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Abstract
In this paper we prove some geometric inequalities for closed surfaces in Euclidean
three-space. Motivated by Gage’s inequality for convex curves, we first verify that for
convex surfaces the Willmore energy is bounded below by some scale-invariant quan-
tities. In particular, we obtain an optimal scaling law between the Willmore energy
and the isoperimetric ratio under convexity. In addition, we address Topping’s con-
jecture relating diameter and mean curvature for connected closed surfaces. We prove
this conjecture in the class of simply-connected axisymmetric surfaces, and moreover
obtain a sharp remainder term which ensures the first evidence that optimal shapes are
necessarily straight even without convexity.

Keywords Willmore energy · Convex surface · Diameter · Isoperimetric ratio · Mean
curvature flow · Topping’s conjecture
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1 Introduction

Throughout this paper, we call a closed surface� smoothly immersed intoR3 simply a
surface, if not specified. The purpose of this paper is to obtain some geometric inequal-
ities involving mean curvature in some classes of surfaces. The contents are mainly
two-fold: The first part aims at extending Gage’s classical isoperimetric inequality for
convex curves to surfaces: The second one is devoted to Topping’s conjecture relating
mean curvature and diameter.
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1.1 Gage-type inequalities for convex surfaces

A classical isoperimetric inequality by Gage [9] asserts that

∫
γ

κ2 ≥ π
L

A
(1.1)

holds for every convex Jordan curve γ in R2, where κ , L , A denote the curvature, the
length, and the enclosed area, respectively. The equality is attained only by a round
circle. Inequality (1.1) multiplied by L relates the normalized bending energy and the
isoperimetric ratio, which are different order measurements of roundness, as both are
scale invariant and minimized by round circles. As a corollary we deduce that every
curve shortening flow of convex curves decreases the isoperimetric ratio. This is a
direct consequence of (1.1) and the derivative formula along a curve shortening flow
{γt }t∈[0,T ):

d

dt

L2

A
= −2

L

A

( ∫
γt

κ2 − π
L

A

)
.

The convexity assumption in (1.1) is necessary due to a dumbbell-like curve with a
long thin neck, for which the length can be solely large. See also recent progress [4,8]
in which a weaker inequality is established even for nonconvex curves.

In this paper we first aim at extending Gage’s inequality to convex surfaces. To this
end we first look at the behavior of the isoperimetric ratio under mean curvature flow,
namely a one-parameter family of smooth closed surfaces {�t }t∈[0,T ) whose normal
velocity coincides with the mean curvature. Standard first variation formulae imply

that the isoperimetric ratio I = A
3
2 /V satisfies

d I

dt
= − A

1
2

V

(
3
∫

�t

H2 − A

V

∫
�t

H
)
, (1.2)

where A denotes the surface area, V the enclosed volume, and H the inward mean
curvature scalar, defined by the average of principle curvatures so that H ≡ 1 for the
unit sphere. Note that for round spheres the right-hand side of (1.2) is always zero,
and this is compatible with the fact that round spheres are self-shrinkers.

Our main result ensures that for convex surfaces the so-called Willmore energy∫
H2 can be related with the remaining term A

V

∫
H in a similar way to (1.1).

Theorem 1.1 There exists a universal constant C ≥ 4 such that

C
∫

�

H2 ≥ A

V

∫
�

H (1.3)

holds for every convex surface � ⊂ R
3. In addition, for every C < 4 there exists a

convex surface for which (1.3) does not hold.
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We thus obtain a higher dimensional version of Gage’s inequality up to a universal
constant (for example, we can take C = 108π ). On the other hand, we also discover
the necessary lower bound C ≥ 4 due to a cigar-like surface �ε, namely a cylinder
of radius ε � 1 and height 1 capped by hemispheres, which satisfies

∫
�ε

H2 ≈
(ε−1

2

)2
2πε = π

2ε
, and

A

V

∫
�ε

H ≈ 2πε

πε2

((ε−1

2

)
2πε

)
= 2π

ε
.

In particular, C = 3 is not allowable; this fact with (1.2) highlights the significant
difference from curve shortening flow that there exists a convex mean curvature flow
that increases the isoperimetric ratio in a short time interval. This should be also
compared with classical well-known results by Huisken [11], which give several evi-
dences that “convex mean curvature flows become spherical”; namely, every convex
initial surface retains convexity before shrinking to a point in finite time, and a nor-
malized flow converges to a round sphere. In addition, we should also recall that under

mean curvature flow the isoperimetric difference A
3
2 − 6

√
πV always monotonically

decreases, see e.g. [21,25].
Since it turned out that an “optimal shape” for (1.3) is not a round sphere, we are

now led to seek another form that is potentially optimized by a sphere. From this point
of view it is worth mentioning that, combining (1.3) with Minkowski’s inequality (see
e.g. (24) in [5, §20], [20, Notes for Section 6.2], or recent [1]):

∫
�

H ≥ √
4π A for convex �, (1.4)

we can directly relate the Willmore energy and the isoperimetric ratio I = A
3
2 /V .

Corollary 1.2 There exists a universal constant C ′ ≥ 3/(2
√

π) such that

C ′
∫

�

H2 ≥ I (1.5)

holds for every convex surface � ⊂ R
3. For C ′ < 3/(2

√
π) a round sphere does not

satisfy (1.5).

The lower bound of C ′ is due to a round sphere, in contrast to C . In fact, we expect
that the nature of (1.5) is quite different from that of (1.3) in view of the optimal con-
stants C = sup� E and C ′ = sup� E ′ for convex �, where E := ( A

V

∫
H)(

∫
H2)−1

and E ′ := I (
∫
H2)−1. One reason is that for a cigar-like surface �ε with ε � 1, we

already know E(�ε) ≈ 4 > 3 = E(S2), while E ′(�ε) = O(ε1/2) → 0. Finding the
optimal values of C and C ′ seems out of scope and is left open. At this time, only E ′
has potential to be optimized by a round sphere.

Both estimates (1.3) and (1.5) are optimal in view of the scaling laws. Indeed,
for a pancake-like surface �ε with ε � 1, namely the surface surrounding the ε-
neighborhood of a flat disk, both sides in (1.5) (and hence (1.3)) diverge as O(ε−1).
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The convexity assumption in (1.3) and (1.5) is unremovable as in Gage’s result.
Indeed, for a well-known example of a nearly double-sphere connected by a catenoid,
the left-hand sides in (1.3) and (1.5) diverge, while the Willmore energy remains less
than 8π , cf. [13,22].

Estimate (1.5) is meaningful only in the large-deviation regime (I � 1), although
Gage’s inequality is optimal even for nearly round curves. A kind of small-deviation
counterpart of (1.5) is already obtained by Röger–Schätzle [19]. They show that every
surface � with I (�) − I (S2) ≤ σ (not necessarily convex) satisfies

C̄
( ∫

�

H2 −
∫
S2

H2
)

≥ I (�) − I (S2) for some C̄(σ ) > 0. (1.6)

The presence of σ > 0 is in general necessary due to nearly double-spheres, but
Corollary 1.2 now implies that if we assume that � is convex, then (1.6) holds for
some universal constant C̄ (not depending on σ ). The proof of (1.6) is based on de
Lellis–Müller’s rigidity estimate for nearly umbilical spheres [7]. We remark that
the optimal constant in (a version of) de Lellis–Müller’s estimate is known if � is
convex [18] or outward-minimizing [1], but in order to know the optimal C̄ in (1.6) a
substantial progress seems necessary even if we assume convexity.

The main issue in proving Theorem 1.1 is how to relate the Willmore energy and
other quantities. Röger–Schätzle’s idea is applicable to nearly umbilical surfaces but
not to our large-deviation regime. Recently, a potential theoretic approach is devel-
oped for obtaining several old and new geometric inequalities [1–3], but it seems not
directly applicable to our problems. In addition, although many inequalities involving
total mean curvature are known for convex surfaces, e.g. by using the mean-width rep-
resentation (cf. [5]), much less is known about the Willmore energy. In particular, we
cannot obtain our estimates via the Cauchy–Schwarz inequality

∫
H2 ≥ A−1(

∫
H)2

since this is not sharp for pancake-like surfaces.
Our idea is to establish and employ the following estimate for convex surfaces:

diam(�)p−2
∫

�

H p > cpD p−1 (1 ≤ p < ∞), (1.7)

where diam(�) denotes the extrinsic diameter, and D the “degeneracy” (defined in
Sect. 2), which is comparable with the minimal width under diam(�) = 1. Theorem
1.1 then follows by (1.7) with p = 2 and by the additional estimate that D � A

V

∫
H .

The proof of (1.7) is based on a slicing argument with the help of geometric restriction
due to convexity.As a key ingredientwe also use the general scaling law

∫ |κ|p � r1−p

for each cross section plane curve,where r is theminimalwidth of the curve.Wefinally
indicate that our explicit choice of cp in (1.7) is not optimal in general but sharp as
p → 1, and in particular c1 = π agrees with the optimal constant in Topping’s
conjecture, the details of which are given below.

1.2 Topping’s conjecture for axisymmetric surfaces

In his 1998 paper [25] Topping poses the following
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Conjecture Let � ⊂ R
3 be an immersed connected closed surface. Then

1

diam(�)

∫
�

|H | > π. (1.8)

The constant π cannot be improved due to cigar-like surfaces. In [26] Topping
himself already proves amodified version of (1.8), whichweakensπ to π

32 but strength-
ens diam(�) to the intrinsic diameter (and also deals with higher dimensions). The
exact form of (1.8) is classically known for convex surfaces, where a degenerate seg-
ment is optimal (see Sect. 3.3). To the author’s knowledge, the other known case
is only for constant mean curvature (CMC) surfaces [24]. For CMC surfaces, even∫
�

|H | ≥ 2π diam(�) holds true, with equality only for a round sphere, and hence
this class does not contain optimal shapes. Therefore, the unique nature of Topping’s
conjecture seems not well understood for nonconvex surfaces.

In this paper we gainmore insight into Topping’s conjecture by focusing on axisym-
metric surfaces. This class is flexible enough to include both nearly optimal and highly
nonconvex surfaces. The assumption of axisymmetry fairly reduces the freedom of
surfaces, but certainly keeps substantial difficulties; for example, even for the simplest
dumbbell-like surface, the diameter may not be attained in the axial direction; even
if attained, the co-area formula in that direction may involve a part where the mean
curvature vanishes, so that we cannot directly extract the diameter and do need further
quantitative controls.

Our main result, however, gives an affirmative answer to Topping’s conjecture
for every simply-connected axisymmetric surface (including dumbbells). In fact, we
obtain a stronger assertion by discovering a sharp remainder term. For a simply-
connected axisymmetric surface �, we define a scale-invariant quantity U by

U (�) :=
( ∫ 1

0

√
1 − T (t) · ωaxisdt

)2

whereωaxis is a unit vector parallel to an axis of symmetry Laxis, and T denotes the unit
tangent of a constant-speed minimal geodesic γ� : [0, 1] → � ⊂ R

3 in� connecting
a (unique) pair of points in�∩Laxis such that γ�(1)−γ�(0) = λωaxis holds for some
λ ≥ 0. Note that� is generated by revolving γ� around Laxis; we call γ� a generating
curve of� as usual. We also remark that unless� is a round sphere, Laxis is unique so
that ωaxis is unique up to the sign, and γ� is unique up to the revolution and the choice
of parameter-orientation. In particular, U (�) is well defined and strictly positive for
any given �. The quantityU (�) measures a certain deviation from a “unidirectional”
shape since U (�) � 1 corresponds to |T − ωaxis| � 1 in a certain sense.

Here is our main result concerning Topping’s conjecture.

Theorem 1.3 There exists a universal constant σ > 0 such that

1

diam(�)

∫
�

|H | ≥ π + σU (�) (1.9)

holds for every simply-connected axisymmetric surface � ⊂ R
3.
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Theorem 1.3 is sharp in the sense that there is a sequence such that the ratio
1

U (�ε)
( 1
diam(�ε)

∫
�ε

|H | − π) converges as ε → 0. However, for a cigar-like sur-

face �ε this ratio diverges and behaves like ε−1. One example for which the ratio
converges is a “double-cone” surface, which is made by connecting the circular bases
of two thin cones (see Remark 3.6). This reveals that conical ends are more favorable
than round caps at a higher order level.

Estimate (1.9) not only directly verifies Topping’s conjecture for a new class of
surfaces, but also implies that a minimizing sequence in that class needs to degenerate
into a segment, thus giving the first evidence for nonconvex surfaces that optimal
shapes are necessarily almost straight.

Corollary 1.4 Topping’s conjecture (1.8) holds true for every simply-connected
axisymmetric surface. Moreover, for a sequence {�n}n of such surfaces, if

lim
n→∞

1

diam(�n)

∫
�n

|H | = π,

then up to similarity a sequence {γ�n }n of generating curves of �n converges to a
unit-speed segment γ̄ : [0, 1] → R

3 in the sense of W 1,p for every 1 ≤ p < ∞.

The convergence in W 1,p is optimal in the sense that γn does not converge to γ̄ in
W 1,∞ since at the endpoints γn is perpendicular to an axis of symmetry and hence to
γ̄ ; even in the interior, γn may have small loops that vanish as n → ∞.

In the proof of Theorem 1.3, given an axisymmetric �, we construct a comparison
convex surface �′ such that

∫
�

|H | ≥ ∫
�′ |H | and diam(�′) ≥ diam(�) by using a

rearrangement argument introduced in [6], in which Minkowski’s inequality (1.4) is
extended to certain axisymmetric surfaces. Since the mean curvature is already well
studied in [6], our main contribution in this argument is concerning the diameter,
which is less tractable due to its nonlocal nature. In addition, in order to extract
the remainder U , we need essentially new quantitative controls in the rearrangement
procedures.

This paper is organized as follows. In Sect. 2 we first prove estimate (1.7) and
then prove Theorem 1.1. In Sect. 3 we first recall the rearrangement arguments and
establish general diameter estimates, and then prove Theorem 1.3.

1.3 Notation

The notation f � g means that there is a universal C > 0 such that f ≤ Cg holds.
We also define f � g similarly, and use f ∼ g in the sense that both f � g and
f � g hold. In addition, the notation f � g in an assumption means that there exists
ε > 0 such that if f ≤ εg, then the assertion holds.
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2 Gage-type inequalities for convex surfaces

We first define the degeneracy of a convex surface �. For a unit vector ω ∈ S
2 ⊂ R

3

the width (breath) of � in the direction ω is defined by

b�(ω) := max{(q − q ′) · ω | q, q ′ ∈ � ⊂ R
3},

where · denotes the inner product in R
3. The extrinsic diameter of � is given by

diam(�) := max{b�(ω) | ω ∈ S
2}.

Then we define the degeneracy D of � by

D(�) := max

{
b�(ω0)

b�(ω)

∣∣∣∣ω,ω0 ∈ S
2, ω · ω0 = 0,

b�(ω0) = diam(�)

}
. (2.1)

Note that the degeneracy D is comparable with the ratio (diameter)/(minimal width)
up to universal constants, but slightly different as ω is taken from the orthogonal
complement of a diameter-direction ω0. Here we adopt this D for computational
simplicity.

Now we are in a position to state (1.7) rigorously.

Theorem 2.1 Every convex surface � ⊂ R
3 satisfies

diam(�)p−2
∫

�

H p > cpD p−1, (2.2)

where cp is a positive constant depending only on p. In particular, we can take

cp = 2
( ∫ ∞

0
(1 + t2)

1−3p
2p dt

)p(
2

∫ 1/2

0
(1 + t−2)

1−p
2 dt

)
.

Remark 2.2 The above choice yields the optimal constant c1 = π only for p = 1. In
the case of p = 2, we have c2 = 2( 12B( 12 ,

3
4 ))

2(
√
5 − 2) = 0.6777700... ≥ 2

3 , where
B denotes the beta function.

Our proof of Theorem 2.1 is based on a slicing argument, and hence it is important
to gain scale-analytic insight into the curvature energy for plane curves; such a point
of view played important roles in previous variational studies of elastic curves, see
e.g. [15–17]. In this paper we use the fact that each cross section curve of a convex
surface has a lower bound (also valid for nonconvex curves).

Lemma 2.3 Let p ≥ 1. For an immersed closed plane curve γ bounded by two parallel
lines of distance r > 0, we have

∫
γ

|κ|pds ≥ c̃pr
1−p, (2.3)
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where κ denotes the curvature and s the arclength parameter of γ , and

c̃p = 2
(
2

∫ ∞

0
(1 + t2)

1−3p
2p dt

)p = 2
(
B

( 1
2 ,

2p−1
2p

))p
.

Proof Up to rescaling we may assume that r = 1.
In addition, up to a rigid motion, we may assume that γ lies in the strip region

[0, 1]×R. Then the curve γ contains at least two disjoint graph curves represented by
functions ui : (ai , bi ) → R (i = 1, 2) with 0 ≤ ai ≤ bi ≤ 1 such that u′

i (ci ) = 0 at
some ci ∈ (ai , bi ), and |u′

i (x)| → ∞ both as x ↓ ai and as x ↑ bi ; indeed, such graphs
are found near the maximum and minimum of γ in the vertical direction. Dropping
the index i , we now prove for the graph curve Gu := {(x, u(x)) ∈ R

2 | x ∈ [a, b]}
that

∫
Gu

|κ|pds ≥ c̃p
2

, (2.4)

which implies (2.3) after addition with respect to the two graphs.
We begin with the direct computation that

∫
Gu

|κ|pds =
∫ b

a

( |u′′|
(1 + |u′|2)3/2

)p√
1 + |u′|2dx =

∫ b

a

∣∣∣( f (u′)
)′∣∣∣p dx,

where f (t) := ∫ t
0 (1 + τ 2)

1−3p
2p dτ . Applying the Hölder inequality to the right-hand

side, and recalling that b − a ≤ 1, we have

∫
Gu

|κ|pds ≥
( ∫ b

a

∣∣∣( f (u′)
)′∣∣∣ dx

)p
.

Now for (2.4) it suffices to prove

∫ b

a

∣∣∣( f (u′)
)′∣∣∣ dx ≥ 2

∫ ∞

0
f ′(t)dt =

( c̃p
2

)1/p
.

This follows by decomposing the left-hand side’s integration interval at c ∈ (a, b)
(where u′(c) = 0) and by using, for each of the two integrals, the triangle inequality∫ |( f (u′))′| ≥ | ∫ ( f (u′))′|, the boundary conditions |u′(a + 0)| = |u′(b − 0)| = ∞
and u′(c) = 0, and also the oddness of f . ��

In the case of p = 2, the same kind of lemma is obtained in [16, Lemma 4.3]. In
addition, Henrot-Mounjid [10] study a closely related problem, which minimizes the
same curvature energy with p = 2 among convex curves of prescribed inradius rin;
the inradius is always bounded by the half-width r/2. The constants in both [10,16]
are represented by using cos θ , but they are in fact the same as our constant c̃p with
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p = 2 after a change of variables. In view of this, we can also represent c̃p as

c̃p = 2
(
2

∫ π/2

0
(cos θ)

p−1
p dθ

)p
.

Remark 2.4 (Optimality of c̃p) Compared to cp in Theorem 2.1, the value of c̃p is more
important because of its optimality. Below we briefly argue the optimality, assuming
p > 1; the case of p = 1 is trivial. Let f be as in the proof of Lemma 2.3. Let
u : [−1, 1] → R be the primitive function of the increasing function f −1(Ax), where
A := limt→∞ f (t) ∈ (0,∞), such that u(0) = 0. Then u is a symmetric convex
function such that limx→±1 |u′(x)| = ∞, and also limx→±1 |u(x)| is defined as a
finite value because for x ∈ (0, 1) we have

u(x) =
∫ x

0
f −1(Ay)dy = 1

A

∫ f −1(Ax)

0
z f ′(z)dz,

and z f ′(z) ∼ z
1−2p

p as z → ∞, where the exponent 1−2p
p is strictly less than −1. In

addition, we have the identity ( f (u′))′ ≡ A so that in view of the Hölder inequality in
the proof of Lemma 2.3, it is straightforward to check that a closed convex curve made
by connecting the graph curve of u and its vertical reflection attains the equality in (2.3)
for r = 2. Notice that the resulting closed curve is of class C2 (but not C3); the only
nontrivial point is whether the curvature is well definedwhere the two graph curves are
connected, but in fact the curvature vanishes there since ( f (u′))′ = |κ|p√1 + |u′|2
is constant while |u′(x)| → ∞ as |x | → 1. We finally remark that when p = 2,
the graph curve of u corresponds to the so-called rectangular elastica, and our closed
curve coincides with the one constructed by Henrot-Mounjid.

Now we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1 Up to rescaling wemay assume that diam(�) = 1 and only need
to prove that

∫
�

H p > cpD p−1. (2.5)

Step 1. Choose one direction ω ∈ S
2 such that b�(ω) = 1 (= diam(�)). Up to a

rigid motion, we may assume that the height function h(q) := q · ω maps � to [0, 1].
Let �t denote the cross section {q ∈ � | h(q) = t} for t ∈ (0, 1). In addition, let
θω ∈ [0, π ] denote the angle between ω and the outer unit normal ν of �, so that
cos θω = ν · ω. Note that sin θω > 0 for t ∈ (0, 1). Then the co-area formula yields

∫
�

H pdH2 =
∫ 1

0

∫
�t

H p

sin θω

dH1dt, (2.6)

where Hd denotes the d-dimensional Hausdorff measure. Moreover, at any point
q ∈ � such that t = h(q) ∈ (0, 1), let k�t be the inward curvature of the cross section
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curve�t , and let κω be the inward curvature of a (unique) curve contained in� and the
plane P := q + span{ν(q), ω}. Then from a simple geometric calculation we deduce

2H = k�t sin θω + κω. (2.7)

Therefore, inserting (2.7) into (2.6), and using the fact that (X + Y )p ≥ X p for
X ,Y ≥ 0 with equality only for Y = 0, we obtain

∫
�

H pdH2 >
1

2p

∫ 1

0

∫
�t

k p�t
(sin θω)p−1dH1dt . (2.8)

The strict positivity follows since otherwise κω ≡ 0 but this contradicts the fact that
� is closed e.g. in view of the Gauss–Bonnet theorem.

Step 2. We then prove that for every t ∈ (0, 1) and q ∈ � with t = h(q),

sin θω(q) ≥ g(t) :=
(
1 + ( 1

2 − |t − 1
2 |

)−2
)− 1

2
. (2.9)

By symmetry we only need to argue for t ≤ 1
2 and prove that

sin θω(q) ≥
(
1 + t−2

)−1/2
. (2.10)

Fix q ∈ � (and hence also t = h(q) ≤ 1
2 ). Up to a rigid motion, we may assume that

the maximum (resp. minimum) of the height function h is attained by (1, 0, 0) (resp.
(0, 0, 0)), so that ω = (1, 0, 0) in particular, and also that there is some function

f : [0, 1] → [0, 1] concave, f (0) = f (1) = 0, (2.11)

such that q ∈ G f ⊂ �, where G f := {(x, 0, f (x)) ∈ R
3 | x ∈ [0, 1]}. Note that

the upper bound f ≤ 1 follows since diam(�) = 1. Then an elementary geometry
implies that sin θω ≥ sin θ ′

ω for the angle θ ′
ω between ω and the normal (− f ′(t), 0, 1)

of f , that is,

sin θω(q) ≥ 1√
1 + | f ′(t)|2 . (2.12)

In addition, by the geometric restriction (2.11) of f , we have for t ≤ 1
2 ,

| f ′(t)| ≤ 1

t
. (2.13)

Indeed, f ′(t) ≤ 1/t holds since otherwise f ′(x) > 1/t for x ∈ (0, t) by concavity but
this contradicts f ≤ 1 and f (0) = 0; by symmetry, using f (1) = 0, we also obtain
f ′(t) ≥ 1/(1 − t); since t ≤ 1

2 , these two estimates imply (2.13). From (2.12) and
(2.13) we deduce the desired (2.10).
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Step 3. We finally complete the proof. Inserting (2.9) into (2.8), we now obtain

∫
�

H pdH2 >
1

2p

∫ 1

0
g(t)p−1

∫
�t

k p�t
dH1dt . (2.14)

By definition ofD (and diam(�) = 1), we can apply Lemma 2.3 with r = 1/D to �t

to the effect that

∫
�t

k p�t
dH1 ≥ c̃pD p−1, (2.15)

where the right-hand side does not depend on t . Therefore, inserting (2.15) to (2.14),
we obtain the desired (2.5) for cp := 2−pc̃p

( ∫ 1
0 g(t)p−1dt

)
; this constant agrees with

the one in the statement of Theorem 2.1 after simple calculations. ��
We now estimate the degeneracy D to prove Theorem 1.1. A key fact we use is the

following scaling law (whose prefactor is not optimal).

Lemma 2.5 For a convex surface �, we have

diam(�)
A

V
≤ 36D. (2.16)

Proof Up to rescaling we may assume that diam(�) = 1. Let r := 1/D for notational
simplicity. Fixing a diameter direction ω0 ∈ S

2 such that b�(ω0) = 1, we let ρ1 ∈
[r , 1] denote the maximal width among all directions orthogonal to ω0, that is, ρ1 :=
max{b�(ω) | ω · ω0 = 0}, and ω1 ∈ S

2 be a maximizer so that b�(ω1) = ρ1 and
ω1 · ω0 = 0. We now separately prove

A(�) ≤ 6ρ1 and V (�) ≥ rρ1
6

, (2.17)

which immediately imply A/V ≤ 36/r = 36D.
To this end we use the fact that there exists a rectangular (convex body) Q ⊂ R

3

containing� such that each side is perpendicular to one of ω0, ω1, ω2, where ω2 ∈ S
2

is chosen to be orthogonal to both ω0 and ω1, and such that the side-lengths of Q are
1, ρ1, ρ2, where ρ2 := b�(ω2) ∈ [r , ρ1]. Then the first estimate in (2.17) follows by
the area-monotonicity of convex surfaces that � ⊂ Q ⇒ A(�) ≤ A(∂Q), which
combinedwith ρ2 ≤ ρ1 ≤ 1 implies that A(�) ≤ A(∂Q) = 2(ρ2+ρ1+ρ1ρ2) ≤ 6ρ1.
For the second estimate in (2.17) we further use the fact that � touches all sides of Q.
More precisely, assuming without loss of generality that ω0, ω1, ω2 form the standard
basis of R3 and that Q = [0, 1] × [0, ρ1] × [0, ρ2], we can find points in � ∩ ∂Q of
the form

(0, a1, a2), (1, a
′
1, a

′
2), (a3, 0, a4), (a

′
3, ρ, a′

4), (a5, a6, 0), (a
′
5, a

′
6, r) ∈ � ∩ ∂Q.

(2.18)
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In addition, since ω0 and ω1 are defined via maximization, we have

ai = a′
i for i = 1, 2, 4. (2.19)

Then the polyhedron P defined by the convex hull of the points in (2.18) is enclosed
by�, and in addition under the constraint (2.19) we deduce from a direct computation
that the enclosed volume of P is ρ2ρ1/6, so that V (�) ≥ ρ2ρ1/6 ≥ rρ1/6. The proof
is complete. ��

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 By Theorem 2.1 with p = 2 and Lemma 2.3, we obtain

diam(�)
A

V
≤ 36

c2

∫
�

H2.

In addition, since the total mean curvature of a convex surface can be represented by
the mean width, namely

∫
�
H = 2πB, where B = 1

|S2|
∫
S2
b�(ν)dS(ν) (cf. (19) &

(22) in [5, Chapter 4]), and since b�(ν) ≤ diam(�) in every direction ν by definition
of diameter, we have

∫
�

H ≤ 2π diam(�), (2.20)

completing the proof with C = 72π/c2. (As c2 ≥ 2/3, we can take C = 108π .) ��
In the rest of this section we briefly observe that D can be also related with other

scale invariant quantities with optimal exponents; the reader may skip this part as these
estimates are not used any other part of this paper. For notational simplicity, we let
d := diam(�) and M := ∫

�
H .

We begin with indicating that in fact the converse of Lemma 2.3 also holds, i.e.,

D ∼ d
A

V
∼ M

A

V
. (2.21)

Indeed, again letting d = 1, r = 1/D, and ω0 be such that b�(ω0) = 1, if we
choose ω2 to be attaining the minimal width so that b�(ω2) = r =: ρ2, and ω1
to be orthogonal to both ω0 and ω2, and write ρ1 = b�(ω1), and in addition if
we similarly take a rectangular Q and a polyhedron P to the proof of Lemma 2.3,
then we have A(�) ≥ A(∂P) � ρ1 and V (�) ≤ V (∂Q) � ρ1ρ2 = ρ1r so that
A/V � 1/r . Therefore, after retrieving d and combining with Lemma 2.3, we obtain
the first relation in (2.21). The second one follows by the fact that d ∼ M holds under
convexity; in fact, we have d � M (even without convexity by Topping’s inequality
[26]), while (2.20) implies that M � d under convexity.

Next we focus on the isoperimetric ratio I = A
3
2 /V , for which we have

I � D � I 2. (2.22)
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The first one is already observed, cf. (2.21) and (1.4), while the second one follows
since 3V M ≤ A2 (cf. [5, p.145]). Note that both sides in (2.22) are optimal because
for a pancake-like (resp. cigar-like) surface �ε, we have I = O(ε−1) ∼ D (resp.
I 2 = O(ε−1) ∼ D).

We finally indicate that the ratio R := rout/rin, where rout and rin are the circum-
radius and the inradius, respectively, is completely comparable with D:

R ∼ D. (2.23)

Indeed, assuming that d = 1 up to rescaling, we obviously have rout ∼ 1 and rin ≤
1/D, and hence D � R; in addition, since the polyhedron P in the proof of Lemma
2.3 encloses a ball of radius ∼ 1/D, we also have D � 1/rin ∼ R.

3 Topping’s conjecture for axisymmetric surfaces

In this section we prove Theorem 1.3, namely Topping’s conjecture with a rigidity
estimate. Throughout this section, for notational simplicity, we let

M(�) :=
∫

�

|H |.

Since we focus on axisymmetric surfaces, we may hereafter assume the following

Hypothesis 3.1 (Simply-connected axisymmetric surface) A surface � is represented
by using an immersed C1,1 plane curve γ = (x, z) : [0, L] → R

2 as

� =
{(
x(s) cosφ, x(s) sin φ, z(s)

) ∈ R
3 | 0 ≤ s ≤ L, 0 ≤ φ < 2π

}
,

where γ is parametrized by the arclength s ∈ [0, L], and satisfies x(0) = z(0) =
x(L) = 0, z(L) ≥ 0, γs(0) = (1, 0), γs(L) = (−1, 0), and also x(s) > 0 for any
s ∈ (0, L). (The notation γs means the derivative with respect to s.) For such a surface,
throughout this section, we let θ : [0, L] → R denote a unique Lipschitz function
such that for s ∈ [0, L],

x(s) =
∫ s

0
cos θ(t)dt, z(s) =

∫ s

0
sin θ(t)dt,

and such that θ(0) = 0. Note that θ(L) ∈ π + 2πZ.

Our strategy is to reduce the problem into the convex one by constructing, for a
given� satisfyingHypothesis 3.1, a comparison axisymmetric convex surface�′ such
that M(�) ≥ M(�′) and diam(�) ≤ diam(�′). To this end, following the strategy
in [6], we perform two kinds of rearrangement. The first one is to make the curve
not going down vertically, while keeping the horizontal behavior. The second one
is to make the curve convex by rearranging the tangential angle. The reason why we
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weaken the regularity of� toC1,1 in Hypothesis 3.1 is that the best regularity retained
in these rearrangements is the Lipschitz continuity of θ , that is the C1,1-regularity of
�. (Notice that the C1,1-regularity is enough for defining M since C1,1 = W 2,∞.)

3.1 First rearrangement

Given θ as in Hypothesis 3.1, we define θ� by

θ�(s) := dist(θ(s), 2πZ) for s ∈ [0, L], (3.1)

so that θ�([0, L]) = [0, π ]. Note that θ� is Lipschitz, θ�(0) = 0 and θ�(L) = π . For
the corresponding curve γ� = (x�, z�) starting from the origin, we have x�(L) = 0 as
cos θ� = cos θ , and z�(L) > 0 as sin θ� ≥ 0 and sin θ� �≡ 0. Hence the corresponding
surface �� still satisfies Hypothesis 3.1.

For the first rearrangement we have

M(�) = M(��), diam(�) ≤ diam(��). (3.2)

Since the equality for M is already known (cf. [6] or Appendix A), we only need to
check the diameter control, which is not difficult.

Lemma 3.2 (Diameter control: first rearrangement) Let � satisfy Hypothesis 3.1, and
let �� be obtained by the first rearrangement of �. Then diam(�) ≤ diam(��).

Proof Notice the general fact for an axisymmetric surface that, using the reflection
operator R : (x, z) �→ (−x, z), we can represent diam(�) by the maximum of
dist(γ (s1), Rγ (s2)) over s1, s2 ∈ [0, L]. Notice that x ≡ x� holds since cos θ ≡ cos θ�

follows by definition of the first rearrangement. Therefore, it now suffices to show that
the vertical distance of any two points does not contract, i.e.,

|z�(s2) − z�(s1)| ≥ |z(s2) − z(s1)| for 0 ≤ s1 < s2 ≤ L.

This follows by the fact that sin θ� = | sin θ | so that

|z�(s2) − z�(s1)| = ∣∣
∫ s2

s1
sin θ�

∣∣ =
∫ s2

s1
| sin θ | ≥ ∣∣

∫ s2

s1
sin θ

∣∣ = |z(s2) − z(s1)|.

The proof is complete. ��

3.2 Second rearrangement

Given θ as in Hypothesis 3.1 such that θ([0, L]) = [0, π ], we define θ∗ : [0, L] →
[0, π ] by the standard nondecreasing rearrangement of θ :

θ∗(s) = sup{c ∈ [0, π ] | s ≥ L − m({θ ≥ c})} for s ∈ [0, L], (3.3)
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where m({θ ≥ c}) means the Lebesgue measure of {s ∈ [0, L] | θ(s) ≥ c} (see e.g.
[12] for details of the rearrangement argument). Then the resulting surface�∗ is clearly
convex as θ∗ is monotone. In addition,�∗ still satisfies Hypothesis 3.1; indeed, thanks
to well-known properties of the rearrangement, the function θ∗ inherits the Lipschitz
continuity of θ [12, Lemma 2.3], and the corresponding curve γ∗ = (x∗, z∗) starting
from the origin retains all the boundary conditions, i.e.,

θ∗(0) = θ(0) = 0, θ∗(L) = θ(L) = π, γ∗(0) = γ (0), γ∗(L) = γ (L),

(3.4)

where in particular the last condition follows by the integration-preserving property:∫ L
0 f (θ(s))ds = ∫ L

0 f (θ∗(s))ds for any continuous function f [12, p.22, (C)].
For the second rearrangement we have

M(�) ≥ M(�∗), diam(�) ≤ diam(�∗). (3.5)

Here the remaining task is again only to establish the diameter control (cf. [6] or
Appendix A). This second diameter control needs a more delicate argument, but it
turns out that the following fine property holds.

Lemma 3.3 (Diameter control: second rearrangement) Let � satisfy Hypothesis 3.1.
Suppose that θ([0, L]) = [0, π ]. Let �∗ be the convex surface obtained by the second
rearrangement of �. Then �∗ encloses �. In particular, diam(�∗) ≥ diam(�).

Proof Step 1. We first reduce the problem by using symmetry. Fix a unique point
s̄ ∈ [0, L] such that θ∗(s̄) = π/2 and such that θ∗(s) < π/2 for every s < s̄; in
other words, s̄ is the first point where x∗ attains the maximum. Then we can represent
the convex curve γ∗ (corresponding to �∗) on the restricted interval [0, s̄] by a graph
curve, namely,

there is a nondecreasing convex function U∗ such that

γ∗([0, s̄]) = G∗ := {(x,U∗(x)) ∈ R
2 | x ∈ [0, x∗(s̄)]}.

(3.6)

Notice that by symmetry it is sufficient for Lemma 3.3 to prove that the image of γ is
included in the epigraph of U∗:

γ ([0, L]) ⊂ G+∗ := {(x, z) ∈ R
2 | z ≥ U∗(x), x ∈ [0, x∗(s̄)]}. (3.7)

Indeed, if we establish (3.7), then since the procedures of rearrangement and vertical
reflection are commutative, using (3.7) also for the reflected curve γ̃ (s) = (x(L −
s), z(L) − z(L − s)), we find that the same kind of inclusion as (3.7) also holds for
the subgraph of the upper-part of γ∗, so that the desired assertion holds.

For later use we put down an elementary geometric property of G+∗ , cf. (3.6):

(x, z) ∈ G+∗ �⇒
(
0 ≤ x ′ ≤ x, z′ ≥ z ⇒ (x ′, z′) ∈ G+∗

)
. (3.8)
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Step 2.Nowweprove (3.7);more precisely,we fix an arbitrary s† ∈ [0, L] and prove
that (x(s†), z(s†)) ∈ G+∗ . Let θ† := (θ |[0,s†])∗, i.e., the nondecreasing rearrangement
of the restriction θ |[0,s†]. Let γ† = (x†, z†) be the corresponding convex curve defined
on [0, s†], which in particular satisfies

γ†(0) = (0, 0), γ†(s†) = γ (s†), (3.9)

by the integration-preserving property of rearrangement. Thus we only need to prove
that γ†(s†) ∈ G+∗ . In what follows we prove the stronger assertion that

γ†([0, s†]) ⊂ G+∗ . (3.10)

We first notice that as the general property of rearrangement,

θ†(s) ≥ θ∗(s) for every s ∈ [0, s†]. (3.11)

Indeed, letting ϕ := θχ[0,s†] + πχ(s†,L], where χ denotes the characteristic function,
we have ϕ ≥ θ on [0, L] and hence ϕ∗ ≥ θ∗ by the order-preserving property [12,
p.21, (M1)], and also θ†(s) = ϕ∗(s) for s ∈ [0, s†].

Using (3.11), we prove that

0 ≤ x†(s) ≤ x∗(s) for every s ∈ [0, s†]. (3.12)

Indeed, since cos θ is decreasing on [0, π ], and since θ† is nondecreasing on [0, s†]
and valued into [0, π ], the function x†(s) = ∫ s

0 cos θ† is concave on [0, s†] and hence
x†(s) ≥ min{x†(0), x†(s†)} ≥ 0, cf. (3.9). In addition, thanks to (3.11), we have
x†(s) = ∫ s

0 cos θ† ≤ ∫ s
0 cos θ∗ = x∗(s), completing the proof of (3.12).

Wenowprove (3.10) by considering the behaviors of z∗ and z†. Belowwe separately
consider the two intervals [0, σ†] and [σ†, s†], where σ† ∈ [0, s†] denotes the maximal
s ∈ [0, s†] such that θ†(s) ≤ π/2. (Note that σ† may coincide with s†.) Concerning
the first interval [0, σ†], we have

z†(s) ≥ z∗(s) for every s ∈ [0, σ†]. (3.13)

Indeed, if s ≤ σ†, then θ∗([0, s]) ⊂ θ†([0, s]) ⊂ [0, π/2] by (3.11) and by definition
of σ†; hence, by (3.11) and by the fact that sin θ is increasing on [0, π/2], we obtain
z†(s) = ∫ s

0 sin θ† ≥ ∫ s
0 sin θ∗ = z∗(s), completing the proof of (3.13). Therefore, by

using (3.12), (3.13), and the obvious inclusion γ∗([0, σ†]) ⊂ G+∗ , we deduce from the
geometric property (3.8) that

γ†([0, σ†]) ⊂ G+∗ . (3.14)

Concerning the remaining part [σ†, s†], since θ†([σ†, s†]) ⊂ [π/2, π ] by definition of
σ†, we have (x†)s = cos θ† ≤ 0 and (z†)s = sin θ† ≥ 0 on [σ†, s†], and hence

x†(s) ≤ x†(σ†), z†(s) ≥ z†(σ†) for every s ∈ [σ†, s†].
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Using this property with the facts that x† ≥ 0, cf. (3.12), and that (x†(σ†), z†(σ†)) ∈
G+∗ , cf. (3.14), we deduce from the geometric property (3.8) that γ†([σ†, s†]) ⊂ G+∗ .

This combined with (3.14) implies (3.10), thus completing the proof. ��

3.3 Rigidity estimates

Topping’s conjecture itself is now already proved for simply-connected axisymmetric
surfaces by the above two subsections. In this final subsection we establish Theorem
1.3 by giving a more quantitative analysis of the rearrangements. More precisely, we
prove that the deficit M(�)

diam(�)
−π is bounded below by the sum of quantities measuring

“axial expansion in the first rearrangement” and “coaxial deviation after the second
rearrangement”.

We first prepare Lemma 3.4 below about “coaxial deviation” in the framework of
convex geometry. To this endwe briefly recall some classical facts in convex geometry.
Since M has the mean-width representation, M is naturally defined even for singular
(Lipschitz) convex surfaces, and moreover M has strict monotonicity with respect to
the inclusion property for enclosed convex sets. In addition, we can also define M even
for a degenerate convex body K (of dimension ≤ 2) by M(K ) := limε→0 M(∂Kε),
where Kε := {x ∈ R

3 | dist(x, K ) ≤ ε} denotes the ε-neighborhood of K . For
example, for a segment S of length �, we have M(S) = π�. Notice that the above
monotonicity is valid even for degenerate objects. These facts in particular imply (1.8)
for any convex surface �; indeed, if we take a segment S attaining the diameter of �,
then from the monotonicity of M and the fact that diam(�) = diam(S) we deduce
that

M(�)

diam(�)
>

M(S)

diam(S)
= π.

Therefore, in order to obtain a lower bound for the deficit M(�)
diam(�)

− π , it is natural to
look at the quantity M(�) − M(S).

We are now ready to rigorously state a lemma concerning coaxial deviation.

Lemma 3.4 (Coaxial deviation) Let � be an axisymmetric convex surface. Then

M(�) − M(S) � b2

diam(�)
, (3.15)

where b denotes the maximal distance from an axis of symmetry Laxis, i.e., b :=
maxq∈� dist(q, Laxis), and S denotes a segment attaining diam(�).

Before entering the proof, we compute the energy M for a useful example of a
(singular) convex surface, which plays an important role in the proof of Lemma 3.4
as a comparison surface.

Remark 3.5 (A useful example �h
a,A) Given h > 0 and 0 < a ≤ A, we let �h

a,A
denote the surface defined by the boundary of the convex hull of the two circles
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C± := {x2 + y2 = a2, |z| = ±h/2} and the additional intermediate circle C0 :=
{x2 + y2 = A2, z = 0}. We compute

M(�h
a,A) = πh + π2a + 2πθ(A − a),

where θ ∈ [0, π/2] such that tan θ = 2(A − a)/h. (3.16)

Indeed, an explicit calculation shows that the smooth (conical) parts �h
a,A ∩ {0 <

|z| < h/2} has the energy πh, not depending on a nor A. The energy on the singular
parts C± and C0 only depend on the angles and the lengths of the edges, in view of
approximation by the ε-neighborhood. Since the above θ denotes the angle between
the z-axis and a generating line of the conical part, the deviation angle onC± isπ/2−θ ,
and that onC0 is 2θ . Then we compute the energy onC+ (orC−) is 1

2 ·(π/2−θ) ·2πa,
and that on C0 is 1

2 · 2θ · 2π A. Summing up all implies (3.16). Note that the above
computation is valid not only for a cylinder (0 < a = A) but also for degenerate cases:
e.g. double-cone (0 = a < A), segment (a = A = 0), and disk (h = 0, and hence
θ = π/2).

Now we turn to the proof of Lemma 3.4.

Proof of Lemma 3.4 Let r be the maximal distance from Laxis concerning S, i.e., r :=
maxp∈S dist(p, Laxis). Since S is of length d := diam(�), up to a rigid motion, the
surface� encloses the cylinder�h

r ,r of radius r and height h := √
d2 − 4r2. Recall that

M(�h
r ,r ) = π(h + πr), cf. Remark 3.5. Using the monotonicity M(�) ≥ M(�h

r ,r ) ≥
M(S) = πd, and noting that h − (d − 2r) ≥ 0, we have

M(�) − M(S) ≥ M(�h
r ,r ) − M(S) = π(h + πr) − πd ≥ π(π − 2)r .

In the case of r �� b, say r ≥ b/4, this implies (3.15) with the help of the obvious
estimate b ≤ d.

We now consider the case of r ≤ b/4. By convexity of � and definition of b,
the surface � also encloses �h

r ,b/2. Then from monotonicity, Remark 3.5, and the
assumption r ≤ b/4, we deduce that

M(�) − M(S) ≥ M(�h
r ,b/2) − M(�h

r ,r ) = 2πθ(b/2 − r) � θb, (3.17)

where θ ∈ [0, π/2] satisfies that tan θ = (b − 2r)/h � b/h. If θ ≥ π/4, then (3.17)
and b ≤ d again directly imply (3.15). If θ ≤ π/4, then we can use the estimate
θ � tan θ for (3.17) to the effect that

M(�) − M(S) � b tan θ � b2/h.

Then the obvious estimate h ≤ d implies (3.15), completing the proof. ��
With Lemma 3.4 at hand, we are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3 Wemay assume Hypothesis 3.1 on�. Throughout the proof, we
let �� denote the surface given by the first rearrangement of �, and �∗ by the second
rearrangement of ��. For notational simplicity we let d (resp. d�, d∗) denote diam(�)

(resp. diam(��), diam(�∗)). Notice that d ≤ d� ≤ d∗ ≤ L , cf. Lemmata 3.2 and 3.3,
where L denotes the (same) length of generating curves of those three surfaces. We
divide the proof into three steps.

Step 1. We first prove that

M(�)

d
− π � b2∗

L2 + d∗ − d

L
. (3.18)

Using (3.2) and d ≤ L , we obtain

M(�)

d
= M(�)

d�

(
1 + d� − d

d

)
≥ M(��)

d�

(
1 + d� − d

L

)
. (3.19)

Similarly, using (3.5) and d� ≤ L , we get

M(��)

d�

≥ M(�∗)
d∗

(
1 + d∗ − d�

L

)
. (3.20)

Then, using Lemma 3.4 for a segment S∗ attaining the diameter d∗ of �∗, and also
using d∗ ≤ L , we deduce that there is a universal constant σ > 0 such that

M(�∗)
d∗

= π + M(�∗) − M(S∗)
d∗

≥ π + σ
b2∗
d2∗

≥ π + σ
b2∗
L2 . (3.21)

Estimates (3.19), (3.20), and (3.21) imply (3.18).
Step 2. Now we verify the main geometric estimate

b2∗
L2 + d∗ − d

L
� a∗ − a

L
, (3.22)

where a := z(L) = ∫ L
0 sin θ(s)ds and a∗ := z∗(L) = z�(L) = ∫ L

0 | sin θ(s)|ds.
(Belowwe essentially use the hypothesis a ≥ 0.) Throughout this step wemay assume
that L = 1 up to rescaling. In addition, we may assume that both b∗ � 1 and
d∗ −d � 1 hold since otherwise (3.22) is trivial in view of 0 ≤ a∗ −a ≤ a∗ ≤ L = 1.
For later use we introduce

ā := max
0≤s1<s2≤1

∣∣∣∣
∫ s2

s1
sin θ(s)ds

∣∣∣∣ ,

which is nothing but the width in the axial direction b�(ωaxis) of the original �.
We first check the (optimal) estimate

a∗ − a ≤ 2(a∗ − ā), (3.23)
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by showing the equivalent one 2ā ≤ a∗ + a. Notice the representation

a∗ + a =
∫ 1

0
| sin θ(s)|ds +

∫ 1

0
sin θ(s)ds = 2

∫ 1

0
(sin θ(s))+ds,

where here and in the sequel we let f± ≥ 0 denote the sign-decomposition f =
f+ − f−.
Choose s1 < s2 attaining the maximum in definition of ā, and let J := [s1, s2].
Then we see that if α := ∫

J sin θ(s)ds ≥ 0, then ā = ∫
J sin θ(s)ds and hence

2ā = 2
∫
J
sin θ(s)ds ≤ 2

∫ 1

0
(sin θ(s))+ds = a∗ + a,

while if α ≤ 0, then ā = − ∫
J sin θ(s)ds and hence, noting that a = ∫ 1

0 sin θ(s)ds ≥
0, we also have

2ā = −2
∫
J
sin θ(s)ds ≤ 2

∫
[0,1]\J

sin θ(s)ds ≤ 2
∫ 1

0
(sin θ(s))+ds = a∗ + a,

completing the proof of (3.23).
We now prove that if b∗ � 1 and d∗ − d � 1, then

a∗ − ā � (d∗ − d) + b2∗. (3.24)

Since � is contained in a cylinder of radius b∗ and height ā, we have

d ≤
√
ā2 + 4b2∗ ≤ ā + 4ā−1b2∗. (3.25)

We now observe that the smallness assumptions imply

ā � 1. (3.26)

Since γ∗ (generating �∗) is convex and of length 1, we have d∗ � 1. This and the
assumption d∗ − d � 1 imply that d � 1. Using this and the assumption b∗ � 1 for
(3.25), we obtain ā2 ≥ d2 − 4b2∗ � 1 and hence (3.26) as desired. Inserting (3.26)
into (3.25), we get

d − ā � b2∗.

Combining this with the obvious estimate a∗ ≤ d∗, we obtain (3.24). Estimate (3.22)
now follows from (3.23) and (3.24).

Step 3. We finally complete the proof. Estimates (3.18) and (3.22) imply that

M(�)

d
− π � b2∗

L2 + a∗ − a

L
.
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Using the representations 2b∗ = ∫ L
0 | cos θ(s)|ds and a∗ − a = 2

∫ L
0 (sin θ(s))−ds,

and the change of variables t = s/L , we find that

M(�)

d
− π �

( ∫ 1

0
| cos θ(Lt)|dt

)2 +
∫ 1

0
(sin θ(Lt))−dt . (3.27)

Simply letting X2+Y denote the right-hand side of (3.27), we have X2+Y � (X+Y )2

since X ,Y ∈ [0, 1]. In addition, the integrand of X + Y has the lower bound of the
form | cos θ | + (sin θ)− �

√
1 − sin θ , where both sides linearly vanish if and only if

θ ∈ π/2 + 2πZ. Therefore,

M(�)

d
− π �

( ∫ 1

0

√
1 − sin θ(Lt)dt

)2
.

The relation sin θ(Lt) = T (t) · ωaxis for ωaxis = (0, 0, 1) completes the proof. ��
Here we discuss the optimality of Theorem 1.1. As is mentioned in the introduction,

the optimality can be observed by using the double-cone, which is nothing but the
degenerate case �1

0,ε in Remark 3.5.

Remark 3.6 (Optimality of Theorem 1.3 via the double-cone �1
0,ε) Let �ε be the thin

double-cone �1
0,ε with ε � 1. Obviously, diam(�ε) = 1. In addition, using the

computation of M in Remark 3.5, and in particular noting that the corresponding
angle θε in (3.16) is given by tan θε = 2ε so that θε/ε → 2 as ε → 0, we have

M(�ε)

diam(�ε)
= π + 2πθεε = π + 4πε2 + o(ε2).

On the other hand, a simple computation yields

U (�ε) =
( ∫ 1

0

√
1 − cos θε

)2 = 1 − cos θε = 2ε2 + o(ε2),

and hence the ratio 1
U (�ε)

(
M(�ε)

diam(�ε)
− π) converges as desired. Note that by a suitable

approximation of higher order than ε, we can even construct a sequence of smooth
surfaces (nearly double-cone) for which the ratio also converges.

We additionally remark a difference between the axial and coaxial directions.

Remark 3.7 (Optimal remainder in the axial direction) In the third step of the proof
of Theorem 1.3, the remainder is eventually simplified into U , but this is just for
notational convenience to state Theorem 1.3. The simplified remainderU is still sharp
with respect to coaxial deviation as in Remark 3.6, but in fact not sharp axially. To see
this fact, we let �ε be the surface generated by revolving the broken line connecting
(x, z) = (0, 0), (ε2,−ε), (ε2, 1 + ε), (0, 1) around the z-axis. Then we have

M(�ε)

diam(�ε)
= (1 + 4ε)π + o(ε), U (�ε) = 4ε2 + o(ε2),
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so that the ratio 1
U ( M

diam − π) diverges. However, if we replace U by a more sharp
remainder V such as the right-hand side in (3.27), i.e.,

V (�) :=
( ∫ 1

0
|N (t) · ωaxis|dt

)2 +
∫ 1

0
(T (t) · ωaxis)−dt,

where N (t) denotes the unit normal of� at γ�(t), then the ratio 1
V ( M

diam−π) converges
even for the above �ε.

We now complete the proof of Corollary 1.4.

Proof of Corollary 1.4 We only need to argue for a minimizing sequence {�n}. Wemay
assume up to rescaling that diam(�n) = 1, and up to a rigid motion that �n satisfies
Hypothesis 3.1. Let θn : [0, 1] → R denote the angle function in Hypothesis 3.1
corresponding to �n after the change of variables t = s/Ln , where Ln is the length
of a generating curve of �n . Since the distance of the two points in the z-axis (i.e., the
endpoints of a generating curve) is bounded above by the diameter, we have

Ln

∫ 1

0
sin θn(t)dt ≤ 1. (3.28)

The assumption of convergence M(�n)/ diam(�n) → π and Theorem 1.3 imply that∫ 1
0

√
1 − sin θn → 0; hence, sin θn(t) → 1 and also cos θn(t) → 0 for a.e. t ∈ [0, 1].

Using the bounded convergence theorem,wededuce that sin θn → 1 and cos θn → 0 in
L p((0, 1)) for any 1 ≤ p < ∞. In addition, also noting that Ln ≤ 1 (= diam(�n)), we
deduce from (3.28) that Ln → 1. Hence, for the derivative γ̇�n = Ln(cos θn, 0, sin θn)

of the generating curve γ�n chosen to lie in the xz-plane, we see that γ̇�n converges
in L p((0, 1);R3) to the derivative ˙̄γ = (0, 0, 1) of the segment γ̄ (t) = (0, 0, t). The
lower order convergence of γ�n to γ̄ easily follows from this first order one. ��

We finally recall that Topping’s conjecture is also related to finding the optimal
constant in Simon’s inequality of the form

A
1
2

( ∫
�

H2
) 1

2 ≥ π

2
diam(�).

The constant π/2 is explicitly obtained by Topping [25] following Simon’s original
strategy [23]. It is also conjectured that π/2 can be replaced with π by the same reason
as Topping’s conjecture. Since Simon’s inequality is implied by Topping’s inequality
via the Cauchy–Schwarz inequality, our result also gives the optimal constant for
Simon’s one under the same assumption as in Theorem 1.3.
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Appendix A: Mean curvature estimates in rearrangements

We briefly recall the arguments in [6] about how the rearrangements defined in Sect. 3
control mean curvature.

Wefirst address the first rearrangement,� → ��, and prove that
∫
��

|H | = ∫
�

|H |.
A direct computation yields the representation

∫
�

|H | = π

∫ L

0
| sin θ(s) + θs(s)x(s)|ds. (A.1)

As is already observed in the above proof, we have

x�(s) = x(s) for every s ∈ [0, L], (A.2)

and in addition that | sin θ | = sin θ�; more precisely,

sin θ�(s) = ± sin θ(s) if θ(s) ∈ S± := 2πZ ± [0, π ]. (A.3)

Furthermore, since θ� = f ◦ θ , where both f := dist(·, 2πZ) and θ are Lipschitz, we
have the chain rule θ

�
s = ( f ′ ◦ θ)θs with the understanding that [( f ′ ◦ θ)θs](s) = 0

whenever θs(s) = 0 (cf. [14, Corollary 3.66]). Since f ′ ≡ ±1 on S±, we get

θ�
s (s) = ±θs(s) if θ(s) ∈ S±. (A.4)

Inserting (A.2), (A.3), and (A.4) into (A.1), we deduce that
∫
��

|H | = ∫
�

|H |.
We now turn to the second rearrangement, � → �∗, and prove that

∫
�∗ |H | ≤∫

�
|H |. Since ∫

�∗ |H | = ∫
�∗ H by convexity of �∗, in view of the triangle inequality

it suffices show that
∫
�∗ H = ∫

�
H . By a direction computation and an integration

by parts, using that x(0) = x(L) = 0, we have the representation

∫
�

H = π

∫ L

0

(
sin θ(s) + θs(s)x(s)

)
ds = π

∫ L

0
g(θ(s))ds,

where g(θ) := sin θ − θ cos θ . The same representation
∫
�∗ H = π

∫ L
0 g(θ∗(s))ds

also holds for the rearranged surface �∗ since x∗(0) = x∗(L) = 0. We then deduce
the desired identity

∫
�∗ H = ∫

�
H from these representations and the integration-

preserving property of rearrangement.
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