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Abstract
We study almost complex structures with lower bounds on the rank of the Nijenhuis
tensor. Namely, we show that they satisfy an h-principle. As a consequence, all paral-
lelizable manifolds and all manifolds of dimension 2n ≥ 10 (respectively ≥ 6) admit
a almost complex structure whose Nijenhuis tensor has maximal rank everywhere
(resp. is nowhere trivial). For closed 4-manifolds, the existence of such structures is
characterized in terms of topological invariants. Moreover, we show that the Dolbeault
cohomology of non-integrable almost complex structures is often infinite dimensional
(even on compact manifolds).

Keywords Almost complex structures ·Maximally non-integrable · h-principle ·
Dolbeault cohomology · Frölicher spectral sequence

Mathematics Subject Classification 32Q60 · 53C15

1 Introduction

Abasic local invariant of an almost complex structure J onamanifold X is itsNijenhuis
tensor or, equivalently, the (−1, 2)-component of the exterior differential:

NJ := pr0,2 ◦ d : A1,0
X −→ A0,2

X .
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Therefore almost complex manifolds can be stratified by the pointwise rank of NJ . By
the celebrated theorem of Newlander-Nirenberg, J is integrable if and only if NJ ≡ 0.
Manifolds equippedwith integrable almost complex structures constitute an extremely
interesting class and their properties are largely studied. It seems then natural to ask
in which terms one can describe the other extremes or whether they satisfy similar
properties.

Motivated by these questions in this paper we begin to investigate the two arguably
most natural cases. Namely, we focus on the spaces of almost complex structures J
for which NJ has maximal rank at every point and for which NJ is non-trivial at
every point. Almost complex structures of the former type are said to be maximally
non-integrable while those of the latter type are called everywhere non-integrable.
Prominent examples of maximally non-integrable almost complex structures arise
from (strictly) nearly Kähler six manifolds (like S6) [3, 14, 15] and Twistor spaces
[4, 5]. In [12], it was proven that in dimension ≥ 6 maximally non-integrable almost
complex manifolds do not admit any local holomorphic functions. Constant (and
in particular maximal) rank conditions on NJ also appear naturally in the study of
the recently introduced Dolbeault cohomology of almost complex manifolds [6].
For example, the Frölicher spectral sequence degenerates at E2 for maximally non-
integrable almost complex 4- and 6-manifolds. In the present article, we will focus on
two aspects: existence and cohomological properties.

1.1 Existence

Since a generic matrix has maximal rank, one may be tempted to think that any almost
complex structure can be deformed into amaximally non-integrable one. However, the
existence of a full-rank bundle map from A1,0

X to A0,2
X gives a necessary condition for

a homotopy class of almost complex structures to contain maximally non-integrable
representatives. Using Gromov’s h-principle for ample differential relations, we show
that this is indeed the only obstruction. In fact, we prove something more. Let us write
H for the space of pairs (J , N ) where J is an almost complex structure on X and
N is a global section of the bundle HomC(A1,0

X , A0,2
X ) (where the bigrading is taken

according to J ). Then the first result of this paper is the following:

Theorem A Foranymanifold X andany integerr , sendinganalmost complex structure
J to its Nijenhuis tensor NJ induces a homotopy equivalence

{J | rankC(NJ )x ≥ r ∀x ∈ X} −→ {(J , N ) ∈ H | rankC(Nx ) ≥ r ∀x ∈ X}.
Therefore, if the dimension of the manifold X is sufficiently large, the existence of
maximally non-integrable or everywhere non-integrable structures in a given homo-
topy class is not obstructed. In fact a transversality argument yields:

Corollary A.1 In dimension 2n ≥ 10 (resp. ≥ 6) any almost complex structure on a
2n-dimensional manifold is homotopic to a maximally non-integrable one (resp. to an
everywhere non-integrable one).

The existence of maximally non-integrable structures is not guaranteed in lower
dimensions. In fact, it imposes non-trivial topological conditions on the manifold.
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In particular, in dimension 4 the Nijenhuis tensor has complex rank 0 or 1 at every
point, thus everywhere non-integrability and maximal non-integrability are equivalent
conditions. In this case it turns out that the existence of such structures is a purely
topological question:

Corollary A.2 On a compact oriented 4-manifold X, the following conditions are
equivalent:

(a) X admits a maximally non-integrable almost complex structure inducing its ori-
entation.

(b) X admits an almost complex structure inducing its orientation and satisfies 5χ +
6σ = 0.

(c) X satisfies 5χ + 6σ = 0, σ ≡ 0 (mod 4) and if its intersection form is definite,
then b+ = 0.

Moreover, if the above conditions are satisfied, any almost complex structure inducing
the given orientation is homotopic to a maximally non-integrable almost complex
structure.

Also in dimension 6 there is a topological characterization of the existence of
maximally non-integrable complex structures:

Corollary A.3 Let X be an oriented 6-manifold.

(1) After possibly passing to a finite cover, any almost complex structure on X with
3c1 = 0 (or more generally c1 torsion) is homotopic to amaximally non-integrable
one.

(2) X admits a maximally non-integrable almost complex structure if and only if it
admits a spin-structure.

The second statement should be compared to the result of Wall [16, Thm 9] that X
admits an almost complex structure if and only if it admits a spinc-structure.

Regardless of the dimension, we find that parallelizable manifolds of even dimen-
sion always admit maximally non-integrable almost complex structures. In fact:

Corollary A.4 Onaparallelizablemanifold of dimension2n, any almost complex struc-
ture for which the tangent bundle is trivial as a complex vector bundle is homotopic
to a maximally non-integrable almost complex structure.

This corollary applies in particular to left-invariant almost complex structures on
homogeneous manifolds. We complement these results with several examples in the
main body of the text.

1.2 Cohomological properties

Cirici and Wilson [6] proposed a generalization of the Frölicher spectral sequence
to the setting of almost complex manifolds. In particular, they defined bigraded vec-
tor spaces H•,•Dol(X) generalizing Dolbeault cohomology. This generalization satisfies
some desirable properties. Namely, for X compact, the pages of the Frölicher spectral
sequence have to become finite-dimensional at some stage because it converges to
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de Rham cohomology. Moreover, the spaces H p,0
Dol(X) and H p,n

Dol (X) are known to be
finite-dimensional for all p, where X is 2n-dimensional. The analogous result is known
to hold for all bidegrees in the integrable setting. In view of this, it is a natural question
whether finite dimensionality holds for all H p,q

Dol (X). We answer this in the negative
and show that the Dolbeault cohomology will very often be infinite dimensional:

Theorem B Let (X , J ) be an almost complex 4 or 6-manifold (not necessarily com-
pact) such that J is maximally non-integrable at a point x ∈ X. Then HDol(X) is
infinite dimensional.

In particular, this Theorem applies to S6 with the almost complex structure com-
ing from octonian multiplication and any other nearly Kähler 6-manifold. By taking
products, one obtains examples of almost complex manifolds of arbitrary dimension
2n ≥ 4 with infinite dimensional Dolbeault cohomology. Since on an almost complex
4-manifold NJ has rank 0 or 1, the result above specializes to the 4-dimensional case
as:

Corollary B.1 Let (X , J ) be an almost complex compact 4-manifold. Then:

dim HDol(X , J ) <∞⇐⇒ J is integrable.

The next two Corollaries were pointed out to us by Joana Cirici. As mentioned before,
in [6], it was shown that all differentials in the Frölicher spectral sequence ofmaximally
non-integrable structures on 4- and 6-manifolds vanish from page 2 onwards. Since de
Rham cohomology is finite dimensional for compact manifolds, one may complement
this as follows.

Corollary B.2 The Frölicher spectral sequence of a compact 4 or 6-dimensional maxi-
mally non-integrable almost complex manifold degenerates exactly at page 2 (and not
at page 1).

Note that there are examples of nilmanifolds with maximally non-integrable left-
invariant almost complex structures for which the left-invariant Frölicher spectral
sequence does degenerate at E1, see [6]. Further, recall that for nilmanifolds with
a left-invariant (integrable) complex structure, it is conjectured that the Dolbeault
cohomology can be computed using left-invariant forms. Because left-invariant coho-
mology is finite-dimensional, the analogous statement in the non-integrable case fails
drastically.

Corollary B.3 On 4- or 6-dimensional nilmanifolds with left-invariant maximally
non-integrable almost complex structures, the Dolbeault cohomology can never be
computed using left-invariant forms only.

Finally, recall that on any complex manifold, there exist the Bott-Chern and Aeppli
cohomology groups, which fit into the diagram
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HBC (X)

H∂̄ (X) HdR(X) H∂ (X)

HA(X)

where horizontal arrows represent spectral sequences and all maps are induced by
the identity on forms. The work [6] provides a generalization of the horizontal strip
of the diagram to the almost complex setting. In Appendix A, we define metric-
independent generalizations for HBC and HA of general almost complex manifolds
that maintain many desirable properties from the integrable setting, complementing
[6] and recent harmonic definitions in [13]. Like Dolbeault cohomology, they can be
infinite dimensional on compact manifolds.

1.3 Structure of the paper

In Sect. 2 we discuss existence of maximally non-integrable and everywhere non-
integrable almost complex structures. In particular, in Sect. 2.1 we introduce the
notation and draw some necessary topological conditions for low dimensional man-
ifolds. The proof of Theorem A is carried out in Sect. 2.2 while Sect. 2.3 contains
the proofs of its corollaries and further consequences. In the last part of Sect. 2 we
present some explicit constructions of maximally non-integrable and, more generally,
constant rank almost complex structures.

Section 3 focuses on the cohomological properties of maximally non-integrable
almost complex structures. Namely, it contains the proof of Theorem B as well as
explicit examples of this instance.

In the last part of the paper, Appendix A, we define metric-independent general-
izations for Bott-Chern and Aeppli cohomology. Moreover, we discuss some of their
properties and infinite dimensionality.

2 Existence

2.1 Maximally non-integrable almost complexmanifolds

We begin by recalling some known facts on almost complex structures for future
reference and to set the notation. Let X be a manifold of dimension 2n and suppose
J is an almost complex structure on X . Denote by T 1,0X and T 0,1X the i and −i
eigenspaces of J in the complexified tangent bundle T X ⊗ C. The dual bundles will
be denoted by A1,0

X , resp. A0,1
X and we write Ap,q

X := �p A1,0
X ⊗�q A0,1

X for the bundle
of (p, q)-forms. The space of sections will be denoted by Ap,q

X := �(X , Ap,q
X ). The

Nijenhuis tensor of J can be defined both as the tensor NJ : T X⊗T X −→ T X given
by



83 Page 6 of 25 R. Coelho et al.

NJ (X ,Y ) = [X ,Y ] − [J X , JY ] + J ([J X ,Y ] + [X , JY ]) (1)

and as the map μ̄J : A1,0
X −→ A0,2

X given by (−1, 2)-component of the exterior
derivative, that is,

μ̄J (α) = pr0,2 ◦ d(α), (2)

where pr0,2 : A2
X −→ A0,2

X . If we restrict the argument of (the complexification of)

NJ to (0, 1)-vectors, one may consider NJ as a global section of A0,2
X ⊗ T 1,0X =

Hom(A1,0
X , A0,2

X ). Under this identification, NJ = 4μ̄J .Wewill switch freely between
both descriptions.

As explained in the introduction we focus on almost complex structures whose
Nijenhuis tensor satisfies certain properties. We can now define the main object of our
interest.

Definition 1 An almost complex structure J on a manifold X is called maximally
non-integrable if its Nijenhuis tensor NJ or, equivalently, μ̄J has maximal rank at all
x ∈ X .

Moreover, we will be interested in another class of almost complex structures.

Definition 2 An almost complex structure J on a manifold X is called everywhere
non-integrable if its Nijenhuis tensor NJ or, equivalently, μ̄J is non-trivial at all
x ∈ X .

A simple dimension count yields rankC A1,0
X = n and rankC A0,2

X = (n
2

)
. Therefore

we have the following cases:

J is maximally non-integrable⇐⇒

⎧
⎪⎨

⎪⎩

μ̄J is surjective if n = 2

μ̄J is an isomorphism if n = 3

μ̄J is injective if n ≥ 4

(3)

For maximally non-integrable structures, we get an exact sequence of vector bun-
dles

0 −→ ker μ̄ −→ A1,0
X −→ A0,2

X −→ coker μ̄ −→ 0

which yields the following obstructions on the Chern classes of J :

Corollary 3 Let (X , J ) be a maximally non-integrable almost complex manifold of
dimension 2n. Then the following holds:

⎧
⎪⎨

⎪⎩

5χ + 6σ = 0 if n = 2

3c1 = c21 = c1c2 = 0 if n = 3

c3 + 8c31 + c1c2 = c4 − c1c3 + c21c2 = 0 if n = 4



Maximally non-integrable almost complex structures … Page 7 of 25 83

The cases n = 2 and n = 3 are due to Armstrong [1] and Bryant [3] respectively.
Notice that the necessary conditions for 8-manifolds impose topological constraints.
In fact, substituting c1c2 = −c3 − 8c31 in the last condition we get

c4 = 2c1c3 + 8c41 .

Therefore the Euler characteristic χ of a maximally non-integrable almost complex
8-manifold must be even. Moreover, substituting the same equality in the signature
formula

σ = 1

45
(3c22 − 14c1c3 + 14c4 − c41 + 4c21c2)

yields 3|χ . We conclude that the Euler characteristic of a maximally non-integrable
almost complex 8-manifold is divisible by 6. For n ≥ 5, the rank of the cokernel of μ̄

becomes very large and one does not obtain any constraints on the Chern classes.

2.2 Proof of theorem A

2.2.1 The formal Nijenhuis tensor

Let X be a 2n-dimensional smooth manifold. We denote by

Z := {J ∈ End(T X) | J 2 = −1} π−→ X ,

the (metric independent) twistor space of X . Over Z , we have the bundles V :=
ker(Dπ) and T := π∗(T X)

p−→ Z . Both come equipped with tautological complex
structures J̃ and J , respectively, defined as follows. Given a point Jx ∈ Z , x ∈ X ,
the fiber of V over Jx can be described as

VJx = {A ∈ End(Tx X) | Jx A + AJx = 0}

and we set

J̃ |VJx
(A) := Jx ◦ A,

whereas TJx ∼= Tx X and J is given by

J |TJx := Jx .

With the complex structure J comes a splitting of the complexification TC of T into
complex bundles given as usual by the ±i eigenvalues of J :

TC = T 1,0 ⊕ T 0,1.
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Writing Ap,q for the duals of the bundles �pT 1,0 ⊗�qT 0,1, we now define

H := A0,2 ⊗C T 1,0, (4)

the bundle of linear Nijenhuis tensors. Note that for a given local section J : U ⊂
X → Z of Z , the splitting of TCU induced by J is compatible with that of T in the
sense that there is a natural bundle embedding of TCU into the restriction of TC to the
image of J in Z . Moreover, the Nijenhuis tensor NJ of J is naturally a local section
of the pull-back bundle J

∗
(H).

Denote by Z (1) the space of 1-jets of the fibration π : Z → X . Recall that π(1) :
Z (1) → Z has the structure of an affine bundle. We will now define a bundle map
N : Z (1) → H . Fix x ∈ X and Jx ∈ Zx . A point in Z (1) over Jx consists of the 1-jet
j of an almost complex structure whose value at x equals Jx . Picking an extension J
for Jx with 1-jet j , put N ( j) = NJ , the Nijenhuis tensor of J . Since the Nijenhuis
tensor of J depends only on J up to first order,N is a well-defined bundle map. This
setup is summarized in the following diagram:

Z (1) H

Z

X

N

π(1) pH

π

Let us describeN restricted to a fixed fiber over Jx ∈ Z more explicitly. We note that
the Lie-bracket induces a map

T X (1) × T X (1) −→ T X (5)

and the action of endomorphisms on the tangent bundle induces a map

EndR(T X)(1) × T X (1) −→ T X (1) (6)

If we only care about N at a fiber, we may assume without loss of generality that
X is a small ball, s.t. T X is trivial. Recall that as soon as one has a trivial fibra-
tion pr : V := X × F → X , the fiber of the 1-jet space V (1) → X over x ∈ X
may be canonically identified with the vector bundle HomR(pr−1 Tx X , T F). Using
this identification, we write elements v ∈ T X (1)

x as (v0, v1) with v0 ∈ Tx X and
v1 = v1(_) ∈ HomR(Tx X , Tx X). Similarly, we write elements in A ∈ EndR(T X)

(1)
x

as A = (A0, A1) with A0 ∈ EndR(Tx X) for some x ∈ X and A1 := A1(_) ∈
HomR(Tx X ,End(Tx X)) (in particular, this applies to A ∈ Z (1)). With these identifi-
cations, we may write (5) and (6) as

[v,w] = w1(v0)− v0(w1) (7)



Maximally non-integrable almost complex structures … Page 9 of 25 83

and

A(v) = (A0(v0), A1(_)(v0)+ A0 ◦ v1(_)) (8)

Using these formulae, one verifies that for any (Jx , λ) ∈ Z (1)
Jx

where λ ∈
HomR(Tx X , VJx ), and v,w ∈ T 0,1

Jx
one has

N (Jx , λ)(v,w) = i(λ(v)(w)− λ(w)(v))+ Jx (λ(v)(w)− λ(w)(v)),

where λ is extended C-linearly. The space VJx is equipped with the complex structure

J̃ introduced above and therefore so is Z (1)
Jx
= {Jx } × HomR(Tx X , VJx ), by post-

composition. With respect to this complex structure, N is complex linear. In fact:

iN (Jx , λ)(v,w) = (−1)(λ(v)(w)+ iλ(w)(v))+ i(Jxλ(v)(w)− Jxλ(w)(v))

= N ( j, J̃ λ)(v,w)

we conclude:

Lemma 4 The restriction of N to the fibers of π(1) is a holomorphic map.

Remark 5 The vertical tangent bundle ker Dπ(1) can be identified with (π(1))∗
Hom(π∗T X , V ). The complex structure it inherits from J̃ by post-composition coin-
cides with the one described above on the fibers of the bundle π(1) (after identifiying
the fibers, which are affine spaces, with their tangent space at any point). I.e., the
fiberwise complex structure is independent of the choice of a local trivialization.

2.2.2 The h-principle

On H we define the sub-bundles

H≥i = {λ ∈ H | rank(λ) ≥ i} ⊆ H .

We are interested in the (open) partial differential relations

R≥i := N−1(H≥i ) ⊆ Z (1).

We will show that these partial differential relations are ample, which will imply the
result according to [9], see also [7]. Let F := Z (1)

Jx
be any fiber of π(1). Recall that

to show ampleness of a partial differential relation which sits in a space of 1-jets, it is
enough to show that the complement of its intersection with any principal subspace is
a stratified set of even (real) codimension. We refer to [7] for details and definitions
and only spell out what these notions mean in our context:

One may identify F with the vector space HomR(Tx X , VJx ). Given any hyperplane
τ ∈ Tx X and a linear map l : τ → VJx the affine subspace

Fl
τ := {L ∈ F | L|τ = l} ⊆ F
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is called a principal subspace of F . The tangent space to F at any point is again
HomR(Tx X , VJx ) and the tangent space to Fl

τ is F0
τ , which is J̃ -stable. In particular,

Fl
τ is a complex submanifold of F . Therefore, N restricts to a holomorphic map on

Fl
τ and N−1(H \ H̃) ∩ Fl

τ is a complex analytic subset of F , so it has even (real)
codimension. Denoting by �(X , Z)≥i the set of sections J : X → Z with rk NJ ≥ i
and by �(X , Z (1))≥i the set of sections J : X → Z (1) with rk NJ ≥ i , Gromov’s
h-principle for ample differential relations yields a homotopy equivalence

�(X , Z)≥i −→ �(X , Z (1))≥i .

To complete the proof of Theorem A, we note that N is surjective by the following
Lemma:

Lemma 6 ([10, Theorem 5]) Let X be a 2n-dimensional manifold and Jx be an almost
complex structure on the tangent space Tx X at a fixed point x ∈ X. Given a formal
Nijenhuis tensor N : A1,0

x → A0,2
x there exists an almost complex structure J on a

neighborhood of x such that J |Tx X = Jx with Nijenhuis tensor N at x.

ButN is also an affine map with contractible fibers, so it induces a bundle homotopy
equivalence

R≥i → H≥i .

In particular, the spaces of sections are homotopy equivalent.

2.3 Applications

2.3.1 Everywhere non-integrable almost complex structures

Let X be a 2n-dimensional manifold and let us now discuss the special case of Theo-
rem A where rankC Nx ≥ 1 at all points x ∈ X . Given any almost complex structure
J on X , the condition rankC(NJ )x ≥ 1 implies the existence of a nowhere vanishing
section of the bundle HX := HomC(A1,0

X , A0,2
X ). Equivalently, it implies that the top

Chern class, say c, of this bundle is trivial. Conversely, if c = 0, there exists a nowhere
vanishing section N of H . Then by Theorem A applied to the pair (J , N ), we see that
J is homotopic to an everywhere non-integrable almost complex structure J ′. Now
the bundle HX has complex rank n · (n2

)
, which is larger than the complex dimension

n of X for n > 2, so in this case c = 0 necessarily. This proves:

Corollary 7 Any almost complex structure on a manifold of dimension 2n > 4 is
homotopic to an everywhere non-integrable almost complex structure.

2.3.2 Maximally non-integrable structures in high dimensions

Let n ≥ 5 and define Hdeg
X ⊆ HX to be the subspace of maps which have fiberwise

non-maximal rank at every point. The codimension of Hdeg
X in HX equals

(n
2

)− n+ 1



Maximally non-integrable almost complex structures … Page 11 of 25 83

(c.f. [7, 2.2.1.]). Since n ≥ 5,

dimCHX − (dimCX + dimCH
deg
X ) = 1

2
(n2 − 5n + 2) > 0.

Therefore, by transversality, a generic section to HX will be disjoint from Hdeg
X .

In other words, we can pick a global section N ∈ �(X , H) of maximal rank. By
TheoremA, there exists a homotopy of pairs from (J , N ) to a holonomic pair (J ′, NJ ′)
with NJ ′ of maximal rank. We have shown:

Corollary 8 For n > 4, any almost complex structure on a 2n-manifold is homotopic
to a maximally non-integrable one.

Remark 9 The same arguments, applied to the subspace H≤r of homomorphisms of
pointwise rank ≤ r , give an alternative proof of Corollary 7 and show that n = 4, any
almost complex structure is homotopic to one with Nijenhuis tensor of rank ≥ 3. In
particular, we have proved Corollary A.1.

2.3.3 4-manifolds

Let us now discuss the existence of maximally non-integrable almost complex struc-
tures in the 4-dimensional case. The main goals of this section are the characterization
of closed four manifolds admitting a maximally non-integrable almost complex struc-
ture (Corollary A.2). We also determine the homotopy type of the fiber of the space
of formal maximally non-integrable almost complex structures over a 4-manifold
and show that there exist homotopy classes of almost complex structures contain-
ing infinitely many maximally non-integrable almost complex structures which are
non-homotopic as maximally non-integrable almost complex structures.

Proof of Corollary A.2 We will prove (a)⇐⇒ (b) and (b)⇐⇒ (c).
The implication (a) ⇒ (b) is essentially Corollary 3. Conversely, given any almost
complex structure on X , the condition 5χ(X)+6σ(X) = 0 implies that the top Chern
class c of the bundle HX vanishes. Therefore there exists a nowhere vanishing section,
i.e. a formal Nijenhuis tensor of a maximally non-integrable almost complex structure.
By Theorem A, this is homotopic to a genuine Nijenhuis tensor of a maximally non-
integrable almost complex structure on X and the first part is proved.

Regarding the implication (b) ⇒ (c), recall that 4|(χ + σ) holds on any almost
complex 4-manifold. Hence we have the following congruences modulo 4

0 ≡ 5χ(X)+ 6σ(X) ≡ 5(χ(X)+ σ(X))+ σ(X) ≡ σ(X). (9)

Thus we are left needing to show that an almost complex 4-manifold satisfying
5χ(X)+ 6σ(X) = 0 cannot have positive definite intersection form and b2(X) > 0.
An almost complex 4-manifold with positive definite intersection form satisfies
χ(X)+ σ(X) ≥ 0 and 4|(χ(X)+ σ(X)), see [11, Theorem 8.B]. Then we have

−σ(X) = 5 (χ(X)+ σ(X)) ≥ 0.
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Thus, a 4-manifold X satisfying (b) can have positive definite intersection form only
if σ(X) = b2(X) = 0.
Conversely, assuming (c) we want to show that X admits an almost complex structure.
We will now distinguish three cases:

(i) b2(X) = 0.
(ii) The intersection form of X is indefinite.
(iii) The intersection form of X is negative definite.

Ifb2(X) = 0, then X admits an almost complex structure if 2χ(X)+3σ(X) = 0, cf. for
instance [11, Theorem 8.B]. But this is immediate since b2(X) = 0 implies σ(X) = 0
and this, together with 0 = 5χ(X) + 6σ(X), yields χ(X) = 0. This settles the case
(i). For (ii), combining 5χ(X)+ 6σ(X) = 0 with 4|σ(X) we get χ(X)+ σ(X) ≡ 0
(mod 4). This last congruence is known to be a sufficient condition for a closed 4-
manifold with indefinite intersection form to admit an almost complex structure, see
for example [11, Theorem 8.A]. We are left with the case (iii). Since 4|σ(X) (which
translates to 4|b2(X)), we can restrict to the case b2(X) ≥ 4. In this instance X admits
an almost complex structure if the congruence χ(X)+σ(X) ≡ 0 (mod 4) is satisfied
[11, Theorem 8.C1]. This congruence, as in the previous case, follows by combining
5χ(X)+ 6σ(X) = 0 with 4|σ(X). ��

Let us now discuss the homotopy type of the fiber of the space Hmni
X of formal max-

imally non-integrable almost complex structures on a 4-manifold X . Let π : Z −→ X
be the twistor space of X . Recall from Sect. 2.2.1 that the space of linear Nijenhuis
tensors HX is defined as A0,2 ⊗ T 1,0, see (4). In order to study its homotopy type we
must first understand the homotopy type of the normal bundle to the fibers F of Z ,
i.e. the restriction of T to F . Since F is homotopy equivalent to S2, T|F is homotopy
equivalent to a rank 2 complex vector bundle on S2. This bundle is L ⊕ L where
L has Euler class x the positive generator of H2(S2), see [2, page 437]. Therefore
c1(HX |F ) ∼= 6x . Since Hmni

X is just HX without the zero section, its fiber has the
homotopy type of the sphere bundle associated with H |F , which is an S3-bundle over
S2. Since 2 | c1(H |F ), this sphere bundle is homotopy equivalent to the trivial bundle
S2 × S3.

We now specialize this discussion to the case of parallelizable 4-manifolds. In
particular we obtain the following

Proposition 10 Let X be a parallelizable 4-manifold equipped with an arbitrary
almost complex structure J . Then homotopy classes of maximally non-integrable
almost complex structures which are homotopic to J as almost complex structures
are in one-to-one correspondence to homotopy classes [X , S3] of maps X −→ S3.

Proof Let J be an arbitrary almost complex structure on a parallelizable 4-manifold X .
This corresponds to a section J : X −→ Z of the twistor bundle Z = X × F . Recall
that Z is homotopy equivalent to the trivial S2 � S2-bundle over X by triviality of
T X . Homotopy classes of maximally non-integrable almost complex structures in the
same homotopy class of J are the same as homotopy classes of (nowhere-vanishing)
extensions of J to H , i.e. (nowhere-vanishing) sections of the bundle J ∗H . We claim
that the bundle J ∗H over X is trivial. In order to see this recall that a rank 4 real vector
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bundle over a closed 4-manifold is determined by its second Stiefel-Whitney classw2,
its first Pontryagin class p1 and its Euler class e. Since J ∗H has a complex structure
induced by J , we have c1 ≡ w2 (mod 2), p1 = c21 − 2c2 and e = c2. Now, using the

fact that J ∗H ∼= Hom
(
A0,2
X ⊗ T X1,0

)
, we get

• w2(J ∗H) ≡ c1(J ∗H) = 3c1(X) ≡ c1(X) ≡ 0 (mod 2).
• e(J ∗H) = 5χ + 6σ = 0 where the first equality follows from Corollary 3 and the
second one follows from χ = σ = 0.

• p1(J ∗H) = c21(J
∗H)− 2c2(J ∗H) = 0 by the previous points and c21(X) = 0.

Therefore maximally non-integrable almost complex structures in the same homotopy
class of J are maps X −→ S3 because J ∗H ∼= X × S3. Consequently homotopy
classes of maximally non-integrable almost complex structures in the same homotopy
class of J correspond to elements of [X , S3]. This concludes the proof. ��

By picking X so that there are infinitely many homotopy classes of maps X −→ S3

we get:

Corollary 11 There exist parallelizable 4-manifolds for which each homotopy class of
almost complex structures contains infinitely many maximally non-integrable almost
complex structures which are non-homotopic as maximally non-integrable almost
complex structures.

Proof Let X be the parallelizable 4-manifold S1 × S3 equipped with an arbitrary
almost complex structure J . Consider the maps fn : X −→ S3 which are constant in
the S1 factor and have degree n in the S3 factor S3. By Proposition 10 these maps
represent maximally non-integrable almost complex structures on X which are not
homotopic as maximally non-integrable almost complex structures even though they
are all homotopic to J as almost complex structures. ��

2.4 6-manifolds

Let X be an oriented 6-manifold. Assume that X admits a maximally non-integrable
almost complex structure, then by Corollary 3 its first Chern class c1 is 3-torsion, i.e.
3c1 = 0. Moreover, c1 is an integral lift of the second Stiefel-Whitney classw2, which
is 2-torsion. Therefore w2 = 0, that is, X is spin.

Conversely, if w2 = 0, then we may take 0 as an integral lift and there is an almost
complex structure J (unique up to homotopy) such that c1 = 0 (cf. [16, Thm 9]).
The condition c1 = 0 is equivalent to A3,0

X being the trivial complex line bundle, i.e.
there exists a nowhere vanishing (3, 0)-form η. Picking a Hermitian metric yields a
C-linear Hodge operator � : A1,0

X → A3,2
X . Combining these two we obtain a bundle

isomorphism N := (· ∧ η)−1 ◦ � : A1,0
X → A0,2

X . By Theorem A applied to the pair
(J , N ), the almost complex structure J is homotopic to a maximally non-integrable
one.

Note that one can always kill torsion classes in H2(X ,Z) by passing to a finite
cover. Therefore, if for a given almost complex structure J on a 6-manifold X we have
that c1 is torsion, then there exists an almost complex structure on a finite cover of X
with c1 = 0. We have thus proved Corollary A.3
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2.4.1 Parallelizable manifolds

On a 2n-dimensional manifold X with trivial tangent bundle T X the choice of a frame
V1, ..., V2n induces a trivialization of the bundle Z ∼= X × F → X , where F is any
fiber of π : Z → X . One may define an almost complex structure via JV2i−1 = V2i
for all i = 1, ..., n. This corresponds to a constant section X → X×F gives a complex
trivialization of the tangent bundle. Conversely, for every almost complex structure
which makes T X into a trivial complex vector bundle, we may find a frame in which it
becomes constant as above. In such a situation, the bundle HX is trivial as a complex
vector bundle and so one may pick a section of maximal rank. Hence, we have proved
Corollary A.4

2.5 Examples

2.5.1 Mapping tori

This example follows the idea presented by Geiges in [8]. Let X be a parallelizable 4-
manifold which fibers over S1, that is π : X −→ S1 is a bundle with fiber a (oriented,
closed) 3-manifold Y . In other terms, X is the suspension of an orientation preserving
diffeomorphism f : Y −→ Y . In particular, X admits a maximally non-integrable
almost complex structure by Theorem A.4. We construct now an explicit one.

Denote by T the nowhere vanishing vector field on X defined by π∗T = ∂t where t
is the coordinate on S1. Thenwe can always complete T to a trivialization {T ,U , V , Z}
of T X , for instance taking U = iT , V = jT and Z = kT under the identification
T X ∼= X ×H. From this we construct the following trivialization of T X .

An = T + 1

n
sin

(
n2π∗t

)
U − 1

n
cos

(
n2π∗t

)
V

Bn = Z + 1

n
cos

(
n2π∗t

)
U + 1

n
sin

(
n2π∗t

)
V

Cn = 1

n
U

Dn = 1

n
V .

Now define an almost complex structure J on X by setting

J An = Cn and J Bn = Dn .

Then J is maximally non-integrable (for n large enough) because the Nijenhuis tensor
NJ is everywhere non-trivial. In particular the vector field NJ (An, Bn) is nowhere
vanishing. In order to show this we begin by noticing that

1

n
NJ (An, Bn) = 1

n3
[U , V ] − 1

n
[An, Bn] − 1

n2
J [U , Bn] − 1

n2
J [An, V ]

= − 1

n
[An, Bn] + O(n−1).
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Using LTπ∗t = 1 and setting a : = LZπ∗t we have

−1

n
[An, Bn] =

(
sin(n2π∗t)+ a cos(n2π∗t)

)
U

−
(
cos(n2π∗t)− a sin(n2π∗t)

)
V + O(n−1)

which is nowhere-vanishing for n large enough. We conclude that NJ �= 0 for all
x ∈ X so that J is maximally non-integrable.

2.5.2 Homogeneous manifolds

Consider homogeneous manifolds X = G/� for a Lie group G and a discrete sub-
group �, equipped with a left-invariant complex structure J . By their homogeneous
nature, the Nijenhuis tensor μ̄J always has constant rank. Thus, it suffices to check
that μ̄J has maximal rank at a point. For instance, in real dimension 4, any non-
integrable left-invariant complex structure is maximally non-integrable. Further, one
has a complex trivialization

Hom(A1,0
X , A0,2

X ) ∼= C⊗ Hom(g1,0, g0,2), (10)

where gp,q denotes the space of left-invariant (p, q)-forms. Therefore, by TheoremA,
resp. Corollary A.4, any left-invariant almost complex structure is homotopic to a
maximally non-integrable one. However, the latter need not be left-invariant anymore,
as the following (well-known) observation shows:

Observation 12 Every left-invariant almost complex structure on the torus T 2n is inte-
grable.

In fact, this is an immediate consequence of the trivialization (10) and the fact that
d (hence a fortiori μ̄) vanishes on left-invariant forms.

Remark 13 In dimension 4, T 4 is in fact the only solvmanifold which does not admit
a left-invariant maximally non-integrable almost complex structure.

Let us check constructively, andwithout usingTheoremA that there existmaximally
non-integrable almost complex structures on all tori. The idea becomes apparent in
dimension 4 and for simplicity we consider the complex plane X = C

2 first. Let
ω1 := dz1 + f dz̄2, ω2 := dz2 for some function f and define an almost complex
structure by setting A1,0 := 〈ω1, ω2〉. Then A0,2

X = 〈ω̄1 ∧ ω̄2〉 and hence

μ̄(ω1) = pr0,2
(

∂

∂z1
f dz1 ∧ dz̄2 + ∂

∂z2
f dz2 ∧ dz̄2 + ∂

∂ z̄1
f dz̄1 ∧ dz̄2

)

= pr0,2
(

∂

∂z1
f (ω1 − f ω̄2) ∧ ω̄2 + ∂

∂z2
f ω2 ∧ ω̄2 + ∂

∂ z̄1
f (ω̄1 − f̄ ω2) ∧ ω̄2

)

= ∂

∂ z̄1
f ω̄1 ∧ ω̄2.
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Hence, for any f such that ∂
∂ z̄1

f is nowhere vanishing, the almost complex structure

is maximally non-integrable. For a 4-torus C2/(2πZ[i]2), one can pick for instance.
f = exp(i Re(z1)).
Generalizing these ideas, we obtain:

Theorem 14 On every even dimensional torus T 2n, n ≥ 2, there exists a maximally
non-integrable almost complex structure.

Proof The case n = 2 being treated above, it is enough to restrict to the case n ≥ 3. Let
T := C

n/(2πZ[i]n) with complex coordinates z1, ..., zn . Define an almost complex
structure by deforming the space of (1, 0)-forms as follows. Consider a basis of (1, 0)-
forms given by

ωi := dzi + aidz̄i

where

ai := f (zi+1)+ A

with f : C/(2πZ[i]) → S1 given by f (z) := exp(i Re(z)), A ∈ C a constant s.t.
‖A‖ ≥ 2 and by abuse of notation zn+1 := z1. Note that we have

∂

∂zi
a j = 0 i �= j + 1

∂

∂zi
a j = i

2
f (zi+1) i = j + 1

∂

∂ z̄i
a j = 0 i �= j + 1

∂

∂ z̄i
a j = − i

2
f (zi+1) i = j + 1

where again indices are to be read modulo n. We can re-express the dzi from the ωi

as

dzi = bi (ωi − ai ω̄i )

with bi := (1 − ‖ai‖2)−1. By assumption on A, we have ‖ai (z)‖ > 1 at every point
z ∈ T so that bi never vanishes.

μ̄(ωi ) = pr0,2
(

∂

∂zi+1
aidzi+1 ∧ dz̄i + ∂

∂ z̄i+1
aidz̄i+1 ∧ dz̄i

)

= i

2
bibi+1 f (zi+1)(1− ai+1)

︸ ︷︷ ︸
�=0

ω̄i+1 ∧ ω̄i .
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Since a basis for A0,2
T is given by the ω̄i ∧ ω̄ j with i > j , all μ̄(ωi ) are linearly

independent, i.e. μ̄ has maximal rank. ��
Remark 15 Taking products one deduces that for any n, d with 0 ≤ d ≤
min{n,

n(n−1)
2 }, there exists an almost complex structure on T 2n with Nijenhuis tensor

of constant rank d.1

3 Dolbeault cohomology

3.1 Preliminaries

We recall the notion of Dolbeault cohomology introduced in [6]: On any almost com-
plex manifold (X , J ), we write d = μ̄ + ∂̄ + ∂ + μ where the summands are the
components of bidegrees (−1, 2), (0, 1), (1, 0) and (2,−1). In particular, the μ̄ from
the previous section is the restriction of the μ̄ from this section to A1,0

X . The equation
d2 = 0 translates into:

0 = μ̄2

0 = μ̄∂̄ + ∂̄μ̄

0 = μ̄∂ + ∂μ̄+ ∂̄2

0 = μ̄μ+ ∂̄∂ + ∂∂̄ + μμ̄

0 = μ∂̄ + ∂̄μ+ ∂2

0 = μ∂ + ∂μ

0 = μ2. (11)

By the first three of these equations, the following generalization of Dolbeault-
cohomology is well-defined:

HDol(X) := HDol(X , J ) := H∂̄ (Hμ̄(A•,•X )).

3.2 Proof of theorem B

We prove first a technical lemma. Denote by A1
X ,R

:= �(X , T X∨) the space of (real
valued) 1-forms.

Lemma 16 Let X be any smooth manifold of dimension n ≥ 3 and E ∈
�(X ,End(T X)) an endomorphism of the tangent bundle. Then the R-vector space

(im d + im E ◦ d) ∩A1
X ,R

1 Strictly speaking, products of the previous examples cover all cases except a rank 2 structure on T 6.
Such a structure can be obtained for example by defining ω1 := dz1 + exp(i Re(z1))dz̄3, ω2 := dz2 +
exp(i Re(z2))dz̄3 and ω3 := dz3.
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has infinite codimension in A1
X ,R

. More precisely, at any given point x ∈ X, there

exists a k ≥ 1 such that the space (im d + im E ◦ d)(k) of k-jets at x of elements in
(im d + im E ◦ d)(k) has positive codimension in the space (A1

X ,R
)(k) of all k-jets of

1-forms at x.

Proof We can assume X to be a disk around x = 0 with coordinates x1, ..., xn . The
space (A0

X ,R
)(k) of k-jets of functions (k-th order Taylor expansions) at x may be

identified with the space of polynomials of degree ≤ k in the xi , therefore

dim(A0
X ,R)(k) =

(
n + k

k

)

Hence,

dim(A1
X ,R)(k) = n ·

(
n + k

k

)

and

dim(im d + im E ◦ d)(k) ≥ 2 ·
(
n + k + 1

k + 1

)
.

But

n ·
(
n + k

k

)
> 2 ·

(
n + k + 1

k + 1

)
⇔ 0 > n + (2− n)k + 2,

and since n ≥ 3 there is always a k satisfying this. ��
Proof of Theorem B Let us first assume that J is everywheremaximally non-integrable.
Then the Dolbeault cohomology in degree (0, 1) is the cokernel H0,1

Dol(X) =
A0,1

X /(im ∂̄)0,1. There is an R-linear isomorphism

A0,1
X /(im ∂̄)0,1 →A1

X ,R/(im d + J im d)

ω �→ω + ω̄.

and the right hand side is infinite dimensional by Lemma 16.
For the general case, let x ∈ X be a point s.t. Jx is maximally non-integrable. Pick

an open neighborhood x ∈ U ⊆ X such that J |U is maximally non-integrable, so that
H0,1
Dol(U ) = A0,1

U / im ∂̄ . By Lemma 16, wemay pick an infinite dimensional subspace

K ⊆ A0,1
U consisting of forms with compact support s.t. K → H0,1

Dol(U ) is injective.
Extending these forms by zero and projecting yields a well-defined map

K → H0,1
Dol(X) = ∂̄−1 im μ̄ ∩A0,1

X

im ∂̄ ∩A0,1
X

.
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The result now follows from the commutativity of the following diagram:

K H0,1
Dol(X)

H0,1
Dol(U ).

��
Remark 17 A spectral sequence argument shows that in the setting of Theorem B, also
H1,1
Dol(X) is infinite dimensional.

Example 18 Let T be the 4-torus endowed with the maximally non-integrable almost
complex structure constructed above. Then the Dolbeault cohomology H0,1

Dol(T ) is
infinite dimensional as a C-vector space.

Proof Since the almost complex structure is maximally non-integrable, H0,1
Dol(T ) =

A0,1
T / im ∂̄ . Now, for any function g ∈ A0,0

T , we have

∂̄g = pr0,1
(

∂

∂z1
gdz1 + ∂

∂z2
gdz2 + ∂

∂ z̄1
gdz̄1 + ∂

∂ z̄2
gdz̄2

)

= pr0,1
(

∂

∂z1
g(ω1 − f ω̄2)− ∂

∂z2
gω2 + ∂

∂ z̄1
g(ω̄1 − f̄ ω2)+ ∂

∂ z̄2
gω̄2

)

= ∂

∂ z̄1
gω̄1 + (

∂

∂ z̄2
g − f

∂

∂z1
g)ω̄2

That is, if an element of the form Gω̄2 with G ∈ A0,0
T represents the zero-class in

H0,1
Dol(T ), there exists g ∈ A0,0

T such that

∂

∂ z̄1
g = 0 (12)

∂

∂ z̄2
g − f

∂

∂z1
g = G . (13)

The first equation says that g is holomorphic in z1. Since T is compact, g is constant
on each slice of the type (z1, x) for fixed x , i.e. g is independent of z1. Therefore, also
∂

∂z1
g = 0 and (13) simplifies to

∂

∂ z̄2
g = G .

This, together with (12), implies ∂
∂ z̄1

G = 0, hence also G has to be independent of z1.

Let B be a linear subspace of A0,0 which is contained in the complement of the
space of functions which are independent of z1. For such B the subspace A0,1

B :=
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{Gω̄2 | G ∈ B} injects into H0,1
Dol(T ) by our previous argument. Now choose B, and

hence A0,1
B , to be infinite dimensional. ��

Remark 19 A similar calculation shows that H2,1
Dol(T ) is infinite dimensional for this

almost complex structure.

Remark 20 (Dolbeault cohomology is not Hausdorff) Consider the sequence of func-
tions

g̃n(z1, z̄1, z2, z̄2) := z̄1
n
+ z1 ∈ A0

C2 .

LetU ⊆ C
2 be an open set for which pr : U → T 4 is an embedding. Pick V ⊆ U and

a smooth function ρ : U → R s.t. ρ|V ≡ 1 and ρ|C2\U ≡ 0. Then we may consider
gn := ρ · g̃n as functions on the torus. We claim that with respect to the previously
considered almost complex structure on T 4, the limit of the ∂̄gn for n →∞ does not
lie in the image of ∂̄ . Indeed, on V we have

∂̄gn
n→∞−→ f ω2 /∈ im ∂̄ .

In other words, the zero class in H0,1
Dol(T

4) is not closed, so H0,1
Dol(T

4) is not Haus-
dorff. A natural question, suggested to us by Jean Ruppenthal, is whether for compact
X , the maximal Hausdorff quotient (H0,1

Dol(X))HD := H0,1
Dol(X)/[0] is finite dimen-

sional. Note however that for maximally non-integrable 4 or 6-manifolds, we have
Hn,n−1
Dol (X) = ker ∂̄ , which is Hausdorff, but can still be infinite dimensional as

Remark 19 shows.
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Appendix A: Bott-Chern and Aeppli cohomologies

We recall an algebraic notion which can be seen as an abstraction of the complex of
forms on an almost complex manifold:

Definition 21 A complex (A, d)where A carries a bigrading and d has bidegree |d| =
(−1, 2)+ (0, 1)+ (1, 0)+ (2,−1) is called a 4-complex.

http://creativecommons.org/licenses/by/4.0/


Maximally non-integrable almost complex structures … Page 21 of 25 83

In the following, Awill always denote a 4-complex andwewill denote the components
of d by μ̄, ∂̄, ∂, μwith |μ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0) and |μ| = (2,−1). As
before, the property d2 = 0 translates into the equations (11). For technical reasons,
we will assume all our 4-complexes to be bounded, i.e. Ap,q = 0 for all but finitely
many (p, q). Following [6], for any such 4-complex one may introduce the Dolbeault
and ‘conjugate’ Dolbeault cohomology of A:

HDol(A) := H∂̄ (Hμ̄(A)) HDolbar (A) := H∂ (Hμ(A)).

(which is meaningful by the equations (11)) and there will be the following spectral
sequences, functorial for maps of 4-complexes: (see [6])

HDol(A) �⇒ Hd(A)⇐� HDolbar (A).

A 4-complex with μ̄ = μ = 0 is called a double complex. If A is a double complex
one may define the Bott-Chern and Aeppli cohomologies:

HBC (A) := ker ∂ ∩ ker ∂̄

im ∂∂̄
HA(A) := ker ∂∂̄

im ∂ + im ∂̄
.

These fit into a commutative diagram

HBC (A)

H∂̄ (A) Hd(A) H∂ (A)

HA(A).

(∗)

Note that for a double complex HDol(A) = H∂̄ (A), so the middle row is meaningful
for any 4-complex. Our goal will be to extend the definition of Bott-Chern and Aeppli
cohomology to almost complex manifolds or, more generally, arbitrary 4-complexes

Definition 22 Given a 4-complex (A, μ̄, ∂̄, ∂, μ), we say

As := ker μ̄ ∩ ker ∂̄2 ∩ ker ∂2 ∩ kerμ

is the sub double complex and

Aq := A/(im μ̄+ im ∂̄2 + im ∂2 + im μ)

the quotient double complex.

Lemma 23 The maps ∂ and ∂̄ induce well-defined maps on As and Aq. With these,
(As, ∂, ∂̄) and (Aq , ∂, ∂̄) are double complexes.
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Proof We only do As , the other case is essentially the same. First of all, observe that
As is still bigraded, since it is the intersection of kernels of maps that have a single
bidegree. The equations of a 4-complex simplify on the subspace As to

0 = μ̄∂̄ = μ̄∂ = ∂̄∂ + ∂∂̄ = μ∂̄ = μ∂ (14)

Given ω ∈ As let us check that ∂ω ∈ As : We have μ̄∂ω = μ∂ω = 0 by the
equations (14) and ∂2∂ω = ∂∂2ω = 0 since As ⊆ ker ∂2. Finally ∂̄2∂ω = −μ̄∂2ω−
∂μ̄∂ω = 0. Analogously, ∂̄ω ∈ As . Finally the equation ∂∂̄ + ∂̄∂ = 0 from (14),
together with ∂2 = ∂̄2 = 0 show that we are in a double complex. ��

Since As and Aq are double complexes, the usual definition of Bott-Chern and
Aeppli cohomology are meaningful for them. So we get diagrams

HBC (As)

H∂̄ (As) (HdR(As), F, F̄) H∂ (As)

and

H∂̄ (Aq) (HdR(Aq), F, F̄) H∂ (Aq)

HA(Aq).

If we started with a double complex A, we have As = A = Aq and we re-obtain
the diagram (∗). It remains to connect these diagrams with the actual A for a proper
4-complex:

By construction one has twomaps of 4-complexes (where the outer ones have trival
μ and μ̄)

As −→ A −→ Aq .

Applying the de-Rham cohomology-functor, we get maps

HdR(As) −→ HdR(A) −→ HdR(Aq).

Applying HDol and using that μ̄ = 0 on As and Aq , we obtain

H∂̄ (As) = HDol(As) −→ HDol(A) −→ HDol(Aq) = H∂̄ (Aq)

In summary, we have:
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Proposition 24 Given a 4-complex A, set HBC (A) = HBC (As) and HA(A) :=
HA(Aq). Then there is a commutative diagram:

HBC (A)

HDol(A) (HdR(A), F, F̄) HDolbar (A)

HA(A)

Concerning multiplicative structures, we have proved:

Proposition 25 If A carries a product ∧making (A,∧, d) into a bigraded differential
algebra, As is subalgebra and Aq is a bigraded (bi)differential module over As. Hence,
HA(A) is a bigraded module over HBC (A).

Proof Note that for δ ∈ {μ̄, ∂̄2, ∂2, μ} and pure-type forms ω,ω′ ∈ A, we have

δ(ω ∧ ω′) = δω ∧ ω′ ± ω ∧ δω′.

From this, it is immediate that As is closed under ∧ and that As ∧ (im μ̄+ im ∂̄2 +
im ∂2+im μ) ⊆ (im μ̄+im ∂̄2+im ∂2+im μ), i.e. Aq is amodule over As . Thefinal
statement follows from the more general fact that for any bigraded differential module
(M, ∂, ∂̄) over a bigraded bidifferential algebra (B, ∂, ∂̄), the Aeppli cohomology
HA(M) is a bigraded module over the Bott-Chern cohomology HBC (B). In fact, let
b ∈ ker ∂ ∩ ker ∂̄ ∩ B p,q and m ∈ ker ∂∂̄ ∩ Mr ,s . Then

∂∂̄(b ∧ m) = ∂∂̄b ± ∂̄b ∧ ∂m ∓ ∂b ∧ ∂̄m + b ∧ ∂∂̄m = 0.

If additionally b = ∂∂̄b′, then

b ∧ m = ∂∂̄(b′ ∧ m)± ∂(b′ ∧ ∂̄m)∓ ∂̄(b′ ∧ ∂m) ∈ (im ∂ + im ∂̄).

Similarly, ifm = ∂m′ + ∂̄m′′, then b∧m = ±∂(b∧m′)±∂(b∧m′′) ∈ (im ∂+ im ∂̄).
��

Remark 26 The statement about the module structure implies in particular that for all
p, q, r , s ∈ Z, the wedge-product induces well-defined ‘duality’ pairings

H p,q
BC (A)× Hr ,s

A (A) −→ H p+r ,q+s
A (A).

For completeness, we make the following definition, which the reader will have
guessed by now:

Definition 27 Let X be an almost complex manifold. The Bott-Chern and Aeppli
cohomologies are defined to be

HBC (X) := HBC (AX ) HA(X) := HA(AX ).
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With this definition we obtain:

Theorem 28 Bott-Chern and Aeppli cohomology give contravariant functors

HBC :{almost complex manifolds} → {bigraded-commutative C-algebras}
HA :{almost complex manifolds} → {bigraded modules over HBC }.

together with natural transformations

HBC

HDol (HdR, F, F̄) HDolbar

HA

and natural C-antilinear isomorphisms H p,q
BC (X) ∼= Hq,p

BC (X) and H p,q
A (X) ∼=

Hq,p
A (X).

Remark 29 Fixing a hermitian metric, write Hp,q
BC (X) = HBC (X) ∩ Ap,q

X and
Hp,q

A (X) = HA(X) ∩ Ap,q
X denote the pure-type harmonic forms in the sense of

[13]. Nicoletta Tardini informed us that there are injectionsHp,q
BC (X) ⊆ H p,q

BC (X) and
Hp,q

A (X) ⊆ H p,q
A (X).

Remark 30 (Infinite dimensionality) If X is a maximally non-integrable 2n-manifold
for n = 2, 3, then Hn,n−1

BC (X) ∼= Hn,n−1
Dol (X) and H0,1

Dol(X) ∼= H0,1
A (X). In particular,

they may also be infinite dimensional on compact manifolds.

Remark 31 (a strong ∂∂̄-property implies integrability)Acomplexmanifold X satisfies
the so-called ∂∂̄-property if and only if all maps in the diagram in Proposition 24
are isomorphisms. One may use this as a definition of the ∂∂̄-property for general
almost complex structures. However, from Theorem B or Remark 30, it follows that
an almost complex structure on a 4-manifold which satisfies the ∂∂̄-property in this
sense is already integrable.
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