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Abstract
Muttalib–Borodin determinants are generalizations of Hankel determinants and
depend on a parameter θ > 0. In this paper, we obtain large n asymptotics for
n × n Muttalib–Borodin determinants whose weight possesses an arbitrary number of
Fisher–Hartwig singularities. As a corollary, we obtain asymptotics for the expectation
and variance of the real and imaginary parts of the logarithm of the underlying char-
acteristic polynomial, several central limit theorems, and some global bulk rigidity
upper bounds. Our results are valid for all θ > 0.
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1 Introduction and statement of results

The main result of this paper is an asymptotic formula as n → +∞ for

Dn(w) := 1

n!
∫ b

a
· · ·
∫ b

a

∏
1≤ j<k≤n

(xk − x j )(xθ
k − xθ

j )

n∏
j=1

w(x j )dx j

= det

(∫ b

a
xk+ jθw(x)dx

)n−1

j,k=0
, (1.1)

with 0 < a < b, θ > 0, and the weight w is of the form

w(x) = eW (x)ω(x), (1.2)
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where the function W : [a, b] → R is analytic in a neighborhood of [a, b],

ω(x) = (x − a)α0(b − x)αm+1

m∏
j=1

ωα j (x)ωβ j (x), m ∈ N = {0, 1, . . .}, (1.3)

ωα j (x) = |x − t j |α j , ωβ j (x) =
{

eiπβ j , if x < t j ,

e−iπβ j , if x > t j ,
(1.4)

and 0 < a < t1 < . . . < tm < b < +∞,

Reα0, . . . ,Reαm+1 > −1, Reβ1, . . . ,Reβm ∈ (− 1
4 ,

1
4 ). (1.5)

The parameters α j and β j describe the root-type and jump-type singularities of w,
respectively. In total, the weight w has m Fisher–Hartwig (FH) singularities in the
interior of its support, and two root-type FH singularities at the edges a and b. The
conditionReα j > −1 ensures that Dn(w) iswell-defined. Sinceωβ j +n0 = (−1)n0ωβ j

for any n0 ∈ Z andβ j ∈ C, one can reduce the general caseβ j ∈ C toReβ j ∈ (− 1
2 ,

1
2 ]

without loss of generality. The restriction Reβ j ∈ (− 1
4 ,

1
4 ) in (1.5) is due to some

technicalities in our analysis (see (7.5)).
We emphasize that only the case a > 0 is considered in this work. The case a = 0

is more complicated, because it requires a delicate local analysis around 0 which has
only been solved for particular values of θ : see [52] for θ = 1

2 and [57] when 1/θ
is an integer. We also mention the work [62], which was done simultaneously and
independently to this work, where this local analysis was solved for integer values of
θ . In other words, solving this local analysis for general values of θ > 0 remains an
outstanding problem, and is the reason as to why we restrict ourselves to a > 0.
The determinant Dn(w) arises naturally in the study of certainMuttalib–Borodin (MB)
ensembles, and for this reason we call Dn(w) a Muttalib–Borodin determinant. Given
a non-negative weight w with sufficient decay at +∞, the associated MB ensemble
of parameter θ > 0 is the joint probability density function

1

n!Dn(w)

∏
1≤ j<k≤n

(xk − x j )(xθ
k − xθ

j )

n∏
j=1

w(x j ), x1, . . . , xn ∈ [0,+∞), (1.6)

where Dn(w) is the normalization constant. For α0, αm+1 > −1, the determinant
Dn(w) is for example of interest in the study of the random polynomial pn(t) =∏n

j=1(t − x j ), where x1, . . . , xn are distributed according to the MB ensemble asso-
ciated to the weight

w(x) = (x − a)α0(b − x)αm+1eW (x)χ(a,b)(x), χ(a,b)(x) =
{
1, x ∈ (a, b),

0, otherwise.
(1.7)
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Indeed, as can be seen from (1.1)–(1.4) and (1.6), we have

E

( m∏
k=1

|pn(tk)|αk e2iβk argpn(tk )
)

= Dn(w)

Dn(w)

m∏
k=1

e−iπnβk , (1.8)

where

argpn(t) =
n∑

j=1

arg(t − x j ), with arg(t − x j ) =
{
0, if x j < t,

−π, if x j > t .

Equivalently, (1.8) can be rewritten as

E

( m∏
k=1

|pn(tk)|αk e2π iβk Nn(tk )
)

= Dn(w)

Dn(w)

m∏
k=1

eiπnβk , (1.9)

where Nn(t) ∈ {0, 1, . . . , n} is the counting function of (1.6) and is given by

Nn(t) = #{x j : x j ≤ t}, t ∈ R.

In particular, formula (1.9)withα1 = . . . = αm = 0 shows that themoment generating
function of theMB ensemble (1.6) can be expressed as a ratio of twoMBdeterminants.

The densities (1.6) were introduced by Muttalib [58] in the context of disordered
conductors in themetallic regime. Thesemodels are also named after Borodin [8], who
studied, for the classical Laguerre and Jacobi weights, the limiting local microscopic
behavior of the random points x1, . . . , xn as n → +∞. The notable feature of MB
ensembles is that neighboring points x j , xk repel each other as ∼ (xk − x j )(xθ

k − xθ
j ),

which differs, for θ �= 1, from the simpler and more standard situation ∼ (xk − x j )
2.

In fact, MB ensembles fall within a special class of determinantal point processes
known as biorthogonal ensembles, and a main difficulty in their asymptotic analysis
for θ �= 1 is the lack of a simple Christoffel-Darboux formula for the underlying
biorthogonal polynomials.1 MB ensembles have attracted considerable attention over
the years, partly due to their relation to eigenvalue distributions of random matrix
models [23,41,54]. MB ensembles also arise in the study of random plane partitions
[5] and the Dyson Brownian motion under a moving boundary [45,46].

For θ = 1, MB determinants are Hankel determinants and the large n asymptotics
of Dn(w) = Dn(eW ω χ(a,b)) have been obtained by Deift, Its and Krasovsky [32,33].
In fact, asymptotics of Hankel determinants with FH singularities have been studied by
many authors and are now understood even in the more complicated situation where
the weight varies wildly with n; more precisely, for θ = 1 the large n asymptotics
of Dn(e−nV eW ω) are known up to and including the constant term, for any potential
V such that the points x1, . . . , xn accumulate on a single interval as n → +∞ (the

1 See [28, Theorem 1.1] for a formula valid only for θ ∈ Q. For θ /∈ Q, there is simply no Christoffel-
Darboux formula available in the literature.
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so-called “one-cut regime"), see [4,13,20,44,49,50,53]. Asymptotics of Hankel deter-
minants with FH singularities have also been studied in various transition regimes of
the parameters: see [7,64] for FH singularities approaching the edges, [24] for two
merging root-type singularities, and [19] for a large jump-type singularity. We also
mention that the problem of finding asymptotics of large Toeplitz determinants with
several FH singularities presents many similarities with the Hankel case and has also
been widely studied, see e.g. [2,3,10,32,33,35,38,63] for important early works.

Very few results exist onMB determinants for general values of θ . It was noticed in
[23,39] that MB determinants associated to the classical Jacobi and Laguerre weights
are Selberg integrals which can be evaluated explicitly, and the asymptotics of MB
determinants without FH singularities have been studied in [9]. To the best of our
knowledge, for θ �= 1 no results are available in the literature on the large n asymptotics
of MB determinants whose weight has FH singularities in the interior of its support.
The purpose of this paper is to take a first step toward the solution of this problem.

Wenow introduce the necessarymaterial to present our results.As is usually the case
in the asymptotic analysis of n-fold integrals, see e.g. [31, Section 6.1], an important
role in the asymptotics of Dn(w) is played by an equilibrium measure. As can be seen
from (1.1), the main contribution in the large n asymptotics of Dn(w) comes from the
n-tuples (x1, . . . , xn) which minimize

∑
1≤ j<k≤n

log |xk − x j |−1 +
∑

1≤ j<k≤n

log |xθ
k − xθ

j |−1.

Hence, we are led to consider the problem of finding the probability measure μθ

minimizing

μ �→
∫ b

a

∫ b

a
log

1

|x − y|dμ(x)dμ(y) +
∫ b

a

∫ b

a
log

1

|xθ − yθ |dμ(x)dμ(y) (1.10)

among all Borel probability measures μ on [a, b]. This measure μθ is called the equi-
librium measure; in our case it is absolutely continuous with respect to the Lebesgue
measure, supported on the whole interval [a, b], and if μ is a probability measure
satisfying the following Euler-Lagrange equality

∫ b

a
log |x − y|dμ(y) +

∫ b

a
log |xθ − yθ |dμ(y) = −�, for x ∈ [a, b], (1.11)

where � ∈ R is a constant, thenμ = μθ [28,60]. Similar equilibrium problems related
to MB ensembles have been studied in detail by Claeys and Romano in [28] (see also
[29, Theorem 1]), but in our case the equilibrium measure has two hard edges and
this is not covered by [28]. Nevertheless, as in [28], the following function J plays an
important role in the construction of μθ :

J (s) = J (s; c0, c1) = (c1s + c0)

(
s + 1

s

) 1
θ

, c0 > c1 > 0, (1.12)
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sa sb−1 0

D

(1)

(2)

(3)

(4)

(5)

(6)

γ1

γ2

0 a b(3)

(2)

(6)

(5)

J : D \ [−1, 0] → Hθ \ [a, b]

J : C \ D → C \ [a, b] a b(1)

(4)

Fig. 1 The mapping J

where the branch cut lies on [−1, 0] and is such that J (s) = c1s(1 + O(s−1)) as
s → ∞. It is easy to check that J ′(s) = 0 if and only if s ∈ {sa, sb}, where

sa = 1 − θ

2θ
− 1

2θ

√
4θ

c0
c1

+ (1 − θ)2, sb = 1 − θ

2θ
+ 1

2θ

√
4θ

c0
c1

+ (1 − θ)2.

(1.13)

Since c0 > c1 > 0, these points always satisfy sa < −1 and 1
θ

< sb. It is also easy
to verify (see Lemma 2.1 for the proof) that for any 0 < a < b < +∞, there exists a
unique tuple (c0, c1) which satisfies

J (sa) = a, J (sb) = b, c0 > c1 > 0. (1.14)

The following proposition was proved in [28] and summarizes some important prop-
erties of J .

Proposition 1.1 (Claeys–Romano [28]) Let θ ≥ 1 and c0 > c1 > 0 be such that (1.14)
holds. There are two complex conjugate curves γ1 and γ2 starting at sa and ending
at sb in the upper and lower half plane respectively which are mapped to the interval
[a, b] through J . Let γ be the counterclockwise oriented closed curve consisting of
the union of γ1 and γ2, enclosing a region D. The maps

J : C \ D → C \ [a, b], J : D \ [−1, 0] → Hθ \ [a, b] (1.15)

are bijections, where Hθ :={z ∈ C \ {0} : −π
θ

< arg z < π
θ
}. See also Fig. 1.

The case θ < 1 was not considered in [28] but only requires minor modifications.
The extension of Proposition 1.1 to all values of θ > 0 is given in Proposition 2.4
below. In particular, we show that Proposition 1.1 is still valid for θ < 1, except that
J : D \ [−1, 0] → Hθ \ [a, b] is no longer a bijection. For any θ > 0, let

I1 : C \ [a, b] → C \ D
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denote the inverse of J : C \ D → C \ [a, b], and let I1,±(x):= limε→0+ I1(x ± iε),
x ∈ (a, b). As shown in Fig. 1, we have

I1,+(x) ∈ γ1, I1,−(x) ∈ γ2, x ∈ (a, b).

Proposition 1.2 Let θ > 0, b > a > 0, and let (c0, c1) be the unique solution to

J (sa) = a, J (sb) = b, c0 > c1 > 0. (1.16)

The unique equilibrium measure μθ satisfying (1.11) is given by dμθ(x) = ρ(x)dx,
where

ρ(x) = − 1

π
Im

(
I ′
1,+(x)

I1,+(x)

)
= − 1

π

d

dx
arg I1,+(x), x ∈ (a, b), (1.17)

with arg I1,+(x) ∈ (0, π) for all x ∈ (a, b).

Remark 1.3 It can be readily verified using (1.12) and (1.17) that ρ blows up like an
inverse square root near a and b. Indeed, since

J (s) = b + J ′′(sb)

2
(s − sb)

2 + O((s − sb)
3), as s → sb, (1.18)

J (s) = a + J ′′(sa)

2
(s − sa)2 + O((s − sa)3

)
, as s → sa, (1.19)

with J ′′(sb) > 0, J ′′(sa) < 0, we obtain

ρ(x) = 1√
2πsb

√
J ′′(sb)

1√
b − x

+ O(1), as x → b, x < b, (1.20)

ρ(x) = 1√
2π |sa |√|J ′′(sa)|

1√
x − a

+ O(1), as x → a, x > a. (1.21)

The following theorem is our main result.

Theorem 1.4 Let θ > 0, m ∈ N and a, t1, . . . , tm, b ∈ R, α0, . . . , αm+1, β1, . . .,
βm ∈ C be such that 0 < a < t1 < . . . < tm < b,

Re α0, . . . , Re αm+1 > −1, Re β1, . . . , Re βm ∈ (− 1
4 ,

1
4 ),

and let W : [a, b] → R be analytic. Let (c0, c1) be the unique solution to (1.16), and
let ρ be as in (1.17). As n → +∞, we have

Dn(w) = exp

(
C1n2 + C2n + C3 log n + C4 + O

( 1

n1−4βmax

))
, (1.22)
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with βmax = max{|Re β1|, . . . , |Re βm |},

C1 = −�

2
= 1

2
log c1 + θ

2
log c0, (1.23)

C2 = 1 − θ

2
log c0 − 1

2
log θ + log(2π) +

∫ b

a
W (x)ρ(x)dx

+
m+1∑
j=0

α j

∫ b

a
log |t j − x |ρ(x)dx +

m∑
j=1

π iβ j

(
1 − 2

∫ b

t j

ρ(x)dx

)
, (1.24)

C3 = −1

4
+ α2

0 + α2
m+1

2
+

m∑
j=1

(
α2

j

4
− β2

j

)
, (1.25)

t0:=a, tm+1:=b, C4 is independent of n, (c0, c1) is the unique solution to (1.16), the
density ρ is given by (1.17), and � is the associated Euler-Lagrange constant defined
in (1.11). The constant C2 can also be rewritten using the relations

∫ t

a
ρ(x)dx = π − arg I1,+(t)

π
,

∫ b

a
log |t − x |ρ(x)dx = log(c1|I1,+(t)|), t ∈ (a, b).

(1.26)

Furthermore, the error term in (1.22) is uniform for all αk in compact subsets of
{z ∈ C : Re z > −1}, for all βk in compact subsets of {z ∈ C : Re z ∈ (−1

4 , 1
4

)}, for
θ in compact subsets of (0,+∞) and uniform in t1, . . . , tm, as long as there exists
δ > 0 independent of n such that

min
1≤ j �=k≤m

{|t j − tk |, |t j − b|, |t j − a|} ≥ δ. (1.27)

Remark 1.5 For θ = 1, γ is a circle and

� = −2 log
b − a

4
, ρ(x) = 1

π
√

(x − a)(b − x)
.

Substituting these expressions in (1.23)–(1.25), we obtain

C1
∣∣
θ=1 = log

b − a

4
, C3

∣∣
θ=1 = −1

4
+ α2

0 + α2
m+1

2
+

m∑
j=1

(
α2

j

4
− β2

j

)

C2
∣∣
θ=1 = log(2π) +

∫ b

a
W (x)ρ(x)dx

+ log
b − a

4

m+1∑
j=0

α j +
m∑

j=1

π iβ j

(
1 − 2

∫ b

t j

ρ(x)dx

)
.

These values forC1|θ=1,C2|θ=1,C3|θ=1 are consistent with [32]. The constantC4|θ=1
was also obtained in [32] (see also [20, Theorem1.3with V = 0]) and containsBarnes’
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G-function. It would be interesting to obtain an explicit expression for C4 valid for all
values of θ > 0, but this problem seems difficult, see also Remark 1.8 below.

Many statistical properties of MB ensembles have been widely studied over the
years: see [6,28,36,40,51] for equilibrium problems, [8,52,57,62,65,66] for results
on the limiting correlation kernel, [55] (see also [12]) for central limit theorems for
smooth test functions in the Laguerre and Jacobi MB ensembles when 1

θ
∈ N, and

[21,26] for large gap asymptotics. As can be seen from (1.8)–(1.9), the determinant
Dn(w) is the joint moment generating function of the random variables

Re logpn(t1), . . . ,Re logpn(tm), Im logpn(t1), . . . , Im logpn(tm),

and therefore Theorem 1.4 contains significant information about (1.6). In particular,
we can deduce from it new asymptotic formulas for the expectation and variance of
Im logpn(t) (or equivalently Nn(t)) and Re log |pn(t)|, several central limit theorems
for test functions with poor regularity (such as discontinuities), and some global bulk
rigidity upper bounds.

Theorem 1.6 Let θ > 0, m ∈ N and t1, . . . , tm be such that a < t1 < . . . < tm < b.
Let x1, x2, . . . , xn be distributed according to the MB ensemble (1.6) where w is given
by (1.7), and define pn(t), Nn(t) by

pn(t) =
n∏

j=1

(t − x j ), Nn(t) = #{x j : x j ≤ t} ∈ {0, 1, 2, . . . , n}, t ∈ R.

Let ξ1 ≤ ξ2 ≤ . . . ≤ ξn denote the ordered points,

ξ1 = min{x1, . . . , xn}, ξ j = inf
t∈[a,b]{t : Nn(t) = j}, j = 1, . . . , n,

and let κk be the classical location of the k-th smallest point ξk ,

∫ κk

a
ρ(x)dx = k

n
, k = 1, . . . , n. (1.28)

(a) Let t ∈ (a, b) be fixed. As n → ∞, we have

E(Nn(t)) =
∫ t

a
ρ(x)dx n + O(1) = π − arg I1,+(t)

π
n + O(1), (1.29)

E(log |pn(t)|) =
∫ b

a
log |t − x |ρ(x)dx n + O(1), (1.30)

Var(Nn(t)) = 1

2π2 log n + O(1), Var(log |pn(t)|) = 1

2
log n + O(1).

(1.31)
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(b) Consider the random variables Mn(t j ), Nn(t j ) defined for j = 1, . . . , m by

Mn(t j ) = √
2
log |pn(t j )| − n

∫ b
a log |t j − x |ρ(x)dx√
log n

, (1.32)

Nn(t j ) = √
2π

Nn(t j ) − n
∫ t j

a ρ(x)dx√
log n

. (1.33)

As n → +∞, we have the convergence in distribution

(Mn(t1), . . . ,Mn(tm),Nn(t1), . . . ,Nn(tm)
) d−→ N(0, I2m), (1.34)

where I2m is the 2m × 2m identity matrix, and N(0, I2m) is a multivariate normal
random variable of mean 0 = (0, . . . , 0) and covariance matrix I2m.

(c) Let k j = [n ∫ t j
a ρ(x)dx], j = 1, . . . , m, where [x]:=�x + 1

2
 is the closest integer
to x. Consider the random variables Zn(t j ) defined by

Zn(t j ) = √
2π

nρ(κk j )√
log n

(ξk j − κk j ), j = 1, . . . , m. (1.35)

As n → +∞, we have

(
Zn(t1), Zn(t2), . . . , Zn(tm)

) d−→ N(0, Im). (1.36)

(d) For all small enough δ > 0 and ε > 0, there exist c > 0 and n0 > 0 such that

P

(
sup

a+δ≤x≤b−δ

∣∣∣∣Nn(x) − n
∫ x

a
ρ(x)dx

∣∣∣∣ ≤
√
1 + ε

π
log n

)
≥ 1 − cn−ε, (1.37)

P

(
max

δn≤k≤(1−δ)n
ρ(κk)|ξk − κk | ≤

√
1 + ε

π

log n

n

)
≥ 1 − cn−ε, (1.38)

for all n ≥ n0.

Proof See Sect. 8. ��
Remark 1.7 For θ = 1, the terms of order 1 in (1.29)–(1.34) are also known and
can be obtained using the results of [32]. The generalization of these formulas for
general external potential (in the one-cut regime), but again for θ = 1, can be obtained
using [13,20]. We point out that analogous asymptotic formulas for the expectation
and variance of the counting function of several universal point processes are also
available in the literature, see e.g. [14–17,30,61] for the sine, Airy, Bessel and Pearcey
point processes.

The results (1.34) and (1.36) are central limit theorems (CLTs) for test functions
with discontinuities and log singularities. For θ = 1 but general potential, similar
CLTs can also be derived from the results of [13,20]. Also, in the recent work [11],
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the authors obtained a comparable CLT for β-ensembles with a general potential (in
the case where the equilibrium measure has two soft edges).

The probabilistic upper bounds (1.37)–(1.38) show that the maximum fluctuations
of Nn , and of the random points ξ1, . . . , ξn , are of order log n

n with overwhelming
probability. In comparison, (1.35) shows that the individual fluctuations are of order√

log n
n . Both (1.37) and (1.38) are statements concerning the bulk of the MB ensemble

(1.6)–(1.7) and can be compared with other global bulk rigidity estimates such as
[1,11,22,25,27,37,48,56,59]. We expect the upper bounds (1.37)–(1.38) to be sharp
(including the constants 1

π
), but Theorem 1.4 alone is not sufficient to prove the

complementary lower bound.
Also, Theorem 1.4 does not allow to obtain global rigidity estimates near the hard

edges a and b, and we refer to [18] for results in this direction.

Let us now explain our strategy to prove Theorem 1.4. As already mentioned,
MB ensembles are biorthogonal ensembles [8]. Consider the families of polynomials
{p j } j≥0 and {q j } j≥0 such that p j (x) = κ j x j + ... and q j (x) = κ j x j + ... are degree
j polynomials defined by the biorthogonal system

∫ b

a
pk(x)x jθw(x)dx = κ−1

k δk, j , k = 0, 1, ... j = 0, 1, 2, ..., k, (1.39)

∫ b

a
xkq j (xθ )w(x)dx = κ−1

k δk, j , j = 0, 1, ... k = 0, 1, 2, ..., j . (1.40)

These polynomials are always unique (up to multiplicative factors of −1), and by [28,
Proposition 2.1 (ii)] they satisfy

κ2
k = Dk(w)

Dk+1(w)
, k = 0, 1, . . . , where D0(w):=1. (1.41)

Let M ∈ N be fixed. Assuming that pM , . . . , pn−1 exist, we obtain the formula

Dn(w) = DM (w)

n−1∏
k=M

κ−2
k . (1.42)

When the weight w is positive, which is the case if

α0, . . . , αm+1 ∈ R and β1, . . . , βm ∈ iR,

the existence of p j and q j are guaranteed for all j , see [28, Section 2]. This is not the
case for general values of the parameters α j and β j , but it will follow from our analysis
that all polynomials pM , . . . , pn−1 exist, provided that M is chosen large enough. Our
proof proceeds by first establishing precise asymptotics for κk as k → +∞, which
are then substituted in (1.42) to produce the asymptotic formulas (1.22)–(1.25). Note
that, since the formula (1.42) also involves the value of DM (w) for some large but
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fixed M , our method does not give any hope to obtain the multiplicative constant C4
of Theorem 1.4 (for more on that, see Remark 1.8 below).

To obtain the large n asymptotics of κn , we use the Riemann–Hilbert (RH) approach
of [28], and a generalization of theDeift–Zhou [34] steepest descentmethod developed
in [29] by Claeys and Wang. More precisely, in [28] the authors have formulated a
RH problem (for θ ≥ 1), whose solution is denoted Y , which uniquely characterizes
κ−1

n pn as well the following θ -deformation of its Cauchy transform

1

κn
Cpn(z):= 1

2π iκn

∫ b

a

pn(x)

xθ − zθ
w(x)dx, z ∈ Hθ \ [a, b]. (1.43)

The RH problem for Y from [28] is non-standard in the sense that it is of size 1×2 and
the different entries of the solution live on different domains. In the asymptotic analysis
of this RH problem, several steps of the classical Deift–Zhou steepest descent method
do not work or need to be substantially modified. In [29], Claeys andWang developed
a generalization of the Deift–Zhou steepest descent method to handle this type of RH
problems, but so far their method has not been used to obtain asymptotic results for
the biorthogonal polynomials (1.39)–(1.40). The main technical contribution of the
present paper is precisely the successful implementation of the method of [29] on the
RH problem for Y from [28].2 As in [29], in the small norm analysis the mapping J
plays an important role and allows to transform the 1× 2 RH problem to a scalar RH
problem with non-local boundary conditions (a so-called shifted RH problem). The
methods of [28] rely on the fact that for θ ≥ 1, the principal root z �→ zθ is a bijection
fromHθ to C \ (−∞, 0]. The treatment of the case θ < 1 involves a natural Riemann
surface and only requires minor modifications of [28].

We mention that another RH approach to the study of MB ensembles has been
developed by Kuijlaars and Molag in [52,57]. Their approach has the advantage to be
more structured (for example, the solution of their RH problem has unit determinant),
but it only allows values of θ such that 1

θ
∈ {1, 2, 3, . . .}.

Remark 1.8 An explicit expression forC4 in (1.22) would allow to obtain more precise
asymptotics for the mean and variance of the counting function in (1.29)–(1.31), as
well as for the moment generating function (1.9), and is therefore of interest. The
method used in [32] to evaluate C4|θ=1 relies on a Christoffel-Darboux formula and
on the fact that D:=Dn(w)|θ=1,α1=...=αm=β1=...=βm=0,W≡0 reduces to a Selberg inte-
gral. The Christoffel-Darboux formula is essential to obtain convenient identities for
∂α j log Dn(w), ∂β j log Dn(w), and the fact that D is explicit is used to determine the
constant of integration. For MB ensembles, the only Christoffel-Darboux formulas
that are available are valid for θ ∈ Q, see [28, Theorem 1.1]. Since the asymptotic
formula (1.22) is already proved for all values of θ , there is still hope that the evalua-
tion of C4 for all θ ∈ Q will allow to determine C4 for all values of θ by a continuity
argument. However, even for θ ∈ Q, the evaluation of C4 seems to be a difficult prob-
lem. Indeed, for θ �= 1, the only Selberg integral which we are aware of and that could

2 Simultaneously and independently to this work, Wang and Zhang in [62] also performed an asymptotic
analysis of Y . Their situation is different from ours: they consider the case a = 0, θ integer, and no FH
singularities.
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be used is Dn(w)|a=0,α1=...=αm=β1=...=βm=0,W≡0, see [39, eq (27)]. In particular, with
this method one would need uniform asymptotics for Y as n → +∞ and simultane-
ously a → 0. For a = 0, one expects from [28] that the density of the equilibrium
measure blows up like ∼ x− 1

1+θ as x → 0 which, in view of (1.21), indicates that a
critical transition takes place as n → +∞, a → 0.

Outline. Proposition 1.2 is proved in Sect. 2. In Sect. 3, we formulate the RH problem
for Y from [28] which uniquely characterizes pn and Cpn . In Sects. 3–6, we perform
an asymptotic analysis of the RH problem for Y following the method of [29]. In
Sect. 3, we use two functions, denoted g and g̃, to normalize the RH problem and
open lenses. In Sect. 4, we build local parametrices (without the use of the global
parametrix) and use them to define a new RH problem P . Section 5 is devoted to the
construction of the global parametrix P(∞) and here the function J plays a crucial
role. In Sect. 6, we use again J and obtain small norm estimates for the solution of a
scalar shifted RH problem. In Sect. 7, we use the analysis of Sects. 2–6 to obtain the
large n asymptotics for κn . We then substitute these asymptotics in (1.42) and prove
Theorem 1.4. The proof of Theorem 1.6 is done in Sect. 8.

2 Equilibrium problem

In this section we prove Proposition 1.2 using (an extension of) the method of [28,
Section 4]. An important difference with [28] is that in our case the equilibrium
measure has two hard edges.

Lemma 2.1 Let θ > 0, b > a > 0, and recall that sa = sa( c0
c1

) and sb = sb(
c0
c1

) are
given by (1.13). There exists a unique tuple (c0, c1) satisfying

J (sa( c0
c1

); c0, c1) = a, J (sb(
c0
c1

); c0, c1) = b, c0 > c1 > 0. (2.1)

Proof Let x := c0
c1

> 1, and note that

J (sa( c0
c1

); c0, c1) = c1 J (sa(x); x, 1), J (sb(
c0
c1

); c0, c1) = c1 J (sb(x); x, 1).

(2.2)

For x > 1, define f (x) = J (sb(x);x,1)
J (sa(x);x,1) . A simple computation shows that f (x) → +∞

as x → 1+, that f (x) → 1+ as x → +∞, and that f ′(x) < 0 for all x > 1. This
implies that for any b > a > 0, there exists a unique x� > 1 such that f (x�) = b

a . By
(2.1)–(2.2), the claim follows with

c1 = b

J (sb(x�); x�, 1)
> 0, c0 = x�

b

J (sb(x�); x�, 1)
.

��
Proposition 1.2 is first proved for θ ≥ 1 in Sect. 2.1, and then we indicate the changes
to make to treat the general case θ > 0 in Sect. 2.2. We mention that the general case
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θ > 0 is not more complicated than the case θ ≥ 1, but it requires to introduce more
notation and material.

2.1 Proof of Proposition 1.2 for� ≥ 1

Let

I1 : C \ [a, b] → C \ D and I2 : Hθ \ [a, b] → D \ [−1, 0] (2.3)

denote the inverses of the two functions in (1.15). We will also use the notation

I j,±(x) = lim
ε→0+

I j (x ± iε), j = 1, 2, x ∈ (a, b).

As shown in Fig. 1, we have

I1,+(x) = I2,−(x), I1,−(x) = I2,+(x), x ∈ (a, b).

Now, we make the ansatz that there exists a probability measure μθ , supported on
[a, b] with a continuous density ρ, which satisfies the Euler-Lagrange equality (1.11).
Following [28], we consider the following functions

g(z) =
∫ b

a
log(z − y)dμθ(y), z ∈ C \ (−∞, b], (2.4)

g̃(z) =
∫ b

a
log(zθ − yθ )dμθ(y), z ∈ Hθ \ [0, b], (2.5)

where the principal branches are taken for the logarithms and for z �→ zθ . For x > 0,
we also define

g±(x) = lim
ε→0+

g(x ± iε), g̃±(x) = lim
ε→0+

g̃(x ± iε), g̃(e± π i
θ x) = lim

z→e± π i
θ x, z∈Hθ

g̃(z).

Using (1.11) and
∫ b

a dμθ = 1, we infer that g and g̃ satisfy the following conditions.

RH problem for (g, g̃)

(a) (g, g̃) is analytic in (C \ (−∞, b],Hθ \ [0, b]).
(b) g±(x) + g̃∓(x) = −� for x ∈ (a, b),

g̃(e
π i
θ x) = g̃(e− π i

θ x) + 2π i for x > 0,
g̃+(x) = g̃−(x) + 2π i for x ∈ (0, a),
g+(x) = g−(x) + 2π i for x < a.

(c) g(z) = log(z) + O(z−1) as z → ∞,
g̃(z) = θ log z + O(z−θ ) as z → ∞ in Hθ .
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Consider the derivatives

G(z) = g′(z), G̃(z) = g̃′(z). (2.6)

The properties of (g, g̃) then imply that (G, G̃) satisfy the following RH problem.

RH problem for (G, ˜G)

(a) (G, G̃) is analytic in (C \ [a, b],Hθ \ [a, b]).
(b) G±(x) + G̃∓(x) = 0 for x ∈ (a, b),

G̃(e− π i
θ x) = e

2π i
θ G̃(e

π i
θ x) for x > 0.

(c) G(z) = 1
z + O(z−2) as z → ∞,

G̃(z) = θ
z + O(z−1−θ ) as z → ∞ in Hθ .

To find a solution to this RH problem, we follow [28,29] and define

M(s) =
{

G(J (s)), for s outside γ,

G̃(J (s)), for s inside γ,
(2.7)

where J is given by (1.12) with c0 > c1 > 0 such that J (sa) = a and J (sb) = b.
By combining the RH conditions of (G, G̃) with the properties of J summarized in
Proposition 1.1, we see that M satisfies the following RH problem.

RH problem forM

(a) M is analytic in C \ (γ ∪ [−1, 0]).
(b) Let [−1, 0] be oriented from left to right, and recall that γ is oriented in the

counterclockwise direction. For s ∈ (γ ∪ (−1, 0)) \ {sa, sb}, we denote M+(s)
and M−(s) for the left and right boundary values, respectively. The jumps for M
are given by

M+(s) + M−(s) = 0, for s ∈ γ \ {sa, sb},
M+(s) = e

2π i
θ M−(s), for s ∈ (−1, 0).

(c) M(s) = 1
J (s) (1 + O(s−1)) as s → ∞,

M(s) = θ
J (s) (1 + O(s)) as s → 0,

M(s) = O(1) as s → −1.

We now apply the transformation N (s) = J (s)M(s) and obtain the following RH
problem.
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RH problem for N

(a) N is analytic in C \ γ .
(b) N+(s) + N−(s) = 0 for s ∈ γ \ {sa, sb}.
(c) N (s) = 1 + O(s−1) as s → ∞. N (0) = θ and N (−1) = 0.

The solution of this RH problem is not unique without prescribing the behavior of N
near sa and sb. Recalling that a > 0, one expects the density ρ to blow up like an
inverse square root near a and b (as is usually the case near standard hard edges). To
be consistent with this heuristic, using (2.6), (2.7) and N (s) = J (s)M(s) we verify
that N must blow up like (s − s j )

−1, as s → s j , j = a, b. With this in mind, we
consider the following solution to the RH problem for N :

N (s) =

⎧⎪⎪⎨
⎪⎪⎩
1 + da

s − sa
+ db

s − sb
, outside γ,

−1 − da

s − sa
− db

s − sb
, inside γ,

(2.8)

where da and db are chosen such that N (0) = θ and N (−1) = 0, i.e. such that

da

sa
+ db

sb
= 1 + θ and

da

1 + sa
+ db

1 + sb
= 1.

This system can be solved explicitly,

da = sa(1 + sa)(sbθ − 1)

sb − sa
, db = sb(1 + sb)(1 − saθ)

sb − sa
, (2.9)

and since sa < −1 and 1
θ

< sb, we have da > 0, db > 0. Writing

dμθ(x) = ρ(x)dx, x ∈ (a, b),

we obtain

ρ(x) = − 1

2π i
(G+(x) − G−(x)) = − 1

2π i x

(
N−(I1,+(x)) − N−(I1,−(x))

)

= −
∑

j=a,b

d j

2π i x

(
1

I1,+(x) − s j
− 1

I1,−(x) − s j

)

= −
∑

j=a,b

d j

πx
Im

(
1

I1,+(x) − s j

)
. (2.10)

By construction,
∫ b

a ρ(x)dx = 1, but it remains to check that ρ is indeed a density.
This can be readily verified from (2.10): since da > 0, db > 0 and Im I1,+(x) > 0
for all x ∈ (a, b), we have ρ(x) > 0 for all x ∈ (a, b). Thus, we have shown that
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the unique measure μθ satisfying (1.11) is given by dμθ(x) = ρ(x)dx with ρ as in
(2.10).

To conclude the proof of Proposition 1.2 for θ ≥ 1, it remains to prove that ρ can
be rewritten in the simpler form (1.17). For this, we first use the relation J (Ik(z)) = z
for z ∈ C \ [a, b], k = 1, 2, to obtain

I ′
k(z)

Ik(z)
= 1

Ik(z)J ′(Ik(z))
= θ(1 + Ik(z))(c1 Ik(z) + c0)

z(−c0 + c1 Ik(z)(θ − 1 + θ Ik(z)))
. (2.11)

On the other hand, using the explicit expressions for da in db given by (2.9), we arrive
at

∑
j=a,b

d j

z

1

Ik(z) − s j
= −1

z

c0 + c1 Ik(z) + c0θ(1 + Ik(z))

c0 − c1 Ik(z)(θ − 1 + θ Ik(z))
, (2.12)

where z ∈ C \ [a, b], k = 1, 2. Using (2.11) and (2.12), it is direct to verify that

1

z
+
∑

j=a,b

d j

z

1

Ik(z) − s j
= I ′

k(z)

Ik(z)
, z ∈ C \ [a, b], k = 1, 2, (2.13)

which implies in particular (1.17):

ρ(x) = −
∑

j=a,b

d j

πx
Im

(
1

I1,+(x) − s j

)
= − 1

π
Im

(
I ′
1,+(x)

I1,+(x)

)
, x ∈ (a, b).

Formulas (1.17) and (2.13) will allow us to simplify several complicated expressions
appearing in later sections, and can already be used to find an explicit expression for
�.

Lemma 2.2 As z → ∞, we have

I1(z) = c−1
1 z + O(1), I2(z) = z−θ

(
cθ
0 + O(z−θ )

)
. (2.14)

Proof It suffices to combine the expansions

J (s) = c1s + O(1) as s → ∞, J (s) = c0s− 1
θ (1 + O(s)) as s → 0,

with the identities J (Ik(z)) = z, k = 1, 2. ��
Proposition 2.3 � = − log c1 − θ log c0.

Proof Using (2.6), (2.7), N (s) = J (s)M(s), (2.8) and (2.13), we obtain

g′(z) = M(I1(z)) = 1

z

(
1 + da

I1(z) − sa
+ db

I1(z) − sb

)
= I ′

1(z)

I1(z)
, z ∈ C \ (−∞, b],
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g̃′(z) = M(I2(z)) = −1

z

(
1 + da

I2(z) − sa
+ db

I2(z) − sb

)
= − I ′

2(z)

I2(z)
, z ∈ Hθ \ [0, b].

Hence, by (2.14) and the condition (c) of the RH problem for (g, g̃), we find

g(z) = log(z) +
∫ z

b

(
I ′
1(x)

I1(x)
− 1

x

)
dx −

∫ ∞

b

(
I ′
1(x)

I1(x)
− 1

x

)
dx, z ∈ C \ (−∞, b],

g̃(z) = θ log(z) −
∫ z

b

(
I ′
2(x)

I2(x)
+ θ

x

)
dx +

∫ ∞

b

(
I ′
2(x)

I2(x)
+ θ

x

)
dx, z ∈ Hθ \ [0, b].

The integrals over (b,∞) can be evaluated explicitly using (2.14):

−
∫ ∞

b

(
I ′
1(x)

I1(x)
− 1

x

)
dx = lim

r→+∞ log
r I1(b)

bI1(r)
= log

c1 I1(b)

b
= log

c1sb

b
, (2.15)

∫ ∞

b

(
I ′
2(x)

I2(x)
+ θ

x

)
dx = lim

r→+∞ log
r θ I2(r)

bθ I2(b)
= log

cθ
0

bθ sb
. (2.16)

Substituting (2.15)–(2.16) in the above expressions for g and g̃, and using the Euler-
Lagrange equality � = −(g(b) + g̃(b)), we find the claim. ��

2.2 Proof of Proposition 1.2 for all� > 0

We first prove a generalization of Proposition 1.1.

Proposition 2.4 (extension of [28, Lemma 4.3] to all θ > 0). Let θ > 0, and let
c0 > c1 > 0 be such that (1.14) holds. There are two complex conjugate curves γ1
and γ2 starting at sa and ending at sb in the upper and lower half plane respectively
which are mapped to the interval [a, b] through J . Let γ be the counterclockwise
oriented closed curve consisting of the union of γ1 and γ2, enclosing a region D. The
maps

J : C \ D → C \ [a, b], J θ : D \ [−1, 0] → C \ ((−∞, 0] ∪ [aθ , bθ ]) (2.17)

are bijections, where J θ (s):= s+1
s (c1s + c0)θ and the principal branch is taken for

(c1s + c0)θ .

Remark 2.5 We emphasize that for θ < 1, the definition of J θ (s) does not coincide
with J (s)θ where the principal branch is taken for (·)θ . On the contrary, for all θ > 0

and s ∈ D\[−1, 0], the definition (1.12) of J (s) coincides with J (s) = J θ (s)
1
θ where

the principal branch is chosen for (·) 1
θ .

Proof Write s = reiφ with −π < φ ≤ π . It is readily checked that J (s) > 0 if and
only if

arg

(
c0
c1

+ reiφ
)

+ 1

θ
arg(1 + reiφ) − φ

θ
= 2kπ, k ∈ Z, (2.18)
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k = 0

k = −1

k = 2

Fig. 2 The two figures on the left correspond to θ = 0.17 and θ = 1
7.7 . The four dots are sa , −1, 0 and sb .

The black, green, red and blue curves correspond to the points reiφ , φ ∈ (0, π), satisfying (2.18) for k = 0,
k = −1, k = −2 and k = −3, respectively. (These figures have been made with c0 = 0.8 and c1 = 0.47.)
The right-most figure shows the projections in the y-plane ofHθ,k , k = −2, . . . , 2 for θ = 5

12

where the branch for arg is chosen such that arg(z) ∈ (−π, π ] for all z ∈ C \ {0}.
For φ ∈ (0, π), the left-hand side is increasing in r (since c0

c1
> 0), tends to −φ

θ
as

r → 0, and to φ as r → ∞. The set of points (φ, k) for which there exists a (necessary
unique) r satisfying (2.18) is therefore given by {(φ, k) : φ > 2π |k|θ, −k ∈ N}. For
each k ∈ {0,−1, . . . ,−� 1

2θ �+1}, denote �k for the set of points reiθ with φ ∈ (0, π)

satisfying (2.18). It is not hard to verify that �0 joins sa with sb, while the other curves
�1, . . . , �−� 1

2θ �+1 join −1 with 0, see also Fig. 2 (left). The curve γ1:=�0 is mapped

bijectively by J to (a, b), and since J (s) = J (s), the curve γ2:=γ1 is also mapped
bijectively by J to (a, b).

Thus, J maps bijectively the boundaries of C \ D to the boundaries of C \ [a, b]. It
is also straightforward to see that J θ maps bijectively [−1, 0) to (−∞, 0]. The claim
that the maps (1.15) are bijections can now be proved exactly as in [28, Section 4.1].

��
As can be seen from Proposition 2.4, for θ < 1 the mapping J : D \ [−1, 0] →

Hθ \ [a, b] is not a bijection and therefore one cannot define I2 as in (2.3). In view
of (2.17), instead of working with the set Hθ , one is naturally led to consider the
following Riemann surfaceHθ .

Definition 2.6 Let Hθ be the Riemann surface

Hθ =
{
(z, y) ∈ C

2 : z = y
1
θ , y ∈ C \ (−∞, 0]

}
, y

1
θ :=|y| 1θ e

i
θ
arg y, arg y ∈ (−π, π),

endowed with the atlas {ϕθ,k : Hθ,k → C}k=−� 1
θ
−1�,...,� 1

θ
−1�, where

Hθ,k =
{
(z, y) ∈ C

2 : z = y
1
θ , max{(k − 1)πθ,−π} < arg y < min{(k + 1)πθ, π}

}
,

and ϕθ,k(z, w):=z, see also Fig. 2 (right).

Remark 2.7 For θ ≥ 1, there is just a single map ϕθ,0 in the atlas, and it satisfies
ϕθ,0(Hθ,0) = Hθ , where we recall that Hθ = {z ∈ C \ {0} : −π

θ
< arg z < π

θ
}.

Definition 2.8 Amapping f : B ⊂ C → Hθ is analytic if for all k with f (B)∩Hθ,k �=
∅, the function ϕθ,k ◦ f : B ∩ f −1(Hθ,k) → C is analytic.
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Definition 2.9 Amapping h : H ⊂ Hθ → C is analytic if for all k with H ∩Hθ,k �= ∅,
the function h ◦ ϕ−1

θ,k : ϕθ,k(Hθ,k ∩ H) → C is analytic.

Definition 2.10 For notational convenience, given I ⊂ C, we define

Hθ \ I :={(z, y) ∈ C
2 : z = y

1
θ , y ∈ C \ (−∞, 0], z /∈ I

)} ⊂ Hθ .

Proposition 2.4 and Definition 2.8 imply that

(J , J θ ) : D \ [−1, 0] → Hθ \ [a, b] (2.19)

is an analytic bijection. Let Ĩ2 : C\((−∞, 0]∪[aθ , bθ ])→ D\[−1, 0] be the inverse
of J θ . The inverse of (2.19) is then given by

Î2 : Hθ \ [a, b] → D \ [−1, 0], (z, y) �→ Î2(z, y) = Ĩ2(y).

Remark 2.11 For θ ≥ 1, the map J : D \ [−1, 0] → Hθ \ [a, b] is a bijection and
there is no need to define Hθ and Î2. In fact, for θ ≥ 1 and z ∈ Hθ \ [a, b], Î2(z, y)

and I2(z) are directly related by I2(z) = Î2(z, y), where y ∈ C\ ((−∞, 0]∪[aθ , bθ ])
is the unique solution to

z = y
1
θ , and y

1
θ = |y| 1θ e

i
θ
arg y, arg y ∈ (−π, π).

Define

ĝ(z, y) =
∫ b

a
log(y − xθ )dμθ(x), (z, y) ∈ Hθ \ [0, b]. (2.20)

Now, to prove Propositions 1.2 and 2.3 for general θ > 0, it suffices to follow the
analysis of Sect. 2.1 and to replace all occurrences of g̃, z ∈ Hθ , zθ and I2(z) as
follows

g̃ �→ ĝ, z ∈ Hθ �→ (z, y) ∈ Hθ , zθ �→ y, I2(z) �→ Î2(z, y). (2.21)

3 Asymptotic analysis of Y : first steps

We start by recalling the RH problem for Y from [28] which uniquely characterizes
κ−1

n pn as well as κ−1
n Cpn (recall that pn and Cpn are defined in (1.39) and (1.43)).

For convenience, we say that a function f is defined in H
c
θ if it is defined in Hθ , that

the limits f (e± π i
θ x) = limz→e± π i

θ x, z∈Hθ f (z) exist for all x ≥ 0, and furthermore

f (e
π i
θ x) = f (e− π i

θ x) for all x ≥ 0.

Theorem 3.1 ([28, Theorem 1.3]). Define Y by

Y (z) =
(

1

κn
pn(z),

1

κn
Cpn(z)

)
. (3.1)
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If Y exists, then it is the unique function which satisfies the following conditions:

RH problem for Y

(a) Y = (Y1, Y2) is analytic in (C,Hc
θ \ [a, b]).

(b) The jumps are given by

Y+(x) = Y−(x)

(
1 1

θxθ−1 w(x)

0 1

)
, x ∈ (a, b) \ {t1, . . . , tm}.

(c) Y1(z) = zn + O(zn−1) as z → ∞,
Y2(z) = O(z−(n+1)θ ) as z → ∞ in Hθ .

(d) As z → t j , j = 0, 1, . . . , m, m + 1, we have

Y1(z) = O(1), Y2(z) =
{
O(1) + O((z − t j )

α j ), if α j �= 0,

O(log(z − t j )), if α j = 0,

where t0:=a > 0 and tm+1:=b.

As mentioned in the introduction, if w is positive, then the existence of Y is ensured
by [28, Section 2]. In our case, w is complex valued and this is no longer guaranteed.
Nevertheless, it will follow from our analysis that Y exists for all large enough n.

Remark 3.2 In a similar way as in Sect. 2.2, we mention that to be formal, for θ < 1
one would need to replace all occurrences of g̃, Hθ , zθ and I2(z) as in (2.21) and to
define Y2 as

Y2(z, y) = 1

2π iκn

∫ b

a

pn(x)

xθ − y
w(x)dx, (z, y) ∈ Hθ \ [a, b]. (3.2)

However, the y coordinate will always be clear from the context, and for convenience
we will slightly abuse notation and use g̃, Hθ , zθ , I2(z) and Y2(z) for all values of
θ > 0.

In the rest of this section, we will perform the first steps of the asymptotic analysis
of Y as n → +∞, following the method of [29].

3.1 First transformation: Y �→ T

Recall that g and g̃ are defined in (2.4) and (2.5), and that � is the Euler-Lagrange
constant appearing in (1.11) and in condition (b) of RH problem for (g, g̃). The first
transformation is defined by
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T (z) = e
n�
2 Y (z)

(
e−ng(z) 0

0 eng̃(z)

)
e− n�

2 σ3 , where σ3 =
(
1 0
0 −1

)
. (3.3)

Using theRHconditions ofY and (g, g̃), it can be checked that T satisfies the following
RH problem.

RH problem for T

(a) T = (T1, T2) is analytic in (C \ [a, b],Hc
θ \ [a, b]).

(b) The jumps are given by

T+(x) = T−(x)

⎛
⎝e−n(g+(x)−g−(x)) ω(x)eW (x)

θxθ−1

0 en(g̃+(x)−g̃−(x))

⎞
⎠ , x ∈ (a, b) \ {t1, . . . , tm}.

(c) T1(z) = 1 + O(z−1) as z → ∞,
T2(z) = O(z−θ ) as z → ∞ in Hθ .

(d) As z → t j , j = 0, 1, . . . , m, m + 1, we have

T1(z) = O(1), T2(z) =
{
O(1) + O((z − t j )

α j ), if α j �= 0,

O(log(z − t j )), if α j = 0.

3.2 Second transformation: T �→ S

Let U be an open small neighborhood of [a, b] which is contained in both C and Hθ ,
and define

φ(z) = g(z) + g̃(z) + �, z ∈ U \ (0, b). (3.4)

Using the RH conditions of (g, g̃), we conclude that φ satisfies the jumps

φ+(x) = φ−(x) + 4π i, x ∈ (0, a) ∩ U ,

φ+(x) + φ−(x) = 0, x ∈ (a, b).

For x ∈ (a, b)\{t1, . . . , tm}, wewill use the following factorization of the jumpmatrix
for T :

(
e−n(g+(z)−g−(z)) ω(x)eW (x)

θxθ−1

0 en(g̃+(x)−g̃−(x))

)
=
⎛
⎝ 1 0

e−nφ−(z) θxθ−1

ω(x)eW (x) 1

⎞
⎠

×
⎛
⎝ 0 ω(x)eW (x)

θxθ−1

− θxθ−1

ω(x)eW (x) 0

⎞
⎠
⎛
⎝ 1 0

e−nφ+(x) θxθ−1

ω(x)eW (x) 1

⎞
⎠ . (3.5)
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Before opening the lenses, we first note thatωαk andωβk can be analytically continued
as follows:

ωαk (z) =
{

(tk − z)αk , if Re z < tk,
(z − tk)αk , if Re z > tk,

ωβk (z) =
{

eiπβk , if Re z < tk,
e−iπβk , if Re z > tk .

(3.6)

For each j ∈ {1, . . . , m+1}, let σ j,+, σ j,− ⊂ U be open curves starting at t j−1, ending
at t j , and lying in the upper and lower half plane, respectively (see also Fig. 3).We also
let L j ⊂ U denote the open bounded lens-shaped region surrounded by σ j,+ ∪ σ j,−.
In view of (3.5), we define

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (z)

⎛
⎝ 1 0

−e−nφ(z) θ zθ−1

ω(z)eW (z) 1

⎞
⎠ , z ∈ L and Im z > 0,

T (z)

⎛
⎝ 1 0

e−nφ(z) θ zθ−1

ω(z)eW (z) 1

⎞
⎠ , z ∈ L and Im z < 0,

T (z), otherwise.

(3.7)

where L:= ∪m+1
j=1 L j . S satisfies the following RH problem.

RH problem for S

(a) S = (S1, S2) is analytic in (C \ ([a, b] ∪ σ+ ∪ σ−),Hc
θ \ ([a, b] ∪ σ+ ∪ σ−)),

where σ±:= ∪m+1
j=1 σ j,±.

(b) The jumps are given by

S+(z) = S−(z)

⎛
⎝ 0 ω(z)eW (z)

θ zθ−1

− θ zθ−1

ω(z)eW (z) 0

⎞
⎠ , z ∈ (a, b) \ {t1, . . . , tm},

S+(z) = S−(z)

(
1 0

e−nφ(z) θ zθ−1

ω(z)eW (z) 1

)
, z ∈ σ+ ∪ σ−. (3.8)

(c) S1(z) = 1 + O(z−1) as z → ∞,
S2(z) = O(z−θ ) as z → ∞ in Hθ .

(d) As z → t j , z /∈ L, j = 0, 1, . . . , m, m + 1, we have

S1(z) = O(1), S2(z) =
{
O(1) + O((z − t j )

α j ), if α j �= 0,

O(log(z − t j )), if α j = 0.

Using (1.11), (2.4) and (3.4), we see that φ satisfies

φ′±(x) = g′±(x) + g̃′±(x) = g′±(x) − g′∓(x) = ∓2π iρ(x), x ∈ (a, b). (3.9)
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a t1 t2 b

Fig. 3 Jump contours for the RH problem for S with m = 2

Since ρ(x) > 0 for all x ∈ (a, b), (3.9) implies by the Cauchy-Riemann equations
that there exists a neighborhood of (a, b), denoted U ′, such that

Reφ(z) > 0, for all z ∈ U ′, Im z �= 0. (3.10)

In the T �→ S transformation, we have some freedom in choosing σ+, σ−. Now, we
use this freedom to require that σ+, σ− ⊂ U ′. By (3.8) and (3.10), this implies that for
any z ∈ σ+ ∪ σ−, the jump matrix for S(z) tends to the identity matrix as n → +∞.
This convergence is uniform only for z ∈ σ+∪σ− bounded away from a, t1, . . . , tm, b.

In the next two sections, we construct local and global parametrices for S following
the method of [29]. Compared to steepest descent analysis of classical orthogonal
polynomials, these steps need to be modified substantially. For example, the construc-
tion of the global parametrix relies on the map J , and our local parametrices are of a
different size than S and therefore are not, strictly speaking, local approximations to
S (although they do contain local information about the behavior of S).

4 Local parametrices and the S → P transformation

In this section, we construct local parametrices around a, t1, . . . , tm, b and then per-
form the S → P transformation, following the method of [29].

For each p ∈ {a, t1, . . . , tm, b}, letDp be a small open disk centered at p. Assume
that there exists δ ∈ (0, 1) independent of n such that

min
1≤ j �=k≤m

{|t j − tk |, |t j − b|, |t j − a|} ≥ δ, θ ∈ (δ, 1
δ
). (4.1)

This assumption implies that U = U(δ) can be chosen independently of θ , and that the
radii of the disks can be chosen to be ≤ δ

3 but independent of n and such thatDp ⊂ U
for all p ∈ {a, t1, . . . , tm, b}.

4.1 Local parametrix near tk, k = 1, . . . ,m

To construct the local parametrix P(tk ) around tk , we use the model RH problem for
�HG from [32,42,49] (the properties of �HG are also presented in Appendix A.2).
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Consider the following conformal map

ftk (z) = −
{

φ(z) − φ+(tk), Im z > 0,

−(φ(z) − φ−(tk)), Im z < 0,
z ∈ Dtk .

Using (3.9), we obtain

ftk (z) = 2π iρ(tk)(z − tk)(1 + O(z − tk)), as z → tk . (4.2)

In a small neighborhood of tk , we deform the lenses σ+ and σ− such that

ftk (σ+ ∩ Dtk ) ⊂ �4 ∪ �2, ftk (σ− ∩ Dtk ) ⊂ �6 ∪ �8,

where �4, �2, �6, �8 are the contours shown in Fig. 7. The local parametrix is defined
by

P(tk )(z) = �HG(n ftk (z);αk, βk)W̃k(z)
−σ3

(
ωtk (z)e

W (z)

θ zθ−1

)− σ3
2

e− nφ(z)
2 σ3 , (4.3)

where

ωtk (z) = ω(z)

ωαk (z)ωβk (z)
, W̃k(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(z − tk)
αk
2 e− iπαk

2 , z ∈ Q R+,k,

(z − tk)
αk
2 , z ∈ QL+,k,

(z − tk)
αk
2 , z ∈ QL−,k,

(z − tk)
αk
2 e

iπαk
2 , z ∈ Q R−,k,

(4.4)

and Q R+,k , QL+,k , QL−,k , Q R−,k are the preimages by ftk of the four quadrants:

Q R±,k = {z ∈ Dtk : ∓Re ftk (z) > 0, Im ftk (z) > 0},
QL±,k = {z ∈ Dtk : ∓Re ftk (z) > 0, Im ftk (z) < 0}.

Using the jumps (A.5) for �HG, it is easy to verify that P(tk ) and S have the same
jumps insideDtk , which implies that S(P(tk ))−1 is analytic inDtk \ {tk}. Furthermore,
the RH condition (d) of the RH problem for S and (A.9) imply that the singularity at
tk is removable, so that S(P(tk ))−1 is in fact analytic in the whole disk Dtk . We end
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this section with an analysis that will be useful in Sect. 4.4. Let us consider

Etk (z) =
(

ωtk (z)e
W (z)

θ zθ−1

) σ3
2

W̃k(z)
σ3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e
iπαk
4 σ3e−iπβkσ3 , z ∈ Q R+,k

e− iπαk
4 σ3e−iπβkσ3 , z ∈ QL+,k

e
iπαk
4 σ3

(
0 1

−1 0

)
, z ∈ QL−,k

e− iπαk
4 σ3

(
0 1

−1 0

)
, z ∈ Q R−,k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

e
nφ+(tk )

2 σ3(n ftk (z))
βkσ3 . (4.5)

Note that Etk is analytic inDtk \ (a, b) (see (4.18) below for its jump relations) and is
such that

Etk (z):=Etk (z)11(z − tk)
−(βk+ αk

2 ), z ∈ Q R+,k,

remains bounded as z → tk , z ∈ Q R+,k . Let JP (z):=Etk (z)P(tk )(z) for z ∈ ∂Dtk .
Using (A.6), as n → +∞ we obtain

JP (z) = I + vk

n ftk (z)
Etk (z)

( −1 τ(αk, βk)

−τ(αk,−βk) 1

)
Etk (z)

−1 + O(n−2+2|Reβk |),

(4.6)

uniformly for z ∈ ∂Dtk , where vk = β2
k − α2

k
4 and τ(αk, βk) is defined in (A.7). For

z ∈ Q R+,k , we have Etk (z) = Etk (z)
σ3(z − tk)(

αk
2 +βk )σ3 , and thus (4.6) implies

JP (z) = I + vk

n ftk (z)

⎛
⎝ −1 τ(αk, βk)Etk (z)

2(z − tk)αk+2βk

−τ(αk ,−βk )

Etk (z)2(z−tk )αk+2βk
1

⎞
⎠

+ O(n−2+2|Reβk |), (4.7)

as n → +∞ uniformly for z ∈ ∂Dtk ∩ Q R+,k . Note also that E(tk)2 = E(tk; n)2 is
given by

E(tk)
2:= lim

z→tk ,z∈Q R+,k

E(z)2 = ωtk (tk)e
W (tk )

θ tθ−1
k

e− iπαk
2 e−iπβk enφ+(tk )(n2πρ(tk))

2βk .

(4.8)

4.2 Local parametrix near b

Inside the disk Db, the local parametrix P(b) is built out of a model RH problem
whose solution �Be is expressed in terms of Bessel functions. This RH problem is



50 Page 26 of 60 C. Charlier

well known [53], and for convenience it is also presented in Appendix A.1. Define ψ

by

ρ(x) = ψ(x)√
x − a

√
b − x

, x ∈ (a, b).

By (1.20)–(1.21), ψ is well-defined at a and b. Define

fb(z) = φ(z)2/16.

Using (3.9), we obtain

fb(z) = f (0)
b (z − b)

(
1 + O(z − b)

)
as z → b, where f (0)

b =
(

πψ(b)√
b − a

)2

.

(4.9)

In a small neighborhood of b, we deform the lenses such that they are mapped through
fb on a subset of �Be (see Fig. 6). More precisely, we require that

fb(σ+ ∩ Db) ⊂ e
2π i
3 (0,+∞), fb(σ− ∩ Db) ⊂ e− 2π i

3 (0,+∞).

We define the local parametrix by

P(b)(z) = �Be(n
2 fb(z);αm+1)

(
ωb(z)eW (z)

θ zθ−1

)− σ3
2

e− nφ(z)
2 σ3(z − b)−

αm+1
2 σ3 ,

(4.10)

where ωb(z):=ω(z)/(b − x)αm+1 and the principal branches for the roots are taken.
Using (A.1), one verifies that S(P(b))−1 is analytic inDb\{b}. By (A.4), the singularity
of S(P(b))−1 at b is removable, which implies that S(P(b))−1 is in fact analytic in the
whole disk Db. It will also be convenient to consider the following function

Eb(z) =
(

ωb(z)eW (z)

θ zθ−1

) σ3
2

(z − b)
αm+1

2 σ3 A−1(2πn fb(z)
1/2)

σ3
2 , A:= 1√

2

(
1 i
i 1

)
.

(4.11)

It can be verified that Eb is analytic inDb \ [a, b] (the jumps of Eb are given in (4.18)
below). For z ∈ ∂Db, let JP (z):=Eb(z)P(b)(z). Using (A.2), we obtain

JP (z) = I + 1

16n fb(z)1/2

⎛
⎜⎜⎝

−(1 + 4α2
m+1) −2i

ωb(z)eW (z)

θ zθ−1 (z − b)αm+1

−2i
θ zθ−1

ωb(z)eW (z)
(z − b)−αm+1 1 + 4α2

m+1

⎞
⎟⎟⎠

+ O(n−2), (4.12)

as n → +∞ uniformly for z ∈ ∂Db.
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4.3 Local parametrix near a

The construction of the local parametrix P(a) inside Da is similar to that of P(b) and
also relies on the model RH problem �Be. Define

fa(z) = −(φ(z) − 2π i)2/16.

As z → a, using (3.9) we get

fa(z) = f (0)
a (z − a)

(
1 + O(z − a)

)
, where f (0)

a =
(

πψ(a)√
b − a

)2

.

In a small neighborhood of a, we choose σ+ and σ− such that

− fa(σ+ ∩ Da) ⊂ e− 2π i
3 (0,+∞), − fa(σ− ∩ Da) ⊂ e

2π i
3 (0,+∞).

The local parametrix P(a) is defined by

P(a)(z) = σ3�Be(−n2 fa(z);α0)σ3

(
ωa(z)eW (z)

θ zθ−1

)− σ3
2

e− nφ(z)
2 σ3(a − z)−

α0
2 σ3 ,

(4.13)

where ωa(z):=ω(z)/(x −a)α0 and the principal branches are taken for the roots. Like
in Sect. 4.2, using (A.1) and A.4 one verifies that S(P(a))−1 is analytic in the whole
disk Da . It is will also be useful to define

Ea(z) = (−1)n
(

ωa(z)eW (z)

θ zθ−1

) σ3
2

(a − z)
α0
2 σ3 A(2πn(− fa(z))1/2)

σ3
2 . (4.14)

Note that Ea is analytic in Da \ [a, b] (the jumps of Ea are stated in (4.18) below).
For z ∈ ∂Da , let JP (z):=Ea(z)P(a)(z). Using (A.2), we get

JP (z) = I + 1

16n(− fa(z))1/2

⎛
⎜⎜⎝

−(1 + 4α2
0) 2i

ωa(z)eW (z)

θ zθ−1 (a − z)α0

2i
θ zθ−1

ωa(z)eW (z)
(a − z)−α0 1 + 4α2

0

⎞
⎟⎟⎠

+ O(n−2), (4.15)

as n → ∞ uniformly for z ∈ ∂Da .
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0 a t1 tm b

Fig. 4 Jump contours �P with m = 2

4.4 Third transformation S �→ P

Define

P(z) =
⎧⎨
⎩

S(z), z ∈ C \ (
⋃m+1

j=0 Dt j ∪ [a, b] ∪ σ+ ∪ σ−),

S(z)
(

Etk (z)P(tk )(z)
)−1

, z ∈ Dtk \ ([a, b] ∪ σ+ ∪ σ−),

(4.16)

where k = 0, 1, . . . , m, m + 1 and we recall that t0:=a and tm+1:=b. It follows from
the analysis of Sects. 4.1–4.3 that for each k ∈ {0, 1, . . . , m + 1}, S(z)P(tk )(z)−1

is analytic in Dtk and that Etk is analytic in Dtk \ [a, b]. Hence, P has no jumps on
(σ+ ∪σ−)∩⋃m+1

k=0 Dtk , and therefore (P1, P2) is analytic in (C\�P ,Hθ \�P ), where

�P :=
(
(σ+ ∪ σ−) \

m+1⋃
j=0

Dt j

)
∪

m+1⋃
j=0

∂Dt j ∪ [a, b]. (4.17)

Furthermore, for each j ∈ {0, . . . , m +1}, the jumps of P on [a, b]∩Dt j are identical
to those of Et j . These jumps can be obtained using (4.5), (4.11) and (4.14): for all
j ∈ {0, 1, . . . , m, m + 1} we find

Et j ,+(z)−1 = Et j ,−(z)−1

⎛
⎝ 0 ω(z)eW (z)

θ zθ−1

− θ zθ−1

ω(z)eW (z) 0

⎞
⎠ , z ∈ (a, b) ∩ Dt j . (4.18)

For convenience, for each j ∈ {0, . . . , m + 1} the orientation of ∂Dt j is chosen to be
clockwise, as shown in Fig. 4. The properties of P are summarized in the following
RH problem.

RH problem for P

(a) (P1, P2) is analytic in (C \ �P ,Hc
θ \ �P ).

(b) For z ∈ �P , we have P+(z) = P−(z)JP (z), where

JP (z) =
(

1 0

e−nφ(z) θ zθ−1

ω(z)eW (z) 1

)
, z ∈ (σ+ ∪ σ−) \

m+1⋃
j=0

Dt j ,
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JP (z) =
⎛
⎝ 0 ω(z)eW (z)

θ zθ−1

− θ zθ−1

ω(z)eW (z) 0

⎞
⎠ , z ∈ (a, b) \ {t1, . . . , tm},

JP (z) = Et j (z)P(t j )(z), z ∈ ∂Dt j , j ∈ {0, 1, . . . , m, m + 1}.

(c) P1(z) = 1 + O(z−1) as z → ∞,
P2(z) = O(z−θ ) as z → ∞ in Hθ .

(d) As z → t j , z /∈ L, Im z > 0, j = 0, m + 1, we have

(P1(z), P2(z)) = (O((z − t j )
− 1

4 ),O((z − t j )
− 1

4 ))(z − t j )
− α j

2 σ3 .

As z → t j , z /∈ L, Im z > 0, j = 1, . . . , m, we have

(P1(z), P2(z)) = (O(1),O(1))(z − t j )
−(

α j
2 +β j )σ3 .

By (3.10) and the fact that σ+, σ− ⊂ U ′, as n → +∞ we have

JP (z) = I + O(e−cn), uniformly for z ∈ (σ+ ∪ σ−) \
m+1⋃
j=0

Dt j , (4.19)

for a certain c > 0. Also, it follows from (4.6), (4.12) and (4.15) that as n → +∞,

JP (z) = I + J (1)
P (z)n−1 + O(n−2), unif. for z ∈ ∂Da ∪ ∂Db, (4.20)

JP (z) = I + J (1)
P (z)n−1 + O(n−2+2|Reβ j |), unif. for z ∈ ∂Dt j , j = 1, ..., m,

(4.21)

where J (1)
P (z) = O(1) for z ∈ ∂Da ∪ ∂Db and J (1)

P (z) = O(n2|Reβ j |) for z ∈ ∂Dt j ,
j = 1, . . . , m. If the parameters t1, . . . , tm and θ vary with n in such a way that they
satisfy (4.1) for a certain δ ∈ (0, 1), then, as explained at the beginning of Sect. 4, the
radii of the disks can be chosen independently of n and therefore the estimates (4.19)–
(4.21) hold uniformly in t1, . . . , tm, θ . It also follows from the explicit expressions
of Et j and P(t j ), j = 0, 1, . . . , m + 1 given by (4.3), (4.5), (4.10), (4.11), (4.13),
(4.14) that the estimates (4.19)–(4.21) hold uniformly for α0, . . . , αm+1 in compact
subsets of {z ∈ C : Re z > −1}, and uniformly for β1, . . . , βm in compact subsets of
{z ∈ C : Re z ∈ (− 1

2 ,
1
2 )}.3

5 Global parametrix

The following RH problem for P(∞) is obtained from the RH problem for P by
disregarding the jumps of P on the lenses and on the boundaries of the disks. In

3 The restriction Reβ j ∈ (−1
4 , 1

4 ) appearing in Theorem 1.6 will be important in Sect. 6.
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view of (4.19)–(4.21), one expects that P(∞) will be a good approximation to P as
n → +∞.

RH problem for P(∞)

(a) P(∞) = (P(∞)
1 , P(∞)

2 ) is analytic in (C \ [a, b],Hc
θ \ [a, b]).

(b) The jumps are given by

P(∞)
+ (z) = P(∞)

− (z)

⎛
⎝ 0 ω(z)eW (z)

θ zθ−1

− θ zθ−1

ω(z)eW (z) 0

⎞
⎠ , z ∈ (a, b) \ {t1, . . . , tm}.

(c) P(∞)
1 (z) = 1 + O(z−1) as z → ∞,

P(∞)
2 (z) = O(z−θ ) as z → ∞ in Hθ .

(d) As z → t j , Im z > 0, j = 0, m + 1, we have

(P(∞)
1 (z), P(∞)

2 (z)) = (O((z − t j )
− 1

4 ),O((z − t j )
− 1

4 ))(z − t j )
− α j

2 σ3 .

As z → t j , Im z > 0, j = 1, . . . , m, we have

(P(∞)
1 (z), P(∞)

2 (z)) = (O(1),O(1))(z − t j )
−(

α j
2 +β j )σ3 .

To construct a solution to this RH problem, we follow the strategy of [29] and use
the mapping J to transform P(∞) into a scalar RH problem. Recall that J is defined
in (1.12) with c0 > c1 > 0 such that (1.14) holds, and that some properties of J are
stated in Proposition 1.1. We define a function F on C \ (γ1 ∪ γ2 ∪ [−1, 0]) by

F(s) =
{

P(∞)
1 (J (s)), s ∈ C \ D,

P(∞)
2 (J (s)), s ∈ D \ [−1, 0].

Note that P(∞) can be recovered from F via the formulas

P(∞)
1 (z) = F(I1(z)), z ∈ C \ [a, b], (5.1)

P(∞)
2 (z) = F(I2(z)), z ∈ Hθ \ [a, b]. (5.2)

We make the following observations:

(i) P(∞)
2 (e

π i
θ x) = P(∞)

2 (e− π i
θ x) for x > 0 implies that F is analytic on (−1, 0),

(ii) P(∞)
2 (z) = O(1) as z → 0 implies that F(s) remains bounded at s = −1,

(iii) P(∞)
2 (z) = O(z−θ ) as z → ∞ implies that F(s) has a simple zero at s = 0.
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With γ1 and γ2 both oriented from sa to sb, we have

F+(s) = P(∞)
1,+ (J (s)), F−(s) = P(∞)

2,− (J (s)), s ∈ γ1,

F+(s) = P(∞)
2,+ (J (s)), F−(s) = P(∞)

1,− (J (s)), s ∈ γ2,

and therefore F satisfies the following RH problem.

RH problem for F

(a) F is analytic in C \ (γ1 ∪ γ2).

(b) F+(s) = − θ J (s)θ−1

ω(J (s))eW (J (s)) F−(s) for s ∈ γ1,

F+(s) = ω(J (s))eW (J (s))

θ J (s)θ−1 F−(s) for s ∈ γ2.

(c) F(s) = 1 + O(s−1) as s → ∞,
F(s) = O(s) as s → 0,
F(s) = O((s − sa)− 1

2−α0) as s → sa , s ∈ C \ D,
F(s) = O((s − sb)

− 1
2−αm+1) as s → sb, s ∈ C \ D,

F(s) = O((s − I1,+(t j ))
− α j

2 −β j ) as s → I1,+(t j ), s ∈ C \ D, j = 1, . . . , m,

F(s) = O((s − I2,+(t j ))
α j
2 +β j ) as s → I2,+(t j ), s ∈ D, j = 1, . . . , m.

The jumps of this RH problem can be simplified via the transformation

G(s) = F(s)
√

(s − sa)(s − sb), (5.3)

where the square root is discontinuous along γ1 and behaves as s + O(1) as s → ∞.
Indeed, using (5.3) and the jumps for F , it is easily seen that

G+(s) = ω(J (s))eW (J (s))

θ J (s)θ−1 G−(s), s ∈ γ, (5.4)

where the boundary values of G in (5.4) are taken with respect to the orientation of γ ,
which we recall is oriented in the counterclockwise direction.4 Noting that

1

θ J (s)θ−1 = 1

θ(c1s + c0)θ−1

(
s

s + 1

) θ−1
θ

, s ∈ γ, c0 > c1 > 1,

we define

G(s) = H(s)

⎧⎪⎨
⎪⎩

s
( s + 1

s

) θ−1
θ

, s ∈ C \ D,

s

θ(c1s + c0)θ−1 , s ∈ D.
(5.5)

H satisfies the following RH problem.

4 Thus γ ∩ {z : Im z > 0} and γ1 have opposite orientations, while γ ∩ {z : Im z < 0} and γ2 have the
same orientation.
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RH problem for H

(a) H is analytic in C \ γ .
(b) H+(s) = ω(J (s))eW (J (s)) H−(s) for s ∈ γ .
(c) H(s) = 1 + O(s−1) as s → ∞,

H(s) = O((s − sa)−α0) as s → sa , s ∈ C \ D,
H(s) = O((s − sb)

−αm+1) as s → sb, s ∈ C \ D,

H(s) = O((s − I1,+(t j ))
− α j

2 −β j ) as s → I1,+(t j ), s ∈ C \ D, j = 1, . . . , m,

H(s) = O((s − I2,+(t j ))
α j
2 +β j ) as s → I2,+(t j ), s ∈ D, j = 1, . . . , m.

An explicit solution to this RH problem can be obtained by a direct application of the
Sokhotski-Plemelj formula:

H(s) = exp

(
1

2π i

∮
γ

W (J (ξ)) + logω(J (ξ))

ξ − s
dξ

)

= exp

( −1

2π i

∫ b

a

(
W (ζ ) + logω(ζ )

)( I ′
1,+(ζ )

I1,+(ζ ) − s
− I ′

2,+(ζ )

I2,+(ζ ) − s

)
dζ

)
, s /∈ γ.

(5.6)

Inverting the transformations F �→ G �→ H with (5.3) and (5.5), we obtain

F(s) = H(s)√
(s − sa)(s − sb)

⎧⎪⎨
⎪⎩

s
( s + 1

s

) θ−1
θ

, s ∈ C \ D,

s

θ(c1s + c0)θ−1 , s ∈ D.
(5.7)

By (5.1)–(5.2), the associated solution to the RH problem for P(∞) is thus given by

P(∞)
1 (z) = s

( s + 1

s

) θ−1
θ H(s)√

(s − sa)(s − sb)
, s = I1(z), z ∈ C \ [a, b],

(5.8)

P(∞)
2 (z) = s

θ(c1s + c0)θ−1

H(s)√
(s − sa)(s − sb)

, s = I2(z), z ∈ Hθ \ [a, b].
(5.9)

Our next task is to simplify the expression for H .

5.1 Simplification of H

For j = 0, 1, . . . , m, m + 1, define

Hα j (s) = exp

(
1

2π i

∮
γ

logωα j (J (ξ))

ξ − s
dξ

)
= exp

(
α j

2π i

∮
γ

log |J (ξ) − t j |
ξ − s

dξ

)
.

(5.10)
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Proposition 5.1 Hα j is analytic in C \ γ and admits the following expression

Hα j (s) =

⎧⎪⎪⎨
⎪⎪⎩

c
α j
1 (s − I1,+(t j ))

α j
2 (s − I2,+(t j ))

α j
2

(J (s) − t j )
α j

, s ∈ C \ D,

c
α j
1 (s − I1,+(t j ))

α j
2 (s − I2,+(t j ))

α j
2 , s ∈ D,

,

where

(s − I1,+(t j ))
α j
2 is analytic in C \

(
(−∞, sa] ∪ γ1,t j

)
,

(s − I2,+(t j ))
α j
2 is analytic in C \

(
(−∞, sa] ∪ γ2,t j

)
,

(J (s) − t j )
α j is analytic in C \

(
(−∞, sa] ∪ D

)
,

where γk,t j is the part of γk that joins sa with Ik,+(t j ) (k = 1, 2), arg(s − Ik,+(t j )) =
0 if s − Ik,+(t j ) > 0 (k = 1, 2), and arg(J (s) − t j ) = 0 if J (s) − t j > 0.

Proof The strategy of the proof is similar to that of [50, eqs (50)–(51)]. For η ∈ [0, 1],
define

fα j (s; η):= 1

2π i

∮
γ

logωα j (ηJ (ξ))

ξ − s
dξ = α j

2π i

∮
γ

log |ηJ (ξ) − t j |
ξ − s

dξ.

Since fα j (s; 1) = log Hα j (s), we have

log Hα j (s) = fα j (s; 0) +
∫ 1

0
∂η fα j (s; η)dη,

where

∂η fα j (s; η) = α j

2π i
−
∫

γ

J (ξ)

(ξ − s)(ηJ (ξ) − t j )
dξ, η ∈ (0, 1), s ∈ C \ γ. (5.11)

Thenotation−
∫
stands for theCauchyprincipal value and is relevant only forη ∈ (

t j
b , 1),

see below. The explicit value of fα j (s; 0) is easy to obtain,

fα j (s; 0) = α j log t j

2π i

∮
γ

ds

ξ − s
=
{
0, if s ∈ C \ D,

α j log t j , if s ∈ D.
(5.12)

The rest of the proof consists of finding an explicit expression for
∫ 1
0 ∂η fα j (s; η)dη.

This is achieved in two steps: we first evaluate
∫ t j

b
0 ∂η fα j (s; η)dη and then∫ 1

t j
b

∂η fα j (s; η)dη. For η ∈ (0,
t j
b ), we have

t j
η

∈ (b,+∞), and thus ηJ (ξ) − t j = 0
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if and only if ξ = I1(
t j
η
) ∈ (sb,+∞) or ξ = I2(

t j
η
) ∈ (0, sb). Using the residue

theorem, we then obtain

∂η fα j (s; η) = −Res

(
α j J (ξ)

(ξ − s)(ηJ (ξ) − t j )
, ξ = I1

( t j

η

))

+ α j

2π i

∮
γout

J (ξ)

(ξ − s)(ηJ (ξ) − t j )
dξ

−
{
Res
( α j J (ξ)

(ξ−s)(ηJ (ξ)−t j )
, ξ = s

)
, if s ∈ C \ D,

0, if s ∈ D,

where γout ⊂ C \ D is a closed curve oriented in the counterclockwise direction and
surrounding s. Each of these three terms can be evaluated explicitly by a elementary
computation, and we obtain

∂η fα j (s; η) = α j

η
− α j

t j
η

(I1(
t j
η
) − s)ηJ ′(I1(

t j
η
))

+
{

− α j J (s)
ηJ (s)−t j

, if s ∈ C \ D,

0, if s ∈ D,
η ∈ (0,

t j
b ).

Using the change of variables

η̃ = I1
( t j

η

)
,

dη

η
= − J ′(̃η)

J (̃η)
dη̃,

we note that

∫ t j
b

0

(
1 −

t j
η

(I1(
t j
η
) − s)J ′(I1(

t j
η
))

)
dη

η
=
∫ +∞

sb

(
J ′(̃η)

J (̃η)
− 1

η̃ − s

)
dη̃

= lim
R→∞

(
log J (R) − log b − log(R − s) + log(sb − s)

)
= log

(c1(sb − s)

b

)
,

where s �→ log(sb − s) is analytic in C \ [sb,+∞) and arg(sb − s) ∈ (−π, π). On
the other hand, for s ∈ C \ D we have

∫ t j
b

0
− α j J (s)

ηJ (s) − t j
dη = −α j log

t j
b J (s) − t j

−t j
= −α j

(
log(b − J (s)) − log b

)
,

where s �→ log(b − J (s)) is analytic in C \ (D ∪ [sb,+∞)) and arg(b − J (s)) ∈
(−π, π). Hence, we have shown that

∫ t j
b

0
∂η fα j (s; η)dη = α j log

(
c1(sb − s)

b

)
−
{

α j
(
log(b − J (s)) − log b

)
, s ∈ C \ D,

0, s ∈ D,
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which, by (5.12), implies

fα j (s; t j
b ) =

⎧⎪⎪⎨
⎪⎪⎩

α j log

(
c1(s − sb)

J (s) − b

)
, s ∈ C \ D,

α j log

(
c1t j (sb − s)

b

)
, s ∈ D,

(5.13)

where in (5.13) the principal branches for the logarithms are taken. We now turn to
the explicit evaluation of

∫ 1
t j
b

∂η fα j (s; η)dη. For η ∈ (
t j
b , 1), we have

t j
η

∈ (t j , b), and

therefore ηJ (ξ) − t j = 0 if and only if ξ = I1,+(
t j
η
) ∈ γ1 or ξ = I2,+(

t j
η
) ∈ γ2.

Hence, using (5.11), we obtain

∂η fα j (s; η) = α j

2π i

∮
γout

J (ξ)

(ξ − s)(ηJ (ξ) − t j )
dξ

−
{
Res
( α j J (ξ)

(ξ−s)(ηJ (ξ)−t j )
, ξ = s

)
if s ∈ C \ D

0 if s ∈ D

− 1

2
Res

(
α j J (ξ)

(ξ − s)(ηJ (ξ) − t j )
, ξ = I1,+

( t j

η

))

1

2
Res

(
α j J (ξ)

(ξ − s)(ηJ (ξ) − t j )
, ξ = I2,+

( t j

η

))
,

where again γout ⊂ C\ D is a closed curve oriented in the counterclockwise direction
and surrounding s. After an explicit evaluation of these residues, it becomes

∂η fα j (s; η) = α j

η
+
{

− α j J (s)
ηJ (s)−t j

if s ∈ C \ D

0 if s ∈ D

− 1

2

α j
t j
η

(I1,+(
t j
η
) − s)ηJ ′(I1,+(

t j
η
))

− 1

2

α j
t j
η

(I2,+(
t j
η
) − s)ηJ ′(I2,+(

t j
η
))

, η ∈ (
t j
b , 1). (5.14)

Using the change of variables η̃ = Ik,+
( t j

η

)
, dη

η
= − J ′ (̃η)

J (̃η)
dη̃, k = 1, 2, we get

∫ 1

t j /b

(
1 −

t j
η

(Ik,+(
t j
η
) − s)J ′(Ik,+(

t j
η
))

)
dη

η
=
∫ sb

Ik,+(t j )

(
J ′(̃η)

J (̃η)
− 1

η̃ − s

)
dη̃

= log

(
b(s − Ik,+(t j ))

t j (s − sb)

)
,
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where the path of integration in η̃ goes from Ik,+(t j ) to sb following γk , and the branch
of the logarithm is taken accordingly. We also note that

∫ 1

t j
b

− α j J (s)

ηJ (s) − t j
dη = −α j log

b(J (s) − t j )

t j (J (s) − b)
, s ∈ C \ D,

where the principal branch for the logarithm is taken. Hence, we obtain

∫ 1

t j
b

∂η fα j (s; η)dη = α j

2
log

(
b(s − I1,+(t j ))

t j (s − sb)

)
+ α j

2
log

(
b(s − I2,+(t j ))

t j (s − sb)

)

−
{

α j log
b(J (s)−t j )

t j (J (s)−b)
, s ∈ C \ D,

0, s ∈ D.
(5.15)

We obtain the claim after combining (5.14) with (5.15). ��
For j = 1, . . . , m, define

Hβ j (s) = exp

(
1

2π i

∮
γ

logωβ j (J (ξ))

ξ − s
dξ

)

= exp

(
1

2π i

∮
γa,t j

iπβ j

ξ − s
dξ + 1

2π i

∮
γb,t j

−iπβ j

ξ − s
dξ

)
, (5.16)

where γa,t j is the part of γ that starts at I1,+(t j ), passes through sa , and ends at
I2,+(t j ), while γb,t j is the part of γ that starts at I2,+(t j ), passes through sb, and ends
at I1,+(t j ). After a straightforward evaluation of these integrals, we obtain

Proposition 5.2 Hβ j is analytic in C \ γ and admits the following expression

Hβ j (s) =
(

s − I1,+(t j )

s − I2,+(t j )

)− β j
2

a

(
s − I1,+(t j )

s − I2,+(t j )

)− β j
2

b
,

where the a and b subscripts denote the following branches:

(
s − I1,+(t j )

s − I2,+(t j )

)− β j
2

a
is analytic in C \ γa,t j and tends to 1 as s → ∞, (5.17)

(
s − I1,+(t j )

s − I2,+(t j )

)− β j
2

b
is analytic in C \ γb,t j and tends to 1 as s → ∞. (5.18)

Remark 5.3 The two functions (5.17) and (5.18) coincide onC\ D, and on D we have

(
s − I1,+(t j )

s − I2,+(t j )

)− β j
2

a
e−π iβ j =

(
s − I1,+(t j )

s − I2,+(t j )

)− β j
2

b
, s ∈ D.
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5.2 Asymptotics of P(∞) as z → tk, Im z > 0

For convenience, define β0 = 0, βm+1 = 0, Hβ0(s) ≡ 0, Hβm+1(s) ≡ 0, and

HW (s) = exp

(
1

2π i

∮
γ

W (J (ξ))

ξ − s
dξ

)

= exp

( −1

2π i

∫ b

a
W (ζ )

(
I ′
1,+(ζ )

I1,+(ζ ) − s
− I ′

2,+(ζ )

I2,+(ζ ) − s

)
dζ

)
, s /∈ γ. (5.19)

The± boundary values of H , HW , Hαk , Hβk and
√

(s − sa)(s − sb)will be taken with
respect to the orientation of γ1 and γ2 (recall that the orientation of γ1 is different from
that of γ ). In particular,

lim
ε→0+

H(I1(tk ± iε)) =: H±(I1,±(tk)), lim
ε→0+

H(I2(tk ± iε)) =: H±(I2,±(tk)).

Lemma 5.4 As z → tk , Im z > 0, we have

Hαk (I1(z)) = cαk
1 |I1,+(tk) − I2,+(tk)|

αk
2 e

iπαk
4 I ′

1,+(tk)
αk
2 (z − tk)

− αk
2 (1 + O(z − tk))

Hαk (I2(z)) = cαk
1 |I1,+(tk) − I2,+(tk)|

αk
2 e− iπαk

4 I ′
2,+(tk)

αk
2 (z − tk)

αk
2 (1 + O(z − tk)),

Hβk (I1(z)) = |I1,+(tk) − I2,+(tk)|βk e
iπβk
2 I ′

1,+(tk)
−βk (z − tk)

−βk (1 + O(z − tk)),

Hβk (I2(z)) = |I1,+(tk) − I2,+(tk)|−βk e− iπβk
2 I ′

2,+(tk)
βk (z − tk)

βk (1 + O(z − tk)),

where the principal branches are taken for each root.

Proof These expansions follow from Propositions 5.1 and 5.2. ��

By combining Lemma 5.4 with (5.8) and (5.9), we obtain

Proposition 5.5 As z → tk , Im z > 0, we have

P(∞)
1 (z) = HW ,+(I1,+(tk))c

αk
1 I1,+(tk)

(
I1,+(tk) + 1

I1,+(tk)

) θ−1
θ

∏m+1
j=0
j �=k

Hα j ,+(I1,+(tk))Hβ j ,+(I1,+(tk))

√
(I1,+(tk) − sa)(I1,+(tk) − sb)+

× |I1,+(tk) − I2,+(tk)|
αk
2 +βk eiπ(

αk
4 + βk

2 )

I ′
1,+(tk)

αk
2 −βk (z − tk)

− αk
2 −βk (1 + O(z − tk))

P(∞)
2 (z) = HW ,+(I2,+(tk))

cαk
1 I2,+(tk)

θ(c1 I2,+(tk) + c0)θ−1
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∏m+1
j=0
j �=k

Hα j ,+(I2,+(tk))Hβ j ,+(I2,+(tk))

√
(I2,+(tk) − sa)(I2,+(tk) − sb)

× |I1,+(tk) − I2,+(tk)|
αk
2 −βk e−iπ(

αk
4 + βk

2 )

I ′
2,+(tk)

αk
2 +βk (z − tk)

αk
2 +βk (1 + O(z − tk)).

In particular, as z → tk , Im z > 0, we have

P(∞)
2 (z)

P(∞)
1 (z)

= C (∞)
21,k(z − tk)

αk+2βk (1 + O(z − tk)),

C (∞)
21,k = HW ,+(I2,+(tk))

HW ,+(I1,+(tk))

I2,+(tk)

I1,+(tk)

I1,+(tk)
θ−1
θ

θ(c1 I2,+(tk) + c0)θ−1(I1,+(tk) + 1)
θ−1
θ

× e−iπ(
αk
2 +βk )

I ′
2,+(tk)

αk
2 +βk

I ′
1,+(tk)

αk
2 −βk

√
(I1,+(tk) − sa)(I1,+(tk) − sb)+√
(I2,+(tk) − sa)(I2,+(tk) − sb)

× |I1,+(tk) − I2,+(tk)|−2βk

m+1∏
j=0
j �=k

Hα j ,+(I2,+(tk))Hβ j ,+(I2,+(tk))

Hα j ,+(I1,+(tk))Hβ j ,+(I1,+(tk))
.

5.3 Asymptotics of P(∞) as z → b

Lemma 5.6 As z → b, we have

I1(z) = sb +
√

z − b√
J ′′(sb)/2

+ O(z − b), I2(z) = sb −
√

z − b√
J ′′(sb)/2

+ O(z − b),

(5.20)

where J ′′(sb) > 0 and the principal branches are taken for the roots.

Proof This follows from (1.18) and the identities J (I1(z)) = z and J (I2(z)) = z. ��
Define

H̃b(s) = HW (s)
m∏

j=0

Hα j (s)Hβ j (s) = H(s)

Hαm+1(s)
,

f1,b(s) = s

(
s + 1

s

) θ−1
θ H̃b(s)√

s − sa
, f2,b(s) = s

θ(c1s + c0)θ−1

H̃b(s)√
s − sa

,

where the branch for
√

s − sa is taken on (−∞, sa]. Using (5.8)–(5.9), Proposi-
tions 5.1, 5.2 and the expansion (5.20), we obtain
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Proposition 5.7 As z → b, we have

P(∞)
1 (z) = cαm+1

1 f1,b,+(sb)
( J ′′(sb)

2

) 1
4− αm+1

2

(z − b)
1
4+ αm+1

2

(
1 + O(

√
z − b)

)
,

P(∞)
2 (z) = i

cαm+1
1 f2,b,+(sb)

( J ′′(sb)
2

) 1
4− αm+1

2

(z − b)
1
4− αm+1

2

(
1 + O(

√
z − b)

)
,

where the principal branches are taken for the roots, and

f1,b,+(sb):= lim
ε→0

f1,b(sb + ε), f2,b,+(sb):= lim
ε→0

f2,b(sb − ε).

In particular, as z → b, we have

P(∞)
2 (z)

P(∞)
1 (z)

= iωb(b)eW (b)

θbθ−1 (z − b)αm+1
(
1 + O(

√
z − b)

)
.

5.4 Asymptotics of P(∞) as z → a

The analysis done in this section is similar to the one of Sect. 5.3.

Lemma 5.8 As z → a, ±Im z > 0, we have

I1(z) = sa ± i
√

z − a√|J ′′(sa)|/2 + O(z − a), I2(z) = sa ± −i
√

z − a√|J ′′(sa)|/2 + O(z − a),

(5.21)

where J ′′(sa) < 0 and the principal branches are taken for the roots.

Proof It suffices to combine (1.19) with the identities J (I1(z)) = z and J (I2(z)) = z.
��

Define

H̃a(s) = HW (s)
m+1∏
j=1

Hα j (s)Hβ j (s) = H(s)

Hα0(s)
,

f1,a(s) = s

(
s + 1

s

) θ−1
θ H̃a(s)√

s − sb
, f2,a(s) = s

θ(c1s + c0)θ−1

H̃a(s)√
s − sb

,

where
√

s − sb is analytic inC\((−∞, sa]∪γ1
)
and such that

√
s − sb > 0 if s > sb.

The following proposition follows from (5.8), (5.9) and Propositions 5.1 and 5.2.

Proposition 5.9 As z → a, Im z > 0, we have

P(∞)
1 (z) = cα0

1 f1,a,+(sa)
( |J ′′(sa)|

2

) 1
4− α0

2 e
π i
2 (α0− 1

2 )

(z − a)
1
4+ α0

2

(
1 + O(

√
z − a)

)
,
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P(∞)
2 (z) = cα0

1 f2,a,+(sa)
( |J ′′(sa)|

2

) 1
4− α0

2 e− π i
2 (α0− 1

2 )

(z − a)
1
4− α0

2

(
1 + O(

√
z − a)

)
,

where the principal branches are taken for the roots, and

f1,a,+(sa):= lim
ε→0

f1,a(sa + e
3π i
4 ε), f2,a,+(sa):= lim

ε→0
f2,a(sa + e− π i

4 ε).

In particular, as z → a, Im z > 0, we have

P(∞)
2 (z)

P(∞)
1 (z)

= iωa(a)eW (a)

θaθ−1 e−π iα0(z − a)α0
(
1 + O(

√
z − a)

)
.

5.5 Asymptotics as z → ∞

Recall that β0 = βm+1 = 0, t0 = a and tm+1 = b.

Lemma 5.10 As s → 0, we have H(s) = H(0)(1 + O(s)), where

H(0) = exp

(∫ b

a
W (x)ρ(x)dx

) m+1∏
j=0

(
eα j

∫ b
a log |t j −x |ρ(x)dx e

π iβ j (1−2
∫ b

t j
ρ(x)dx)

)
.

(5.22)

Furthermore, the identity (1.26) holds.

Proof Recall that H(s) = HW (s)
∏m+1

j=0 Hα j (s)Hβ j (s). Proposition 1.2 implies that

ρ(x) = −1

2π i

(
I ′
1,+(x)

I1,+(x)
− I ′

2,+(x)

I2,+(x)

)
, x ∈ (a, b). (5.23)

Hence, using the definition (5.19) of HW , we get

log HW (0) = 1

2π i

∮
γ

W (J (ξ))

ξ
dξ

= 1

2π i

∫ b

a
W (x)

(
I ′
2,+(x)

I2,+(x)
− I ′

1,+(x)

I1,+(x)

)
dx =

∫ b

a
W (x)ρ(x)dx .

Similarly, using (5.10) and (5.16), for j = 1, . . . , m + 1, we obtain

log Hα j (0) = α j

∫ b

a
log |t j − x |ρ(x)dx, log Hβ j (0) = iπβ j

(
1 − 2

∫ b

t j

ρ(x)dx

)
,

(5.24)
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which already proves (5.22). On the other hand, using Propositions 5.1, 5.2 and the
fact that I2,+(t j ) = I1,+(t j ), we obtain

Hα j (0) = c
α j
1 |I1,+(t j )|α j , Hβ j (0) = eπ iβ j −2iβ j arg I1,+(t j ), j = 0, . . . , m + 1,

(5.25)

where arg I1,+(t j ) ∈ [0, π ], j = 0, 1, . . . , m + 1. By comparing (5.24) and (5.25),
we obtain (1.26). ��
Proposition 5.11 As z → ∞, z ∈ Hθ , we have

P(∞)
2 (z) = H(0)c0

−i
√|sasb|θ z−θ

(
1 + O(z−θ )

)
.

Proof Since the branch of
√

(s − sa)(s − sb) is taken on γ1, we have

√
(s − sa)(s − sb)|s=0 = −i

√|sasb|.

The claim now follows after substituting (2.14) in the expression (5.9) of P(∞)
2 . ��

6 The convergence of P → P(∞)

In this section we follow the method of [29, Section 4.7]. As in the construction of
P(∞), the mapping J is used to transform the 1 × 2 vector valued function P to a
scalar valued function F as follows:

F(s):=
{

P1(J (s)), s ∈ C \ D and J (s) /∈ �P ,

P2(J (s)), s ∈ D \ [−1, 0] and J (s) /∈ �P ,
(6.1)

where �P was defined in (4.17). We can retrieve P1 and P2 from F by

P1(z) = F(I1(z)), z ∈ C \ �P ,

P2(z) = F(I2(z)), z ∈ Hθ \ �P . (6.2)

It will be convenient to write J−1(�P ) as the union of three contours as follows:

J−1(�P ) = �′ ∪ �′′ ∪ (γ1 ∪ γ2), where �′ = I1(�P \ [a, b]),
�′′ = I2(�P \ [a, b]).

We choose the orientation of J−1(�P ) that is induced from the orientation of �P

through I1 and I2, see also Fig. 5. Since P2 satisfies P2(e
π i
θ x) = P2(e− π i

θ x) for all
x ≥ 0, F is analytic on (−1, 0). Furthermore, since

P2(z) = O(1), as z → 0, z ∈ Hθ , and P2(z) = O(z−θ ), as z → ∞, z ∈ Hθ ,
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Fig. 5 The contour J−1(�P )

with m = 2. The thick curves
are γ1 and γ2. The two dots
lying in the upper half plane are
I1,+(t j ), j = 1, 2, and the two
dots lying in the lower half plane
are I2,+(t j ), j = 1, 2

sa sb−1 0

the singularities of F at −1 and 0 are removable and F has at least a simple zero at 0,
and thus F is analytic in C \ J−1(�P). By (6.1), we have

P1,±(J (s)) = F±(s), P2,±(J (s)) = F±(I2(J (s)), s ∈ �′,
P2,±(J (s)) = F±(s), P1,±(J (s)) = F±(I1(J (s)), s ∈ �′′,

which implies that the jumps of F on �′ ∪ �′′ are nonlocal and given by

F+(s) = F−(s)JP,11(J (s)) + F−(I2(J (s)))JP,21(J (s)), s ∈ �′, (6.3)

F+(s) = F−(I1(J (s)))JP,12(J (s)) + F−(s)JP,22(J (s)), s ∈ �′′. (6.4)

The jumps for F on γ1 ∪ γ2 can be computed similarly and are identical to those
of F :

F+(s) = − θ J (s)θ−1

ω(J (s))eW (J (s))
F−(s), s ∈ γ1,

F+(s) = ω(J (s))eW (J (s))

θ J (s)θ−1 F−(s), s ∈ γ2.

Finaly, using the RH conditions (c) and (d) of the RH problem for P , we conclude that
F admits the following behaviors near ∞, 0, sa, sb, I1,+(t j ), I2,+(t j ), j = 1, . . . , m:

F(s) = 1 + O(s−1), as s → ∞, (6.5)

F(s) = O(s), as s → 0, (6.6)

F(s) = O((s − sa)−
1
2−α0), as s → sa, s ∈ C \ D, (6.7)

F(s) = O((s − sb)
− 1

2−αm+1), as s → sb, s ∈ C \ D, (6.8)

F(s) = O((s − I1,+(t j ))
− α j

2 −β j ), as s → I1,+(t j ), s ∈ C \ D, j = 1, ..., m,

(6.9)
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F(s) = O((s − I2,+(t j ))
α j
2 +β j ), as s → I2,+(t j ), s ∈ D, j = 1, . . . , m.

(6.10)

Because of the nonlocal jumps (6.3)–(6.4), F does not satisfy a RH problem in the
usual sense, and following [29,43] we will say thatF satisfies a “shifted" RH problem.

By (5.7), F(s) �= 0 for all s ∈ C \ (γ1 ∪ γ2 ∪ {0}), and therefore

R(s):=F(s)

F(s)
, for s ∈ C \ (J−1(�P ) ∪ {0}) (6.11)

is analytic. Since F and F have the same jumps on γ1 ∪ γ2, R(s) is analytic on

(γ1 ∪ γ2) \ {sa, sb, I1,+(t1), . . . , I1,+(tm), I2,+(t1), . . . , I2,+(tm)}.

Using (6.7)–(6.10) and the definition (5.7) of F , we verify that the singularities of R
at sa, sb, I1,+(t1), . . . , I1,+(tm), I2,+(t1), . . . , I2,+(tm) are removable, so that R is in
fact analytic in a whole neighborhood of γ1 ∪ γ2. We summarize the properties of R.

Shifted RH problem for R

(a) R : C \ (�′ ∪ �′′) → C is analytic.
(b) R satisfies the jumps

R+(s) = R−(s)JR,11(s) + R−(I2(J (s)))JR,21(s), s ∈ �′,
R+(s) = R−(I1(J (s)))JR,12(s) + R−(s)JR,22(s), s ∈ �′′,

where

JR,11(s) = JP,11(J (s)), JR,21(s) = JP,21(J (s))
F(I2(J (s)))

F(s)
, (6.12)

JR,12(s) = JP,12(J (s))
F(I1(J (s)))

F(s)
, JR,22(s) = JP,22(J (s)). (6.13)

(c) R is bounded, and R(s) = 1 + O(s−1) as s → ∞.

By (4.19)–(4.21) and the explicit expression (5.7) for F(s), as n → +∞ we have

JR,11(s) = 1 + O(e−cn), JR,21(s) = O(e−cn), u.f. s ∈ I1(σ+ ∪ σ− ) ∩ �′,

JR,11(s) = 1 + J (1)
R,11(s)

n + O( n2βmax

n2
), JR,21(s) = J (1)

R,21(s)
n + O( n2βmax

n2
), u.f. s ∈ ∪m+1

j=0 I1(∂Dt j ),

JR,22(s) = 1 + O(e−cn), JR,12(s) = O(e−cn), u.f. s ∈ I2(σ+ ∪ σ− ) ∩ �′′,

JR,22(s) = 1 + J (1)
R,22(s)

n + O( n2βmax

n2
), JR,12(s) = J (1)

R,12(s)
n + O( n2βmax

n2
), u.f. s ∈ ∪m+1

j=0 I2(∂Dt j ),

for a certain c > 0, where “u.f." means “uniformly for", and these estimates hold also
uniformly for α0, . . . , αm+1 in compact subsets of {z ∈ C : Re z > −1}, uniformly
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for β1, . . . , βm in compact subsets of {z ∈ C : Re z ∈ (− 1
2 ,

1
2 )}, and uniformly in

t1, . . . , tm, θ such that (4.1) holds for a certain δ ∈ (0, 1).
Define the operator �R acting on functions defined on �R :=�′ ∪ �′′ by

�R f (s) = [JR,11(s) − 1] f (s) + JR,21(s) f (I2(J (s))), s ∈ �′,
�R f (s) = JR,12(s) f (I1(J (s))) + [JR,22(s) − 1] f (s), s ∈ �′′.

Let � be a fixed (independent of n) compact subset of

{Re z > −1}m+2 × {Re z ∈ (− 1
4 ,

1
4 )}m ×

{(t1, ..., tm) : a < t1 < ... < tm < b} × (0,∞), (6.14)

and for notational convenience we denote p:=(α0, . . . , αm+1, β1, . . . , βm, t1, . . . ,
tm, θ). The same analysis as in [29, Section 4.7] shows that in our case, there exists
M = M(�) > 0 such that

||�R ||L2(�R) ≤ M

n1−2βmax
, for all p ∈ �, (6.15)

so that the operator 1 − C�R can be inverted and written as a Neumann series for all
n ≥ n0 = n0(�) and all p ∈ �. Furthermore, like in [29, eq (4.100)] the following
formula holds

R(s) = 1 + 1

2π i

∫
�R

�R(1)(ξ)

ξ − s
dξ + 1

2π i

∫
�R

�R(R− − 1)(ξ)

ξ − s
dξ, s ∈ C \ �R .

(6.16)

Let δ′ > 0 be a small but fixed constant, and let s0 ∈ C \ �R . Since JR,11, JR,21 are
analytic in a neighborhood of �′ and JR,12, JR,22 are analytic in a neighborhood of
�′′, the contour�R in (6.16) can always be deformed into another contour�′

R in such
as a way that |ξ − s0| ≥ δ′ for all ξ ∈ �′

R . Therefore, (6.15) and (6.16) imply that

R(s) = 1 + R(1)(s)n−1 + O(n−2+4βmax), as n → +∞,

R(1)(s) = 1

2π i

∫
⋃m+1

j=0 I1(∂Dt j )∪
⋃m+1

j=0 I2(∂Dt j )

�
(1)
R (1)(ξ)

ξ − s
dξ, (6.17)

uniformly for s ∈ C \ �R and for p ∈ �, where

�
(1)
R f (s) = J (1)

R,11(s) f (s) + J (1)
R,21(s) f (I2(J (s))), s ∈ ∪m+1

j=0 I1(∂Dt j ), (6.18)

�
(1)
R f (s) = J (1)

R,12(s) f (I1(J (s))) + J (1)
R,22(s) f (s), s ∈ ∪m+1

j=0 I2(∂Dt j ). (6.19)

From (4.6), (4.12), (4.15) and (6.12)–(6.13), one sees that �
(1)
R (1)(ξ) can be

analytically continued from
⋃m+1

j=0 I1(∂Dt j ) ∪ ⋃m+1
j=0 I2(∂Dt j ) to

(⋃m+1
j=0 I1(Dt j \
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{t j }) ∪ ⋃m+1
j=0 I2(Dt j \ {t j })

)
, and that �

(1)
R (1)(ξ) has simple poles at each of the

points sa, sb, I1,+(t1), . . . , I1,+(tm), I2,+(t1), . . . , I2,+(tm). Therefore, for all s ∈
C \ (⋃m+1

j=0 I1(Dt j ) ∪⋃m+1
j=0 I2(Dt j )

)
we have

R(1)(s) = 1

(s − sa)
Res
(
�

(1)
R 1(ξ), ξ = sa

)
+ 1

(s − sb)
Res
(
�

(1)
R 1(ξ), ξ = sb

)

+
m∑

k=1

(
Res
(
�

(1)
R 1(ξ), ξ = I1,+(t j )

)
s − I1,+(tk)

+ Res
(
�

(1)
R 1(ξ), ξ = I2,+(tk)

)
s − I2,+(tk)

)
.

(6.20)

These residues can be computed explicitly as follows. Define

JR(z) =
⎛
⎜⎝

JP,11(z) JP,12(z)
P(∞)
1 (z)

P(∞)
2 (z)

JP,21(z)
P(∞)
2 (z)

P(∞)
1 (z)

JP,22(z)

⎞
⎟⎠ , z ∈ �P \ [a, b].

In view of (5.1)–(5.2) and (6.12)–(6.13), JR and JR are related by

JR, j1(J (s)) = JR, j1(s) for s ∈ �′, j = 1, 2, (6.21)

JR, j2(J (s)) = JR, j2(s) for s ∈ �′′, j = 1, 2. (6.22)

From (4.2), (4.7) and Proposition 5.5, we obtain

Res
(

J (1)
R (z), z = tk

)
= lim

z→tk ,z∈Q R+,k

(z − tk)J (1)
R (z)

= vk

2π iρ(tk)

⎛
⎜⎝

−1
τ(αk ,βk )Etk (tk )2

C(∞)
21,k

−τ(αk ,−βk )C
(∞)
21,k

Etk (tk )2
1

⎞
⎟⎠ .

By (6.18)–(6.19) and (6.21)–(6.22), we thus find

Res
(
�

(1)
R 1(ξ), ξ = I1,+(tk)

)
= 1

J ′(I1,+(tk))

−vk

2π iρ(tk)

(
1 + τ(αk,−βk)C

(∞)
21,k

Etk (tk)
2

)
,

(6.23)

Res
(
�

(1)
R 1(ξ), ξ = I2,+(tk)

)
= 1

J ′(I2,+(tk))

vk

2π iρ(tk)

(
1 + τ(αk, βk)Etk (tk)

2

C (∞)
21,k

)
.

(6.24)
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For the residue of �
(1)
R 1(ξ) at ξ = sb, we first use (4.9), (4.12) and Proposition 5.7 to

get

JR(z) = 1

16( f (0)
b )1/2

√
z − b

(−1 − 4α2
m+1 −2

2 1 + 4α2
m+1

)
+ O(1), as z → b.

Hence, using (6.18), (6.21) and (1.18) (or alternatively (6.19), (6.22) and (1.18)), we
obtain

Res
(
�

(1)
R 1(ξ), ξ = sb

)
= 1 − 4α2

m+1

16( f (0)
b )1/2

√
J ′′(sb)/2

. (6.25)

The computation for the residue of �
(1)
R 1(ξ) at ξ = sa is similar, and we find

Res
(
�

(1)
R 1(ξ), ξ = sa

)
= 4α2

0 − 1

16( f (0)
a )1/2

√|J ′′(sa)|/2
. (6.26)

The residues (6.25) and (6.26) can be simplified using the expansions of ρ near b and
a given by (1.20) and (1.21). From (1.20) and (4.9), we get

( f (0)
b )1/2 = πψ(b)√

b − a
= π lim

x↗b
ρ(x)

√
(b − x) = 1√

2sb
√

J ′′(sb)

which gives

Res
(
�

(1)
R 1(ξ), ξ = sb

)
= sb

1 − 4α2
m+1

8
. (6.27)

Similarly, using (1.21) in (6.26), we obtain

Res
(
�

(1)
R 1(ξ), ξ = sa

)
= sa

1 − 4α2
0

8
. (6.28)

7 Proof of Theorem 1.4

By (1.39), (1.43) and (3.1), as z → ∞, z ∈ Hθ , we have

Y2(z) = 1

κn
Cpn(z) = −κ−2

n

2π i
z−(n+1)θ + O(z−(n+2)θ ). (7.1)

On the other hand, using (3.3), (3.7), (4.16), (6.2) and (6.11) to invert the transfor-
mations Y �→ T �→ S �→ P �→ F �→ R for z ∈ Hθ , z /∈ L ∪ ⋃m+1

j=0 Dt j , we
have
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T2(z) = en�Y2(z)e
ng̃(z) = S2(z) = P2(z)

= F(I2(z)) = R(I2(z))F(I2(z)) = R(I2(z))P(∞)
2 (z),

where for the last equalitywehave used (5.2). Let�be afixed compact subset of (6.14),
and let us denote p:=(α0, . . . , αm+1, β1, . . . , βm, t1, . . . , tm, θ). It follows from the
analysis of Sect. 6 that there exists n0 = n0(�) such that Y exist for all n ≥ n0 and all
p ∈ �. For clarity, we will write R(z) = R(z; n) to make explicit the dependence of
R in n. Using Lemma 2.2, Proposition 5.11, and the fact that g̃(z) = θ log z +O(z−θ )

as z → ∞ in Hθ , we find

Y2(z) = e−n�e−ng̃(z) R(I2(z); n)P(∞)
2 (z)

= e−n�z−nθ (1 + O(z−θ ))(R(0; n) + O(z−θ ))
H(0)c0

−i
√|sasb|θ z−θ

(
1 + O(z−θ )

)
,

(7.2)

where the above expression is valid as z → ∞, z ∈ Hθ , for all n ≥ n0 and all p ∈ �.
Comparing (7.2) with (7.1), we find

κ−2
n = 2π e−n� R(0; n)

H(0)c0√|sasb|θ , for all n ≥ n0, p ∈ �.

Hence, by (1.42), we have

DN (w) = Dn0(w)

N−1∏
n=n0

κ−2
n , for all N ≥ n0, p ∈ �. (7.3)

Furthermore, since κ−2
n0 exists and is non-zero, this implies by (1.41) that Dn0(w) �= 0.

Note that H(0) is independent of n (see (5.22)). Also, by (6.17), as n → +∞

R(0; n) = 1 + R(1)(0; n)

n
+ O(n−2+4βmax), R(1)(0; n) = O(n2βmax).

Hence, formula (7.3) can be rewritten as

DN (w) = exp

(
− �

2
N 2 +

[
�

2
+ log

2π H(0)c0√|sasb|θ
]

N + C ′
4

)

×
N∏

n=n0

(
1 + R(1)(0; n)

n
+ O(n−2+4βmax)

)
, (7.4)

for a certain constant C ′
4, where the error term is uniform for all n ≥ n0 and all p ∈ �.

Using Proposition 2.3, the identity sasb = − c0
c1θ

, and the expression (5.22) for H(0),
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we verify that

−�

2
= C1,

�

2
+ log

2π H(0)c0√|sasb|θ = C2,

whereC1 andC2 are given by (1.23) and (1.24), respectively. Our next task is to obtain
an asymptotic formula for the product in (7.4) as N → +∞. By (6.20),

R(1)(0; n) = −1

sa
Res
(
�R1(ξ), ξ = sa

)
+ −1

sb
Res
(
�R1(ξ), ξ = sb

)

+
m∑

k=1

( −1

I1,+(tk)
Res
(
�R1(ξ), ξ = I1,+(t j )

)

+ −1

I2,+(tk)
Res
(
�R1(ξ), ξ = I2,+(tk)

))
,

and using (6.23), (6.24), (6.27) and (6.28), we get

R(1)(0; n) = 4α0 − 1

8
+ 4αm+1 − 1

8

+
m∑

k=1

β2
k − α2

k
4

2π iρ(tk)

(
1

I1,+(tk)J ′(I1,+(tk))
− 1

I2,+(tk)J ′(I2,+(tk))

)

+
m∑

k=1

β2
k − α2

k
4

2π iρ(tk)

(
τ(αk ,−βk)C

(∞)
21,k

I1,+(tk)J ′(I1,+(tk))Etk (tk; n)2
− τ(αk , βk)Etk (tk; n)2

I2,+(tk)J ′(I2,+(tk))C
(∞)
21,k

)
,

where we have explicitly written the dependence of Etk (tk) in n. Using J ′(I j,+(tk)) =
I ′

j,+(tk)−1 for k = 1, . . . , m, j = 1, 2 and (5.23), we obtain

1

2π iρ(tk)

(
1

I1,+(tk)J ′(I1,+(tk))
− 1

I2,+(tk)J ′(I2,+(tk))

)

= 1

2π iρ(tk)

(
I ′
1,+(tk)

I1,+(tk)
− I ′

2,+(tk)

I2,+(tk)

)
= −1,

and therefore R(1)(0; n) can be rewritten as

R(1)(0; n) = C3

+
m∑

k=1

β2
k − α2

k
4

2π iρ(tk)

(
τ(αk,−βk)C

(∞)
21,k

I1,+(tk)J ′(I1,+(tk))Etk (tk; n)2
− τ(αk, βk)Etk (tk; n)2

I2,+(tk)J ′(I2,+(tk))C
(∞)
21,k

)
,

whereC3 is given by (1.25). From (4.8), we see that Etk (tk; n)2 = O(n2βk ) as n → ∞.
However, φ(b) = 0 and (3.9) imply that −iφ+(tk) ∈ (0, 2π) for all k = 1, . . . , m,
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which in turn implies that Etk (tk; n)2 oscillates quickly as n → +∞, and more pre-
cisely that

N∏
n=n0

(
1 + Etk (tk; n)±2n−1) = C4,± + O(N−1±2βk ), as N → +∞,

where C4,± are some constants. Hence, as N → +∞,

N∏
n=n0

(
1 + R(1)(0; n)

n
+ O(n−2+4βmax)

)
= C3 log N + C ′′

4 + O(N−1+4βmax),

(7.5)

for a certain constant C ′′
4 , which finishes the proof of (1.22).

8 Proof of Theorem 1.6

Let x1, . . . , xn be distributed according to the Muttalib–Borodin ensemble (1.6), and
recall that the counting function is denoted by Nn(t) = #{x j : x j ≤ t}, t ≥ 0, and
that the ordered points are denoted by a ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξn ≤ b.

Parts (a) and (b) of Theorem 1.6 can be proved in a similar way as in [14, Corollaries
1.2 and 1.3]. For part (a), we first set m = 1 in (1.9) (and rename t1 → t , α1 → α,
2π iβ1 → γ ):

E

(
|pn(t)|αeγ Nn(t)

)
= Dn(w)|m=1

Dn(w)
e

γ
2 n . (8.1)

Let h(α, β) = h(α, β; n) denote the right-hand side of (8.1). Theorem 1.4 gives the
formula

h(α, β) = exp

(
α

∫ b

a
log |t − x |ρ(x)dx n + γ

∫ t j

a
ρ(x)dx n

+
(

α2

4
+ γ 2

4π2

)
log n + O(1)

)
, (8.2)

as n → +∞, and these asymptotics are uniform for α and γ in complex neighborhood
of 0. Since h(α, β) is analytic in α and β, this implies, by Cauchy’s formula, that the
asymptotics (8.2) can be differentiated any number of times without worsening the
error term. Hence, differentiating (8.1) and (8.2) once with respect to α and then
evaluating at α = 0, as n → +∞ we obtain

∂αE

(
|pn(t)|αeγ Nn(t)

)∣∣∣∣
α=0

= E(log |pn(t)|) =
∫ b

a
log |t − x |ρ(x)dx n + O(1),
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which is (1.30). Formula (1.29) is obtained similarly by differentiating (8.1) and (8.2)
once with respect to γ , and the asymptotics (1.31) are obtained by taking the second
derivatives with respect to α and γ .

Now, we prove part (b) of Theorem 1.6. Since Dn(w) is analytic in α1, . . . , αm ,
β1, . . . , βm , Theorem 1.4 implies that

Dn(w)

Dn(w)

m∏
k=1

eiπnβk =
m∏

k=1

eαk n
∫ b

a log |tk−x |ρ(x)dx e2π iβk n
∫ tk

a ρ(x)dx n
α2k
4 −β2

k Hn, (8.3)

where Hn is analytic in α1, . . . , αm, β1, . . . , βm , satisfies Hn|α1=...=αm=β1=...=βm=0
= 1, and is bounded as n → +∞ uniformly for α1, . . . , αm, β1, . . . , βm in small
neighborhoods of 0. This implies, again by Cauchy’s formula, that all the deriva-
tives of Hn with respect to α j , β j are also bounded as n → +∞ uniformly for
α1, . . . , αm, β1, . . . , βm in small neighborhoods of 0. Let a1, . . . , am, b1, . . . , bm ∈ R

be arbitrary but fixed. Hence, using (8.3) with

αk = √
2

ak√
log n

, 2π iβk = √
2π

bk√
log n

, k = 1, . . . , m,

and using also (1.9) and (1.32)–(1.33), as n → +∞ we obtain

E

[ m∏
j=1

ea jMn(t j )+b jNn(t j )

]
= exp

( m∑
j=1

(a2
j

2
+ b2j

2

)
+ O

(
1√
log n

))
. (8.4)

Since a1, . . . , am, b1, . . . , bm ∈ R were arbitrary, this implies the convergence in
distribution (1.34).

We now turn to the proof of part (c) of Theorem 1.6. Our proof is inspired by
Gustavsson [47, Theorem 1.2]. Let k j = [n ∫ t j

a ρ(x)dx], j = 1, . . . , m, and consider
the random variables Yn(t j ) defined by

Yn(t j ) = √
2π

n
∫ ξk j

a ρ(x)dx − k j√
log n

= μn(ξk j ) − k j

σn
, j = 1, . . . , m, (8.5)

where μn(t):=n
∫ t

a ρ(x)dx , σn := 1√
2π

√
log n. Given y1, . . . , ym ∈ R, we have

P
[
Yn(t j ) ≤ y j for all j = 1, . . . , m

] = P

[
ξk j ≤ μ−1

n

(
k j + y jσn

)
for all j = 1, . . . , m

]
,

= P

[
Nn

(
μ−1

n

(
k j + y jσn

)) ≥ k j for all j = 1, . . . , m
]
. (8.6)

For j = 1, . . . , m, let t̃ j :=μ−1
n

(
k j + y jσn

)
. As n → +∞, we have

k j = [μn(t j )] = O(n), t̃ j = t j

(
1 + O

(√
log n
n

))
. (8.7)
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Since Theorem 1.4 holds also in the case where t1, . . . , tm depend on n but remain
bounded away from each other (see (1.27)), note that the same is true for (8.4), and
therefore also for the convergence in distribution (1.34). Now, we rewrite (8.6) as

P
[
Yn(t j ) ≤ y j for all j = 1, ..., m

] = P

[
Nn(t̃ j ) − μn(t̃ j )√

σ 2
n

≥ k j − μn(t̃ j )√
σ 2

n

, j = 1, ..., m

]

= P

[
μn(t̃ j ) − Nn(t̃ j )√

σ 2
n

≤ y j for all j = 1, . . . , m

]
.

By (8.7), the parameters t̃1, . . . , t̃m remain bounded away from each other, and there-
fore Theorem 1.6 (b) implies that

(
Yn(t1), Yn(t2), . . . , Yn(tm)

) d−→N(0, Im). Now,
using the definitions (1.35) and (8.5) of Zn(t j ) and Yn(t j ), we obtain

P
[
Zn(t j ) ≤ y j , j = 1, ..., m

]

= P

[
Yn(t j ) ≤

μn(κk j + y j
σn

nρ(κk j )
) − μn(κk j )

σn
, j = 1, ..., m

]

= P
[
Yn(t j ) ≤ y j + o(1) for all j = 1, . . . , m

]

as n → +∞, which implies the convergence in distribution (1.36).
The rest of this section is devoted to the proof of Theorem 1.6 (d), and is inspired

from [18]. We first prove (1.37) in Lemma 8.1 below. The proof of (1.38) is given at
the end of this section.

Combining (1.9) and Theorem 1.4 with m = 1, α1 = 0 and β1 ∈ iR, and setting
γ :=2π iβ1 and t :=t1, we infer that for any δ ∈ (0, b−a

2 ) and M > 0, there exists
n′
0 = n′

0(δ, M) ∈ N and C = C(δ, M) > 0 such that

E
(
eγ Nn(t)) ≤ Cexp

(
γμn(t) + γ 2

2
σ 2

n

)
, μn(t) = n

∫ t

a
ρ(x)dx, σn = 1√

2π

√
log n,

(8.8)

for all n ≥ n′
0, t ∈ (a + δ, b − δ) and γ ∈ [−M, M].

Lemma 8.1 For any δ ∈ (0, b−a
2 ), there exist c > 0 such that for all large enough n

and small enough ε > 0,

P

(
sup

a+δ≤x≤b−δ

∣∣∣∣Nn(x) − μn(x)

σ 2
n

∣∣∣∣ ≤ 2π
√
1 + ε

)
≥ 1 − cn−ε . (8.9)

Proof Recall that κk = μ−1
n (k) is the classical location of the k-th smallest point ξk

and is defined in (1.28). Since μn and Nn are increasing function, for x ∈ [κk−1, κk]
with k ∈ {1, . . . , n}, we have

Nn(x) − μn(x) ≤ Nn(κk) − μn(κk−1) = Nn(κk) − μn(κk) + 1, (8.10)
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which implies

sup
a+δ≤x≤b−δ

Nn(x) − μn(x)

σ 2
n

≤ sup
k∈Kn

Nn(κk) − μn(κk) + 1

σ 2
n

,

where Kn = {k : κk > a + δ and κk−1 < b − δ}. Using a union bound, for any γ > 0
we find

P

(
sup

a+δ≤x≤b−δ

Nn(x) − μn(x)

σ 2
n

> γ

)
≤
∑

k∈Kn

P

(
Nn(κk) − μn(κk) + 1

σ 2
n

> γ

)

=
∑

k∈Kn

P

(
eγ Nn(κk) > eγμn(κk )−γ+γ 2σ 2

n

)
≤
∑

k∈Kn

E

(
eγ Nn(κk )

)
e−γμn(κk)+γ−γ 2σ 2

n ,

(8.11)

where for the last step we have used Markov’s inequality. Using (8.8), (8.11) and the
fact that #Kn is proportional to n as n → +∞, for any fixed M > 0 we obtain

P

(
sup

a+δ≤x≤b−δ

Nn(x) − μn(x)

σ 2
n

> γ

)
≤ C(δ, M) eγ e− γ 2

2 σ 2
n
∑

k∈Kn

1 ≤ c1n
1− γ 2

4π2

(8.12)

for all large enough n and γ ∈ (0, M], where c1 = c1(δ, M) > 0 is independent of n.
We show similarly that, for any M > 0,

P

(
sup

a+δ≤x≤b−δ

μn(x) − Nn(x)

σ 2
n

> γ

)
≤ c2n

1− γ 2

4π2 , (8.13)

for all large enough n and γ ∈ (0, M], and where c2 = c2(δ, M) > 0 is independent
of n. Taking together (8.12) and (8.13) with M = 4π (in fact any other choice of
M > 2π would be sufficient for us), we get

P

(
sup

a+δ≤x≤b−δ

∣∣∣∣Nn(x) − μn(x)

σ 2
n

∣∣∣∣ > γ

)
≤ max{c1(δ, 4π), c2(δ, 4π)} n

1− γ 2

4π2 ,

for all sufficiently large n and for any γ ∈ (0, 4π ]. Clearly, the right-hand side
converges to 0 as n → +∞ for any γ > 2π . We obtain the claim after taking
γ = 2π

√
1 + ε and setting c = max{c1(δ, 4π), c2(δ, 4π)}. ��

Lemma 8.2 Let δ ∈ (0, b−a
4 ) and ε > 0. For all sufficiently large n, if the event

sup
a+δ≤x≤b−δ

∣∣∣∣Nn(x) − μn(x)

σ 2
n

∣∣∣∣ ≤ 2π
√
1 + ε (8.14)
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holds true, then we have

sup
k∈(μn(a+2δ),μn(b−2δ))

∣∣∣∣μn(ξk) − k

σ 2
n

∣∣∣∣ ≤ 2π
√
1 + ε + 1

σ 2
n

, (8.15)

Proof We first show that

ξk ∈ (a + δ, b − δ), for all k ∈ (μn(a + 2δ), μn(b − 2δ)) (8.16)

and for all large enough n. Assume that ξk ≤ a + δ < a + 2δ ≤ κk . Since μn and Nn

are increasing,

μn(a + 2δ) ≤ μn(κk) = k = Nn(ξk) ≤ Nn(a + δ),

and therefore

Nn(a + δ) − μn(a + δ)

σ 2
n

≥ μn(a + 2δ) − μn(a + δ)

σ 2
n

≥ δ infa+δ≤ξ≤a+2δ μ′
n(ξ)

σ 2
n

.

Since μ′
n = nρ, the right-hand side tends to +∞ as n → +∞, which contradicts

(8.14) for large enough n. Similarly, if ξk ≥ b − δ > b − 2δ ≥ κk , then

μn(b − 2δ) ≥ μn(κk) = k = Nn(ξk) ≥ Nn(b − δ),

and we find

μn(b − δ) − Nn(b − δ)

σ 2
n

≥ μn(b − δ) − μn(b − 2δ)

σ 2
n

≥ δ infb−2δ≤ξ≤b−δ μ′
n(ξ)

σ 2
n

,

which again contradicts (8.14) for sufficiently large n. We conclude that (8.16) holds
for all large enough n.

Now, we prove (8.15) in two steps. First, we show that

μn(ξk) ≤ k + 1 + 2π
√
1 + ε σ 2

n , for all k ∈ (μn(a + 2δ), μn(b − 2δ)), (8.17)

and for all large enough n. For this, let m = m(k) ∈ Z be such that κk+m < ξk ≤
κk+m+1. The inequality (8.17) is automatically verified for m < 0. Now, we consider
the case m ≥ 0. Since k ∈ (μn(a + 2δ), μn(b − 2δ)), we know from (8.16) that
ξk ∈ (a + δ, b − δ) for all sufficiently large n, so we can use (8.14) to obtain

2π
√
1 + ε ≥ μn(ξk) − Nn(ξk)

σ 2
n

≥ m

σ 2
n

, i.e. m ≤ 2π
√
1 + ε σ 2

n ,

where the above inequality is valid for all sufficiently large n. Hence,

μn(ξk) ≤ μn(κk+m+1) = k + m + 1 ≤ k + 1 + 2π
√
1 + ε σ 2

n ,
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which proves (8.17). Our next goal is to prove the following complementary lower
bound for μ(ξk):

k − 2π
√
1 + ε σ 2

n ≤ μn(ξk), for all k ∈ (μn(a + 2δ), μn(b − 2δ)) (8.18)

for all large enough n. Let us assume μn(ξk) < k − m with m > 0. Using (8.16) with
(8.14), for all large enough n we obtain

2π
√
1 + ε ≥ Nn(ξk) − μn(ξk)

σ 2
n

>
m

σ 2
n

, for all k ∈ (μn(a + 2δ), μn(b − 2δ)).

In particular, we get m < 2π
√
1 + ε σ 2

n , which yields (8.18) and finishes the proof. ��
We can now prove (1.38) by combining Lemmas 8.1 and 8.2.

Proof of (1.38) By Lemma 8.1, for any δ′ ∈ (0, b−a
4 ), there exists c > 0 such that for

all small enough ε > 0 and for all large enough n, we have

P

(
sup

a+δ′≤x≤b−δ′

∣∣∣∣Nn(x) − μn(x)

σ 2
n

∣∣∣∣ ≤ 2π
√
1 + ε

)
≥ 1 − cn−ε . (8.19)

On the other hand, by Lemma 8.2 we have

P

(
A

∣∣∣∣ sup
a+δ′≤x≤b−δ′

|Nn(x) − μn(x)|
σ 2

n
≤ 2π

√
1 + ε

)
= 1, (8.20)

for all sufficiently large n, where A is the event that

sup
k∈(μn(a+2δ′),μn(b−2δ′))

|μn(ξk) − k|
σ 2

n
≤ 2π

√
1 + ε + 1

σ 2
n

.

Let δ > 0 be arbitrarily small but fixed. By applying Bayes’ formula on (8.19) and
(8.20) (with δ′ chosen such that μn(a + 2δ′) ≤ δn and (1 − δ)n ≤ μn(b − 2δ′)), we
conclude that there exists c > 0 such that

P

(
max

δn≤k≤(1−δ)n

∣∣∣∣
∫ ξk

a
ρ(x)dx − k

n

∣∣∣∣ ≤
√
1 + ε

π

log n

n
+ 1

n

)
≥ 1 − cn−ε, (8.21)

for all sufficiently large n. Note that the 1
n in the above upper bound is unimportant;

it can be removed at the cost of multiplying c by a factor larger than e2π
√
1+ε . More

precisely, (8.21) implies

P

(
max

δn≤k≤(1−δ)n

∣∣∣∣
∫ ξk

a
ρ(x)dx − k

n

∣∣∣∣ ≤
√
1 + ε

π

log n

n

)
≥ 1 − c′n−ε,
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for all sufficiently large n, where c′ = 2e2π
√
1+εc. Hence, for any small enough δ > 0

and ε > 0, there exists c > 0 such that

P

(
max

δn≤k≤(1−δ)n
ρ(κk)|ξk − κk | ≤

√
1 + ε

π

log n

n

)
= P

(
μn(κk −

√
1+ε
π

log n
nρ(κk)

) − k

n

≤ μn(ξk) − k

n
≤ μn(κk +

√
1+ε
π

log n
nρ(κk)

) − k

n
, for all k ∈ (δn, (1 − δ)n)

)

≥ P

(
max

δn≤k≤(1−δ)n

∣∣∣∣
∫ ξk

a
ρ(x)dx − k

n

∣∣∣∣ ≤
√
1 + ε

π

log n

n
− 1

n

)
≥ 1 − cn−ε,

for all sufficiently large n, which completes the proof of (1.38). ��
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A Model RH problems

In this section, α and β are such that Reα > −1 and Reβ ∈ (− 1
2 ,

1
2 ).

A.1 Bessel model RH problem for8Be(·) = 8Be(·; ˛)

(a) �Be : C \ �Be → C
2×2 is analytic, where �Be = (−∞, 0] ∪ e

2π i
3 (0,+∞) ∪

e− 2π i
3 (0,+∞) and is oriented as shown in Fig. 6.

(b) �Be satisfies the jump relations

�Be,+(z) = �Be,−(z)

(
0 1

−1 0

)
, z ∈ (−∞, 0),

�Be,+(z) = �Be,−(z)

(
1 0

eπ iα 1

)
, z ∈ e

2π i
3 (0,+∞),

�Be,+(z) = �Be,−(z)

(
1 0

e−π iα 1

)
, z ∈ e− 2π i

3 (0,+∞).

(A.1)

(c) As z → ∞, z /∈ �Be,

�Be(z) = (2π z
1
2 )−

σ3
2 A

(
I +

∞∑
k=1

�Be,k z−k/2

)
e2z

1
2 σ3 , A = 1√

2

(
1 i
i 1

)
,

(A.2)

where the matrices �Be,k are independent of z, and

�Be,1 = 1

16

(−(1 + 4α2) −2i
−2i 1 + 4α2

)
. (A.3)
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Fig. 6 The jump contour �Be
for �Be

0

(d) As z → 0,

�Be(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
O(1) O(log z)

O(1) O(log z)

)
, | arg z| < 2π

3 ,

(
O(log z) O(log z)

O(log z) O(log z)

)
, 2π

3 < | arg z| < π,

, if Reα = 0,

�Be(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(O(1) O(1)

O(1) O(1)

)
z

α
2 σ3 , | arg z| < 2π

3 ,

⎛
⎝O(z− α

2 ) O(z− α
2 )

O(z− α
2 ) O(z− α

2 )

⎞
⎠ , 2π

3 < | arg z| < π,

, if Reα > 0,

�Be(z) =
(O(z

α
2 ) O(z

α
2 )

O(z
α
2 ) O(z

α
2 )

)
, if Reα < 0.

(A.4)

The unique solution to this RH problem is expressed in terms of Bessel functions.
Since this explicit expression is unimportant for us, we will not write it down. The
interested reader can find more information and background on this RH problem in
e.g. [53, Section 6].

A.2 Confluent hypergeometric model RH problem

(a) �HG : C \ �HG → C
2×2 is analytic, with �HG = ∪8

j=1� j , and �1, . . . , �8 are
shown in Fig. 7.

(b) �HG satisfies the jumps

�HG,+(z) = �HG,−(z)Jk, z ∈ �k, k = 1, ..., 8, (A.5)

where J8 =
(

1 0
eiπαeiπβ 1

)
and

J1 =
(

0 e−iπβ

−eiπβ 0

)
, J5 =

(
0 eiπβ

−e−iπβ 0

)
, J3 = J7 =

(
e

iπα
2 0

0 e− iπα
2

)
,
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Fig. 7 The jump contour �HG
for �HG. Each of the rays
�1, . . . , �8 forms an angle with
(0, +∞) which is a multiple of
π
4

0
Γ7

Γ8
Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

I

II

III

IV V

V I

V II

V III

J2 =
(

1 0
e−iπαeiπβ 1

)
, J4 =

(
1 0

eiπαe−iπβ 1

)
, J6 =

(
1 0

e−iπαe−iπβ 1

)
.

(c) As z → ∞, z /∈ �HG, we have

�HG(z) =
(

I +
∞∑

k=1

�HG,k

zk

)
z−βσ3e− z

2 σ3 M−1(z), (A.6)

where

�HG,1 =
(
β2 − α2

4

)( −1 τ(α, β)

−τ(α,−β) 1

)
, τ (α, β) = −�

(
α
2 − β

)
�
(

α
2 + β + 1

) ,
(A.7)

and

M(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
iπα
4 σ3e−iπβσ3 ,

π

2
< arg z < π,

e− iπα
4 σ3e−iπβσ3 , π < arg z <

3π

2
,

e
iπα
4 σ3

(
0 1

−1 0

)
, −π

2
< arg z < 0,

e− iπα
4 σ3

(
0 1

−1 0

)
, 0 < arg z <

π

2
.

(A.8)

In (A.6), z−β has a cut along iR−, such that z−β ∈ R as z ∈ R
+.

As z → 0,
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�HG(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(O(1) O(log z)
O(1) O(log z)

)
, if z ∈ I I ∪ I I I ∪ V I ∪ V I I ,

(O(log z) O(log z)
O(log z) O(log z)

)
, if z ∈ I ∪ I V ∪ V ∪ V I I I ,

�HG(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(O(z
α
2 ) O(z− α

2 )

O(z
α
2 ) O(z− α

2 )

)
, if z ∈ I I ∪ I I I ∪ V I ∪ V I I ,

(O(z− α
2 ) O(z− α

2 )

O(z− α
2 ) O(z− α

2 )

)
, if z ∈ I ∪ I V ∪ V ∪ V I I I ,

�HG(z) =
(O(z

α
2 ) O(z

α
2 )

O(z
α
2 ) O(z

α
2 )

)
, (A.9)

where the first, second and third lines read for Reα = 0, Reα > 0 and Reα < 0,
respectively.

The unique solution to this RH problem is expressed in terms of hypergeometric
functions. Since we will not use the explicit expression of the solution, we will not
write it down here. In the case where α = 0, this RH problem was first solved in
[49]. We refer the interested reader to [32, Section 4.2] and [42, Section 2.6] for more
details and background on this RH problem for general values of α and β.
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