schottky group of ordered
basis (M1(x), M2(x), . . . , Mg(x)), and by Cx the H(x)-analytic curve obtained via
Schottky uniformization by �x .

In the non-archimedean case, the curve Cx has semi-stable reduction, and results of
Berkovich ( [3, Section 4.3]) then assert that the dual graph of the stable model of Cx
can be canonically realized as a subset of Cx . Such a subset, denoted by �x , is a graph
of Betti number g, called the skeleton of Cx . If B = (

D+
i,ε, 1 ≤ i ≤ g, ε = ±1

)
is a

Schottky figure adapted to a Schottky basis of �x and F+ is the associated “closure
of a fundamental domain” (see Definition 3.1.1 and following paragraph), then there
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Fig. 2 The domain F+ of a Schottky figure for the Schottky group �x in the non-Archimedean case is
depicted on the left. The group �x identifies the ends of the skeleton �F+ , so that the corresponding
Mumford curve (on the right) contains the finite graph �x

is an isomorphism Cx ∼= F+/�x and the skeleton �x of the Mumford curve Cx is
obtained through pairwise identification, for every i = 1, . . . , g, of the points of the
Shilov boundaries of D+

i,1, D
+
i,−1 in the tree corresponding to the skeleton of F

+ (see
Figure 2 for an example with g = 2). We refer the reader to [46, Theorem 6.4.18] for
a proof of this fact.

If k = C, it is a deep theorem that in general there does not exist a Schottky
basis for �x (See [39] for an abstract proof and [51] for an explicit example), but an
analogue of the set F+ can be built by replacing the Schottky figure B with a 2g-
uple of Jordan curves

(
Ci,ε, 1 ≤ i ≤ g, ε = ±1

)
in P

1
C
with disjoint interiors and

such that γi (Ci,1) = Ci,−1 for every i = 1, . . . , g. More specifically, the existence
of such a 2g-uple is the condition originally used to define complex Schottky groups.
B. Maskit [40] successively showed the equivalence between this definition and the
group-theoretical Definition 3.5.1. In the context of complex Schottky groups, the
closed set F+ is the complement of the interiors of these Jordan curves. The quotient
map F+ → Cx sends the Jordan curves C1,1, . . . ,Cg,1 into smooth simple non-
intersecting curves α1, . . . , αg inside Cx . The complex description allows to easily
treat the case k = R: every real Schottky group can be seen as a complex Schottky
group, and the corresponding uniformization gives rise to a curve defined over R.

Note that the identification of H(x) with a valued extension of H(prZ(x)) is not
canonical, and to different immersions H(prZ(x)) ↪→ H(x) one associates different
Schottky groups, yielding curves Cx that might not be isomorphic. To lift the ambiguity
from this situation one has then to consider the points of the base-change Sg ×ZH(x),
as made more precise in the following remark.

Remark 4.2.3 Let (A, ‖·‖) be a Banach ring. Starting with M(A) instead of M(Z),
one can define a Schottky space Sg,A over A. It is related to the Schottky space over Z

in the following way. If we denote by πA : A3g−3,an
A → A

3g−3,an
Z

the projection map,
it follows from Remark 3.5.3 that we have Sg,A = π−1

A (Sg). In other words, assuming
that the suitable categories and fiber products are defined, we have Sg,A = Sg ×M(Z)

M(A). Moreover, the projection map πA respects all the data: for each x ∈ Sg,A, the
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group �x is the image of �π(x) by the inclusion PGL2(H(π(x)) ⊆ PGL2(H(x)), the
limit set of �π(x) in P

1,an
H(π(x)) is the preimage of the limit set of �x in P

1,an
H(x), and so on.

In the special case where A = C, we obtain a subset Sg,C of C3g−3. As one may
expect, this is a classical object that has already been closely investigated. By [26,
Lemma 5.11], one has a covering map Tg,C → Sg,C from the Teichmüller space to
the complex Schottky space. In particular, one deduces that Sg,C is a connected subset
of C3g−3. See also [2, Proposition 2] for a direct proof.

Recall that, for ε ∈ (0, 1], we denote by aε∞ the point ofM(Z) associated with | · |ε∞
and that we have an isomorphism H(aε∞) � R. We will use the canonical map
ρε : C3g−3 = A

3g−3,an
C

→ A
3g−3,an
R

, where R and C are endowed with | · |ε∞. See
Sect. 2.3 for details.

Lemma 4.2.4 For ε ∈ (0, 1], we have Sg ∩ pr−1
Z

(aε∞) = ρε(Sg,C). The set Sg ∩(
A
3g−3,an
Z

)a
is a connected open subset of A3g−3,an

Z
.

Proof By Remarks 3.5.2 and 3.5.3, ρ−1
ε (Sg ∩ pr−1

Z
(aε∞)) coincides with the usual

complex Schottky space Sg,C. In other words, Sg ∩ pr−1
Z

(aε∞) is the quotient of Sg,C

by the complex conjugation. In particular, it is a connected open subset of A3g−3,an
R

.
Recall the homeomorphism

� : A3g−3,an
R

× (0, 1] → (
A
3g−3,an
Z

)a

from Sect. 2.3. It follows from Remark 3.5.2 that it induces a bijection between(
Sg ∩ pr−1

Z
(aε∞)

) × (0, 1] and Sa
g . As a consequence, Sa

g is connected and open,

since
(
A
3g−3,an
Z

)a is open in A3g−3,an
Z

. ��

Let Fg be the free group of rank g with basis e1, . . . , eg . For each complete valued
field k, we denote by HomS(Fg,PGL2(k)) the set of group homomorphisms ϕ : Fg →
PGL2(k) that satisfy the following conditions:

(i) ϕ(e1) is loxodromic with attracting fixed point 0 and repelling fixed point ∞;
(ii) ϕ(e2) is loxodromic with attracting fixed point 1;
(iii) the image of ϕ is a Schottky group of rank g.

Each point x of Sg gives rise to an element ϕx of HomS(Fg,PGL2(H(x))) that sends
ei to Mi (x).

To state a converse result, we need to introduce an equivalence relation similar to
that of [3, Remark 1.2.2 (ii)]. We say that two elements ϕ1 ∈ HomS(Fg,PGL2(k1))
and ϕ2 ∈ HomS(Fg,PGL2(k2)) are equivalent if there exists an element ϕ ∈
HomS(Fg,PGL2(k)) and isometric embeddings k ↪→ k1 and k ↪→ k2 that make
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the following diagram commute:

PGL2(k1)

Fg PGL2(k)

PGL2(k2)

ϕ

ϕ2

ϕ1

We denote by HomS(Fg,PGL2) the set of classes of this equivalence relation.

Lemma 4.2.5 The map x �→ ϕx is a bijection between the underlying set of Sg and
HomS(Fg,PGL2).

Proof If ϕx = ϕy then H(x) = H(y) and ϕx (Fg) = ϕy(Fg) coincide as marked
Schottky groups in PGL2(H(x)). Hence x = y in Sg and x �→ ϕx is injective.
Conversely, for a valued field k and a map ϕ ∈ HomS(Fg,PGL2(k)), we can consider

the point y ∈ A
3g−3,an
k given by the Koebe coordinates of the marked Schottky group

ϕ(Fg). The image of y under the canonical projectionA3g−3,an
k → A

3g−3,an
Z

is a point
x ∈ Sg and there is an isometric embedding H(x) ↪→ k realizing ϕx as canonical
representative of the class of ϕ in HomS(Fg,PGL2). Hence x �→ ϕx is surjective. ��
Remark 4.2.6 Every marked Schottky group of rank g over a complete valued field k
is conjugated in PGL2(k) to a unique marked Schottky group with the property that
its Koebe coordinates are of the form {(0,∞, β1), (1, α′

2, β2), . . . , (αg, α
′
g, βg)}. The

combination of this observation with Lemma 4.2.5 implies that every Schottky group
over k can be retrieved, up to conjugation, as �x for some suitable point x ∈ Sg,k .

4.3 Openness ofSg

Definition 4.3.1 Let S be an analytic space. Consider the relative affine line A1
S with

coordinate Z . For γ =
[
a b
c d

]
in PGL2(O(S)) and λ ∈ R>0, set

D+
(γ,λ) := {x ∈ A

1
S : |(cZ + d)(x)|2 ≤ λ|(ad − bc)(x)|}

and

D−
(γ,λ) := {x ∈ A

1
S : |(cZ + d)(x)|2 < λ|(ad − bc)(x)|}.

We call such sets closed and open relative twisted Ford discs respectively.

We now generalize Gerritzen’s theorem 3.5.9 to the relative setting.
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Theorem 4.3.2 Let x be a non-archimedean point ofSg such that∞ is not a limit point
of �x . There exist an open neighborhood W of x in Ug, an automorphism τ ∈ Aut(Fg)
and positive real numbers λ1, . . . , λg ∈ R>0 such that, denoting

(N1, . . . , Ng) := τ · (M1, . . . , Mg) ∈ GL2(O(Ug))
g,

the family of relative twisted Ford discs over W

(
D+

N1,λ1
, . . . , D+

Ng,λg
, D+

N−1
1 ,λ−1

1
, . . . , D+

N−1
g ,λ−1

g

)
is a Schottky figure adapted to the family (N1, . . . , Ng) of PGL2(O(W )).

Proof By Theorem 3.5.9, we can find a basis (δ1, . . . , δg) of �x and positive real num-
bersλ1, . . . , λg such that the family of twistedForddiscs

(
D+

δ1,λ1
, . . . , D+

δg,λg
, D+

δ−1
1 ,λ−1

1
,

. . . , D+
δ−1
g ,λ−1

g

)
is a Schottky figure adapted to (δ1, . . . , δg).

Denote by τ the automorphism of �x sending Mi (x) to δi . Identifying Fg with �x

by sending ei to Mi (x), we get an automorphism of Fg that we still denote by τ . Set

(N1, . . . , Ng) := τ · (M1, . . . , Mg) ∈ GL2(O(Ug))
g

and write

Ni =
(
ai bi
ci di

)

for i ∈ {1, . . . , g}. Note that the coefficients of the Ni ’s are rational functions in the
X j ’s, X ′

j ’s and Y j ’s. Denote by U ′ the open subset of Ug where they are all defined.
Let V be the open subset of U ′ defined by

|tr(Ni )|2 > max(|4|, 1) | det(Ni )| for 1 ≤ i ≤ g.

By Lemma 2.4.4, V contains x and, for each y ∈ V and each i ∈ {1, . . . , g}, the
matrix Ni is loxodromic.

Let i 
= j ∈ {1, . . . , g}. Since ∞ is not a limit point of �x , it cannot be a fixed
point of Ni (x) or N j (x), hence ci (x)c j (x) 
= 0. There exists a neighborhood Wi, j

of x in V such that ci c j does not vanish on Wi, j . In this case, for each y ∈ Wi, j , ∞
is not a fixed point of Ni (y) or N j (y) and, by Lemma 3.5.7, we have

D+
Ni (y),λi

= D+
⎛
⎝−di

ci
(y),

∣∣∣∣∣aidi − bi ci
c2i

(y)

∣∣∣∣∣
1/2

λ
1/2
i

⎞
⎠

and

D+
N j (y),λ j

= D+
⎛
⎝−d j

c j
(y),

∣∣∣∣∣a jd j − b j c j
c2j

(y)

∣∣∣∣∣
1/2

λ
1/2
j

⎞
⎠ .
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By assumption, the discs at x are disjoint and Lemma 2.4.3 ensures that we have

∣∣∣∣dici (x) − d j

c j
(x)

∣∣∣∣ > max

⎛
⎝

∣∣∣∣∣aidi − bi ci
c2i

(x)

∣∣∣∣∣
1/2

λ
1/2
i ,

∣∣∣∣∣a jd j − b j c j
c2j

(x)

∣∣∣∣∣
1/2

λ
1/2
j

⎞
⎠ .

Since x is non-archimedean, we havemax(|2(x)|, 1) = 1, hence, up to shrinkingWi, j ,
we may assume that, for each y ∈ W , we have

∣∣∣∣dici (y) − d j

c j
(y)

∣∣∣∣ > max(|2(y)|, 1)max

×
⎛
⎝

∣∣∣∣∣aidi − bi ci
c2i

(y)

∣∣∣∣∣
1/2

λ
1/2
i ,

∣∣∣∣∣a jd j − b j c j
c2j

(y)

∣∣∣∣∣
1/2

λ
1/2
j

⎞
⎠ ,

which implies that D+
Ni (y),λi

and D+
N j (y),λ j

are disjoint, by Lemma 2.4.3. Similar

arguments show that, up to shrinking Wi, j , we may ensure that the discs D+
Ni (y),λi

,

D+
N−1
i (y),λ−1

i
, D+

N j (y),λ j
and D+

N−1
j (y),λ−1

j
are all disjoint.

The result now holds with W := ⋂
i 
= j Wi, j . ��

Corollary 4.3.3 Let x be a non-archimedean point of Sg. There exist an open neigh-
borhood W of x in Ug, an automorphism τ of Fg and a family of closed subsets of P1

W
that is a Schottky figure adapted to τ · (M1, . . . , Mg).

Proof We will distinguish two cases.

• Assume that the extension H(x)/H(prZ(x)) is finite.
Then, there exists an algebraic integer that does not belong to H(x), in the sense
that there exists a polynomial P ∈ Z[T ] with no roots in H(x). If prZ(x) = a0,
so that H(prZ(x)) = Q, we may moreover assume that P is totally real: all of its
complex roots are real. Let K be a number field containing a root ω of P . Note
that ω ∈ OK .
Wewillworkover theSchottky spaceSg,OK overM(OK )defined inRemark4.2.3.
Denote by pK : Sg,OK → Sg the projection morphism. Let xK ∈ p−1

K (x) and set
U ′
g := p−1

K (Ug).

Let A =
(
0 1
1 −ω

)
∈ GL2(O(U ′

g)). We have A(ω) = ∞. If prZ(x) = a0, then,

for each z ∈ (U ′
g)

a, we have A(z) ∈ GL2(R). For i ∈ {1, . . . , g}, set M∞,i :=
A Mi A−1 in GL2(O(U ′

g)). Denote by �∞,xK the subgroup of PGL2(H(xK )) gen-
erated by M∞,1(xK ), . . . , M∞,g(xK ). By Corollary 3.2.7 and Remark 4.2.3, ω is
not a limit point of �xK , hence∞ is not a limit point of �∞,xK . By Theorem 4.3.2,
there exists an open neighborhood W ′ of xK in U ′

g , an automorphism τ of Fg and
λ1, . . . , λg ∈ R>0 such that, denoting

(N∞,1, . . . , N∞,g) := τ · (M∞,1, . . . , M∞,g) ∈ GL2(O(U ′
g))

g,
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the family of twisted isometric discs

(
D+

N∞,1,λ1
, . . . , D+

N∞,g,λg
, D+

N−1
∞,1,λ

−1
1

, . . . , D+
N−1∞,g,λ

−1
g

)
is a Schottky figure adapted to the family (N∞,1, . . . , N∞,g) of PGL2(O(W ′)). If
p(x) 
= a0, then x belongs to the interior of the non-archimedean part of Sg and
we may assume that W ′ ⊆ Sna

g .
For each i ∈ {1, . . . , g}, set Ni := A−1 N∞,i A. Note that we have

(N1, . . . , Ng) := τ · (M1, . . . , Mg) ∈ GL2(O(U ′
g))

g

and that the family (A−1(D+
N∞,1,λ1

), . . . , A−1(D+
N∞,g,λg

), A−1(D+
N−1

∞,1,λ
−1
1

), . . . ,

A−1(D+
N−1∞,g,λ

−1
g

)) is a Schottky figure adapted to the family (N1, . . . , Ng) of

PGL2(O(W ′)) (see Remark 3.1.2). Set W := pK (W ′). By [37, Corollaire 5.6.4],
it is an open subset of Ug .
Let us still denote by pK the projection morphism P

1
Sg,OK

→ P
1
Sg
. For i ∈

{1, . . . , g} and ε ∈ {−1, 1}, set B+(N ε
i ) := pK (A−1(D+

N∞,i ,λ
ε
i
)). It is a closed

subset ofP1
W and, by construction, for each y′ ∈ W ′, we have B+(N ε

i )∩π−1(y) =
pK

(
A−1(D+

N∞,i ,λ
ε
i
)∩π−1(y′)

)
. To prove that the family (B+(N ε

i ), 1 ≤ i ≤ g, ε =
±1) is a Schottky figure adapted to the family (N1, . . . , Ng) of PGL2(O(W )),
it is enough to prove that for each y ∈ W , i ∈ {1, . . . , g} and ε ∈ {−1, 1},
there exists a closed disc Ey in π−1(y) such that, for each y′ ∈ p−1

K (y) ∩ W ′,
A−1(D+

N∞,i ,λ
ε
i
) ∩ π−1(y′) = p−1

K (Ey).

Let y ∈ W , i ∈ {1, . . . , g} and ε ∈ {−1, 1}. Let y′ ∈ p−1
K (y)∩W ′. Assume that y

is non-archimedean. The set A−1(D+
N∞,i ,λ

ε
i
)∩π−1(y′) is an open disc overH(y′)

that contains a fixed point of Ni (y′). Since Ni (y′) is defined over H(y), its fixed
points come from H(y)-rational points by base change to H(y′) and we deduce
that A−1(D+

N∞,i ,λ
ε
i
) ∩ π−1(y′) is the preimage by pK of a closed disc in π−1(y).

Assume that y is archimedean. Note that, in this case, we have prZ(x) = a0.
If H(y′) = H(y), then the result holds. Otherwise, we have H(y′) = C and
H(y) = R and the result follows from the fact that A(y′) ∈ GL2(R).

• Assume that the extension H(x)/H(prZ(x)) is infinite.

We deduce that the fieldH(x) is not locally compact, hence P1(H(x)) is not compact.
It follows from Corollary 3.2.7 that there exists a point ω ∈ P

1(H(x)) that is not a
limit point of �x . Moreover, by definition, the image κ(x) of Frac(Ox ) in H(x) is
dense. By Corollary 3.2.7 again, the limit set of �x is closed, hence we may assume
that ω belongs to P1(κ(x)).

If ω = ∞, then the result follows directly from Theorem 4.3.2, so let us assume
that this is not the case. Then, there exists an open neighborhood V of x in Ug and

an element � ∈ O(V ) whose image in κ(x) is ω. Let A =
(
0 1
1 −�

)
∈ GL2(O(V )).

By construction, we have A(x)(ω) = ∞ in P
1(H(x)). The same arguments as in the
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proof of the first case apply (without having to worry about a base-change), and the
result follows. ��

We have now collected all the results necessary to prove the openness of Sg .

Theorem 4.3.4 The Schottky space Sg is an open subset of A3g−3,an
Z

.

Proof Let x ∈ Sg . We want to prove that there exists an open subset of A3g−3,an
Z

con-
taining x that is contained inSg . This follows fromLemma4.2.4when x is archimedean
and from Corollary 4.3.3 and Proposition 3.5.4 when x is non-archimedean. ��

4.4 The space of Schottky bases

Let us assume g ≥ 2 and fix a complete non-archimedean valued field (k, | · |). We
denote by SBg,k the subspace of Sg,k consisting of Schottky bases (see Remark 4.2.3
and Definition 3.5.5 for these notions).

Notation 4.4.1 Let A be a finite subset of P1,an
k (k) with at least 2 elements. For each

α ∈ A, we denote by D−(α, A) the biggest open disc with center α containing no
other element of A and we denote by pα,A its boundary point in P1,an

k .
Note that, if A contains at least 3 elements, then all the discs D−(α, A) are disjoint.

Proposition 4.4.2 Let α1, α
′
1, . . . , αg, α

′
g be distinct elements of P1,an

k (k). Set A :=
{α1, α

′
1, . . . , αg, α

′
g}. Let β1, . . . , βg be elements of k with absolute values in (0, 1).

For each i ∈ {1, . . . , g}, set γi := M(αi , α
′
i , βi ) ∈ PGL2(k). The following conditions

are equivalent:

(i) there exists a Schottky figure adapted to (γ1, . . . , γg);
(ii) for each i ∈ {1, . . . , g}, we have �([pαi ,A pα′

i ,A
]) < |βi |−1;

(iii) for each i, j, k ∈ {1, . . . , g} with j 
= i , k 
= i and σ j , σk ∈ {∅,′ }, we have

|βi | · |[ασ j
j , α

σk
k ;αi , α

′
i ]| < 1.

Proof (i) �⇒ (i i) Let B = (B+(γ ε
i ), 1 ≤ i ≤ g, ε = ±1) be a Schottky figure

adapted to (γ1, . . . , γg). Let i ∈ {1, . . . , g}. Note that we have αi ∈ B+(γi ) and
α′
i ∈ B+(γ −1

i ), hence B+(γi ) ⊂ D−(αi , A) and B+(γ −1
i ) ⊂ D−(α′

i , A). It fol-
lows that the segment between the boundary points of D−(αi , A) and D−(α′

i , A) is
strictly contained in the segment between the boundary points of B+(γi ) and B+(γ −1

i ).
Lemma 3.4.1 then provides the desired inequality.

(i i) �⇒ (i i i) Let i, j, k ∈ {1, . . . , g} with j 
= i , k 
= i and σ j , σk ∈ {∅,′ }. If
[ασ j

j α
σk
k ] ∩ [αiα

′
i ] = ∅, then we have |[ασ j

j , α
σk
k ;αi , α

′
i ]| = 1 and the inequality of the

statement holds.
Assume that I := [ασ j

j α
σk
k ] ∩ [αiα

′
i ] 
= ∅. Since α

σ j
j and α

σk
k do not belong to

the discs D−(αi , A) and D−(α′
i , A), the segment I must be contained in the segment

joining the boundary points of those two discs. It now follows from Lemma 2.5.2 that
we have

max
(|[ασ j

j , α
σk
k ;αi , α

′
i ]|, |[ασ j

j , α
σk
k ;αi , α

′
i ]|−1) = �(I ) ≤ �([pαi ,A pα′

i ,A
]) < |βi |−1.
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(i i i) �⇒ (i) Let i ∈ {1, . . . , g}. We will construct discs B+(γi ) and B+(γ −1
i )

that lie in D−(αi , A) and D−(α′
i , A) respectively and such that γi (P

1,an
k − B+(γ −1

i ))

is a maximal open disc inside B−(γi ) and γ −1
i (P

1,an
k − B+(γi )) is a maximal open

disc inside B−(γ −1
i ). To do so, we may choose coordinates on P1,an

k such that αi = 0
and α′

i = ∞. The equalities of the statement then become

|βi | · α
σ j
j

α
σk
k

< 1

for j, k ∈ {1, . . . , g} with j 
= i , k 
= i and σ j , σk ∈ {∅,′ }. It follows that there exists
ri ∈ R>0 such that

|βi | max(|ασ j
j |, j 
= i, σ j ∈ {∅,′ }) < ri < min(|ασ j

j |, j 
= i, σ j ∈ {∅,′ }).

The discs B+(γi ) := D+(0, ri ) and B+(γ −1
i ) := P

1,an
k −D−(0, |βi |−1ri ) then satisfy

the required conditions.
The family of discs (B+(γ ε

i ), 1 ≤ i ≤ g, ε = ±1) is a Schottky figure adapted to
(γ1, . . . , γg). ��
Corollary 4.4.3 The topological space SBg,k is path-connected.

Proof Let k′ be a complete non-trivially valued extension of k. Denote by πk′/k :
A
3g−3,an
k′ → A

3g−3,an
k the projection map. By Remark 4.2.3, we have Sg,k′ =

π−1
k′/k(Sg,k) and, by Proposition 4.4.2, SBg,k′ = π−1

k′/k(SBg,k). Up to replacing k by k′,
we may assume that k is not trivially valued.

We will consider the affine spacesA2g−3,an
k with coordinates X3, . . . , Xg, X ′

2, . . . ,

X ′
g and A

g,an
k with the coordinates Y1, . . . ,Yg . We denote by π1 : A3g−3,an

k →
A
2g−3,an
k and π2 : A3g−3,an

k → A
g,an
k the corresponding projections.

Let a, b ∈ SBg,k . Let V be the open subset of A2g−3,an
k consisting of the points

all of whose coordinates are distinct. It is path-connected and contains a1 := π1(a)

and b1 := π1(b). Let ϕ : [0, 1] → V be a continuous map such that ϕ(0) = a1 and
ϕ(1) = b1. The continuous maps |[Xσ j

j , Xσk
k ; Xi , X ′

i ]| for i, j, k ∈ {1, . . . , g} with
j 
= i , k 
= i and σ j , σk ∈ {∅,′ } are all bounded on ϕ([0, 1]). Let M ∈ R>0 be a
common upper bound. Since k is not trivially valued, there exists β ∈ k∗ such that

|β| < min
(
M−1, |Yi (a)|, |Yi (b)|, 1 ≤ i ≤ g

)
.

Let us identify π−1
1 (a1) and A

g,an
H(a1)

, so that a may be seen as a point in the latter

space. The point β := (β, . . . , β) of Ag,an
k canonically lifts to a point aβ of Ag,an

H(a1)

and there exists a continuous path from a to aβ in A
g,an
H(a1)

along which all the |Yi |’s
are non-increasing and remain in (0, 1). By Proposition 4.4.2, the corresponding path
inA3g−3,an

k stays in SBg,k . We similarly define a point bβ in π−1
1 (b1) and a continuous

path from b to bβ in SBg,k .
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To prove the result, it is now enough to construct a continuous path from aβ to bβ

in SBg,k . Note that π2(aβ) = π2(bβ) = β, so that aβ and bβ identify to two points

of the same fiber π−1
2 (β) � A

2g−3,an
H(β)

= A
2g−3,an
k . We may now use the path defined

by ϕ to go from aβ to bβ . By construction, it stays inside SBg,k . ��
Corollary 4.4.4 The set SBna

g is the subset of Una
g described by the inequalities

|Yi | · |[Xσ j
j , Xσk

k ; Xi , X
′
i ]| < 1

for all i, j, k ∈ {1, . . . , g}with j 
= i , k 
= i and σ j , σk ∈ {∅,′ }. It is a path-connected
open subset of Sna

g .

Proof The first part of the statement follows fromProposition 4.4.2. The fact thatSBna
g

is open in Sna
g is an immediate consequence.

By Corollary 4.4.3, for each z ∈ M(Z), the fiber SBg ∩ pr−1
Z

(z) is connected and
contains the point Pz defined as the unique point in the Shilov boundary of the disc
defined by the inequalities

⎧⎪⎨
⎪⎩

|Xi | ≤ 1 for 3 ≤ i ≤ g;
|X ′

i | ≤ 1 for 2 ≤ i ≤ g;
|Yi | ≤ 1

2 for 1 ≤ i ≤ g.

The result now follows from the continuity of the map z ∈ M(Z) �→ Pz ∈ A
3g−3,an
Z

.
��

5 Outer automorphisms and connectedness ofSg

In this section, we study a natural action of the group Out(Fg) of outer automorphisms
on the Schottky space Sg . We show that this action respects the analytic structure of
the Schottky space and use this to prove that Sg is path-connected (see Sect. 5.2).
Finally, we study the properness of this action. When g = 1, Out(F1) acts trivially on
S1, hence we assume for the rest of the section that g ≥ 2.

5.1 The action of Out(Fg) on the Schottky space

Recall from Lemma 4.2.5 that a point of Sg corresponds to a homomorphism
in HomS(Fg,PGL2). This identification gives rise to a natural action of Aut(Fg)
on Sg by letting an element of Aut(Fg) act on the source of homomorphisms in
HomS(Fg,PGL2).
More precisely, let τ ∈ Aut(Fg), x ∈ Sg , and ϕx be the associated homomorphism
of HomS(Fg,PGL2). Then, the map ϕx ◦ τ is a group homomorphism from Fg
to PGL2(H(x)). Its image, being the same as that of ϕx , is the Schottky group �x .
Moreover, there exists a unique Möbius transformation ε, with coefficients in H(x),
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that sends the attracting and repelling fixed points of ϕx ◦ τ(e1) to 0 and ∞ respec-
tively and the attracting fixed point of ϕx ◦ τ(e2) to 1. Then, ε−1(ϕx ◦ τ) ε belongs to
HomS(Fg,PGL2(H(x)), hence gives rise to a point of Sg . We denote it by τ x .

Definition 5.1.1 The map (τ, x) ∈ Aut(Fg) × Sg �→ τ x ∈ Sg defines an action of
Aut(Fg) on Sg that factors through Out(Fg).

We now describe the stabilizers of the points of Sg under the action of Out(Fg).
The corresponding result for rigid Schottky spaces is known (see [21, Satz 3]).

Lemma 5.1.2 Let (k, | · |) be a complete valued field and and let γ be a loxodromic
element of PGL2(k) with fixed points α and β. Let ε1, ε2 ∈ PGL2(k) such that
ε−1
1 γ ε1 = ε−1

2 γ ε2. Then, we have ε−1
1 (α) = ε−1

2 (α) and ε−1
1 (β) = ε−1

2 (β).

Proof We may assume that α is the attracting point of γ . Let P ∈ P
1,an
k −

{ε−1
1 (α), ε−1

1 (β), ε−1
2 (α), ε−1

2 (β)}. Then, for each n ∈ Z, we have

ε−1
1 (γ n(ε1(P))) = ε−1

2 (γ n(ε2(P))).

The left-hand side converges to ε−1
1 (α) (resp. ε−1

1 (β)) when n goes to +∞ (resp.
−∞). The right-hand side converges to ε−1

2 (α) (resp. ε−1
2 (β)) when n goes to +∞

(resp. −∞). The result follows. ��
Proposition 5.1.3 Let x ∈ Sg. The stabilizer of x under the action of Out(Fg) is
isomorphic to the quotient �x\N (�x ), where N (�x ) denotes the normalizer of �x

in PGL2(H(x)).

Proof Let ε ∈ N (�x ). The morphism ϕx induces an isomorphism ψx : Fg
∼−→ �x .

Since ε belongs to the normalizer of �x in PGL2(H(x)), the conjugation by ε

in PGL2(H(x)) induces an automorphism cε of �x . It follows from the definitions
that ψ−1

x ◦ cε ◦ ψx is an automorphism of Fg stabilizing x . We have just constructed
a map ν : N (�x ) → StabAut(Fg)(x). It is a morphism of groups.

Let ε ∈ N (�x ). The automorphism ν(ε) is inner if, and only if, there existsw ∈ Fg
such that ν(ε) = cw, where cw denotes the automorphism defined by the conjugation
by w in Fg . Note that we have cw = ψ−1

x ◦ cψx (w) ◦ψx . It follows that ν(ε) is inner if,
and only if, there exists δ ∈ �x such that cε = cδ . If the latter condition holds, then,
by Lemma 5.1.2, ε−1 and δ−1 coincide on all the fixed points of the Mi (x)’s. Since
g ≥ 2, there are more than two fixed points, hence ε = δ. The argument shows that ν
induces an injective morphism ν′ : �x\N (�x ) → StabOut(Fg)(x).

To conclude, it remains to prove that ν′ is surjective. It is enough to prove that ν is
surjective. Let τ ∈ StabAut(Fg)(x). For each i ∈ {1, . . . , g}, τ(ei ) is an element of Fg ,

that is to say a word wi = e
ni,0
ji,0

· · · eni,riji,ri
, for some ri ∈ N, ji,0, . . . , ji,ri ∈ {1, . . . , g},

ni,0, . . . , ni,ri ∈ Z. Since ϕx is a morphism of groups, we have

Ni := ϕx ◦ τ(ei ) = Mji,0(x)
ni,0 · · · Mji,ri

(x)ni,ri .
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In particular, Ni ∈ �x . Let ε ∈ PGL2(H(x)) be the unique element that sends the
attracting and repelling fixed points of N1 to 0 and ∞ respectively and the attracting
fixed point of N2 to 1. By definition of the action, we have

∀i ∈ {1, . . . , g}, ε−1Ni ε = Mi (τ x) = Mi (x).

By using the words associated to the morphism τ−1, one may express the Mj (x)’s in
terms of the Ni ’s. It follows that the Ni ’s generate the group �x , hence ε ∈ N (�x ).
Moreover, we have ν(ε−1) = τ . The result follows. ��
Remark 5.1.4 Let x ∈ Sg . It is easy to check that each element of N (�x ) preserves
the limit set Lx , hence inducing an automomorphism of P1,an

H(x) − Lx , and that the
latter descends to an automorphism of Cx . This construction gives rise to a group
homomorphism φ : N (�x ) → Aut(Cx ) with kernel �x .

Let x ∈ Sna
g be a non-archimedean point of the Schottky space. Then, the homo-

morphism φ is surjective (see [42, Corollary 4.12] for the first occurrence of this
result and [46, §6.5.2] for a discussion using Berkovich geometry), and as a result
the quotient group �x\N (�x ) considered above is isomorphic to the automorphism
group Aut(Cx ) of the curve Cx . Every element of Aut(Cx ) restricts to an isometry of
the skeleton �x defined in 4.2.2. This restriction induces an injection of the automor-
phism group Aut(Cx ) in the group Aut(�x ) of isometric automorphisms of �x (cf.
[46, Proposition 6.5.9]).

Let x ∈ Sa
g be an archimedean point of the Schottky space. In this case the homo-

morphism φ is not surjective in general, and hence we only have an injection of
�x\N (�x ) into the group Aut(Cx ). The question of lifting automorphisms of a Rie-
mann surface to �\N (�) for some Schottky group � uniformizing such surface has
been thoroughly investigated by R. Hidalgo (see for example [29]).

Proposition 5.1.5 The action of Out(Fg) on Sg is analytic and has finite stabilizers.
Moreover:

(i) If g ≥ 3, then this action is faithful;
(ii) If g = 2, then the element ι ∈ Out(F2) defined by ι(ei ) = e−1

i for i = 1, 2
stabilizes every point of S2, and the action of the quotient Out(F2)/〈ι〉 on S2 is
faithful.

Proof It is a classical result of Nielsen that Out(Fg) is generated by the set of four
elements {σ1, σ2, σ3, σ4} defined by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1(e1) = eg, σ1(ei ) = ei−1 ∀i > 1

σ2(e1) = e2, σ2(e2) = e1, σ2(ei ) = ei ∀i > 2

σ3(e1) = e−1
1 , σ3(ei ) = ei ∀i > 1

σ4(e2) = e−1
1 e2, σ4(ei ) = ei ∀i 
= 2

For i = 1, 2, 3 a simple computation shows that every σi acts on Sg by Möbius
transformations on the Koebe coordinates. For example, in the case of σ1, the
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point x of Sg with Koebe coordinates (αi , α
′
i , βi ) is sent to a point with basis(

M(αg, α
′
g, βg), M(0,∞, β1), . . . , M(αg−1, α

′
g−1, βg−1)

)
. To describe the action in

terms of Koebe coordinates, we need to conjugate this basis by the unique Möbius
transformation γ such that γ (αg) = 0, γ (α′

g) = ∞, and γ (0) = 1. This conjuga-
tion sends the fixed points of a transformation to their images under γ , while leaving
multipliers untouched. Hence, the Koebe coordinates of σ1(x) are

σ1(αi , α
′
i , βi ) = (

γ (1), . . . , γ (αg−1), γ (∞), . . . , γ (α′
g−1), βg, β1, . . . , βg−1

)
.

The cases of σ2 and σ3 are completely analogous, and so in these three cases the action
is analytic.

Let us show that this is the case for σ4 as well. Denote by M := M(α�, α′�, β�) the
matrix representing the product M(0,∞, β1)

−1M(1, α′
2, β2). The Koebe coordinates

(α�, α′�, β�) are analytic functions in the coefficients of M by virtue of Proposi-
tion 3.4.3. Moreover, the coefficients of M are rational functions without poles in the
variables β1, α

′
2, β2 on Sg , and then analytic as well. Finally, if we want to get a basis

with 1 as attracting fixed point of the second generator we have to conjugate every
element by multiplication by 1

α� . Summarizing, we get the following expression of
the action of σ4 on Sg:

σ4(αi , α
′
i , βi ) = (α3

α�
, . . . ,

αg

α�
,
α′�

α�
,
α′
3

α�
, . . . ,

α′
g

α�
, β1, β

�, β3, . . . , βg
)
.

Since α�, α′�, and β� are analytic functions of the Koebe coordinates, the action of
σ4, and hence of Out(Fg), is analytic on Sg .

The finiteness of the stabilizers follows from Proposition 5.1.3 and Remark 5.1.4.
To prove faithfulness for g ≥ 3, it is enough to remark that for every valued field
there exist Schottky uniformized curves with trivial automorphism groups. For g =
2, the outer automorphism ι of order 2 defined by ι(ei ) = e−1

i for i = 1, 2 fixes
every point x ∈ S2. In fact, writing in Koebe coordinates x = (α′

2, β1, β2), the
point ι(x) corresponds to the ordered basis

(
M(∞, 0, β1), M(α′

2, 1, β2)
)
. Then, the

conjugation of this basis by the Möbius transformation i : z �→ α′
2
z produces the

ordered basis
(
M(0,∞, β1), M(1, α′

2, β2)
)
, so that ι(x) = x . Since a generic genus

2 curve that admits Schottky uniformization has an automorphism group of order 2,
we can conclude that the action of the quotient Out(F2)/〈ι〉 on S2 is faithful. ��
Remark 5.1.6 The automorphism ι appearing in part (ii) of Proposition 5.1.5 induces,

via the isomorphism given in Proposition 5.1.3, the element J =
[
0 α′

2
1 0

]
∈ N (�x ). In

turn, the class [J ] in �x\N (�x ) ∼= Aut(Cx ) induces on Cx the hyperelliptic involution.
If x is a non-archimedean point, this follows from the fact that [J ] acts on �x in
such a way that the quotient is a tree. If x is an archimedean point, one can argue as
follows. Writing γ1 = M(0,∞, β1) and γ2 = M(1, α′

2, β2), the elements J , γ1 J , and
γ2 J restrict to the same automorphism of Cx and give rise to 6 distinct fixed points in
P
1,an
k − Lx . Up to conjugation by elements of �x , one can assume that these points

all lie in the same fundamental domain. Hence, the cover of curves Cx → Cx/〈[J ]〉 is
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ramified at least at 6 points and applying Riemann-Hurwitz formula one finds that the
genus of the target curve is 0.

5.2 Entr’acte: path-connectedness ofSg

We now apply the results of the previous section to show that Sg is a connected
topological space.

We already know that the archimedean part Sa
g of the Schottky space is path-

connected, thanks to its relation to the complex Schottky space (see Lemma 4.2.4).
This allows to use global arguments to show the connectedness of Sg .

Theorem 5.2.1 The Schottky space Sg is path-connected.

Proof Let x ∈ Sna
g be a non-archimedean point of the Schottky space over Z. By

Corollary 4.3.3, there is an automorphism τ ∈ Out(Fg) such that τ(x) ∈ SBna
g .

Let α3, . . . , αg, α
′
2, . . . , α

′
g ∈ C such that the degree of transcendence of the exten-

sion of Q they generate is maximal (equal to 2g − 3). Let r1, . . . , rg ∈ (0, 1) whose
images in the Q-vector space R>0 are linearly independent. For ε ∈ (0, 1], set

σ(aε∞) := ρε(α3, . . . , αg, α
′
2, . . . , α

′
g, r

1/ε
1 , . . . , r1/εg ) ∈ pr−1

Z
(aε)

(see Sect. 2.3 for this notation). For each a ∈ M(Z)na, denote by σ(a) the unique point
in the Shilov boundary of the disc inside pr−1

Z
(a) � A

3g−3
H(a)

defined by the inequalities

⎧⎪⎨
⎪⎩

|Xi | ≤ 1 for 3 ≤ i ≤ g;
|X ′

i | ≤ 1 for 2 ≤ i ≤ g;
|Yi | ≤ ri for 1 ≤ i ≤ g.

By comparing the limit of σ(aε∞) for ε → 0 with the non-archimedean valuation
σ(a0) over the central point (cf. Examples 2.3.1 and 2.3.2), one shows that the map

σ : a ∈ M(Z) �→ σ(a) ∈ A
3g−3,an
Z

is a continuous section of the projection morphism prZ : A3g−3,an
Z

→ M(Z). By
Corollary 4.4.4, σ(a0) belongs to SBg and to the same path-connected component
in Sg as τ(x).

Since Sg is open, by Theorem 4.3.4, we deduce that σ(aε∞) belongs to Sg for
ε ∈ (0, 1] small enough. In particular, τ(x) belongs to the same path-connected
component of Sg as Sa

g . By Proposition 5.1.5, τ−1 acts continuously on Sg , hence x
belongs to the same path-connected component of Sg as Sa

g . The result now follows
from the path-connectedness of the latter (see Lemma 4.2.4). ��
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5.3 Properness of the action of Out(Fg)

Recall that we discussed proper actions at the beginning of Sect. 3.3. Let us first
consider the archimedean case. The following proposition is a consequence of well
known facts about the complex Schottky space.

Theorem 5.3.1 The action of Out(Fg) onSa
g is proper. The quotient spaceOut(Fg)\Sa

g
is Hausdorff and reduces locally to a quotient by a finite group.

Proof Using the homeomorphism

� : A3g−3,an
R

× (0, 1] → (
A
3g−3,an
Z

)a
from Sect. 2.3 as well as Remarks 3.5.2 and 3.5.3 one reduces to the case of the
complex Schottky spaceSg,C. Recall from the discussion inRemark 4.2.3 the universal
covering map � : Tg,C −→ Sg,C from the complex Teichmüller space. The mapping
class group MCGg acts properly on Tg,C [19, §8, Theorem 6] in such a way that �

is a G-covering for a normal subgroup G ⊂ MCGg . The action of Out(Fg) on Sg,C

considered here comes from the realization of Out(Fg) as a subgroup of the quotient
MCGg/G (see [30, Proposition 5.10]). In particular, is is a proper action.

The fact that the quotient space Out(Fg)\Sa
g is Hausdorff follows directly from the

properness of the action. The fact that it reduces locally to a quotient by a finite group
is a consequence of the finiteness of the stabilizers (see Proposition 5.1.5). ��

Let us now focus on the the non-archimedean case. We follow the strategy outlined
in the proof of [22, Proposition 7] and take this opportunity to add details to said proof.

Theorem 5.3.2 The set

SB = {τ ∈ Out(Fg) : τ(SBna
g ) ∩ SBna

g 
= ∅}

is finite.

Proof For every point x ∈ SBna
g , let us denote by Lx ⊂ P

1,an
H(x)

(
H(x)

)
the limit set of

�x , and by T�x ⊂ P
1,an
H(x) the infinite tree defined as the skeleton of P

1,an
H(x) − Lx .3 The

action of �x on the infinite tree T�x is free and without inversions, and gives rise to a
universal covering px : T�x → �x of the skeleton of the Mumford curve uniformized
by �x .

Following Serre [47, §3.1], we call representative tree of T�x any subtree of T�x

that is a lifting of a spanning tree of �x via px . Equivalently, a representative tree is a
connected subtree of T�x that has a unique vertex in any given �x -orbit on the set of

3 Recall from [3, 4.1.3] that the skeleton of an analytic curve C is defined as the subset of C consisting of
those points that do not have a neighborhood potentially isomorphic to a disc. If C is the analytification of
a smooth proper algebraic curve, its skeleton is a finite graph and this definition coincides with the one at
the end of Notation 4.2.2.
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vertices of T�x . With a representative tree T ⊂ T�x , we can associate a generating set
of �x as follows. Let us call ET the set of edges in T�x that have one endpoint in T
and the other in its complement T�x −T . Note that the set ET consists of 2g elements.

Lemma 5.3.3 The set

GT = {γ ∈ �x − {1} : ∃ e ∈ ET with γ (e) ∈ ET }

is of the form B ∪ B−1 with B = {γ1, . . . , γg} a basis of �x and B−1 =
{γ −1

1 , . . . , γ −1
g }.

Proof Let us choose an orientation on the tree T�x compatible with the action of �x ,
and we consider the set B ⊂ �x consisting of the elements γ ∈ �x such that there
exists an edge e of T�x starting in T and ending in γ (T ). By applying a theorem of
Serre on free actions on oriented trees [47, §3.3 Théorème 4′, a)], we deduce that B is a
basis of �x . By construction, the set B∪ B−1 is contained in GT , so it suffices to show
that GT ⊂ B ∪ B−1 to conclude. To show this, let us pick γ ∈ GT and e1, e2 ∈ ET ,
such that γ (e1) = e2. If we call vi , wi the endpoints of ei in such a way that vi ∈ T ,
then v1 and v2 can not be in the same orbit, hence γ (v1) = w2 and γ (w1) = v2. As
a result, w1 ∈ γ (T ) and w2 ∈ γ −1(T ). Then, depending on the orientation chosen at
the beginning, either γ ∈ B or γ ∈ B−1, as desired. ��

We denote by Fx the set of representative trees of T�x , and by Bx the set of
generating sets of �x of the form B ∪ B−1 as in the statement of Lemma 5.3.3.

Lemma 5.3.4 The function

Gx :Fx → Bx

T �→ GT

is injective. Its image consists of those generating sets B ∪ B−1 such that B is a
Schottky basis.

Proof Let B be a Schottky basis, choose a Schottky figure adapted to B, and consider
the associated analytic space F+ ⊂ P

1,an
H(x) as in Definition 3.1.1. We claim that the

maximal subtree TB of T�x contained in F+ has a unique vertex in any �x -orbit on
the set of vertices of T�x , and therefore is a representative tree. To prove this, recall
from 4.2.2 that the skeleton �x is obtained by pairwise identifying the endpoints of
the intersection F+ ∩ T�x according to the action of �x . In particular, F+ contains a
fundamental domain for the action of �x on P

1,an
H(x) − Lx , so that there is a vertex of TB

in the orbit of v, for every vertex v of T�x . Moreover, if ξ is an endpoint of F+ ∩ T�x ,
then the map px identifies ξ with only another endpoint of F+ ∩T�x , so that px (ξ) is a
point of degree 2 of �x and hence by definition it is not a vertex of �x . In particular, ξ
is not a vertex of TB , so that all vertices of TB are contained in a fundamental domain
for the action of �x on P

1,an
H(x) − Lx . This shows that every element in the orbit of a
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vertex v of TB different from itself does not lie in TB , concluding the proof that TB is
a representative tree.

Note that the endpoints of F+ ∩ T�x lie precisely on those edges of T�x that are
in ETB , and by construction of F+ the elements of �x acting on these endpoints are
precisely those lying in B ∪ B−1. Hence we have GTB = B ∪ B−1, showing that
B ∪ B−1 is in the image of Gx .
Conversely, if B = {γ1, . . . , γg} is a basis of �x and B ∪ B−1 ∈ Bx can be written as
Gx (T ) for some representative tree T , one can build a Schottky figure adapted to B as
follows. First one writes the set ET as {e−g, . . . , e−1, e1, . . . , eg} in such a way that
γi (e−i ) = ei . Then one chooses a set of 2g points {x−g, . . . , x−1, x1, . . . , xg} inP1,an

H(x)
in such a way that x−i ∈ e−i , xi ∈ ei and γi (x−i ) = xi for every i = 1, . . . , g (here
we tacitly identify an element of ET with the corresponding subset of P1,an

H(x)). Each

xi ∈ P
1,an
H(x) is the Shilov boundary of a unique closed disc of P1,an

H(x) not containing

T , that we denote by B+
i . The family B = {

B+
i , i ∈ {−g, . . . ,−1, 1, . . . , g}} is

a Schottky figure adapted to B: In fact, if we denote by B−
i the unique connected

component of P1,an
H(x) − {xi } such that T ∩ B−

i = ∅ and Lx ∩ B−
i 
= ∅, we have that

B−
i is a maximal open disc inside B+

i and that

B−
i = γi (P

1,an
H(x) − B+

−i ),

where we adopted the convention γ−i = γ −1
i . Then B is a Schottky basis, constructed

in such a way that the representative tree TB as above coincides with T .
The injectivity of Gx is proved as follows: let Gx (T1) = Gx (T2) = B ∪ B−1. By

what we just proved, B is a Schottky basis and the injectivity ofGx is equivalent to the
fact that every Schottky figure associated with B gives rise to the same representative
tree TB . We can show this by contradiction: suppose that two Schottky figures B1
and B2 adapted to B give rise to different representative trees T1 and T2. Then there
is a vertex v of T1 that is not a vertex of T2, and there are at least two edges ei , e j
of ET1 having v as an endpoint that are not edges of T2 nor they belong to ET2 , for
instance those edges departing from v in a direction different from the one of T2. As
a result, there is a unique connected component of T�x − T2 that contains both ei and
e j . Hence, the two closed discs B+

i , B+
j ∈ B1 corresponding to ei , e j are contained

in a single closed disc B+ ∈ B2. This leads to a contradiction, since every disc in a
Schottky figure adapted to B contains a unique fixed point of a unique element of B,
but B+ contains at least two of them. This shows that T1 = T2. ��

Thanks to the injectivity of Gx , one can associate with x a unique repre-
sentative tree Tx ∈ Fx , defined as the preimage by Gx of the generating set
{M1(x), . . . , Mg(x), M

−1
1 (x), . . . , M−1

g (x)}. Furthermore, with the point x one can
also associate the set

SBx = {τ ∈ Out(Fg) : τ(x) ∈ SBg}.

Our proof of the theorem then relies on the following lemmas.
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Lemma 5.3.5 Let x ∈ SBna
g . Then SBx is a finite subset of Out(Fg).

Proof Let us fix a vertex v ∈ Tx , and call Fx,v the subset of Fx consisting of those
representative trees that contain v. We first prove that every Schottky basis is �x -
conjugated to a unique Schottky basis in the imageGx (Fx,v). In fact, if B is a Schottky
basis, then B∪B−1 = Gx (T ) for some T ∈ Fx . For every γ ∈ �x , γGx (T )γ −1 is the
image by Gx of the representative tree γ (T ). Since there exists a unique γ ∈ �x such
that v ∈ γ (T ), there is a unique generating set in Gx (Fx,v) conjugated to B ∪ B−1

by an element of �x . As a result, the function Gx realizes a bijection between the set
Fx,v and the set of �x -conjugacy classes of generating sets of the form B ∪ B−1 with
B a Schottky basis of �x . As the former is a finite set, the latter is also finite and, in
particular, the PGL2-conjugacy classes of Schottky bases of �x are finite.

For every y ∈ SBna
g , let us define the subset SBx,y = {τ ∈ Out(Fg) : τ(x) = y}

of SBx . If τ1, τ2 ∈ SBx,y , then τ1τ
−1
2 (x) = x , so there is an element σ ∈ Out(Fg) in

the stabilizer of x such that τ1 = στ2. By Proposition 5.1.3, this stabilizer is finite, so
the set SBx,y is finite too. We can write the set SBx as a union

SBx =
⋃

y∈SBna
g

SBx,y .

Note that the set SBx,y is non-empty only if the Schottky basis
(
M1(y), . . . , Mg(y)

)
is PGL2-conjugated to τ

(
M1(x), . . . , Mg(x)

)
. Hence, by what precedes, SBx is a

finite union of finite sets and then it is finite. ��

Given a tree T , recall that a vertex of degree one of T is called a leaf. If the set of
leaves L(T ) of T has cardinality 2g, we call leaf labeling of T a bijection between
L(T ) and the set {−g, . . . ,−1, 1, . . . , g}. Let us denote by Lg the set of pairs (T , �)

where T is a finite tree with 2g leaves and no vertices of degree 2, and � is a leaf
labeling of T . Since g is fixed, Lg is a finite set. For a point x ∈ SBna

g , the subtree
Tx∪ETx of T�x has 2g leaves and no vertices of degree 2, and can naturally be endowed
with a labeling induced by the writing ETx = {e−g, . . . , e−1, e1, . . . , eg} as in the first
part of the proof. This assignment defines a map λ : SBna

g → Lg .

Lemma 5.3.6 Let x, y be two points ofSBna
g such that λ(x) = λ(y). Then SBx = SBy.

Proof Since λ(x) = λ(y), there exists an isomorphism of finite trees

ψ : Tx ∪ ETx → Ty ∪ ETy

that sends Tx to Ty and respects the leaf labelings. Consider the group isomorphism
φ : �x → �y such that φ(Mi (x)) = Mi (y). Then there is a unique way to extend φ-
equivariantly the isomorphism ψ to an isomorphism of infinite trees � : T�x → T�y .
Namely, for every vertex v′ ∈ T�x , there is a unique pair (γ, v) with γ ∈ �x and v

a vertex of Tx such that v′ = γ (v). The assignment �(v′) = φ(γ )(�(v)) uniquely
determines the isomorphism �.
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Let us fix vertices vx ∈ Tx and vy ∈ Ty such that �(vx ) = vy . Note that we
constructed � in such a way to be equivariant, so there is a commutative diagram of
the form

T�x T�y

�x �y

�

px py

∼
,

where the arrow on the bottom is an isomorphism of graphs, and in particular sends
spanning trees in �x to spanning trees in �y . As a result, � sends representative trees
in T�x to representative trees in T�y . In particular, � restricts to a function

�|Fx,vx
: Fx,vx → Fy,vy

satisfying �|Fx,vx
(Tx ) = Ty .

Now we consider an element τ ∈ SBx . This has a unique representative
σ ∈ Aut(Fg) such that Bσ , the Schottky basis resulting from applying σ to
(M1(x), . . . , Mg(x)), satisfies G−1

x (Bσ ) ∈ Fx,vx . If we consider the represen-
tative tree T = �|Fx,vx

(
G−1

x (Bσ )
)
, we have that the generating set Gy(T ) of

�y is of the form B ∪ B−1 for some Schottky basis B of �y . By definition,
Gy(T ) consists of those elements of �y that act on the set ET . Note that for
every vertex v ∈ T�x , we have �

((
Mi (x)

)
(v)

) = (
Mi (y)

)
(�(v)) thanks to

the fact that � is φ-equivariant. This condition ensures that, if we set Bσ =(
M

n1,0
j1,0

(x) · · · Mn1,r1
j1,r1

(x), . . . , M
ng,0
jg,0

(x) · · · Mng,rg
jg,rg

(x)
)
, then B can be taken to be(

M
n1,0
j1,0

(y) · · · Mn1,r1
j1,r1

(y), . . . , M
ng,0
jg,0

(y) · · · Mng,rg
jg,rg

(y)
)
, that is, τ(y) ∈ SBna

g . Hence

τ is in SBy and so SBx ⊂ SBy . The same construction applied to the isomorphism
�−1 shows that τ ∈ SBy implies τ ∈ SBx , so that SBx = SBy . ��

The theorem then follows from the two lemmas above. We write

SB =
⋃

x∈SBna
g

SBx =
⋃

λ(x)∈Lg

SBx ,

where the second equality is given by Lemma 5.3.6. The result of Lemma 5.3.5 ensures
the finiteness of SBx for every x , and the finiteness of the set Lg allows to conclude.

��
Corollary 5.3.7 TheactionofOut(Fg)onSna

g is proper. Thequotient spaceOut(Fg)\Sna
g

is Hausdorff and reduces locally to a quotient by a finite group.

Proof Let x, y ∈ Sna
g . By Corollary 4.3.3, there are σx , σy ∈ Out(Fg) such that

σx (x), σy(y) ∈ SBna
g . By Corollary 4.4.4, SBna

g is open in Sna
g . It follows that Ux :=

σ−1
x (SBna

g ) and Uy := σ−1
y (SBna

g ) are open neighborhoods of x and y respectively.
By Theorem 5.3.2, the set

{τ ∈ Out(Fg) : τ(Ux ) ∩Uy 
= ∅} = {τ ∈ Out(Fg) : σyτσ−1
x (SBna

g ) ∩ SBna
g 
= ∅}



79 Page 46 of 53 J. Poineau, D. Turchetti

is finite. It follows that the action is proper, and that Out(Fg)\Sna
g is Hausdorff.

Let us now prove the last part of the statement. Let x ∈ Sna
g . The previous result

applied with y = x ensures that there exists an open neighborhood Ux of x such that

T := {τ ∈ Out(Fg) : τ(Ux ) ∩Ux 
= ∅}

is finite. Up to shrinking Ux , we may assume that T = Stab(x) and that Ux is stable
under Stab(x). We then have a canonical isomorphism Out(Fg)\Sna

g � Stab(x)\Sna
g .

The result follows. ��
Corollary 5.3.8 For each a ∈ M(Z), the quotient space Out(Fg)\(Sg ∩ pr−1

Z
(a))

inherits a structure of H(a)-analytic space.

Proof Let (k, | · |) be a complete valued field. Recall that, if X is a k-analytic space and
G a finite group acting on X , then the quotient G\X inherits a structure of k-analytic
space. The archimedean case reduces to the case of complex analytic spaces, which
is handled in [12, Théorème 4]. The non-archimedean case is a consequence of [7,
Proposition 6.3.3/3].

With these results at hand, the statement follows from Theorem 5.3.1 and Corol-
lary 5.3.7. ��
Remark 5.3.9 Even though the results of this sectionmostly apply to the local situation,
we believe that they should hold globally, which is to say the action of Out(Fg) on Sg

is proper and the quotient space Out(Fg)\Sg inherits a structure of an analytic space
over Z.

6 Schottky uniformization for families of curves

6.1 The universal Mumford curve overZ

Definition 6.1.1 We call universal Schottky group the following subgroup of PGL2
(O(Sg)):

Gg := 〈M(0,∞,Y1), M(1, X ′
2,Y2), . . . , M(Xg, X

′
g,Yg)〉.

For x ∈ Sg , we denote by Lx ⊆ π−1(x) � P
1,an
H(x) the limit set of �x . We call limit

set of Gg the set

Lg :=
⋃
x∈Sg

Lx ⊆ P
1
Sg

.

We set

�g := P
1
Sg

− Lg.
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Theorem 6.1.2 The limit set Lg of Gg is a closed subset of P1
Sg
, the action of Gg on its

complement �g is free and proper and the quotient map Gg\�g → Sg is proper.

Proof It is enough to prove that every x ∈ Sg admits a neighborhood Ux such that
Lg ∩ π−1(Ux ) is a closed subset of P1

Ux
, the action of Gg on �g ∩ π−1(Ux ) is free

and proper and the quotient map Gg\(�g ∩ π−1(Ux )) → Ux is proper. Let x ∈ Sg .
Assume that x is archimedean. Arguing as in Remark 4.2.3 and the proof of

Lemma 4.2.4, we may replace Sg by the complex Schottky space Sg,C. We will add
subscripts C to denote the various objects under consideration in this setting.

By [2, Proposition 3], Lg,C is closed. The main ingredient in the proof is
the existence of an open neighborhood U0 of 0 in C

3g−3, a neighborhood U
of x in Sg,C, an analytic isomorphism ξ : U0 → U , and Beltrami coefficients
μ1, . . . , μ3g−3 : P1(C) → C such that, for each s ∈ U0, we have

Mi (ξ(s)) = wsμ Mi (x) (wsμ)−1 for 1 ≤ i ≤ 3g − 3,

where wsμ denotes the unique quasiconformal automorphism of P1(C) with Beltrami
coefficient sμ = ∑3g−3

i=1 siμi that fixes 0, 1 and∞. One may then relate the domain of
discontinuity�g,x over x to that over ξ(s), for some s ∈ U0, by�g,ξ(s) = wsμ(�g,x ).
It now follows from the continuity properties of wsμ (see [1, Theorem 8]) that �g is
open, or, equivalentely, that Lg is closed.

Similarly, let F+
x be a compact subset of �g,x intersecting every orbit of the action

of Gg,x . Let V0 be a compact neighborhood of 0 in C3g−3. Then, the set

F+ :=
⋃
s∈V0

wsμ(V0)

is a compact subset of �g that intersects every orbit of the action of Gg,ξ(s) for s ∈ V0.
It follows that Gg\(�g ∩ π−1(V0)) is compact.

Finally, the group Gg,C acts on �g,C by preserving the fibers of the morphism
�g,C → Sg,C. Since its action is free and proper on each fiber, it is free and proper
on the whole �g,C.

Assume that x is non-archimedean. The result then follows from Corollary 4.3.3
and Proposition 3.3.2. ��

It follows from Theorem 6.1.2 that the quotient

Cg := �g/Gg

defines an analytic space over Z. We call it the universal Mumford curve over Z.
This definition is motivated by the following corollary, summarizing the results of this
section.
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Corollary 6.1.3 There is a commutative diagram in the category of analytic spaces
over Z:

�g

Cg

Sg

π

where the quotient map �g → Cg is a local isomorphism and the natural map
Cg → Sg is proper and smooth of relative dimension 1.4 Given a point x ∈ Sg, its
preimage in Cg is a curve overH(x) which is isomorphic to the curve uniformized by
the Schottky group �x .

Remark 6.1.4 Note that the adjective universal applied to the curve Cg does not bear
any meaning beyond that of Corollary 6.1.3. In fact, while the universal Schottky
group of Definition 6.1.1 corresponds to a universal family for the Schottky space, the
universal Mumford curve does not correspond to such a family on a suitable moduli
space of Mumford curves, at least not without additional structure. Indeed, the same
Mumford curve can be obtained through different specializations of the universal
Mumford curve.

6.2 Moduli spaces of Mumford curves

The existence of the curve Cg raises the question of the existence of a moduli space
of Mumford curves and its connections with the moduli space of stable curves. Over
a non-archimedean fiber this space is obtained as the quotient of Sg by the action
of Out(Fg) described in Sect. 5.1, which was previously known in the rigid analytic
context from work of L. Gerritzen [21] and F. Herrlich [27], among others.

Remark 6.2.1 Over an archimedean fiber, the quotient of Sg by the action of Out(Fg)
captures more than isomorphism classes of Riemann surfaces, as there are different
Schottky groups that uniformize the same complex curve. In the case g = 1, one gets
a trivial action, and the space S1,C is the punctured open unit disc over C, image of
the Poincaré open-half plane under the map z �→ e2iπ z . As such, S1,C is a cover of
the modular curves X0(N ) and X1(N ) for every N . Hence a point of S1,C not only
determines an isomorphy class of an elliptic curve, but also takes into account its N -
level structures for every N . It would be interesting to investigate whether the space
Out(Fg)\Sg over the complex numbers can bear a similar interpretation for curves of
higher genus.

In what follows, we consider only the non-archimedean case: let a ∈ M(Z) be
a non-archimedean point, and consider the fiber Sg,a = Sg ∩ pr−1

Z
(a) over a of the

4 The property “smooth of relative dimension 1” has been recently defined in [6, Définition 9.2]. More
concretely, in our case the fibration ψ is locally isomorphic to the relative line.
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Schottky space. We denote by Mumfg,a the quotient of Sg,a by the continuous action
of Out(Fg) defined in 5.1.1. This quotient is aH(a)-analytic space by Corollary 5.3.8.
Since any element of Out(Fg) acts on the marking but does not affect the conjugacy
class of a Schottky group, each point x ∈ Mumfg,a corresponds to a unique conjugacy
class of a Schottky group �x ⊂ PGL2(H(x)). Moreover, by [42, Corollary (4.11)],
the isomorphism class of a Mumford curve over a non-archimedean field determines
the conjugacy class in PGL2 of its Schottky group. This shows that, for every valued
extension k of H(a) the k-points of Mumfg,a ×H(a) k are in 1-to-1 correspondence
with isomorphism classes of Mumford curves of genus g defined over k.

6.2.1 Relationship with geometric group theory and tropical moduli

The existence of a faithful action ofOut(Fg) onSg with finite stabilizers is reminescent
of Culler-Vogtmann definition of the outer space in the context of geometric group
theory, as introduced in their seminal paper [14]. This is not a coincidence, and in this
section we show that we can indeed relate the topology of Sg with that of the outer
space.

Let us recall the definition of the Culler-Vogtmann outer space. We fix g ≥ 2 and
an abstract graph Rg with one vertex and g edges, identifying its fundamental group
π1(Rg) with Fg . A finite connected graph G is said to be stable if all its vertices
have degree ≥ 3. A marking on a stable graph G of Betti number g is a homotopy
equivalencem : Rg → G or, equivalently, the choice of a group isomorphism between
Fg and the fundamental group π1(G). Two pairs (G,m) and (G ′,m′) each consisting
of a stable metric graph and a marking are equivalent if there is an isometry s :
G → G ′ such that s ◦ m is homotopic to m′. For a given marked graph (G,m), the
isomorphism Fg ∼= π1(G) determines an action of Fg on the universal cover T of G, a
tree naturally endowed with a metric, denoted by dT . The translation length function
of (G,m) is the function �G : Fg → R associating to any σ ∈ Fg the quantity
�G(σ ) := minx∈T {dT (σ (x), x)}. Let CVg denote the set of equivalence classes of
stable marked graphs endowed with a metric such that the sum of edge lengths is
equal to 1, and let C denote the set of conjugacy classes in Fg . The rule associating
with a marked tree its translation length function defines an embedding CVg ↪→ R

C
into the infinite dimensional real vector space RC . Thanks to this fact, CVg inherits
a topology from the product topology on R

C . The topological space so obtained is
called the Culler-Vogtmann outer space, and it is also denoted by CVg .

The original definition of the outer space can be found in [14, §0], where more
details about the length functions and the topology of the outer space are given. In
what follows, it will be useful to drop the condition that the marked graphs have sum
of edge lengths equal to 1. We will then denote by CV ′

g the unprojectivized outer
space CVg × R>0, which parametrizes marked graphs with arbitrary edge lengths.
There is a natural continuous action of Out(Fg) on CVg , which extends to CV ′

g using
the trivial action on the factor R>0. The quotient space CV ′

g/Out(Fg) has a canonical

injection in the moduli space of abstract weighted tropical curves M trop
g , whose image

is given by those tropical curves that have weight zero at every vertex. The induced
mapCV ′

g → M trop
g is continuous and corresponds to forgetting themarking on a given
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metric graph. For more details about equivalent definitions of M trop
g and its properties,

we refer to [9, §3], while a comparison between CVg and M trop
g is discussed in [11,

§5.2].
An isomorphism of Mumford curves induces an isometry between their skeletons.

This allows to define a continuous function Mumfg,a → M trop
g sending (the class

of) a Mumford curve in (the class of) its skeleton. For a point x ∈ Mumfg,a , recall
that the Schottky uniformization

(
P
1,an
H(x) −Lx

) → Cx restricts to a universal cover of
the skeleton �x (see [46, Theorem 6.4.18]). Via this restriction, the Schottky group
�x ∼= π1(Cx ) can be identified with the topological fundamental group π1(�x ).

Theorem 6.2.2 There is a continuous surjective function

φ : Sg,a −→ CV ′
g ×M trop

g
Mumfg,a .

Proof Let us consider the following:

• The continuous function φ1 : Sg,a → Mumfg,a given by the quotient by the action
of Out(Fg). Note that continuity descends from Proposition 5.1.5;

• The continuous function φ2 : Sg,a → CV ′
g given by assigning to each y ∈ Sg,a

the metric graph corresponding to the skeleton �y of the Mumford curve Cy and
the marking as follows: recall from Lemma 4.2.5 that the point y can be identified
with the conjugacy class of a morphism ϕy : Fg ↪→ PGL2(H(y)), whose image
is the fundamental group π1(Cy), and associate with y the marking corresponding
to the isomorphism Fg ∼= �y induced by ϕy . To prove continuity for φ2, we prove
that the composite function Sg,a → R

C is continuous. This amounts to prove

that the following: if σ ∈ Aut(Fg) is defined by σ(ei ) = e
ni,0
ji,0

· · · eni,riji,ri
, for some

ri ∈ N, ji,0, . . . , ji,ri ∈ {1, . . . , g}, ni,0, . . . , ni,ri ∈ Z, the assignment

y �→ ��y (Mji,0(y)
ni,0 · · · Mji,ri

(y)ni,ri )

defines a continuous function L : Sg,a → R. By Lemma 3.4.1, the length ��y (M)

for M ∈ �y coincides with |β|−1, where β is the multiplier of M . The result
then follows from Proposition 3.4.3, that ensures that the multiplier of the element
Mji,0(y)

ni,0 · · · Mji,ri
(y)ni,ri is a continuous function in the Koebe coordinates of

y.

The function φ2 is Out(Fg)-equivariant, and then agrees with φ1 on M trop
g . By the

universal property of the fiber product, the pair (φ1, φ2) defines a continuous function

φ : Sg,a −→ CV ′
g ×M trop

g
Mumfg,a .

We now prove that the function φ is surjective. Let
([G,m], [C]) ∈ CV ′

g ×M trop
g

Mumfg,a be a pair consisting of an equivalence class of a marked graph and an iso-
morphism class of a Mumford curve of genus g, such that the graph G is isometric to
the skeleton of C . We fix an isometry between G and the skeleton of C , inducing an
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isomorphism j : π1(G)
∼−→ π1(C). Let us denote by y the point of Sg,a whose under-

lying Schottky group is π1(C), with marking given by the image of the basis of Fg

under the composition of isomorphisms Fg
m−→ π1(G)

j−→ π1(C). Then φ1(y) = [C]
and φ2(y) = [G,m]. Hence φ is surjective. ��

Remark 6.2.3 In the proof of the surjectivity of the continuous function φ above, a
different choice of isometry j between G and the fundamental group π1(C) might
determine a different preimage in Sg,a of the pair

([G,m], [C]). For example, when
G is a rose with g loops all of the same length, a permutation of the loops corresponds
to a permutation of the basis {γ1, . . . , γg} of the Schottky group π1(C). In most cases
the element of Out(Fg) corresponding to such a permutation does not stabilize a point
in Sg,a , for instance when two distinct elements γi 
= γ j have distinct multipliers
βi 
= β j . This shows in particular that the function φ is not injective.

Remark 6.2.4 In [48], Ulirsch constructs a non-archimedean analogue of Teichmüller
spaceT g , using the tropical Teichmüller space thatChan,Melo, andViviani introduced
in [13] and tools from logarithmic geometry. The space T g is a Deligne-Mumford ana-
lytic stack over a non-archimedean algebraically closed field k whose points morally
correspond to pairs (C, φ) consisting of a stable projective curve C over a valued
extension of k and an isomorphism φ : π

top
1 (Can) ∼= Fb(C), where b(C) is the first

Betti number of Can. When restricting this construction on the locus of Mumford
curve, one retrieves a space T Mum

g , and a corollary of Ulirsch’s construction is the
realization of CVg as a strong deformation retract of T Mum

g . Moreover, the fibered
product CV ′

g ×M trop
g

Mumfg,a is identified (after a suitable base-change to an alge-

braically closed field)with the locus ofMumford curves inside the coarsemoduli space
of T g . As a result, Theorem 6.2.2 and Remark 6.2.3 clarify the relationship between
non-archimedean fibers of the Schottky space Sg over Z and Ulirsch’s T Mum

g .
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