Selecta Mathematica (2022) 28:50 Selecta Mathematica
https://doi.org/10.1007/s00029-022-00762-6 New Series

®

Check for
updates

Asymptotics of Muttalib—Borodin determinants with
Fisher-Hartwig singularities

Christophe Charlier!

Accepted: 5 January 2022 / Published online: 8 March 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

Muttalib—-Borodin determinants are generalizations of Hankel determinants and
depend on a parameter & > 0. In this paper, we obtain large n asymptotics for
n x n Muttalib-Borodin determinants whose weight possesses an arbitrary number of
Fisher—Hartwig singularities. As a corollary, we obtain asymptotics for the expectation
and variance of the real and imaginary parts of the logarithm of the underlying char-
acteristic polynomial, several central limit theorems, and some global bulk rigidity
upper bounds. Our results are valid for all 6 > 0.
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1 Introduction and statement of results
The main result of this paper is an asymptotic formula as n — +oo for

1 b b n
D= [ [T T = xpaf = [Tuwwpdy,
s Ja a 1

1<j<k<n j=

b ] n—1
:det(/ x"+19w(x)dx> , (1.1)
a Jj,k=0

with 0 < a < b, 0 > 0, and the weight w is of the form

W(x)

wx) =e w(x), (1.2)
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where the function W : [a, b] — R is analytic in a neighborhood of [a, b],

w(x) = (x —a)* (b — x)%mt! l_[a)aj(x)wﬂj (x), meN={0,1,...}, (1.3)

Jj=1
) = | " () = eimhi ifx<tj, (1.4)
Do B =12 =T @B = e i7hi ifx > 1}, '
and0<a<ti<...<ty <b< 400,
Reap,...,Reapi1 > —1, RepBi,....ReBy € (-1, 7). (1.5)

The parameters «; and B; describe the root-type and jump-type singularities of w,
respectively. In total, the weight w has m Fisher—Hartwig (FH) singularities in the
interior of its support, and two root-type FH singularities at the edges a and b. The
conditionRe o; > —1 ensures that D, (w) is well-defined. Since wg +no = (—D"wg :
foranyng € Zand ; € C, one canreduce the generalcase 8; € CtoRe 8, € (— % %]
without loss of generality. The restriction Re 8; € (—%, }‘) in (1.5) is due to some
technicalities in our analysis (see (7.5)).

We emphasize that only the case a > 0 is considered in this work. The case a = 0

is more complicated, because it requires a delicate local analysis around 0 which has
only been solved for particular values of 6: see [52] for 6 = % and [57] when 1/6
is an integer. We also mention the work [62], which was done simultaneously and
independently to this work, where this local analysis was solved for integer values of
0. In other words, solving this local analysis for general values of 6 > 0 remains an
outstanding problem, and is the reason as to why we restrict ourselves to a > 0.
The determinant D,, (w) arises naturally in the study of certain Muttalib—Borodin (MB)
ensembles, and for this reason we call D, (w) a Muttalib—Borodin determinant. Given
a non-negative weight w with sufficient decay at +oo, the associated MB ensemble
of parameter 6 > 0 is the joint probability density function

1

D) [T o—xped =xD[[wep.  x1....x €10, 400), (1.6)

1<j<k<n j=1

where D, (w) is the normalization constant. For «g, ;41 > —1, the determinant
D, (w) is for example of interest in the study of the random polynomial p, (t) =
]_[;f: 1(t — x;), where x1, ..., x, are distributed according to the MB ensemble asso-
ciated to the weight

1, x€(a,b),
Wx) = (x — @) (b — x)* eV (X)X (x) = (L)
0, otherwise.
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Indeed, as can be seen from (1.1)—(1.4) and (1.6), we have

m m

E( [ 1pati) e e Pn<fk>) _ Dn(w) [[e ™. (1.8)

k=1 Dy (w) k=1
where

" .
0, ifx; <t,
argp, (1) = Zarg(z‘ - Xj), with arg(t — xj) = { xj <

ot —m, ifx; >t.

Equivalently, (1.8) can be rewritten as

]E( ﬁ |pn(tk)|ak62ﬂiﬂan(tk)) = Dntt) ﬁ e, (1.9)
k=1 Da(w) 4
where N, (t) € {0, 1, ..., n} is the counting function of (1.6) and is given by
Ny(t) =#{x; 1 xj <t}, teR.
In particular, formula (1.9) withe; = ... = &, = 0 shows that the moment generating

function of the MB ensemble (1.6) can be expressed as a ratio of two MB determinants.

The densities (1.6) were introduced by Muttalib [58] in the context of disordered
conductors in the metallic regime. These models are also named after Borodin [8], who
studied, for the classical Laguerre and Jacobi weights, the limiting local microscopic
behavior of the random points xy, ..., x, as n — +o00o. The notable feature of MB
ensembles is that neighboring points x ;, x; repel each other as ~ (x;x — x.,')(x,f - x?),

which differs, for 8 # 1, from the simpler and more standard situation ~ (x; — x j)z.
In fact, MB ensembles fall within a special class of determinantal point processes
known as biorthogonal ensembles, and a main difficulty in their asymptotic analysis
for & # 1 is the lack of a simple Christoffel-Darboux formula for the underlying
biorthogonal polynomials.! MB ensembles have attracted considerable attention over
the years, partly due to their relation to eigenvalue distributions of random matrix
models [23,41,54]. MB ensembles also arise in the study of random plane partitions
[5] and the Dyson Brownian motion under a moving boundary [45,46].

For 6 = 1, MB determinants are Hankel determinants and the large n asymptotics
of D,(w) = D, (e"w X(a,b)) have been obtained by Deift, Its and Krasovsky [32,33].
In fact, asymptotics of Hankel determinants with FH singularities have been studied by
many authors and are now understood even in the more complicated situation where
the weight varies wildly with n; more precisely, for 6 = 1 the large n asymptotics
of D, (e™"Ve" w) are known up to and including the constant term, for any potential
V such that the points x1, ..., x, accumulate on a single interval as n — +o0o0 (the

1 See [28, Theorem 1.1] for a formula valid only for 6 € Q. For 6 ¢ Q, there is simply no Christoffel-
Darboux formula available in the literature.
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so-called “one-cut regime"), see [4,13,20,44,49,50,53]. Asymptotics of Hankel deter-
minants with FH singularities have also been studied in various transition regimes of
the parameters: see [7,64] for FH singularities approaching the edges, [24] for two
merging root-type singularities, and [19] for a large jump-type singularity. We also
mention that the problem of finding asymptotics of large Toeplitz determinants with
several FH singularities presents many similarities with the Hankel case and has also
been widely studied, see e.g. [2,3,10,32,33,35,38,63] for important early works.

Very few results exist on MB determinants for general values of 6. It was noticed in
[23,39] that MB determinants associated to the classical Jacobi and Laguerre weights
are Selberg integrals which can be evaluated explicitly, and the asymptotics of MB
determinants without FH singularities have been studied in [9]. To the best of our
knowledge, for6 # 1 noresults are available in the literature on the large n asymptotics
of MB determinants whose weight has FH singularities in the interior of its support.
The purpose of this paper is to take a first step toward the solution of this problem.

We now introduce the necessary material to present our results. As is usually the case
in the asymptotic analysis of n-fold integrals, see e.g. [31, Section 6.1], an important
role in the asymptotics of D, (w) is played by an equilibrium measure. As can be seen
from (1.1), the main contribution in the large n asymptotics of D, (w) comes from the
n-tuples (x1, ..., X,) which minimize

Z log |xx — x;| 7' + Z lozg,r|x,f—x?|’l

1<j<k<n 1<j<k<n

Hence, we are led to consider the problem of finding the probability measure g
minimizing

o [ [t

among all Borel probability measures w on [a, b]. This measure 1 is called the equi-
librium measure; in our case it is absolutely continuous with respect to the Lebesgue
measure, supported on the whole interval [a, b], and if p is a probability measure
satisfying the following Euler-Lagrange equality

() + / / log —5——5=du()du(y) (110

b b
/log|x—y|du<y>+/ log |x? —y?ldu(y) = —¢, forx €[a,b], (1.11)
a

a

where £ € R is a constant, then = g [28,60]. Similar equilibrium problems related
to MB ensembles have been studied in detail by Claeys and Romano in [28] (see also
[29, Theorem 1]), but in our case the equilibrium measure has two hard edges and
this is not covered by [28]. Nevertheless, as in [28], the following function J plays an
important role in the construction of pg:

s+ 1 7
J(s)=J(s;co,c1) =(c1s +co)l — | , co>cy >0, (1.12)
s
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0 (6)
J:D\ [~1,0] = Hy \ [a,b]
IR 0/ a (3) b
(2)
(5)
Sa
J:Ci\?jfg\[a,b] a (1) b

@ @

Fig.1 The mapping J

where the branch cut lies on [—1, 0] and is such that J(s) = ¢is(1 + O(s™1)) as
s — oo. Itis easy to check that J'(s) = 0 if and only if s € {s,, 55}, where

1—-6 Co 1—-6 1 co
_ — — 402 £ (1 —0)2, =——+ — [46=+ (1 —0)2.
Sa o P07 m= g g ¥, T -0

(1.13)

Since cp > c1 > 0, these points always satisfy s, < —1 and é < sp. It is also easy
to verify (see Lemma 2.1 for the proof) that for any 0 < a < b < 400, there exists a
unique tuple (cp, c1) which satisfies

J(sq) = a, J(sp) = D, co > c1 > 0. (1.14)

The following proposition was proved in [28] and summarizes some important prop-
erties of J.

Proposition 1.1 (Claecys—Romano [28]) Let& > 1 andco > c¢1 > 0be suchthat(1.14)
holds. There are two complex conjugate curves y| and y» starting at s, and ending
at sp in the upper and lower half plane respectively which are mapped to the interval
[a, b] through J. Let y be the counterclockwise oriented closed curve consisting of
the union of y1 and y», enclosing a region D. The maps

J:C\D— C\J[a,bl, J:D\[-1,0]— Hg\ [a,b] (1.15)

are bijections, where Hg:={z € C \ {0} : —% <argz < %}. See also Fig. 1.

The case 6 < 1 was not considered in [28] but only requires minor modifications.
The extension of Proposition 1.1 to all values of & > 0 is given in Proposition 2.4
below. In particular, we show that Proposition 1.1 is still valid for 8 < 1, except that
J : D\ [—1,0] - Hpy \ [a, b] is no longer a bijection. For any 6 > 0, let

I :(C\[a,b]—>(C\5
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denote the inverse of J : C\ D — C\ [a, b], and let It +(x):=lime 0, 11 (x £ ie),
x € (a, b). As shown in Fig. 1, we have

hix)ey, h-(x)€y, xe€(ab).
Proposition 1.2 Let 6 > 0, b > a > 0, and let (cy, c1) be the unique solution to
J(sy) = a, J(sp) = D, co > c1 > 0. (1.16)

The unique equilibrium measure [y satisfying (1.11) is given by djug(x) = p(x)dx,
where

I/
plx) = —llm (H—(X)) = —liarg L +(x), xe€(a,b), (1.17)
T I +(x) T dx ’

with arg I 4 (x) € (0, ) for all x € (a, b).

Remark 1.3 It can be readily verified using (1.12) and (1.17) that p blows up like an
inverse square root near a and b. Indeed, since

J"(sp)

J(s)=b+ (s —5p)* + O((s — 5p)°), as s — sp, (1.18)

J"(sa)

J(s)=a+ (s —52)* + O((s — s2)%), as s — sa, (1.19)

with J”(sp) > 0, J"(s4) < 0, we obtain

1 1
= o), b, b, 1.20
pix) \/Ensb«/J”(sb) Vb—x +oM sr= o L= ( )
1 1
_ o, , a2l
N S N oo Y e

The following theorem is our main result.

Theorem1.4 Let & > 0, m € Nand a,ty,...,ty,b € R, oo, ..., 0n+1, P15
Bm € Chesuchthat) <a <t; <... <ty <b,

Reag, ..., Reapy > —1, Reﬂl,...,ReﬂmE(—é—I‘,%),

and let W : [a, b] — R be analytic. Let (cg, c1) be the unique solution to (1.16), and
let pbeasin(1.17). Asn — 400, we have

1
Dn(w) = exp <C1n2+C2n+C3 logn+C4+(’)<m)> , (122)
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with Bmax = max{|Re 1], ..., [Re Bul},
C = E—llo +010 (1.23)
1=75%3 gCl > g o, .
1-6 1 b
C = 5 logco — 3 log6 + log(2m) + W(x)p(x)dx
a
m—+1 b m b
+ Zaj/ log [¢; _X|P(x)dx+277iﬂj<l —2/ p(x)dx), (1.24)
j=0 ¢ j=1 f
L@t N~ (% o
Cr— —— L _8%], 1.25
=gt +,-Z_} e (1.25)

to:=a, ty+1:=b, Cyq is independent of n, (co, c1) is the unique solution to (1.16), the
density p is given by (1.17), and € is the associated Euler-Lagrange constant defined
in (1.11). The constant Cy can also be rewritten using the relations

! 7 —arg | (1) b
/ px)dx = % / log |r — x|p(x)dx =log(ci|li,+(®)]), t € (a,b).
(1.26)
Furthermore, the error term in (1.22) is uniform for all oy in compact subsets of
{z € C: Rez > —1}, for all By in compact subsets of {z € C : Rez € (_Tl, ‘—1‘)}, for

0 in compact subsets of (0, +00) and uniform in t1, ..., t,, as long as there exists
8 > 0 independent of n such that

15;,n#l]zlim{lfj—lkl,llj—bl,llj—dl}28~ (1.27)

Remark 1.5 For 6 = 1, y is a circle and

b—a 1
{=—-2log 7 p(x):n ot

Substituting these expressions in (1.23)—(1.25), we obtain

2
b—a 1 a(2)+cx,%l+1 T )
C1|9:1=10g 4 C3|0:1=_Z+ ) +Z Z_ﬂj
=1

b
Caly, =10g(27r)+/a W (x)p(x)dx

h—ua m—+1 m b
+log — ZoajJrZ;mﬁj(l—zft ,o(x)dx).
J= J=

J

These values for Cy|g=1, C2|g=1, C3|g=1 are consistent with [32]. The constant C4|g—1
was also obtained in [32] (see also [20, Theorem 1.3 with V = 0]) and contains Barnes’
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G-function. It would be interesting to obtain an explicit expression for C4 valid for all
values of & > 0, but this problem seems difficult, see also Remark 1.8 below.

Many statistical properties of MB ensembles have been widely studied over the
years: see [6,28,36,40,51] for equilibrium problems, [8,52,57,62,65,66] for results
on the limiting correlation kernel, [55] (see also [12]) for central limit theorems for
smooth test functions in the Laguerre and Jacobi MB ensembles when % e N, and
[21,26] for large gap asymptotics. As can be seen from (1.8)—(1.9), the determinant
D, (w) is the joint moment generating function of the random variables

Re logp,(#1),...,Re logp, (), Im logp,(t1), ..., Im logp,, (),

and therefore Theorem 1.4 contains significant information about (1.6). In particular,
we can deduce from it new asymptotic formulas for the expectation and variance of
Im log p,, (¢) (or equivalently N,(¢)) and Re log |p,, (¢)|, several central limit theorems
for test functions with poor regularity (such as discontinuities), and some global bulk
rigidity upper bounds.

Theorem 1.6 Let 6 >0, m € Nandty,...,t, be suchthata <t} < ... <ty <b.
Let x1, x2, ..., x, be distributed according to the MB ensemble (1.6) where w is given
by (1.7), and define p, (t), N, (t) by

Pty =[] —x).  Na@®) =#lx; :x; <1} €{0.1,2,....n}, teR
j=1

Let§) <& < ... <&, denote the ordered points,

& =min{xy,...,x,}, & = inf {t:N, )=}, j=1,...,n,
tela,b]
and let ki be the classical location of the k-th smallest point &,

Kk k
/ px)dx = —, k=1,...,n. (1.28)
a n

(a) Lett € (a, b) be fixed. As n — oo, we have

wn +0O(1), (1.29)
T

1
E(N, (1)) = / p(x)dxn+0O() =

b
E(log|p,()]) = / log|t — x[p(x)dx n+ O(1), (1.30)

1 1
Var(N, (1)) = ) logn + O(1), Var(log|p,(H)]) = 7 logn + O(1).
(1.31)
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(b) Consider the random variables M, (t;), N, (t;) defined for j =1, ..., m by

log |p,, (t))] — n [7log |t; — x|p(x)dx

M, (t) =2 NG , (1.32)
Na(t)) —n [/ p(x)d
Noty) = /2 ) ﬁo%p(x) a (1.33)

As n — +00, we have the convergence in distribution

(Mt s M), N (), s Nt)) =5 NGO, D), (1.34)

where Iy, is the 2m x 2m identity matrix, and N(0, I, is a multivariate normal
random variable of mean 0 = (0, ..., 0) and covariance matrix Iry,.

(c) Letkj = [n fatf p(x)dx]), j=1,...,m, where[x]:=|x+ %J is the closest integer
to x. Consider the random variables Z,(t;) defined by

np(kk;) .
Zn(tj)=ﬁn@(§kj—Kkj), ji=1,....m. (1.35)
Asn — +00o, we have
(Zu(t), Zu(12), - ., Zu(tm)) 4 N, 1. (1.36)

(d) For all small enough § > 0 and € > 0, there exist c > 0 and ng > 0 such that

x 1+¢€ e
P sup Ny(x) —n p(x)dx| < logn|>1—cn¢, (1.37)
a+8<x<b—§ a
V1 1
P( max  plelg — el < < Og") >1—cn (1.38)
n<k<(1-8)n T n
foralln > ny.
Proof See Sect. 8. O

Remark 1.7 For 6 = 1, the terms of order 1 in (1.29)-(1.34) are also known and
can be obtained using the results of [32]. The generalization of these formulas for
general external potential (in the one-cut regime), but again for 6 = 1, can be obtained
using [13,20]. We point out that analogous asymptotic formulas for the expectation
and variance of the counting function of several universal point processes are also
available in the literature, see e.g. [14—17,30,61] for the sine, Airy, Bessel and Pearcey
point processes.

The results (1.34) and (1.36) are central limit theorems (CLTs) for test functions
with discontinuities and log singularities. For & = 1 but general potential, similar
CLTs can also be derived from the results of [13,20]. Also, in the recent work [11],
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the authors obtained a comparable CLT for S-ensembles with a general potential (in
the case where the equilibrium measure has two soft edges).

The probabilistic upper bounds (1.37)—(1.38) show that the maximum fluctuations
of N, and of the random points &1, ..., &,, are of order 10% with overwhelming
probability. In comparison, (1.35) shows that the individual fluctuations are of order
@. Both (1.37) and (1.38) are statements concerning the bulk of the MB ensemble
(1.6)—(1.7) and can be compared with other global bulk rigidity estimates such as
[1,11,22,25,27,37,48,56,59]. We expect the upper bounds (1.37)—(1.38) to be sharp
(including the constants %), but Theorem 1.4 alone is not sufficient to prove the
complementary lower bound.

Also, Theorem 1.4 does not allow to obtain global rigidity estimates near the hard
edges a and b, and we refer to [18] for results in this direction.

Let us now explain our strategy to prove Theorem 1.4. As already mentioned,
MB ensembles are biorthogonal ensembles [8]. Consider the families of polynomials

{pj}j=0and {g;} ;>0 such that p;(x) = k;x/ + ... and g;(x) = k;x/ + ... are degree
J polynomials defined by the biorthogonal system

b .
/pk(x)xjew(x)dx:Kk_IBkJ, k=0,1,... j=0,1,2,...k  (1.39)
a
b
/xkqj(x(’)w(x)dx=/<,;lak,j, j=0,1,... k=0,1,2,....j. (1.40)
a

These polynomials are always unique (up to multiplicative factors of —1), and by [28,
Proposition 2.1 (ii)] they satisfy

2 Dy (w)
K= ——, k=0,1,..., where Dgy(w):=1. (1.41)
Djy1(w)
Let M € N be fixed. Assuming that pyy, ..., p,—1 exist, we obtain the formula
n—1
Dy(w) = Dy(w) [ x> (1.42)

k=M
When the weight w is positive, which is the case if
o0, ..., Opt1 €ER and Bi,...,Bm €iR,

the existence of p; and g; are guaranteed for all j, see [28, Section 2]. This is not the
case for general values of the parameters «; and B, but it will follow from our analysis
that all polynomials pyy, ..., p,—1 exist, provided that M is chosen large enough. Our
proof proceeds by first establishing precise asymptotics for «; as k — 400, which
are then substituted in (1.42) to produce the asymptotic formulas (1.22)—(1.25). Note
that, since the formula (1.42) also involves the value of Dys(w) for some large but
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fixed M, our method does not give any hope to obtain the multiplicative constant Cy4
of Theorem 1.4 (for more on that, see Remark 1.8 below).

To obtain the large n asymptotics of k,, we use the Riemann—Hilbert (RH) approach
of [28], and a generalization of the Deift—Zhou [34] steepest descent method developed
in [29] by Claeys and Wang. More precisely, in [28] the authors have formulated a
RH problem (for 6 > 1), whose solution is denoted Y, which uniquely characterizes
K, ! pn as well the following 6-deformation of its Cauchy transform

1 1 b
— Cpn(z)i=— / ’;”(x)g wx)dx, zeHy\ [a,bl. (1.43)
Kn 2wiky, J, x¥ —2

The RH problem for Y from [28] is non-standard in the sense that it is of size 1 x 2 and
the different entries of the solution live on different domains. In the asymptotic analysis
of this RH problem, several steps of the classical Deift-Zhou steepest descent method
do not work or need to be substantially modified. In [29], Claeys and Wang developed
a generalization of the Deift-Zhou steepest descent method to handle this type of RH
problems, but so far their method has not been used to obtain asymptotic results for
the biorthogonal polynomials (1.39)—(1.40). The main technical contribution of the
present paper is precisely the successful implementation of the method of [29] on the
RH problem for ¥ from [28].> As in [29], in the small norm analysis the mapping J
plays an important role and allows to transform the 1 x 2 RH problem to a scalar RH
problem with non-local boundary conditions (a so-called shifted RH problem). The
methods of [28] rely on the fact that for & > 1, the principal root z — z? is a bijection
from Hy to C\ (—o0, 0]. The treatment of the case 6 < 1 involves a natural Riemann
surface and only requires minor modifications of [28].

We mention that another RH approach to the study of MB ensembles has been
developed by Kuijlaars and Molag in [52,57]. Their approach has the advantage to be
more structured (for example, the solution of their RH problem has unit determinant),
but it only allows values of 6 such that % e{l1,2,3,...}.

Remark 1.8 An explicit expression for C4 in (1.22) would allow to obtain more precise
asymptotics for the mean and variance of the counting function in (1.29)—(1.31), as
well as for the moment generating function (1.9), and is therefore of interest. The
method used in [32] to evaluate C4|g—; relies on a Christoffel-Darboux formula and
on the fact that D:=Dy,(w)|g=1,0,=...=ap = =...= =0, w=0 reduces to a Selberg inte-
gral. The Christoffel-Darboux formula is essential to obtain convenient identities for
Oy j log D, (w), 85_/. log D, (w), and the fact that D is explicit is used to determine the
constant of integration. For MB ensembles, the only Christoffel-Darboux formulas
that are available are valid for 6 € Q, see [28, Theorem 1.1]. Since the asymptotic
formula (1.22) is already proved for all values of 0, there is still hope that the evalua-
tion of Cy4 for all 6 € QQ will allow to determine C4 for all values of 6 by a continuity
argument. However, even for 6 € Q, the evaluation of C4 seems to be a difficult prob-
lem. Indeed, for 6 # 1, the only Selberg integral which we are aware of and that could

2 Simultaneously and independently to this work, Wang and Zhang in [62] also performed an asymptotic
analysis of Y. Their situation is different from ours: they consider the case a = 0, 6 integer, and no FH
singularities.
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be used is Dy (W)]a=0,0,=...=ap=p1=...= =0, W=0, se€ [39, eq (27)]. In particular, with
this method one would need uniform asymptotics for ¥ as n — 400 and simultane-
ously a — 0. Fora = 0, one expects from [28] that the density of the equilibrium
measure blows up like ~ x~ 7 as x — 0 which, in view of (1.21), indicates that a
critical transition takes place as n — +o00, a — 0.

Outline. Proposition 1.2 is proved in Sect. 2. In Sect. 3, we formulate the RH problem
for Y from [28] which uniquely characterizes p, and Cp,. In Sects. 3—-6, we perform
an asymptotic analysis of the RH problem for Y following the method of [29]. In
Sect. 3, we use two functions, denoted g and g, to normalize the RH problem and
open lenses. In Sect. 4, we build local parametrices (without the use of the global
parametrix) and use them to define a new RH problem P. Section 5 is devoted to the
construction of the global parametrix P and here the function J plays a crucial
role. In Sect. 6, we use again J and obtain small norm estimates for the solution of a
scalar shifted RH problem. In Sect. 7, we use the analysis of Sects. 2—6 to obtain the
large n asymptotics for «,,. We then substitute these asymptotics in (1.42) and prove
Theorem 1.4. The proof of Theorem 1.6 is done in Sect. 8.

2 Equilibrium problem

In this section we prove Proposition 1.2 using (an extension of) the method of [28,
Section 4]. An important difference with [28] is that in our case the equilibrium
measure has two hard edges.

Lemma2.1 Let® > 0, b > a > 0, and recall that s, = sa(z—?) and s, = sh(i—?) are
given by (1.13). There exists a unique tuple (cq, c1) satisfying
J(sa(D)sco.c) =a,  J(sp(ED)ico.c1) =b,  co>c1>0. 2.1

Proof Letx::i—‘l’ > 1, and note that

J(sa(ZD); co.c1) = e (sa(x)ix, 1), T (sp ()i co, c1) = e1J (sp(x); x, 1.
(22)

Forx > 1, define f(x) = % A simple computation shows that f(x) — 400

as x — 1y, that f(x) — 14 asx — +o00, and that f'(x) < O for all x > 1. This
implies that for any b > a > 0, there exists a unique x, > 1 such that f(x,) = f—l By
(2.1)—(2.2), the claim follows with

b b
c)=———797—>0, )= Xp————.
J(sp(x4); x4, 1) J(sp(x4); x4, 1)

m}

Proposition 1.2 is first proved for & > 1 in Sect. 2.1, and then we indicate the changes
to make to treat the general case & > 0 in Sect. 2.2. We mention that the general case
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6 > 0 is not more complicated than the case 6 > 1, but it requires to introduce more
notation and material.

2.1 Proof of Proposition 1.2 for 6 > 1
Let

Il:C\[a,b]—>(C\5 and I, :Hp\ [a,b] — D\ [—1,0] 2.3)
denote the inverses of the two functions in (1.15). We will also use the notation

Ij +(x) = elilg Ij(x kie), j=12, xe(ab).
—04

As shown in Fig. 1, we have
ha()=h-(x), §-(@)=hi(x), x¢@ab).

Now, we make the ansatz that there exists a probability measure g, supported on
[a, b] with a continuous density p, which satisfies the Euler-Lagrange equality (1.11).
Following [28], we consider the following functions

b
g(2) = / log(z — y)dug (y), 7€ C\ (=00, b], 24

b
3 = / log( — y)dua(y). 2 € Hy \ [0, b1, 2.5)

where the principal branches are taken for the logarithms and for z > z?. For x > 0,
we also define

g+(x) = lim g(x +ie), gi(x)= lim g(x £ie), §(ei%ix) = lim 2(2).
e—>04 e—>04 47
z—e 0 x, zeHy

Using (1.11) and [ ab dug = 1, we infer that g and g satisfy the following conditions.

RH problem for (g, g)

(a) (g, 2) is analytic in (C \ (—o0, b], Hg \ [0, b]).
(b) g+(x) +gx(x) = —Lforx € (a, b),

et x)=g( 7x)+2ri forx >0,

g (x) =2_(x) +2mi for x € (0, a),

g+(x) =g_(x) 4+ 27i forx < a.
(c) g(z) =log(z) + Oz 1) asz — oo,

%(z) =0logz+ O(z7%) as z — oo in Hy.
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Consider the derivatives
G =¢@, G@=7@. (2.6)

The properties of (g, g) then imply that (G, G) satisfy the following RH problem.

RH problem for (G, 5)

(a) (G, 5) is eglalytic in (C\ [a, b], Hp \ [a, b]).
(b) E}i (xy)“_—i— GJF()Q,-fO m_for x € (a,b),

Ge ox)=e o G(ed x) forx > 0.
(©) G(z) = % + 0@z asz — oo,

é(z) = g + 0O %) as 7 —> oo in Hy.

To find a solution to this RH problem, we follow [28,29] and define

_ JGWU(s)), fors outside y,

M) =12
)=V E (). fors inside .

2.7)

where J is given by (1.12) with ¢o > ¢ > 0 such that J(s,) = a and J(sp) = b.
By combining the RH conditions of (G, G) with the properties of J summarized in
Proposition 1.1, we see that M satisfies the following RH problem.

RH problem for M

(a) M isanalyticin C\ (y U[—1,0]).

(b) Let [—1, 0] be oriented from left to right, and recall that y is oriented in the
counterclockwise direction. For s € (y U (—1,0)) \ {s4, sp}, we denote M (s)
and M_(s) for the left and right boundary values, respectively. The jumps for M
are given by

My (s) +M_(s) =0, fors € ¥ \ {sa, sp},
Mi(s) = e M_(s), fors € (—1,0).
(c) M(s) = ﬁ(l + 0@ ) ass — oo,
M(s) = -2 (1 + O(s)) ass — 0,

7
M(s) = O(1) ass — —1.

We now apply the transformation N(s) = J(s)M(s) and obtain the following RH
problem.
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RH problem for N

(a) N isanalyticin C\ y.
) Ni(s) + N_(s) =0fors € y \ {s4, Sp}.
() Nis) =14+ 0(s Y ass - co. N(0) =6 and N(—1) = 0.

The solution of this RH problem is not unique without prescribing the behavior of N
near s, and sp. Recalling that a > 0, one expects the density p to blow up like an
inverse square root near a and b (as is usually the case near standard hard edges). To
be consistent with this heuristic, using (2.6), (2.7) and N(s) = J(s)M (s) we verify
that N must blow up like (s — Sj)_l, as s — sj, j = a,b. With this in mind, we
consider the following solution to the RH problem for N:

d, dp .
1+ + R outside y,
N(s) = s _;“ § 7% (2.8)
-1 - a b , inside y,
S—8; S—Sp
where d, and d}, are chosen such that N(0) = 6 and N(—1) = 0, i.e. such that
d d d d
146 and @« 42—
Sa  Sp IL+sq 1+s
This system can be solved explicitly,
g2 S0 Es)E8 =D ()1 = sb) 29

Sp — Sa Sh — Sa
and since s, < —1 and 91 < sp, we have d; > 0, dp > 0. Writing
dug(x) = p(x)dx,  x € (a,b),

we obtain

1 1
p(x) = Ry (G4(x) = G_(x)) = ———(N_(1 +(x)) = N_(I},-(x)))
Tl 2mix

Py 2mix \ I +(x) —s; 11, —(x) —s;

d; 1
=y i <—) (2.10)
o, T

I 4+ (x) — s

By construction, fab p(x)dx = 1, but it remains to check that p is indeed a density.
This can be readily verified from (2.10): since d, > 0,dp > Oand Im/; 4 (x) > 0
for all x € (a, b), we have p(x) > O for all x € (a, b). Thus, we have shown that
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the unique measure g satisfying (1.11) is given by dug(x) = p(x)dx with p as in
(2.10).

To conclude the proof of Proposition 1.2 for 6 > 1, it remains to prove that p can
be rewritten in the simpler form (1.17). For this, we first use the relation J (Ix(z)) = z
for z € C\ [a, b], k = 1, 2, to obtain

I(2) _ 1 _ 00+ L@ (el (z) + o)
(R L@JUk(@)  z2(—co+cil()O — 1+ 01(2))

@2.11)

On the other hand, using the explicit expressions for d, in dj, given by (2.9), we arrive
at

Z dj 1 _ —leo+cili(z) + cof (1 + 1k (2))

— = , (2.12)
Z Ik(Z)—Sj z co—c1lxy()(O@ —1+01(2))

=a,b

where z € C\ [a, b], k =1, 2. Using (2.11) and (2.12), it is direct to verify that
1 d; 1 I (2)

— + Z —j = k ,
z z k(@) —s; ()

j=a,b

ze€C\la,b], k=1,2, (2.13)

which implies in particular (1.17):

B d; 1 1 I ()
P ==, (T) —‘;Im(zl,+<x>)’ Y@

j=a,b

Formulas (1.17) and (2.13) will allow us to simplify several complicated expressions
appearing in later sections, and can already be used to find an explicit expression for
L.

Lemma 2.2 As z — 00, we have
L@ =c'z4+00), b =z2"Cc+0:c). (2.14)
Proof 1t suffices to combine the expansions
J(s) = c1s +O(1) as s — oo, J(s) = cos 7 (1+ O(s)) as s — 0,

with the identities J (Ix(2)) =z, k =1, 2. O
Proposition 2.3 ¢ = —logc; — 0 log cp.

Proof Using (2.6), (2.7), N(s) = J(s)M(s), (2.8) and (2.13), we obtain

/ 1 da dh I{(Z)
=M =—(1 = — b
§ @ =M z( +11(Z)—Sa+11(2)_5b) n@ o SCNEeh
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-, —1
§(@)=M(() = 7(1+ z € Hy \ [0, b].

dy N dp )__12/(2)
L) —sa h@-s/) Dbk’

Hence, by (2.14) and the condition (c) of the RH problem for (g, g), we find

_ z Il’(x)_l 3 o0 Il’(x)_l B
g(z)—IOg(z)+/b (Il(x) x)dx fh (Il(x) x)dx, z € C\ (—o00, b],

z 1/ 00 1/
g(z) = 0 log(z) _/ ( L (%) + Q)dx +/ ( 2(%) + g)dx, z € Hy\ [0, b].
p \D(x) x b \DLx) x

The integrals over (b, 00) can be evaluated explicitly using (2.14):

®I(x) 1 . r1(b) ci1i(b) C18p
—fb (——— dx_r_lgrlloologm_log—_logT, (2.15)

Li(x) «x b
® (I(x) 6 , rf I (r) ch

<=+ —)dx= 1 1 =1 . 2.16
/b (12<x>+x = R ey T, 210

Substituting (2.15)—(2.16) in the above expressions for g and g, and using the Euler-
Lagrange equality £ = —(g(b) + g(b)), we find the claim. O

2.2 Proof of Proposition 1.2 forall 8 > 0

We first prove a generalization of Proposition 1.1.

Proposition 2.4 (extension of [28, Lemma 4.3] to all & > 0). Let 0 > 0, and let
co > c1 > 0 be such that (1.14) holds. There are two complex conjugate curves y,
and y, starting at s, and ending at sp in the upper and lower half plane respectively
which are mapped to the interval [a, b] through J. Let y be the counterclockwise
oriented closed curve consisting of the union of y1 and y», enclosing a region D. The
maps

J:C\D— C\[a,bl, J?:D\[-1,0]— C\ ((~00,01U[a”,b"1) (2.17)
are bijections, where J 4 (s)::%(cls + ¢0)? and the principal branch is taken for
(c1s + o)’

Remark 2.5 We emphasize that for 6 < 1, the definition of J ?(s) does not coincide
with J (s)? where the principal branch is taken for (). On the contrary, for all § > 0
ands € D\[—1, 0], the definition (1.12) of J (s) coincides with J (s) = J? (s)é where
the principal branch is chosen for (-) 7

Proof Write s = re'? with —w < ¢ < m. It is readily checked that J(s) > 0 if and
only if

. 1 .
arg (Z—? + re’d’) + ) arg(l + re'?) — g =2kn, keZ, (2.18)
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~ A

Fig.2 The two figures on the left correspond to = 0.17 and 6 = 7‘—7 The four dots are s, —1, 0 and sp,.

The black, green, red and blue curves correspond to the points ret ¢, ¢ € (0, ), satisfying (2.18) fork = 0,
k = —1,k = —2 and k = —3, respectively. (These figures have been made with c) = 0.8 and ¢; = 0.47.)
The right-most figure shows the projections in the y-plane of Hg i, k = =2, ..., 2 forf = 15—2

where the branch for arg is chosen such that arg(z) € (—m, 7] for all z € C \ {0}.
For ¢ € (0, ), the left-hand side is increasing in r (since 5—0 > 0), tends to —% as
r — 0,and to ¢ asr — oo. The set of points (¢, k) for which there exists a (necessary
unique) r satisfying (2.18) is therefore given by {(¢, k) : ¢ > 27 |k|0, —k € N}. For
eachk € {0, —1, ..., —(%1 + 1}, denote I'; for the set of points re' with ¢ € (0, )
satisfying (2.18). It is not hard to verify that I'g joins s, with s, while the other curves
ry,..., Ff%Hl join —1 with 0, see also Fig. 2 (left). The curve y;:=I"g is mapped
bijectively by J to (a, b), and since J(s) = J(5), the curve y2:=y7 is also mapped
bijectively by J to (a, b).

Thus, J maps bijectively the boundaries of C \ D to the boundaries of C \ [a, b]. It
is also straightforward to see that J¢ maps bijectively [—1, 0) to (—o0, 0]. The claim
that the maps (1.15) are bijections can now be proved exactly as in [28, Section 4.1].

O

As can be seen from Proposition 2.4, for & < 1 the mapping J : D \ [—1,0] —
Hp \ [a, b] is not a bijection and therefore one cannot define /5 as in (2.3). In view
of (2.17), instead of working with the set Hy, one is naturally led to consider the
following Riemann surface Hy.

Definition 2.6 Let Hy be the Riemann surface

Ho = {(z,y) eC?:z= yé, y € (C\(—oo,O]], yé::|y|%eéarg)', argy € (—m, ),
endowed with the atlas {¢g « : Hox — Ok:fféfﬂ,..qféfﬂ’ where

Hox = {(Z, y) € C?:z7= yé, max{(k — )70, —7} < argy < min{(k + 1)779,71}},

and ¢y x(z, w):=z, see also Fig. 2 (right).

Remark 2.7 For 6 > 1, there is just a single map ¢y ¢ in the atlas, and it satisfies
©9,0(Hg,0) = Hg, where we recall that Hy = {z € C\ {0} : —F < argz < F}.

Definition 2.8 A mapping f : B C C — Hp isanalyticifforall k with f(B)NHg x #
@, the function gy o f : BN f‘l(Hg,k) — C is analytic.
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Definition 2.9 A mappingh : H C Hg — Cisanalyticif forall k with H NHp ; # @,
the function 4 o (pgi/i 2ok (Hox N H) — Cis analytic.

Definition 2.10 For notational convenience, given I C C, we define
Ho \ I:={(z,y) € C?: ¢ =y%, y € C\ (=00,0], z ¢ I)} C Hp.
Proposition 2.4 and Definition 2.8 imply that
(J,JQ):D\[—I,O]—>H9\[a,b] (2.19)

is an analytic bijection. Let 72 : C\ ((—oo, 0]U[a?, be]) — D\ [—1, 0] be the inverse
of J?. The inverse of (2.19) is then given by

L :He\la, bl - D\[-1,0], (z,y) Lz y) = h().

Remark 2.11 For 6 > 1,the map J : D\ [—1,0] — Hp \ [a, b] is a bijection and
there is no need to define Hy and Tz In fact, for 6 > 1 and z € Hp \ [a, b], Tz(z, y)
and I (z) are directly related by I>(z) = B(Z, y),where y € C\ ((—oo, 0]U[a’, ba])
is the unique solution to

1 1 1 i,
z=y7, and y? =|y|7ed ™ argy € (—m, 7).

Define

b
gz, y) = / log(y — x")d e (x), (z,y) € Ho \ [0, b]. (2.20)

Now, to prove Propositions 1.2 and 2.3 for general 6 > 0, it suffices to follow the
analysis of Sect. 2.1 and to replace all occurrences of g, z € Hy, z? and I)(z) as
follows

T2 zeHy— @y eHs 2y, L@~ hEy. @21)

3 Asymptotic analysis of Y: first steps

We start by recalling the RH problem for Y from [28] which uniquely characterizes
K, 'p, as well as K, LCp, (recall that p, and Cp, are defined in (1.39) and (1.43)).
For convenience, we say that a function f is defined in HJ if it is defined in Hl, that

the limits f(ei%ix) = limz_wi%"x, zeHy, f(2) exist for all x > 0, and furthermore
f(e%x) = f(e*%x) for all x > 0.
Theorem 3.1 ([28, Theorem 1.3]). Define Y by

1 1
Y(z) = (K—pn(z), K—Cpn(2)>- (3.1)

n
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If Y exists, then it is the unique function which satisfies the following conditions:

RH problem for Y

(a) Y = (¥, Y2) is analytic in (C, H \ [a, b]).
(b) The jumps are given by

1 —L
Yi(x) =Y_(x) (o 9"9'lw(x)> , xe @b \{t, ... 1)

) Yi(z) =z"+ O ") asz — o0,
Y2(z) = Oz~ 19 as 7 — oo in Hy.
(d) Asz—1t;,j=0,1,...,m,m+ 1, we have

_ o) + 0z —1))%), ifa; #0,
Y1(z) =0(), Ya(z) = {(’)(log(z o, o 0,

where fo:=a > 0 and t,,+1:=b.

As mentioned in the introduction, if w is positive, then the existence of Y is ensured
by [28, Section 2]. In our case, w is complex valued and this is no longer guaranteed.
Nevertheless, it will follow from our analysis that Y exists for all large enough n.

Remark 3.2 In a similar way as in Sect. 2.2, we mention that to be formal, for 6 < 1
one would need to replace all occurrences of g, Hy, z¥ and I>(z) as in (2.21) and to
define Y, as

1 b Pn(x)
Ya(z,y) = Tmin o yw(x)dx, (z,y) € Ho \ la, b]. (3.2)

However, the y coordinate will always be clear from the context, and for convenience
we will slightly abuse notation and use g, Hy, 7, I(z) and Y»(z) for all values of
0 > 0.

In the rest of this section, we will perform the first steps of the asymptotic analysis
of Y as n — 400, following the method of [29].

3.1 First transformation: Y — T

Recall that g and g are defined in (2.4) and (2.5), and that ¢ is the Euler-Lagrange
constant appearing in (1.11) and in condition (b) of RH problem for (g, g). The first
transformation is defined by
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n —ng(z) 0 n 10
T() =e%Y(2) <e 0 e,,g,(z)> e™57,  where a3=<0 _1>. (3.3)

Using the RH conditions of ¥ and (g, g), it can be checked that T satisfies the following
RH problem.

RH problem for T

(a) T = (11, T») is analytic in (C \ [a, b], Hg \ [a, b]).
(b) The jumps are given by

e ngr0—g- () @@’
Ti(x) = T-(x) ] xe@bh)\ ),
0 &+ (¥)—g-(x))

(©) Ti(z) =14+ 0E") asz — oo,
Tr(z) = O(z %) as z — oo in Hy.
(d) Asz—1t;,j=0,1,...,m,m+ 1, we have

O + 0z — 1)), ifaj #0,

i@=0M), DN = {O(log(z — 1)), iferj = 0.

3.2 Second transformation: T — S

Let U be an open small neighborhood of [a, b] which is contained in both C and Hy,
and define

$() =g +2( +¢, zeU\(0,b). (34)

Using the RH conditions of (g, g), we conclude that ¢ satisfies the jumps

¢4 (x) = ¢_(x) +4mi, xe0,a)NU,
¢+ (x) +d—(x) =0, x € (a,b).
Forx € (a, b)\{t1, ..., tn}, we will use the following factorization of the jump matrix
for T:
e 12 ()—g-() @™ 1 0
Ox0-1 _
~ ~ - 6—1
0 e+ —8-(x) e‘”‘f’*(Z)W 1
0 el ! 0 y
x oxf1 0 e+ (x) Hx0-1 (3.5

T o)V w(x)eV®
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Before opening the lenses, we first note that wy, and wg, can be analytically continued
as follows:

00 (2) = m—@%ﬁRW<m,w()_ WW,HRu<m,(®
% TN (=), ifRez > 1, Y T | e ifRez > 1.

Foreach j € {1,...,m+1},leto; 4,0 - C U beopencurves startingat?;_1, ending
att;, and lying in the upper and lower half plane, respectively (see also Fig. 3). We also
let £; C U denote the open bounded lens-shaped region surrounded by o; 4 Uo; _.
In view of (3.5), we define

1 0
T(z) _ om0z , z€ LandImz > 0,
w(z)eV®@
S = 1 0 (3.7)
T(z) oo | ze€ LandImz < 0,
(z)eW®@
T(z), otherwise.

where L:= U;.”:f L. S satisfies the following RH problem.

RH problem for S

(@) § = (81, 82) is analytic in (C\ ([a,b]U oy Uo_),Hy\ ([a,h]Uci Uo_)),
where o4.:= UTill Oj +.
(b) The jumps are given by

0 w(z)eV®
QZG—I
S+(Z) =Si(z) 926—1 ) Z€ (a’b)\{tl"'-vtm}’
T w(2)e"® 0
1 0
S () =5-(2) gz 025 , z€o0yUo_. (3.8)
¢ ()@ 1

© Si(2) =1+0@"") asz — oo,
$2(z) = O(z™%) as z — oo in Hy.
(d Asz—tj,z¢ L,j=0,1,...,m,m+ 1, we have

O(1) + O((z — t))*), ifa; #0,

5 =00,  HG) = {O(log(z — 1)), if oj = 0.

Using (1.11), (2.4) and (3.4), we see that ¢ satisfies

PL(x) =gh(x) +8L(x) = gL(x) — gL (x) = F2mip(x), x€(a,b). (39
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Fig.3 Jump contours for the RH problem for S with m = 2

Since p(x) > 0 for all x € (a, b), (3.9) implies by the Cauchy-Riemann equations
that there exists a neighborhood of (a, b), denoted U’ such that

Rep(z) >0, forallz e, Imz # 0. (3.10)

In the T +— S transformation, we have some freedom in choosing o, o_. Now, we
use this freedom to require that o, o— C U’. By (3.8) and (3.10), this implies that for
any z € o4+ U o_, the jump matrix for S(z) tends to the identity matrix as n — 4-o00.
This convergence is uniform only for z € oy Uo_ bounded away froma, t1, ..., t,, b.

In the next two sections, we construct local and global parametrices for S following
the method of [29]. Compared to steepest descent analysis of classical orthogonal
polynomials, these steps need to be modified substantially. For example, the construc-
tion of the global parametrix relies on the map J, and our local parametrices are of a
different size than S and therefore are not, strictly speaking, local approximations to
S (although they do contain local information about the behavior of §).

4 Local parametrices and the S — P transformation

In this section, we construct local parametrices around a, t1, . .., t;;, b and then per-
form the § — P transformation, following the method of [29].
Foreach p € {a,t1, ..., iy, b}, let D), be a small open disk centered at p. Assume

that there exists § € (0, 1) independent of n such that

i ti—tel, |ti = bl |ti —al} =8, 0, 1) 4.1
Lmin (g =l gy = bl 1ty —al) = 8. 6 €G] @1

This assumption implies that i/ = U/(§) can be chosen independently of 6, and that the
radii of the disks can be chosen to be < g but independent of n and such that D, C U
forall p € {a, 11, ..., tn, b}.

4.1 Local parametrixnearty, k=1,...,m

To construct the local parametrix P around tx, we use the model RH problem for
dyg from [32,42,49] (the properties of ®yg are also presented in Appendix A.2).
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Consider the following conformal map

_ @) = ¢ (), Imz > 0,
Jn@= {—<¢><z> — g, Imz<o, CSPw
Using (3.9), we obtain
fu@ =2wip(t)z — 1)1+ 0@z —1)), asz— k. 4.2)

In a small neighborhood of #;, we deform the lenses o+ and o_ such that

fulo:NDy) CT4UT, fu(o—-NDy) CTeUTy,

where I'4, ', I'g, I'g are the contours shown in Fig. 7. The local parametrix is defined
by

_a
wy, (2)eV@ ) 7w,
U — e

P () = Dug (nfy (2); . ﬂk)ka(zr@( R T (43)
where
G—t)Fe T, z¢€ Qf’k,
9
- (—1)7, ze 0Ly,
o= —22 e = ) 4
Do (D)0, (2) -w?,  zeol,
c-mwFe T, zeQk,,

and Qf’k, Qi’k, QI;’k, Qlf’k are the preimages by f;, of the four quadrants:

Qi,k ={z €D, : FRe f;, (z) > 0,Im f, (z) > O},
Qi,k ={z €D, : FRe f;,(z) > 0,Im f;, (z) < O}.

Using the jumps (A.5) for ®pg, it is easy to verify that PU%) and S have the same
jumps inside Dy, , which implies that § (P®™)~1 is analytic in Dy, \ {tx}. Furthermore,
the RH condition (d) of the RH problem for S and (A.9) imply that the singularity at
fx is removable, so that S(P®))~! is in fact analytic in the whole disk D;,. We end
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this section with an analysis that will be useful in Sect. 4.4. Let us consider

lﬂOt/\ _
e 7 Tp mﬂkaz ze Q-lf-k
imoy ’

03 —lnﬁkcm L
e” "% e z2€ 07,

o3
w (Z)eW(Z) 2 ’
E,(z) = (”lOzT W)™ { "o ( 0 1) . zeob,

—-10
_lmey 01 R
e 403(_10)7Z€Q_’k
¢+(k)

e T (nfy, (2))P7 . (4.5)

Note that E;, is analytic in D;, \ (a, b) (see (4.18) below for its jump relations) and is
such that

_ Y
E,():=E@nG—u) P2, zeof,

remains bounded as z — f;, z € Qf;,k. Let Jp(2):=E;, (z) P (2) for z € 0Dy,
Using (A.6), as n — 400 we obtain

-1 T (o, Br)

Q=14 G (—r(ak 0 1 )Etk<z>‘1+<9(n‘2+2'R°ﬂk'>,
tk )

(4.6)

2
uniformly for z € 9D;,, where v, = ,3,? — 0% and 7 (g, Bx) is defined in (A.7). For
z € Q-If-,k’ we have E;, (z) = E; ()7 (z — tk)(aTkﬂgk)‘”, and thus (4.6) implies

y ~1 T(ak, BBy (2)%(z — 1) +2P

— (o, —Bk)
nflk (Z) Etk (Z)Z(Z—fk)mk-'—zﬂk 1

+ O(n~ 2Ry (4.7)

Jp() =1+

as n — 4oo uniformly for z € D, N Qf;,k. Note also that E(#)? = E(t; n)? is
given by

W)

t ima,
E()%= lim E@2)’= —‘”’k(";el 7t e 1mB g9+ () (027 p (1)) 2%
1,208 | 01,

(4.8)

4.2 Local parametrix near b

Inside the disk D, the local parametrix P® s built out of a model RH problem
whose solution ®p, is expressed in terms of Bessel functions. This RH problem is
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well known [53], and for convenience it is also presented in Appendix A.l. Define v
by

PRSI 7C N
Vx—avb—x’

By (1.20)—(1.21), ¥ is well-defined at a and b. Define

x € (a, b).

fo(2) = ¢(2)%/16.

Using (3.9), we obtain

7y (b) )2

@ = 2@ =b)(14+ 0@ b)) asz— b, where ¥ = <\/m

(4.9)

In a small neighborhood of b, we deform the lenses such that they are mapped through
f» on a subset of Xp, (see Fig. 6). More precisely, we require that

folos NDy) CeF(0,400),  fulo- NDy) C e 3 (0, +00).

We define the local parametrix by

o

wp(z)eV@ -7 ¢ () U]

— e” 2 B(z—b) 2 %,
926_1

P (z) = dpe(n® fo(2); am+1)<
(4.10)

where wp(2):=w(z)/(b — x)*+! and the principal branches for the roots are taken.
Using (A.1), one verifies that S(P ()~ is analytic in D, \ {b}. By (A.4), the singularity
of S(P®)~! at b is removable, which implies that S (P®)=1 s in fact analytic in the
whole disk Dy, It will also be convenient to consider the following function

W(2) 1

o3 .
) T AT Qanfi VD2, A:ZE (:1 ll) '
4.11)

wp(2)e
6201

Ep(2) = (

It can be verified that E}, is analytic in Dy, \ [a, b] (the jumps of E}, are given in (4.18)
below). For z € 3Dy, let Jp(z):=Ep(z) P? (z). Using (A.2), we obtain

W(z)
| —(1+ 402, ) —2i%(1 — p)em+
JP(Z)=I+7]/2 9,91 0z
16nfy(2) ., bz =il 2
A e & L do,
+0m™), 4.12)

as n — +oo uniformly for z € dD,.
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4.3 Local parametrix near a

The construction of the local parametrix P inside D, is similar to that of P*) and
also relies on the model RH problem ®p.. Define

fa(@) = —($(2) — 27i)?/16.

As z — a, using (3.9) we get

2
_ £(0) o _ ( T¥(a) )
7) = z—a)(l + Oz —a)), where —(— .
In a small neighborhood of a, we choose o and o_ such that
~fa(@+ NDy) Ce™F(0,400),  —fulo-NDy) C e (0, +00),

The local parametrix P@ is defined by

_n
wq(z)eV @ > e
e e— e

P () =03¢Be(—n2fa(z>;ao>a3( e R
Z

(4.13)

where w, (2):=w(z)/(x —a)*® and the principal branches are taken for the roots. Like
in Sect. 4.2, using (A.1) and A.4 one verifies that S (P@)~1is analytic in the whole
disk D,. It is will also be useful to define

wg(2)e" @

o3
9Z9—1> Ca—2PmAQun(— fu)VHE. @1

Eq(z) = (=" <

Note that E, is analytic in D, \ [a, b] (the jumps of E, are stated in (4.18) below).
For z € 3D, let Jp(z):=E,(z) P (z). Using (A.2), we get

W(z)
. —(1 +40d) 21'%(61 — )%
Jp@) =1+ —— 0—1 2
16n(—fa()2 | ,. 0z —ap 2
2 wq(2)eV @ (@-2) I+ dag
+0m™?), (4.15)

as n — oo uniformly for z € 9D,,.
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Fig.4 Jump contours X p withm =2

4.4 Third transformation S — P

Define
e S(z), e e C\ (U4 Dy, Ula, blUoy Uo),
7)) = -
5@ (En@PW @), zeDy\(la,blUoy Vo),
(4.16)
where k =0, 1,...,m, m + 1 and we recall that fo:=a and t,,+1:=b. It follows from

the analysis of Sects. 4.1-4.3 that for each k € {0,1,...,m + 1}, S(z) P/ (z)~!
is analytic in Dy, and that E;, is analytic in Dy, \ [a, b]. Hence, P has no jumps on
(oxUo-)N UZ’:Ol Dy, , and therefore (P, P») is analyticin (C\ Xp, Hp \ X p), where

m+1 m—+1
EP:=((0+ Uo_)\ U D,_,) U U 9D, Ula, b]. (4.17)
j=0 j=0
Furthermore, for each j € {0, ..., m+ 1}, the jumps of P on [a, b] DD,]. are identical

to those of E;;. These jumps can be obtained using (4.5), (4.11) and (4.14): for all
jel{0,1,...,m,m+4 1} we find

0 w(z)eW(Z)
_ _ 2] 0—1
E, 4@ =E; (27! R . z€(@b)ND,. (4.18)
T 0@ 0
For convenience, for each j € {0, ..., m 4 1} the orientation of BD,j is chosen to be

clockwise, as shown in Fig. 4. The properties of P are summarized in the following
RH problem.

RH problem for P

(@) (Py, P>)isanalyticin (C\ Zp,Hj \ Zp).
(b) Forz € ¥p, we have P4 (z) = P_(z)Jp(z), where

1 0 m—+1
Jp(z) = <e—"¢<2> P 1) , z€(oy Uo )\ U Dy;,

(e j=0
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0 w(2)eV®
0z0-1
@=L o ze @D\ (. tn)s
T 0(2)e"O 0
Ip(2) = E; ()P (2), z€dDy, je{01,...om m+1).

(©) Pi(x) =14+ 01 asz — oo,
Py(z) = O(z7%) as z — oo in Hy.
(d Asz—tj,z¢ L,Imz >0, j =0,m + 1, we have

(PL(2). P2(2)) = (O((z — 1)~ 5), Oz — 1))~ ) (z — 1))~ 3.

Asz—tj,z¢ L,Imz>0,j=1,...,m, we have

(P1(2). P2(2)) = (O(1), O()(z — 1))~ F+A)s,
By (3.10) and the fact that 01, o C U’, as n — +00 we have

m—+1
Jp() =1+ O™ M), uniformly for z € (o4 Uo_) \ U Dy;, (4.19)
Jj=0

for a certain ¢ > 0. Also, it follows from (4.6), (4.12) and (4.15) that as n — +00,

Ip@ =1+J@n" +0m™), unif. for z € 9D, U 9Dy,  (4.20)
Ip@) =1+ 7 @~ + 0@ 2RI unif. forz € 8Dy, j =1, ....m,
4.21)

where Jél)(z) = O(1) for z € 3D, U 3Dy, and J;,l)(z) = Om?Rebily for 7 € 0Dy,
j =1,..., m.If the parameters 71, . . ., t,, and 6 vary with n in such a way that they
satisfy (4.1) for a certain § € (0, 1), then, as explained at the beginning of Sect. 4, the
radii of the disks can be chosen independently of » and therefore the estimates (4.19)—
(4.21) hold uniformly in tq, ..., t,, 6. It also follows from the explicit expressions
of Ey; and PU), j = 0,1,....m + 1 given by (4.3), (4.5), (4.10), (4.11), (4.13),
(4.14) that the estimates (4.19)—(4.21) hold uniformly for «q, ..., ®;+1 in compact
subsets of {z € C : Rez > —1}, and uniformly for Sy, ..., B, in compact subsets of
{ze C:Rez € (—%, %)}.3

5 Global parametrix

The following RH problem for P> is obtained from the RH problem for P by
disregarding the jumps of P on the lenses and on the boundaries of the disks. In

3 The restriction Re Bj € (%, %) appearing in Theorem 1.6 will be important in Sect. 6.
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view of (4.19)—(4.21), one expects that P will be a good approximation to P as
n — +o00.

RH problem for P(>®)

(@) P = (P, P{*)is analytic in (C\ [a, b], HS \ [a, b]).
(b) The jumps are given by

0 w(z)eW(Z)
] vt-)—l
PP@=PP0 | . ZO . oze@b)\{t. ... tn}

T 0"
© P @) =1+0@E" asz — oo,

Pz(oo)(Z) = 0(z7% as z — oo in Hp.
(d) Asz —tj,Imz >0, j =0,m + 1, we have

(P @), P @) = (O = 1)), 0 = 1) )@ — 1)~ .

Asz — tj,Imz >0, j=1,...,m, we have

(P @), P @) = (O(), 0() (& — 1))~ F .

To construct a solution to this RH problem, we follow the strategy of [29] and use
the mapping J to transform P(® into a scalar RH problem. Recall that J is defined
in (1.12) with ¢p > ¢1 > 0 such that (1.14) holds, and that some properties of J are
stated in Proposition 1.1. We define a function F on C \ (y; U y» U [—1, 0]) by

P Uy, sec\D,

FO=1p @), sen-1,0.

Note that P can be recovered from F via the formulas

P (z) = F(1I1(2)), zeC\[a,bl, (5.1)
P{™®(z) = F(h(2)), zeHy\ [a,b]. (5.2)

We make the following observations:
6 Pz(oo) (e%ix) = PZ(OO) (e_%ix) for x > 0 implies that F is analytic on (—1, 0),

(i) Pz(oo) (z) = O(1) as z — 0 implies that F(s) remains bounded at s = —1,

(iii) Pz(oo) () =0 % asz > o0 implies that F(s) has a simple zero at s = 0.
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With y; and y; both oriented from s, to 55, we have

Fi(s) = P{%(J(s)). F_(s) = P, (J (5)), s e,
Fi(s) = P, (J (), F_(s) = P (J(s)). s €,

and therefore F satisfies the following RH problem.

RH problem for F

(a) Fisanalyticin C\ (y1 U y2).
(b) Fi(s) = —= L P (s) fors €y,
Fi(s) = %F_(s) fors € y».
(©) F(s) =1+ 0O~ ass — oo,
F(s) =0O(s) ass — 0,
F(s) = O((s — 50)~2"%) as s — 54,5 € C\ D,
F(s) = O((s — sb)*%*""”“) ass — sp,5 € C\ D,
F(s) = O((s — 11,+(tj))7a7'/7’31) ass — I 4(¢j),s € C \5, j=1,...,m,

F(s) = O((s — Loa(t)) 3Py ass — Lo(t;).s €D, j=1,....m.

The jumps of this RH problem can be simplified via the transformation
G(s) = F(s)y (s — sa)(s — sp), (5.3)

where the square root is discontinuous along y| and behaves as s + O(1) as s — oo.
Indeed, using (5.3) and the jumps for F, it is easily seen that

w(J (5)e" D

G+(9) = =575y

G_(s), sevy, (5.4)

where the boundary values of G in (5.4) are taken with respect to the orientation of y,
which we recall is oriented in the counterclockwise direction.* Noting that

0—1

1 1 Ky 6
- . €y, 1,
0J(s)°! G(QS—%CMQ—I(s4—1> sEY, Co>c1>

we define
1
s(s'+
G(s) = H(s) S g

O(cis + co)?~1’

-1
)9 , SG(C\B,

(5.5)
s eD.

H satisfies the following RH problem.

4 Thus y N{z : Imz > 0} and y| have opposite orientations, while y N {z : Imz < 0} and y;, have the
same orientation.
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RH problem for H

(a) H isanalyticinC\ y.
(b) Hy(s) = w(J(s)eWIDH_(s) fors € y.
() His) =1+ O@s™) ass — oo,
H(s) = O((s — 54) ") as s — 54,5 € C\ D,
H(s) = O((s — sp) " %m+1) ass = 5p, 5 € C\ D,
H(s)=O((s — L+ (t)))" 2 Py ass — L1 4(t)),s e C\ D, j = 1,...,m,

H(s)=O(s — La(t;)) 3P ass — L (t)).se D, j=1,....m.

An explicit solution to this RH problem can be obtained by a direct application of the
Sokhotski-Plemelj formula:

H(s)=eXp( I [ WUE) +logw(J £) d€>

%y E—s

B —1 [P 1], (©) 1 (©)
P <E~/a (W(O * logw(o)<ll,+(é') —s  hi@) - S>d§)7 SEV-

(5.6)
Inverting the transformations F +— G +— H with (5.3) and (5.5), we obtain
s+ 1\ 5 —
H(s) s( )9, s e C\ D,
F(s) = S g 5.7
V=S —sp) | — > seD.

O(cis + co)?~1’

By (5.1)=(5.2), the associated solution to the RH problem for P is thus given by

(o), (SHINT H(s) _
P& @ =s(——) ————  s=h@. zeC\labl
(5.8)

s H(s)
O(c1s + )1 /(s — sa)(s — sp)

Py (2) =

s =Dh(z), ze€Hy)\la,b].
5.9

Our next task is to simplify the expression for H.
5.1 Simplification of H

For j =0,1,...,m,m+ 1, define

_ 1 [ logwg, (J(§)) _ ;[ log|J () —1l
Haj(s)_exp <2ni?§,—$—s dé) _exp<2my§/—g_s dé).
(5.10)
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Proposition 5.1 Hy, is analytic in C\ y and admits the following expression

=) F =)t \D
Hq,(s) = (J(s) = 1;)% ’ .

; 4 4
s =N+ (s —hi@t)?, seD,

where

(s — 11,+(tj))7j is analytic in C \ ((—oo, Sq] U yl,,_/.>,
(s — Iz,+(tj))71 is analytic in C \ ((—oo, sq] U yg,lj),

(J(s) — )% is analytic in C \ ((—oo, sa]U 5),

where yi 1, is the part of yy that joins sq with I+ (tj) (k = 1, 2), arg(s — Ix +(t;)) =
0ifs — I, +(tj) >0(k=1,2), and arg(J (s) — t;) =0if J(s) —t; > 0.

Proof The strategy of the proof is similar to that of [50, eqs (50)—(51)]. For n € [0, 1],
define

L plogwe,(nJ(§)  a; [ loglnJ(E)—tl
faj<s,n>.—%7§y—é_s dé‘—%yg e,

Since fa_,. (s; 1) =log Hy; (s), we have

1
log Hoy (5) = fin) (53 0) + /0 B oy (55 ),

where

o 9 J(&)
Oy fo; (s3m) = 2m,][y E=00I® —z,-)ds’ ne 1), seC\y. (511)

The notation f stands for the Cauchy principal value and is relevant only forn € (tb—f , 1),
see below. The explicit value of fy; (s; 0) is easy to obtain,

fu (530) = o logtJ%Eds :{ , ifs e C\ D, (5.12)

ajlogt;, ifs e D.

The rest of the proof consists of finding an explicit expression for fol Oy fa,; (s3 mdn.
1 ’

This is achieved in two steps: we first evaluate fOT Oy fa,; (s;mdn and then
f, 3y fa; (53 mdn. For n € (0, b) wehave € (b, +00), and thus nJ (§) —1; =0
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if and only if £ = 11(%) € (sp, +00) or & = 12(%) € (0, sp). Using the residue
theorem, we then obtain

o J(E) t
Oy fu,(s3m) = =R / JE=1 —’)
ey (55) es((é—s)(nf(f)—rj) : ‘<n>
o 1)

d
i Emvmie—n%

ajJ(E) . -
. Res(m,é = S), ifs € (C\D,
0, ifs € D,

where Yoy C C \5 is a closed curve oriented in the counterclockwise direction and
surrounding s. Each of these three terms can be evaluated explicitly by a elementary
computation, and we obtain

- r/!(s)ft_,- ’

ne© %)
0, ifs e D,

By foy (i) = L — —— _
1 () — s (1 ()

ti . o —
o [ LIS s e C\ D,

Using the change of variables

we note that

/3(1_ i )d_n_/+°°<1’<ﬁ)_ 1 >d~
0 (h(%)—s)J’(Il(%)) n o Jy, JGa) n—s !

cl(sbb— s)>’

= lim (log J(R) —logh — log(R — s) + log(sp — s)) = log(
— 00

where s +— log(sp — ) is zgalytic in C\ [sp, +00) and arg(s, — s) € (—m, 7). On
the other hand, for s € C\ D we have

1 .
B ajJ(s) FJJ(S)—I,‘
/0 n](s) _ tj n o og —lj Olj< Og( (S)) og )

where s — log(b — J(s)) is analytic in C \ (D U [sp, +00)) and arg(b — J(s)) €
(—m, ). Hence, we have shown that

J

I — i(log(b—J —logb), C\ D,
/”a,,faj(s;n)dn=ajlog<cl(sl},s)>—!“’(Og( () —logb), seC\
0 0, seD,
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which, by (5.12), implies

c1(s — sp) —
ozjlog<m), SE(C\D,

TR
faj(sv b) C]tj(sb —S)
ajlog — ) s €D,

(5.13)

where in (5.13) the principal branches for the logarithms are taken. We now turn to
the explicit evaluation Offti Oy fa; (s3m)dn. Forn € (tbl, 1), we have % € (tj,b),and
b

therefore nJ(§) — t; = 0 if and only if & = 11,+(%') eyroré = 12’+(%) € ¥.
Hence, using (5.11), we obtain
o J(&)
=)
e 2700 Sy (€ =)0 (§) — 1))
{kq—iﬂ@—ngﬂiMeC\B

dg§

E—s)(nJ(§)—1;
0 ifs € D

1 aiJ(€) t;
— R J E=1 A )
2 es((S—S)(nJ(E)—tj) 5 1’+<n>

1 aid(€) 1’
R J E=1 J >,
2 es((é—s)(nus)—tj) 5 2’+<n)

where again yo, C C\ D is a closed curve oriented in the counterclockwise direction
and surrounding s. After an explicit evaluation of these residues, it becomes

a;J(s)

aj - ifseC\D
Iy fo,(sim) = =L+ 1 1O
1 n o ifs e D
Ny
1 oy
D) 0 / 0
(14 G5) =" (11,4 (5)
Lj
1 ajoy

- = : — . e, (5.14)
2 (b () = 9)nJ' (I, +()) ’

dn
1

! : dy _ (v (I 1
/ 1 — " n —_— = / —_— — = d?’]
s\ U (D) =)0 UG ) 0 Dy NI =

o (b(s - Ik,+<z,»)>>’

tj(s —sp)

Using the change of variables 77 = Ik,+(%j), = —]T/((%—d’ﬁ, k=1,2, we get




50 Page 36 of 60 C. Charlier

where the path of integration in 7 goes from Ij_ (¢;) to s following yy, and the branch
of the logarithm is taken accordingly. We also note that

1 a;iJ(s) b(J(s) —1t}) -
R A S A ST F
ﬁj 77 tjdn a; log tj(J(s)—b)’ seC\ D,

b
where the principal branch for the logarithm is taken. Hence, we obtain

! ' B . _ ~ |
/j  fo; (53 mdn = Ol?]log (M) + a—jlog (b(s 12,+(t])))

ti(s — sp) 2 1j(s — sp)

b

b(J(s)—t;) —
B O[legm, SE(C\D, (515)
0, seD.
We obtain the claim after combining (5.14) with (5.15). O

For j =1,...,m, define

1 :
Y

27i E—ys
cor(shf TPaes g
_exp<2m, fifu,,j E_Sdé + 77 - P dé), (5.16)

where v, is the part of y that starts at /;,4(7), passes through s,, and ends at
I (tj), while Vbt is the part of y that starts at /> 4 (¢;), passes through s, and ends
at I 4 (t;). After a straightforward evaluation of these integrals, we obtain

Proposition 5.2 Hpg, is analytic in C\ y and admits the following expression

P _bi I _bi
— t; 2 i t; 2
Hﬂﬂs)::(s L+(,)> (s L+(1)> ’

s—=h @)/, s =D @)/,
where the a and b subscripts denote the following branches:

J

— L)\ *

(ﬂ> is analytic in C\ yq,1; and tends to 1 as s — 00, (5.17)
s—h(tj)/,

B

— 1 t)\ 2

<ﬂ> is analytic in C\ yp;; and tends to 1 as s — oo. (5.18)
s =D () /,

Remark 5.3 The two functions (5.17) and (5.18) coincide on C \ D, and on D we have

_B -5
(ﬂ) by (w) " seD.
s=hy@)/, § = b))/,
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5.2 Asymptotics of P asz — t,,Imz > 0

For convenience, define By = 0, 41 = 0, Hpg,(s) =0, Hg,, ., (s) = 0, and

Hw(s>=exp( : wd&)

%y E—ys

B -1 [P 1], (©) 1 (©)
- (%/a W(g)(11,+(§) —5  h4(0) —S)dg) sEv 619

The & boundary values of H, Hy, Hy, , Hg, and /(s — s,)(s — sp) will be taken with
respect to the orientation of y; and y» (recall that the orientation of y is different from
that of y). In particular,

lim H(I (% £ie€)) =: Hx(I1,+ (%)), lim H (Lt £ i€)) =1 Hi(l2,+(t)).
e—04 e—04
Lemma5.4 Asz — 13, Imz > 0, we have

Ho, (11(2) = 4 () — s @) e T 1] (0) 2 (2 — 1)~ 2 (1+ Oz — 1))

Heoy (12(2)) = 4T 4 () = by (1)1 e B (107 (2 — 1) 2 (14 Oz — 1),
inp,

Hp (1 () = |1 +(t0) — Dy (0)1Pe 2 1] (607 (2 — 0 P (1 + Oz — 1)),

Hp (1) = |14 (0) — B () Pre™ 7 15 )z — )P (1 4 O — ).

where the principal branches are taken for each root.

Proof These expansions follow from Propositions 5.1 and 5.2. O
By combining Lemma 5.4 with (5.8) and (5.9), we obtain

Proposition 5.5 As z — ti, Imz > 0, we have

6—1

I (1) + 1) A

Iy 4 ()
1720 Hayoy (I 4 (60) Hp; 4 (I 4 (1))

J#k

VI 00 = s T+t — ).,

«a, . q B
< |14 () — L1 ()| 2 TPrem G+ 3)
[ )7 =)~ 7 P+ 0@ — 1)
¥4 (10)

6(c1la+ (1) + )P~

P () = Hw,+(h,+<tk>>c‘;‘k11,+<rk>(

P (z) = Hw 4 (1o, + (1))
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[1723 Haj.4 (T4 (0)) Hp, 4 (1.4 (1))
J#k
V(1) = sa) (D, (1) — sp)
«a, ._q Br
x I 4 (61) = D4 (10)| 7 PreimCE+T)

B ) TPz — ) T+ O — 1)),

In particular, as 7 — t, Imz > 0, we have

(00)
P, (2)
o = o — 0% (1 4+ O - 1),
P] (2)
6—1
) _ Hyw (I, + (1)) 12,4 () I+ (&) 7
21,k —

Hw 4 (1 4+00) Tt (0 (1 Iy (1) + c0)0 = (1 4 () + D)7
o B @0 TG0 — s+ () = 5v),
I () F=be /(D4 W) — sa) (Lo, (1) — sp)

" Hy, 4 (L (60)) Hp, 4 (I, 4 (1))

X |14 (1) = T,y (1) |72 :
! ! jll Hayo+ (114 (00) Hp, (114 (1)
J#k

(%
X e ln(

5.3 Asymptotics of P asz — b

Lemma 5.6 As z — b, we have

J7—b Vzi—b
1 = ——— +0(z—=b), I =5 — ——— + 0Oz —0b),
1(z) = sp + o0 2 + O(z ), 1(2) =sp T + O(z )
(5.20)

where J" (sp) > 0 and the principal branches are taken for the roots.

Proof This follows from (1.18) and the identities J(/1(z)) = z and J(l2(z)) = z. O

Define
~ =~ _H()
Hy(s) = Hy (s) E)Ha,<s>H,3_, © =y
0—1 ~ ~
s+ 1\ 7 Hp(s) . s Hy(s)
fl,b(S)—S< g ) s fon(s) = St s

where the branch for /s — s, is taken on (—o0, s,]. Using (5.8)—(5.9), Proposi-
tions 5.1, 5.2 and the expansion (5.20), we obtain
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Proposition 5.7 As z — b, we have

Xm+1

" l
Cam+1f1 b (Sh) J'Gsp)ya— 2
P (g) = L7 1( U%M) (1 +O(¢z—b)),
(z—b)yst 2
” 1_ Y%+l
oot (5) J sp) Vi~ 2
P (1) = S S0 (3,,“) (1+0Wz=1)).
(z—=b)a" "2~

where the principal branches are taken for the roots, and

fl,b,+(5b)5=€hi% fip(sp +€), fz,b,+(Sb)i=elii% Fp(sp — ).

In particular, as z — b, we have

Py (@) icop(b)eV®
Pl(oo) (2) opo—1

(= byt (14 0z =),

5.4 Asymptotics of P asz — a

The analysis done in this section is similar to the one of Sect. 5.3.

Lemmab5.8 Asz — a, £Imz > 0, we have

ivz—a —iz—a
———+ 0z —a), L) =85+ ——meoux
VI (sa)l/2 VI (sa)l/2

L(2) =s, + + Oz — a),

(5.21)

where J"(s,) < 0 and the principal branches are taken for the roots.

Proof 1t suffices to combine (1.19) with the identities J (/1(z)) = z and J (I2(z)) = z.

o
Define
H,(s) = H (s)ﬁlH (s)Hg, (s) = HE)
a = aw B aj ﬂj == HaO(S)’
0—1 ~ ~
s+ 1\ 7 Hys) . s H,(s)
fials} = S( s ) Vs —sp frals) = O(c1s + o)~ s —sp

where /s — s is analytic in C\ ((—o0, 5,]Uy1) and such that /s — s, > 0if's > sp.
The following proposition follows from (5.8), (5.9) and Propositions 5.1 and 5.2.

Proposition5.9 As z — a, Imz > 0, we have

1_

77 (s 1_2 i _1
A fria ) (L5) 2 eF 07

1
(z— a)1+a70

)(1 +O(JzTa)),

P () =
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o J" (s 1_9 _mi 1
SO frra, 4 (5q) (L42) 3772 o= 5 (@0=2)

1_2
(z—a)+ 2

Py () =

(1 + Oz — a)),
where the principal branches are taken for the roots, and
. 3mi . _mi
fl,a,+(sa):: lim fl,a(sa +ete), f2,a,+(sa):= lim fZ,a(sa +e o).
e—0 e—0

In particular, as 7 — a, Imz > 0, we have

P iwa(a)eV @

Pl(oo)(z) 0af—1

e~ a1 + OWET).

5.5 Asymptoticsasz — oo

Recall that By = Bp4+1 =0, 10 = a and 1,41 = b.

Lemma5.10 Ass — 0, we have H(s) = H(0)(1 + O(s)), where
m+1

b b p 1~ b
H(0) = exp </ W(x)p(x)dx> [1 (e"‘f i togty=x1p(e)ds TP 022 WW).
a

j=0
(5.22)

Furthermore, the identity (1.26) holds.

Proof Recall that H (s) = Hyw (s) ]_[';’:01 Hy; (S)ngj (s). Proposition 1.2 implies that

1 (1{,+<x> L (x)

px) = -— o 12,+(x))’ x € (a, b). (5.23)

Hence, using the definition (5.19) of Hy, we get

1 w(J
14

1 b

- W(x)<

ENNCONRIINC)
Ly(x) I +(x)

27i J,

b
)dx =/ Wx)p(x)dx.

Similarly, using (5.10) and (5.16), for j =1, ..., m + 1, we obtain

b b
log Hy; (0) = «; [ log|t; — x|p(x)dx, log Hg,; (0) = inp; <1 — 2/ p(x)dx),
a tj

(5.24)
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which already proves (5.22). On the other hand, using Propositions 5.1, 5.2 and the
fact that I 4 (t;) = I1,4(¢j), we obtain

Hy; (0) = ¢}/ |11 +(t))|%,  Hp,(0) = ™ Pi=2Piae ety = i im 41,
(5.25)

where arg I 4 (¢tj) € [0, 7], j = 0,1,...,m + 1. By comparing (5.24) and (5.25),
we obtain (1.26). O

Proposition 5.11 As z — oo, z € Hpy, we have

H
Py (2) = ©co 91_0<1 + 0(2_9)>~

—i/|sa5p]
Proof Since the branch of /(s — s,)(s — sp) is taken on y;, we have

V8 —5a)( — $p)ls=0 = —iv/[saSpl.

The claim now follows after substituting (2.14) in the expression (5.9) of Pz(oo). O

6 The convergence of P — P(>)

In this section we follow the method of [29, Section 4.7]. As in the construction of
P the mapping J is used to transform the 1 x 2 vector valued function P to a
scalar valued function F as follows:

Pi(J(s)), se€eC\DandJ(s) ¢ Tp,

F(s):= (6.1)
Py(J(s)), se€ D\[—1,0]and J(s) ¢ Zp,
where X p was defined in (4.17). We can retrieve Py and P, from F by
P1(z) = F(11(2)), zeC\ Zp,
Pr(z) = F(12(2)), ze€Hy\ Zp. (6.2)

It will be convenient to write J ~1(Z p) as the union of three contours as follows:

J7UZp) =T US"U (1 Uy), where &' = I, (Zp \ [a, b)),
" = L(Zp\la, b]).

We choose the orientation of J~!(Zp) that is induced from the orientation of ¥ p

through 77 and I», see also Fig. 5. Since P, satisfies Pz(e%ix) = Pz(e_%x) for all
x > 0, F is analytic on (—1, 0). Furthermore, since

Py(z) =0O(1), asz — 0, z€e Hy, and P(z) = (’)(z_@), as z — 00, z € Hy,
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Fig.5 The contour J! (Zp)
with m = 2. The thick curves
are y| and y;. The two dots
lying in the upper half plane are
11,+(tj),j =1, 2, and the two
dots lying in the lower half plane
are 12,+(tj),j =1,2

the singularities of F at —1 and O are removable and F has at least a simple zero at O,
and thus F is analytic in C \ J(Zp). By (6.1), we have

P +(J(s)) = Fx(s), Py +(J(s)) = Fr(2(J(5)), sex,
Py +(J(s)) = Fx(s), P1+(J(s)) = Fr(1(J(5)), sex’,

which implies that the jumps of F on £’ U X" are nonlocal and given by

Fi() =F_()Ip1(J () + F(LJINIp2a(J(s), seX, (63
Fils) = F_(h(JNIp12(J () + F-()Ip2(J(s), seZ’. (64

The jumps for F on y; U y» can be computed similarly and are identical to those
of F:

B 0J(s)?!
-7:+(S)——W}——(S), S €V,
a)(J(s))eW(J(S))

Fi(s) = W}-—(S), s €Y.
Finaly, using the RH conditions (c) and (d) of the RH problem for P, we conclude that
F admits the following behaviors near 00, 0, 54, sp, 11, +(¢j), L2, +(t;), j =1,...,m:
F(s)=1+0h, as s — 00, (6.5)
F(s) = O(), ass — 0, (6.6)
F(s) = O((s — 54)"27), ass — sq, s € C\ D, 6.7)
F(s) = O((s — sp) "2~ m1), ass — sp, s € C\ D, (6.8)

F(8) = Os — L))~ F ), ass — L)), s €C\D, j=1,...m,
(6.9)
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F(s) = O((s — 12,+(rj))%+ﬂf), ass — L 4(tj), seD, j=1,...,m.
(6.10)

Because of the nonlocal jumps (6.3)—(6.4), F does not satisfy a RH problem in the

usual sense, and following [29,43] we will say that F satisfies a “shifted" RH problem.
By (5.7), F(s) #0foralls € C\ (y; U y2 U{0}), and therefore

R(s)::—j), fors € C\ (J~'(Tp) U {0} (6.11)

is analytic. Since F' and F have the same jumps on y; U y2, R(s) is analytic on

1Y) \{sa, sp, L1+t oo, D14 (m), D (21) s .o, I - (tm) ).
Using (6.7)—(6.10) and the definition (5.7) of F, we verify that the singularities of R

atsq, sp, 11, +(t1), ..., I1,+(tm), I, +(t1), . .., Ir 4+ () are removable, so that R is in
fact analytic in a whole neighborhood of y; U y». We summarize the properties of R.

Shifted RH problem for R

(@ R:C\(X'UX”) — Cis analytic.
(b) R satisfies the jumps

Ri(s) = R_(s)JR,11(s) + R_(L2(J(5)))JR,21(5), sex,
Ri(s) = R_(I1(J(5)))JR,12(5) + R_(s)JR,22(5), sex’,
where
F(L(J
Jr1(8) =Jp11(J(s), Jr21(s) = JP,21(J(S))w, (6.12)
F((J
JR12(s) = JP,12(J(S))%, JRr22(s) = Jp22(J(5)). (6.13)

(c) Risbounded, and R(s) =1+ O(s~ 1) ass — oo.

By (4.19)—(4.21) and the explicit expression (5.7) for F(s), as n — 400 we have

Jr11(s) =14+ 0™ "), Jr21(s) = O(e™"), uf.se€li(oy Uo_)NE,
e =14 0O 4 ooty ) = DB oy g g oDy
Jr22(s) =14+ 0™ "), JR12(s) = O(e™ "), uf.s € Loy Uo_) N X",
Tran) =14 2O Loty ) 2 RO L o g e Ur LeD,),

for a certain ¢ > 0, where “u.f." means “uniformly for", and these estimates hold also
uniformly for «p, ..., a4 in compact subsets of {z € C : Rez > —1}, uniformly
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for By, ..., B in compact subsets of {z € C : Rez € (—%, %)}, and uniformly in
1, ..., ty, 60 such that (4.1) holds for a certain § € (0, 1).
Define the operator Ag acting on functions defined on z:=%' U X" by

AR f(s) = [Jr11(s) = 11f(s) + Jr21(s) f(12(J (5))), sex,
ARf(s) = Jr12(8) f (I (J(5)) + [Jr,22(5) — 1] f(5), sex’.

Let 2 be a fixed (independent of n) compact subset of

{Rez > —1)"*2 x {Rez € (4, D))" x

{(t1, ...ty ta <t <..<ty<b} x (0,00), (6.14)

and for notational convenience we denote p:=(aq, ..., Xm+1, Bl --» Bm>tls .-y
tm, ). The same analysis as in [29, Section 4.7] shows that in our case, there exists
M = M(R2) > 0 such that

M
||AR||L2(ER)SW, forallpeQ, (615)

so that the operator 1 — Ca, can be inverted and written as a Neumann series for all
n > no = np(2) and all p € Q. Furthermore, like in [29, eq (4.100)] the following
formula holds

R(s) = 1+

1 / ARME) 1 Mdg, s eC\ Tk
R

wmils, s “T o)y, T E=s

(6.16)

Let 8’ > 0 be a small but fixed constant, and let so € C \ Zg. Since Jg 11, Jr 21 are

analytic in a neighborhood of ¥’ and Jg 12, Jg 22 are analytic in a neighborhood of

%", the contour X in (6.16) can always be deformed into another contour X' in such

as a way that |§ — so| > &' for all &£ € X} Therefore, (6.15) and (6.16) imply that
R(s) =14+ RV (s)n=! 4+ O™ 24mx) - asn — o0,

)
1 AR
RW(s) = — ﬂdé, (6.17)
2 i) 1@ Ui heDy)  § S
uniformly for s € C\ Xg and for p € 2, where

AR F) = TG FO) + I 0 f(hU). s e Ui n@D,).  (6.18)
AR F(8) = TR LT D) + I f(5). s € U LGD,).  (6.19)

From (4.6), (4.12), (4.15) and (6.12)—(6.13), one sees that Ag)(l)(é) can be
analytically continued from U’;jol L(3Dy) U UTIJ L(Dy,) to (U;-"IJ n(D;; \



Asymptotics of Muttalib—Borodin determinants... Page 450f60 50

{t;jh U U'"Jrl IZ(D,J \ {tj})) and that A(l)(l)(é) has simple poles at each of the
points sq, sp, I1 +(t1), ..., [1,+(tm), 12, +(t1), ..., I2,+(ty). Therefore, for all s €
C\ (U’"+1 (D)) U U"’“ L(Dy))) we have

RW(s) =

() _ 1 (1 _
)RCS(AR 16),§ = Sa) + (s — sb)ReS(AR 16),6 = Sb)

. i (Res(Aﬁé)l(s), §=1+()) | Res(Al'16). & = 12,+(tk))>_

s — Sg

P s — I (n) s — I (1)
(6.20)
These residues can be computed explicitly as follows. Define
> ()
Jpa1()  Jp, @2 (oo)( 5
Jr(z) = ©) ;) , ze€Xp\la,bl
Jp 21(2) PP Jp22(2)
In view of (5.1)—(5.2) and (6.12)—(6.13), Jr and Jp are related by
Jrj1(J () = Jg ji(s) forseX, j=1,2, (6.21)
JR j2(J(s)) = Jg jo(s) forse T, j=1,2. (6.22)

From (4.2), (4.7) and Proposition 5.5, we obtain

Res(Jlgl)(z), z= zk) = lim G-/

—1.2€08

T (o, BBy (1)*

-1
- U Cant
2rip(n) | —Tlew—ACs, |

Ey, ()2

By (6.18)—(6.19) and (6.21)—(6.22), we thus find

— , !
Res(Ag)l(E),S = 11,+(lk)) = ! Ok (1 + T, —PCy, k)

J (I (1)) 2mi p (1) Ey, (1)?
(6.23)
o _ B 1 Uk T (o, ,Bk)Etk(fk)2>
Res(AR 1(5), 6§ = 12,+(tk)) = T b)) 2mip) <1 Cé?o,z .

(6.24)
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For the residue of Ag) 1(§) at & = 53, we first use (4.9), (4.12) and Proposition 5.7 to
get

Jr(2) =

1 <—1 —4ay -2

Hence, using (6.18), (6.21) and (1.18) (or alternatively (6.19), (6.22) and (1.18)), we
obtain

) + O(), as z — b.
m+l

1 —4a?
Res(Ag)l(é),é - sb) =t . (6.25)
16(f, N2/ J" (sp)/2
The computation for the residue of Ag) 1(€) at & = s, is similar, and we find
o) 405(2) —1
Res(A D), & = sa) — (6.26)

16(f12 /177 (s)1/2

The residues (6.25) and (6.26) can be simplified using the expansions of p near b and
a given by (1.20) and (1.21). From (1.20) and (4.9), we get

(FO)2 ”‘”() = lim P (b —x) =

b V25p/ T () 2sp/ ”(Sb
which gives
M 1 —da;
Res(AR 1(8), € = sb> = sy mHl (6.27)
8
Similarly, using (1.21) in (6.26), we obtain
Res(AR 1(8), € = sa) = s, . (6.28)
8
7 Proof of Theorem 1.4
By (1.39), (1.43) and (3.1), as z — o0, z € Hy, we have
1 K2
Y2(z) = —Cpu(z) = — Lz V0 L Oz~ (20, (7.1)
Ky 2mi

On the other hand, using (3.3), (3.7), (4.16), (6.2) and (6.11) to invert the transfor-
mations Y = T + S +— P+ F + Rforz € Hy, z ¢ EUUm“DlJ we
have
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Tr(z) = " Y2(2)e"*? = $1(z) = Pa(2)
F(h(2)) = R(L@)F(h(z) = R(L(@)P\(2),

where for the last equality we have used (5.2). Let 2 be a fixed compact subset of (6.14),
and let us denote p:=(ap, ..., %ut1, B1s---» Bms 1, -+, tm, 0). It follows from the
analysis of Sect. 6 that there exists ng = n¢(€2) such that Y exist for all n > ng and all
p € Q. For clarity, we will write R(z) = R(z; n) to make explicit the dependence of
R in n. Using Lemma 2.2, Proposition 5.11, and the fact that g(z) = 6 log z + 0@
as z — oo in Hp, we find

Y2(2) = e e 8O R(1y(2); n) P (2)

=1+ OGENRO; ) + 0" — 0o

i— '|Sa_sb|9Z79 (1 + O(Zie))s

(7.2)

where the above expression is valid as 7 — oo, z € Hy, foralln > ng and all p € Q.
Comparing (7.2) with (7.1), we find

_ _ H(0)co

2 nt

=2 R(0; n) ———, foralln > ng, p € Q.

K, Te ( n)MG oralln > ng, p

Hence, by (1.42), we have
N-1

Dy(w) = Dyy(w) [ ] 6,2 forall N = no, p € Q. (7.3)

n=ny

Furthermore, since Kn_oz exists and is non-zero, this implies by (1.41) that D,,, (w) # 0.
Note that H (0) is independent of n (see (5.22)). Also, by (6.17), as n — 400

RM(0:;
RO:m) =1+ 5O L o244y RO ) = O@boer),
n

Hence, formula (7.3) can be rewritten as

¢ ¢ 27 H(O
Dy(w) = exp<—§N2+|:§+l 7 ()CO}NJrcg)

o0g ————
A/ 18asp10
N
RW 0:
x ]‘[ (1 + B Om + O(n_2+4’3"‘a*)), (7.4)
n=ny n

for a certain constant CA", where the error term is uniform for all n > ng and all p € .

Using Proposition 2.3, the identity s,s5, = —C‘;—Oe, and the expression (5.22) for H(0),
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we verify that

t_ ¢ E_HO 21H Oy _ .
S A

where C and C; are given by (1.23) and (1.24), respectively. Our next task is to obtain
an asymptotic formula for the product in (7.4) as N — +o00. By (6.20),

~1 _1
RD0: n) = S—Res(ARl(é),E - sa) + ERes(ARl(é),é - sb>

- 1
+Z<Il+( 79)

k=

Res(ARl(g) E=1 +(t,))

hiG )Res(ARl(E) E=Dh +(fk))>

and using (6.23), (6.24), (6.27) and (6.28), we get

4o — 1 by — 1
8 + 8

RV (0; n) =

B ( 1 3 1 >
+I§2”i0(fk) L) (N +0) D4 @) (4 (1)

i Bi — O:T/% ( 7 (o, —ﬂk>C§T,°£ _ t(ok, BoEy (1 n)? )
= 2mip @) \ 4 ) (4 (00)By (152 [y (1) I (I, + (1)) Cy oy

where we have explicitly written the dependence of E;, () in n. Using J' (I j+ ) =
I]’. +(tk)_1 fork=1,...,m, j =1,2and (5.23), we obtain

1 1 1
2mip(te) <Il,+(rk)1/(11,+<rk)> a 12,+(rk)f/(12,+<rk>>>

1 (1{’+(tk) B Ii+(tk)> _

T 2mip(t) \ L4 (t) b))

and therefore R (0; n) can be rewritten as

RV n)=C
2
5 ﬂ%—%( T —BICg  t(on BBy (i n)? >
= 2mip(t) \ 11+ () I (11,4 (1)) By (t1: ) L4 (1) (L, 1 (1)) C5;

where C3 is given by (1.25). From (4.8), we see that E;, (; n)? = (’)(nzﬂ‘) asn — 0Q.
However, ¢ (b) = 0 and (3.9) imply that —i¢4 (tx) € (0,27) forallk = 1,...,m,
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which in turn implies that E;, (; n)? oscillates quickly as n — +00, and more pre-
cisely that

N
[T (0 +E t:m™n ") = Cax+ OWN"#2P), as N - +oo,

n=ny
where C4 + are some constants. Hence, as N — 400,

N
RW(0;
I1 (1 * % + 0<n‘2+4ﬁ"‘“>> = C3log N + C}f + O(N ™~ +max),

n=no

(7.5)

for a certain constant Cy/, which finishes the proof of (1.22).

8 Proof of Theorem 1.6

Let x1, ..., x, be distributed according to the Muttalib—Borodin ensemble (1.6), and
recall that the counting function is denoted by N, (1) = #{x; : x; < t},t > 0, and
that the ordered points are denoted by a <& <& <...<§&, <b.

Parts (a) and (b) of Theorem 1.6 can be proved in a similar way as in [14, Corollaries
1.2 and 1.3]. For part (a), we first set m = 1 in (1.9) (and rename #; — f, o] — «,
2xif; — y):

E<|pn<t)|°‘e“vn<f>> - %e @.1)

Let h(«, B) = h(a, B; n) denote the right-hand side of (8.1). Theorem 1.4 gives the
formula

b l‘j
h(a, B) = exp<af log|t—x|,0(x)dxn+y/ p(x)dxn

az )/2
+<T+m) logn+0(1)>, (8.2)

asn — 400, and these asymptotics are uniform for o and y in complex neighborhood
of 0. Since h(«, B) is analytic in o and B, this implies, by Cauchy’s formula, that the
asymptotics (8.2) can be differentiated any number of times without worsening the
error term. Hence, differentiating (8.1) and (8.2) once with respect to « and then
evaluating at « = 0, as n — +o00 we obtain

b
aaE<|pn<t)|°‘eVN"“>> = E(log|pa(1)]) = f log |t — x|p(x)dx n + O(1),

a=0
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which is (1.30). Formula (1.29) is obtained similarly by differentiating (8.1) and (8.2)
once with respect to y, and the asymptotics (1.31) are obtained by taking the second
derivatives with respect to « and y.

Now, we prove part (b) of Theorem 1.6. Since D, (w) is analytic in o1, ..., oy,
B, -- -, Bm, Theorem 1.4 implies that

Dy (W) 7T imnfe _ T- ® log 1 — en [ ?_ e
e o eaknfa og |t xlp(x)dermﬁknfa ,o(x)dxn £ ﬁkH , 813
E@ﬂT I n (83)

k=1 k=1
where H,, is analytic in a1, ..., &, B1, ..., Pm, satisfies Hy o= .—ap=p1=...=fn=0
= 1, and is bounded as n — +o00 uniformly for «q, ..., oy, B1, ..., By in small

neighborhoods of 0. This implies, again by Cauchy’s formula, that all the deriva-
tives of H, with respect to «;, B; are also bounded as n — +oo uniformly for
o1y Oy, B1, - .., Bm in small neighborhoods of 0. Letay, ..., am, b1, ..., by € R
be arbitrary but fixed. Hence, using (8.3) with

bk
V22 omip =2 L k=1,...,m,
* J/logn i n«/logn "

and using also (1.9) and (1.32)—(1.33), as n — 400 we obtain

" n g b2
o] -eo(£(4+9) ol i) oo
n

j=1 =1

Since ay, ..., an, b1, ..., b, € R were arbitrary, this implies the convergence in
distribution (1.34).

We now turn to the proof of part (c) of Theorem 1.6. Our proof is inspired by
Gustavsson [47, Theorem 1.2]. Let k; = [n fatf p(x)dx], j =1,...,m, and consider
the random variables Y, (¢;) defined by

n o pedx —k;  HalEr,) —k;

Ya(tj) =2 :
nt) d Jlogn on

Il
—_

om,  (8.5)

where w,(t):=n fa' p(x)dx, Unzzﬁx/logn. Given y1, ..., ym € R, we have

P[Y, (1)) < y; forall j =1,...,m] =P[gki <y (kj + yjoy) forall j = 1m]

=B[Ny (11" (k) + vjon)) = k; forall j = 1,.....m] (8.6)
Forj=1,...,m,let szzu,jl(kj + yjon). As n — +00, we have

K=l =0, i =1;(1+0(5E)). 8.7)
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Since Theorem 1.4 holds also in the case where t1, ..., ,, depend on n but remain
bounded away from each other (see (1.27)), note that the same is true for (8.4), and
therefore also for the convergence in distribution (1.34). Now, we rewrite (8.6) as

Ny (i) — mn(i)) - kj— pn(i)) i=1 m]

2 - 2
Oy On

P[Yu(tj) < yjforall j =1,...,m] = IP’|:

_ P[Mn(fj) _ivn(fj)

Gil

<yj forallj=l,...,m:|.

By (8.7), the parameters 71, . . . , f,, remain bounded away from eacglll other, and there-
fore Theorem 1.6 (b) implies that (Yn (t1), Yu(r2), ..., Y,,(tm))—>N(0, I,,). Now,
using the definitions (1.35) and (8.5) of Z,(¢;) and Y,,(¢;), we obtain

P[Z,(t) < vj, j=1,..m]
tn(Ki; + Y met) — M ki)
J

:P[Yn(rj) <

=P[Ya(tj) < yj+o(l) forall j =1,...,m]

, j=1, ,mi|

On

as n — 400, which implies the convergence in distribution (1.36).

The rest of this section is devoted to the proof of Theorem 1.6 (d), and is inspired
from [18]. We first prove (1.37) in Lemma 8.1 below. The proof of (1.38) is given at
the end of this section.

Combining (1.9) and Theorem 1.4 with m = 1, «; = 0 and B; € iR, and setting
y:=2mif and t:=t;, we infer that for any § € (0, b%“) and M > 0, there exists
ng =ny(8, M) € Nand C = C(8, M) > 0 such that

2 t
E(eVNn(t)) < Cexp <y,un(t) + %oj), Un(t) = n/ p(x)dx, o, =
a

1
—Jlogn,
V2 o8

foralln > ny,t € (a+8,b—8)andy € [-M, M].

Lemma 8.1 For any § € (0, b=ay there exist ¢ > 0 such that for all large enough n

2
and small enough € > 0,

Ny (x) — pp(x)

2
On

P sup <2ms/l1+4+e]>1—cn"c. (8.9)
a+86<x<b—§

Proof Recall that k; = p,; L(k) is the classical location of the k-th smallest point &
and is defined in (1.28). Since u, and N, are increasing function, for x € [kr_1, k]
with k € {1, ..., n}, we have

Ny (x) — pn(x) < Nyp(kr) — pin(k—1) = Ny (kg) — pn(kr) + 1, (8.10)
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which implies

Ny (x) — pn(x) Ny (ki) — pn (ki) + 1
sup  —————— < sup 5 ,
a+86<x<b—§ Oy kelC, Op

where IC, = {k : kx > a+ § and k1 < b — §8}. Using a union bound, for any y > 0
we find

IP’( sup M>V>S ZP<Nn(Kk)_IJ;n(Kk)+l >y)

a+8<x<b—3 N kek, N
=3 ]P)(e}’Nn(’fk) - ewm)—ywzo,%) <Y E (eme)) oY)y =20y
kelkC, kekC,
(8.11)

where for the last step we have used Markov’s inequality. Using (8.8), (8.11) and the
fact that #/C,, is proportional to n as n — 400, for any fixed M > O we obtain

Ny (x) — pn(x 2 2
P sup M >y < C(a’ M) e)’e—yTan Z 1 Sclnl 472
a+8<x<b—s On kek,

(8.12)

for all large enough n and y € (0, M], where c; = c¢1(8, M) > 0 is independent of n.
We show similarly that, for any M > 0,

a+8<x<b—§ an

—N _2
[[D( sup M > V) < Cznl 472 , (8.13)
for all large enough n and y € (0, M], and where ¢; = ¢2(5, M) > 0 is independent

of n. Taking together (8.12) and (8.13) with M = 4x (in fact any other choice of
M > 27 would be sufficient for us), we get

y2

M > y) < max{ci (8, 4m), c2(8, 4m)} n1_4n2,

2
On

P sup
a+8<x<b—6

for all sufficiently large n and for any y € (0, 4x]. Clearly, the right-hand side
converges to 0 as n — -+oo for any y > 2m. We obtain the claim after taking
y = 2m+/1 + € and setting ¢ = max{c(8, 4m), c2(§, 47)}. O

Lemma 8.2 Let s € (0, l%) and € > 0. For all sufficiently large n, if the event

N (x) = pn (x)

2
On

<271 +e (8.14)

sup
a+8<x<b—§
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holds true, then we have

—k 1
sup ‘% <2V/T+e+ . (8.15)
ke(un(a+268), uy (b—28)) On Op
Proof We first show that
Eea+8,b—238), forallk € (juy(a-+28), un(b — 26)) (8.16)

and for all large enough n. Assume that & < a + 68 < a + 28 < k. Since u, and N,
are increasing,

pn(a +28) < pn(kr) =k = Np(5) < Nula +6),

and therefore

Nu(a +8) — up(a +96) _ Mnla+ 28) — pn(a +9) - Sinfys<e<at2s i, (€)
o2 - o2 - o2 '
n n n

Since /L; = np, the right-hand side tends to +o00 as n — 400, which contradicts
(8.14) for large enough n. Similarly, if & > b — 8§ > b — 25 > ki, then

Pn(b —28) = pin(kr) =k = Np(§x) = Nu(b —9),

and we find

pn(b=8) = Na(b=08) _ pa(b—8) = pa(b—=28) _ dinfpasce<p—s 1, (§)
o B o B o ’
which again contradicts (8.14) for sufficiently large n. We conclude that (8.16) holds
for all large enough n.
Now, we prove (8.15) in two steps. First, we show that

Un(E) <k+14+27/1+¢€ a,%, forall k € (un(a + 28), un(b — 28)), (8.17)

and for all large enough n. For this, let m = m(k) € Z be such that kx4, < & <
Kk+m+1- The inequality (8.17) is automatically verified for m < 0. Now, we consider
the case m > 0. Since k € (uy(a + 28), un (b — 258)), we know from (8.16) that

& € (a + 6, b —§) for all sufficiently large n, so we can use (8.14) to obtain

— N,
znmz Mn(%‘k)a2 n(€x) > %’
n n

ie. m<2mvJ1+ ea,%,

where the above inequality is valid for all sufficiently large n. Hence,

tn(E) < pn(kkome1) =k +m+1<k+1427/1+€a?,
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which proves (8.17). Our next goal is to prove the following complementary lower
bound for p(&):

k—2nT+e02 < pn(E),  forallk € (n(a +28), un(b —28))  (8.18)

for all large enough n. Let us assume w, () < k —m with m > 0. Using (8.16) with
(8.14), for all large enough n we obtain

T res M) = ) . forallk € (1a(a +26), (b —26)).
On

2
Oy

In particular, we get m < 2mw+/1 + € Unz, which yields (8.18) and finishes the proof. O
We can now prove (1.38) by combining Lemmas 8.1 and 8.2.

Proofof (1.38) By Lemma 8.1, for any 8’ € (0, l%), there exists ¢ > 0 such that for
all small enough € > 0 and for all large enough n, we have

Ny (x) — pp(x)
2

On

P sup <2nJ/l+4+e|>1—cn"¢. (8.19)
a+é8' <x<b—¢§

On the other hand, by Lemma 8.2 we have

]p(A

for all sufficiently large n, where A is the event that

sup [Np(x) — pn ()] <o

3 1+€e] =1, (8.20)
a+8'<x<b—8' Oy

—k 1
- &) =K o e, L
ke (in (@+28). 1t (b—28")) % %n

Let § > 0 be arbitrarily small but fixed. By applying Bayes’ formula on (8.19) and
(8.20) (with &’ chosen such that i, (a + 28") < dnand (1 — 8)n < w, (b — 28")), we
conclude that there exists ¢ > 0 such that

Sk k| JT+el 1
IP’( max / p(0)dx — —) L Vifelen, —) >1—cn, (821)
Sn=<k<(1-8)n| Jq4 n T n n

for all sufficiently large n. Note that the % in the above upper bound is unimportant;

it can be removed at the cost of multiplying ¢ by a factor larger than ¢>”v!+¢. More
precisely, (8.21) implies

§k k| JT+el
]P’( max / p(x)dx — —‘ < te ﬂ) >1—cn"¢,
dn<k=<(1-86)n| Jq4 n T n
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for all sufficiently large n, where ¢’ = 2¢%"V1+€¢. Hence, for any small enough § > 0
and € > 0, there exists ¢ > 0 such that

1 np(kg)
n

1 1 _ A/l1+€ logn —k
IP( max  ple)l& — el = Y Og”)=P<“"(Kk )
n<k<(1-8)n T n
J1+€ log
() =k _ Ml RS —

, forallk € (6n, (1 — 8)n)>

n n
b k| JT+el 1
z}P’( max / ,o(x)dx——‘f te Ogn——>zl—cn_5,
sn<k<(1-6)n | J, n T n n
for all sufficiently large n, which completes the proof of (1.38). O
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A Model RH problems

In this section, o and B are such that Re > —1 and Re 8 € (—%, %).

A.1 Bessel model RH problem for ®g.(-) = Ppe(-; @)

(a) Ppe : C\ Tpe — C¥*? is analytic, where £p, = (—00, 0] U ¢ (0, +00) U

e_% (0, 400) and is oriented as shown in Fig. 6.
(b) ®p. satisfies the jump relations

(DBC,+(Z) = CDBC,—(Z) (_01 (1)> ’ Z € (_007 0)7

1 0 2mi
Dpe,+(z) = Ppe,—(2) <e”i"‘ 1) , z€e3 (0,+00), (A1)

1 0 _omi
Dpe,+(2) = Pge,—(2) <e"”°‘ 1) ,z€e 3 (0,400).
(¢c) Asz — 00, z & ZBe,
-3 - k2 22705 1 (1
qDBe(Z):(znZz) 7 A I+ZCDBC,]<Z e 3, A= — i)
k=1 \/5
(A.2)

where the matrices ®pe x are independent of z, and

1 [(—(1+4a®) —2i
Dpe,1 = ( Y |+ 402 ) (A.3)
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Fig.6 The jump contour Xpe

for ®pe
0
(d) Asz — 0,
O@1) Ologz) 5
. largz] < &,
O(1) O(logz)
DRe(2) = , if Reax =0,
O(logz) O(log2)\ ,,
, 5 <largz| <m,
O(logz) O(ogz) :
OW O o argel < Ad
729, Jargz| < =, )
o) 01 8Ll =73 (A4)
Ppe(z) = 0@ %) 0z %) , ifRea > 0,
, R E ZT” < |argz| < m,
0@z72) 0@z ?)

0(z?) 0(z7) .
Dge(2) = w « 1> ifRea < 0.
0(z2) O(z2)

The unique solution to this RH problem is expressed in terms of Bessel functions.
Since this explicit expression is unimportant for us, we will not write it down. The

interested reader can find more information and background on this RH problem in
e.g. [53, Section 6].

A.2 Confluent hypergeometric model RH problem
(@) ®Hg : C\ Zpg — C?*? is analytic, with Tyg = U?.:lI‘j, and I'y, ..., I'g are
shown in Fig. 7.

(b) dpg satisfies the jumps

PHG,+(2) = Pug,— (2) Jk, zely, k=1,..,8, (A.S5)

where Jg = < ! 0) and

etnaemﬁ 1

0 e—inﬂ 0 einﬁ eiﬂTa 0



Asymptotics of Muttalib—Borodin determinants... Page 57 of 60 50

Fig.7 The jump contour £yg
for ®yg. Each of the rays

ry,..., I'g forms an angle with
(0, 4-00) which is a multiple of
T
s

1 0 1 0 1 0
S = (e—inaeim‘} 1> , Ja= (eimxe—inﬂ 1) » Jo = <e—irme—inﬂ 1)'

(¢c) Asz — 00, 7 ¢ Zyg, we have

(0.¢]

) z

Oug(e) = (1 + Y —2F |z Poe i m (o), (A.6)
=1

where

2 _ (¢ -
@01 = (5~ %) (Lo —p 57 =GB

4 ) \—t(,—B) FE+A+Y
(A7)
and
¢ H o3 pinbos, < agT <7,
efiﬂTag_gefinﬂOs, T o<argz < 77[’
M@) =1 iy (01 T o
o3 —_
e (—10>’ 2<argz<0v
ina 0 1 T
— 1T g P)
e 4 (_10),O<argz<2.

In (A.6), z~? has a cut along iR ™, such that z7# € Ras z € RT.
Asz — 0,
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O@1) Ologz)
O1) Oogz)

(O(log z) O(logz)

), ifzellUIIITUVIUVII,
PG (z) =
O(logz) O(logz)
0(z2) O(z™?)
0O@z2) O(z72)

(O(ﬁ) O(z™2)
O(z"7) O(z™?)

0(z2) O(z7)
O(z%) 0(z%>) ’ (A9

>,ifz€1U1VUVUV111,

), ifzellIUIIITUVIUVII,
Pug(z) =

),ifzeIUIVUVUVIII,

dug(z) = (

where the first, second and third lines read for Rea = 0, Rea > O and Rea < O,
respectively.

The unique solution to this RH problem is expressed in terms of hypergeometric
functions. Since we will not use the explicit expression of the solution, we will not
write it down here. In the case where o« = 0, this RH problem was first solved in
[49]. We refer the interested reader to [32, Section 4.2] and [42, Section 2.6] for more
details and background on this RH problem for general values of o and 8.
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