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Abstract

Let E x G be a crossed product of a division ring E and a locally indicable group
G. Hughes showed that up to E * G-isomorphism, there exists at most one Hughes-
free division E * G-ring. However, the existence of a Hughes-free division E * G-ring
DE ¢ for an arbitrary locally indicable group G is still an open question. Nevertheless,
DE.c exists, for example, if G is amenable or G is bi-orderable. In this paper we study,
whether D, is the universal division ring of fractions in some of these cases. In
particular, we show that if G is a residually-(locally indicable and amenable) group,
then there exists D) and it is universal. In Appendix we give a description of Dg(g)
when G is a RFRS group.

Keywords Locally indicable groups - Universal division ring of fractions -
Hughes-free division ring

Mathematics Subject Classification Primary 16S35 - 20F65; Secondary 12E1S5 -
16S34 - 16K40

1 Introduction

A division R-ring ¢ : R — D is called epic if ¢ (R) generates D as a division ring.
Each division R-ring D induces a Sylvester matrix rank function rkp on R. Given
aring R, Cohn introduced the notion of universal division R-ring (see, for example,
[4, Section 7.2]). In the language of Sylvester rank functions, an epic division R-ring
D is universal if for every division R-ring &, rkp > rkg. By a result of Cohn [3,
Theorem 4.4.1], the universal epic division R-ring is unique up to R-isomorphism.
The universal division R-ring D is called universal division ring of fractions of R if
D is epic and rkp is faithful (that is R is embedded in D).
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If R is a commutative domain, then the field of fractions Q(R) is the universal divi-
sion R-ring. The situation is much more complicated in the non-commutative setting.
For example, Passman [24] gave an example of a Noetherian domain which does not
have a universal division ring of fractions. Moreover, we show in Proposition 4.1 that
the group algebra Q[ H] does not have a universal division ring of fractions if H is
not locally indicable. In this paper we want to study whether a group algebra or, more
generally, a crossed product E x G, where E is a division ring, has a universal division
ring of fractions. Thus, from the previous observation it is natural to consider the case
of group algebras and crossed products E * G where G is locally indicable.

Let E be a division ring and G a locally indicable group. Hughes [11] introduced a
condition on an epic division E x G-rings and showed that up to E % G-isomorphism,
there exists at most one epic division E x G-ring satisfying this condition. We call
this division ring, the Hughes-free division E * G-ring and denote it by Dg.¢. For
simplicity, in this paper the Sylvester matrix rank functionrkp,, . is denoted by rk g4
We say that a locally indicable group G is Hughes-free embeddable if £ « G has a
Hughes-free division ring for every division ring E and every crossed product E * G.

The existence of a Hughes-free division E * G-ring is known for several families of
locally indicable groups. In the case of amenable locally-indicable groups G, Dgy«g =
Q(E * G) is the classical ring of fractions of E * G, and in the case of bi-orderable
groups G, Dg is constructed using the Malcev-Neumann construction [20,23] (see
[8]). The existence of Dk|g is also known for group algebras K[G], where K is of
characteristic 0 and G is an arbitrary locally indicable group [15].

In [15, Theorem 8.1] it is shown that if there exists a universal epic division E * G-
ring and a Hughes-free division E * G-ring, they are isomorphic as E % G-rings.
Following Sanchez (see [25, Definition 6.18]), we say that a locally indicable group G
is a Lewin group if it is Hughes-free embeddable and for all possible crossed products
E x G, where E is a division ring, D¢ is universal (in Sect. 3.3 we will see that this
definition is equivalent to the Sdnchez one). We conjecture that all locally indicable
groups are Lewin.

Conjecture 1 Let G be a locally indicable group, E a division ringand R = E * G a
crossed product of E and G. Then

(A) the Hughes-free division R-ring Dpg exists and
(B) it is universal division ring of fractions of R.

We want to notice that at this moment it is also an open problem of whether the
universal division E x G-ring of fractions (if exists) should be Hughes-free.

In this paper we study part (B) of the conjecture in some cases where part (A) is
known. Using Theorem 3.7 we can show that Conjecture 1 is valid for the following
locally indicable groups.

Theorem 1.1 Locally indicable amenable groups, residually-(torsion-free nilpotent)
groups and free-by-cyclic groups are Lewin groups.

In the case of group algebras we can prove a stronger result. The metric space G, of
marked n-generated groups consists of pairs (G; §), where G is a group and S is an
ordered generating set of G of cardinality n. Such pairs are in 1-to-1 correspondence
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with epimorphisms F,, — G, where F,, is the free group of rank n, and thus the set
Gy can be identified with the set of all normal subgroups of F = F,. The distance
between two normal subgroups M and M, of F is defined by

d(My, Mp) = inf{e ™ : My N By(1F) = My N Br(1F)},

where By (1F) denotes the closed ball of radius k and center 1.

We say that a sequence of n-generated groups {G;};cN converges to an n-generated
group G if (G;; S;) € G, converge to (G; S) € G, for some generating sets S; of G;
(i € N) and S of G, respectively.

Theorem 1.2 Let F be a free group freely generated by a finite set S and M and
{M;};en normal subgroups of F. We put G = F /M and G; = F /M; and assume that
(Gi, SM;/M;) converges to (G, SM /M). Assume that for all i, G; is locally indicable
and D, exists. Then G is locally indicable, D) exists and

ke = l.l_i)ngo W Teh)

as Sylvester matrix rank functions on E[F].
As a corollary we obtain the following consequence.

Corollary 1.3 Let G be a residually-(locally indicable and amenable) group and let E
be a division ring. Then D[ exists and it is the universal division ring of fractions
of E[G].

The corollary can be applied to RFRS groups, because they are residually poly-Z.
The notion of RFRS groups arose in a work of Agol [1], in connection with the virtual-
fibering of 3-manifolds [2], and it abstracts a critical property of the fundamental
groups of special cube complexes. Kielak [18] realizes that the main result of [1] can
be stated not only for 3-manifold groups but also for virtually RFRS groups. The
proof of Kielak uses a new description of Dg[g; when G is RFRS. In Sect. 5 we give
a description of Dg(g) when G is a RFRS group that generalizes the result of Kielak.

Let us consider now the case of group algebras K[G] where K is a subfield of C
and G is locally indicable. In this case it was shown in [15] that the division closure
D(K[G],U(G)) of K[G] in the algebra of affiliated operators /(G) is a Hughes-free
division K[G]-ring. We denote by rks the von Neumann rank function (its definition
is recalled in Sect. 2.6), and by rk¢j) the Sylvester matrix rank function on Q[G]
induced by the homomorphism Q[G] — Q that sends all the elements of G to 1 (in
the previous notation rk{y is tkg). In view of Conjecture 1, it is natural to ask for
which groups G, rkg > rkyy. It follows from [26, Proposition 1.9] that if a group G
satisfies the condition rk > rky1}, then G is locally indicable. Thus, we propose also
a weak version of Conjecture 1.

Conjecture 2 Let G be locally indicable group. Then tkg > rky1y as Sylvester matrix
rank functions on Q[G].

From the discussion in the paragraph before the conjecture, we conclude that Corol-
lary 1.3 has the following consecuence.
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Corollary 1.4 Let G be a residually-(locally indicable and amenable) group. Then
tkg > tky1y as Sylvester matrix rank functions on Q[G].

Combining this result with the mentioned above result of Kielak [18], we obtain
the following corollary.

Corollary 1.5 Let G be a finitely generated group which is virtually RFRS. Then the
following are equivalent.

(1) G isvirtually fibered, in the sense that it admits a virtual map onto Z with finitely
generated kernel.
(2) G admits a virtual map onto Z whose kernel has finite first Betti number.

Our next result is another consequence of Corollary 1.4 that generalizes a result of
Wise [28, Theorem 1.3],

Corollary 1.6 Let X be a compact CW-complex with X non-trivial residually-
(locally indicable and amenable) group. Then

B2 (X) < by(X) — 1 and bP (X) < by(X) if p = 2.

The paper is structured as follows. We introduce the basic notions in Sect. 2. In
Sect. 3, we prove Theorem 1.1, Theorem 1.2 and Corollary 1.3. In Sect. 4 we study the
consequences of the condition rkg > k(1) and, in particular, we prove Corollary 1.5
and Corollary 1.6. In Sect. 5 we give an alternative description of the division ring
D) when G is RFRS and E is a division ring.

2 Preliminaries
2.1 Notation and definitions

All rings in this paper are unitary and ring homomorphisms send the identity element
to the identity element. By a module we will mean a left module. Let G be a group
with trivial element e. We say that a ring R is G-graded if R is equal to the direct
sum ®gec Ry and Ry R, C Rgy, for all g and £ in G. If for each ¢ € G, R, contains
an invertible element ug, then we say that R is a crossed product of R, and G and
we will write R = S % G if R, = S. In the following if H is a subgroup of G, S * H
will denote the subring of R generated by S and {u;, : h € H}.

A ring R may have several different G-gradings. It will be always clear from the
context what G-grading we use. However, under some conditions the grading is unique.
Assume that R = E G, where E is a division ring and G is locally indicable, then by
[9], the invertible elements U (R) of R are | J ¢€G R, \ {0}. Hence R, is the maximal
subring in U(R) U {0} and G = U (R)/(R, \ {0}). Thus, R has a unique grading with
R, is a division ring and G is locally indicable.

An R-ring is a pair (S, ¢) where ¢ : R — S is a homomorphism. We will often
omit ¢ if it is clear from the context.
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2.2 Ordered groups

A total order < on a group G is left-invariant if for any a, b, g € G, if a < b then
ga =< gb. Itis bi-invariant if, moreover we have ag < bg.

Let < be a left-invariant order on a group G. A subgroup H is called convex if
H contains every element g lying between any two elements of H (h] < g < h»
with k1, hy € H). We say that < is Conradian if for all elements f, g > 1, there
exists a natural number n such that fg" > g. In fact, one may actually take n = 2 ([6,
Proposition 3.2.1]). Recall that a group G islocally indicable if every finitely generated
non-trivial subgroup of G has an infinite cyclic quotient. A useful characterization of
locally indicable groups says that they are the groups admitting a Conradian order
([5]). We will need the following important property of a Conradian order.

Proposition 2.1 [6, Corollary 3.2.28] Let (G, <) be a group with a Conradian order
and let N be the proper maximal convex subgroup of G. Then there exists an order
preserving homomorphism ¢ : G — R such that N = ker ¢.

2.3 Hughes-free division rings

Let E be a division ring and G a locally indicable group. Let ¢ : E x* G — D be a
homomorphism from E * G to a division ring D. We say that a division E * G-ring
(D, ¢) is Hughes-free if

(1) D is the division closure of ¢ (E * G) (D is epic).

(2) For every non-trivial finitely generated subgroup H of G, a normal subgroup N
of H with H/N = 7Z, and hy,...,h, € H in distinct cosets of N, the sum
Dy.pen,) + -+ Dy pe(up,) is direct. (Here Dy p = D(¢(E * N), D) is
the division closure of (E x N) in D.)

Hughes [11] (see also [7]) showed that up to E * G-isomorphism there exists at most

one Hughes-free division ring. We denote it by Dg.. The uniqueness of Hughes-free

division rings implies that for every subgroup H of G, Dy p,,; is Hughes-free as a

division E % H-ring.

Griter showed in [8, Corollary 8.3] that D, (if it exists) is strongly Hughes-free,
that it satisfies the following additional conition:

(2’) For every non-trivial subgroup H of G, a normal subgroup N of H and

hi,...,h, € H in distinct cosets of N, the sum Dy p, ¢ Wp) + -+ +
DN Dy @ (un,) is direct.

In particular, this implies the following result that we will use often without mentioning

it explicitly.

Proposition 2.2 Let G be a locally indicable group, N a normal subgroup of G and E

a division ring. Assume that for a crossed product E x G, D¢ exists. Then the ring

R generated by Dy p,; and G has structure of a crossed product D,y * (G/N).

In particular,

(1) if N is of finite index in G, then Dg.G = Dg«n * (G/N) and

(2) if G/N is abelian, D¢ is isomorphic to the classical Ore ring of fractions of
Dgs«n * (G/N).
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2.4 Free division E % G-ring of fractions

Let G be group with a Conradian left-invariant order < (so, G is locally indicable).
Let E be a division ring. Let ¢ : E * G — D be a homomorphism from a crossed
product E * G to a division ring D. We say that a division E * G-ring (D, ¢) is free
with respect to < if

(1) D is the division closure of ¢ (E * G).

(2) For every subgroup H of G, and the maximal proper convex subgroup N of H
(which is normal by Proposition 2.1), and k1, ..., h, € H in distinct cosets of N,
the sum Dy po(up,) + - -+ + Dy pe(uy,) is direct.

This notion was introduced by Griter in [8].

Remark 2.3 Notice that in part (2) of the definition, we also can assume that H is
finitely generated. Indeed, assume (2) holds for finitely generated subgroups, but for
some H and hy, ..., h,, thereare d, ..., d, € Dy p, not all equal to zero, such that
diop,) + - 4+ dy(up,) = 0. Then we can find a finitely generated subgroup of
N’ of N such that dy, ..., d, € Dy p. Let H' be the subgroup of G generated by
hi,...,h,and N'. Since n > 2, N N H’ is the maximal convex subgroup of H’. This
contradicts our assumption that (2) holds for H’.

Griter proved the following result.

Proposition 2.4 [8, Corollary 8.3] Let G be a group with a Conradian left-invariant
order < and let E be a division ring. A division E % G-ring is free with respect to <
if and only if it is Hughes-free (and so, it is E x G-isomorphic to Dg.G).

2.5 Sylvester matrix rank functions

Let R be aring. A Sylvester matrix rank function rk on R is a function that assigns a
non-negative real number to each matrix over R and satisfies the following conditions.

(SMatl) rk(M) = 0 if M is any zero matrix and rk(1) = 1;
(SMat2) rk(M1M>) < min{rk(My), rk(M>)} for any matrices M| and M, which can

be multiplied;
(SMat3) rk <Ag] 132) = rk(M1) + rk(M>) for any matrices M and M>;
M M3 .
(SMat4) rk 0 M > rk(My) + rk(M>) for any matrices My, M, and M3 of

appropriate sizes.

We denote by P(R) the set of Sylvester matrix rank functions on R, which is a compact
convex subset of the space of functions on matrices over R. If ¢ : F1 — F> is an
R-homomorphism between two free finitely generated R-modules F; and F3, then
rk(¢) is rk(A) where A is the matrix associated with ¢ with respect to some R-bases
of F1 and F5. It is clear that rk(¢) does not depend on the choice of the bases.

A useful observation is that a ring homomorphism ¢ : R — § induces a continuous
map (pIi : P(S) — P(R), i.e., we can pull back any rank function rk on § to a rank
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function ¢”(rk) on R by just defining

@*(tk)(A) = rk(p(A))

for every matrix A over R. We will often abuse the notation and write rk instead of
@*(rk) when it is clear that we speak about the rank function on R.

A division ring D has a unique Sylvester matrix rank function which we denote
by rtkp. If a Sylvester matrix rank function rk on R takes only integer values, then
by a result of P. Malcolmson [21] there are a division ring D and a homomorphism
¢ : R — D such thattk = ¢f (tkp). Moreover, if D is equal to the division closure of
@(R) (D is an epic division R-ring), then ¢ : R — D is unique up to isomorphisms of
R-rings. We denote the set of integer-valued rank functions on a ring R by Py, (R).
In the following, if a rank function on R is induced by a homomorphism to D we will
also use rkp to denote this rank function (in this case the homomorphism will be clear
from the context).

Given two Sylvester matrix rank functions on R, rkj and rko, we will write rk| < rko
if for any matrix A over R, rkj(A) < rky(A). In the case where both functions are
integer-valued and come from homomorphisms ¢; : R — D; (i = 1, 2) from R to
epic division rings Dy and D», the conditionrkp, < rkp, is equivalent to the existence
of a specialization from D; to D in the sense of P. M. Cohn ([3, Subsection 4.1]).
We say that an epic division R-ring D is universal if for every epic division R-ring
g, rkD > rkg.

An alternative way to introduce Sylvester rank functions is via Sylvester mod-
ule rank functions. A Sylvester module rank function dim on R is a function that
assigns a non-negative real number to each finitely presented R-module and satisfies
the following conditions.

(SMod1) dim{0} = 0,dim R = 1;
(SMod2) dim(M; & M») = dim M| + dim M>;
(SMod3) if M — M, — M3 — 0 is exact then

dim M| 4+ dim M3 > dim M, > dim M3.

There exists a natural bijection between Sylvester matrix and module rank functions
over aring. Given a Sylvester matrix rank function rk on R and a finitely presented R-
module M = R"/R™A (A is a matrix over R), we define the corresponding Sylvester
module rank function dim by means of dim(M) = n — rk(A). If a Sylvester matrix
rank function rkp comes from a division R-ring D, then the corresponding Sylvester
module rank function will be denoted by dimp. Then D is the universal epic division
R-ring if and only if for every epic division R-ring £ and every finitely presented
R-module, dimp (M) < dimg(M).

By a recent result of Li [19], any Sylvester module rank function on R can be
extended to a function (satisfying some natural conditions) on arbitrary modules over
R. In the case of an integer-valued Sylvester module rank function dimp and an
R-module M we simply have dimp (M) = dimp(D Qr M).
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2.6 Von Neumann rank function

Consider first the case where G is countable. Then G acts by left and right multipli-
cation on the separable Hilbert space I>(G). A finitely generated Hilbert G-module
is a closed subspace V <[ 2(G)", invariant under the left action of G. We denote by
projy : I>(G)" — I*>(G)" the orthogonal projection onto V and we define

n

dimg V := Trg(projy) := » (1) projy. 1i)p2gy-

i=1

where 1; is the element of /2(G)" having 1 in the ith entry and O in the rest of the
entries. The number dimg V is the von Neumann dimension of V.

Let A € Mat,,,, (C[G]) be a matrix over C[G]. The action of A by right multi-
plication on 12(G)" induces a bounded linear operator qbé 26 — [2(G)". We
put

kg (A) = dimg Im ¢ .

If G is not countable then ks can be defined in the following way. Take a matrix
A over C[G]. Then the group elements that appear in A are contained in a finitely
generated group H. We will put rkg(A) = rkg (A). One easily checks that the value
rk gy (A) does not depend on the subgroup H.

Another obvious Sylvester matrix rank function on G arises from the trivial homo-
morphism G — {1} and it is defined as

rk(1)(A) = rkc(A),

where A is the matrix over C obtained from A by sending all the elements of G to 1.
More generally, if G is a quotient of G, rkz(A) is denoted to be tk(A), where A is
the matrix over C[G] obtained from A by applying the obvious map C[G] — C[G].

2.7 The natural extension

Let R = E % G be a crossed product of a division ring E and a group G. Let N be a
normal subgroup of G such that G/N is amenable. Consider a transversal X of N in
G. Since G/N is amenable there are finite subsets X of X such that {NX;/N}is a
Fglner sequence in G/N with respect to the right action. Put X; = N X}.

Let rk be a Sylvester rank function on E * N and assume that rk is invariant under
conjugation by the elements {ug}¢cc. Observe thatif rk = rk¢ for some epic division
E x N-ring £, then the conjugation of E * N by any u,(g € G) can be extended to
a unique automorphism of £. Thus one can consider the crossed product £ * G/N
containing E *x G.

Let A € Mat,«;»(R) and let S be the union of supports of the entries of A. For
any subset 7 of G we denote Rt = @;erR;. Let ¢ : (Rx,)" — (Rx,s)™ be



The universality of Hughes-free division rings Page90of33 74

the homomorphism of finitely generated free E % N-modules induced by the right
multiplication by A. Let w be a non-principal ultrafilter on N. Then we put

K, (A) = lim |(¢’) (D

Xil

Then rk,, is a Sylvester rank function on R. The rank function rk,, has been already
studied previously in different situations (see [14,15,17,27]). In [17] it is shown that
rk,, does not depend on w. Therefore in the following we denote ke, by k. The
Sylvester rank function 1k is called the natural extension of rk. We describe now the
cases that appear in this paper.

Proposition 2.5 Let G be a group with a normal subgroup N such that G/N is
amenable. Let E be a division ring, and assume the previous notation. Then the
following holds.

(1) Assumethat N and G /N are locally indicable and 1k = rkg for some epic division
ExN-ring £. Then 1k coincides with tko(£x(G/N)), where Q(€ % (G /N)) denotes
the classical Ore ring of fractions of £ * (G/N).

(2) Assume E * G = K[G], where K is a subfield of C and rk = rky. Then rk is
equal to 1kg.

(3) Assume E x G = K[G], where K is a subfield of C and rk = rky1). Then K is
equal to IkG /N

Proof (1) We can extend k to a Sylvester matrix rank function on &€ * (G /N) (which

we denote also by rT() using the formula (1). Since G /N is locally indicable, the ring

&€ % (G/N) is a domain. Thus, by the definition of rk, ﬁ((a) =1 for every 0 #a €

& % (G/N). Hence, applying [14, Proposition 5.2], we obtain that k = ko« N))
The statements (2) and (3) follow from [14, Theorem 12.1].

3 On the universality of Dg.q
3.1 A general criterion of universality

In this subsection we present a general criterion of universality of a division R-ring.
The proof of the following lemma is immediate.

Lemma 3.1 Let R be a ring and € a division R-ring. Let M be a finitely generated left
R-module. Then the following are equivalent.

(1) dimg(M) # 0.

(2) EQr M #0.
(3) Homg(M, &) # 0.

The following proposition tells us that in order to check universality of a division R-
ring D it is enough to understand the structure of its finitely generated R-submodules.
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Proposition 3.2 Let R be a ring and D an epic division R-ring. Then rkp is universal
in Pgiy(R) if and only if for every finitely generated left R-submodule L of D and
every division R-ring £, dimg(L) > 0.

Proof Assume that rkp is universal. Since Homg(L,D) # 0, by Lemma 3.1,
dimp(L) > 0 and so

dimg (L) > dimp(L) > 0.

This proves the “only if” part of the proposition.

Now, consider the “if” part. We want to show that for every finitely generated left
R-module M and every division R-ring &£, dimg(M) > dimp(M). We will do it by
induction on dimp (M).

Let M be the image of the natural R-homomorphism « : M — D ®px M that sends
m € M to 1 @ m. Observe that, since D Qg M = D @z M, dimp(M) = dimp(M).
We have also that dimg (M) < dimg(M). Thus, without loss of generality, we can
assume that « is injective.

Now assume thatdimp (M) = 1. Since M is a submodule of D, then dimg (M) > 0,
and so, dimg (M) > 1 = dimp(M). This gives us the base of induction.

Assume that the claim holds if dimp (M) < n — 1. Consider the case dimp (M) =
n > 2. Observe that dimg (M) # 0, since M has a nontrivial quotient that lies in D.
Hence £ @g M # {0}. Let m € M be such that 1 ® m is not trivial in £ Qg M.
Then dimg(M /Rm) = dimg(M) — 1. Since we assume that « is injective, | ® m
is non-trivial in D ®g M, and so, we also have dimp(M/Rm) = dimp(M) — 1.
Applying the inductive assumption we obtain that

dimp(M) = dimp(M/Rm) + 1 < dimg(M/Rm) 4+ 1 = dimg(M).

3.2 The universality of Dg,¢ in the amenable case

Let E be a division ring and G a locally indicable group. Proposition 3.2 indicates
that in order to prove the universality we have to understand the structure of finitely
generated E xG-submodules of Dg.. If G is amenable, they are isomorphic to finitely
generated left ideals of E x G. The following result shows that in the latter case the
condition of Proposition 3.2 holds.

Proposition 3.3 Let R = E x G be a crossed product of a division ring E and a locally
indicable group G. Then for every non-trivial finitely generated left ideal L of R and
every division R-ring £, dimg(L) > 0.

Proof We denote by R, the gth component of R and let u, be an invertible element
of Rg. Forany elementr =3 . 7¢ € R (rg € R,) denote by supp (r) the elements
g € G for which rg # 0 and put /(r) to be equal to the number of non-trivial elements
in supp (7). Thus, I(r) = 0 means that » € R,. For a non-trivial finitely generated left
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ideal L of R we put
I(L)y =min{l(r;1) +---+1I(rs): L =Rri+---+ Rrg}.

Observe that if a set of generators {rq, ..., ry} of L satisfies the equality /(L) =
I(r1) + - -1(ry), then for each i, [(r;) = |supp (r;)| — 1. (If not, we can change r; by
u;l r; with g € supp(r;) and obtain a contradiction.) Moreover, if all r; are non-trivial
and L # R, then s <I(L). Now, we define

s(Ly=max{s: L=Rri+---+ Rrg,I(L) =1(r1) + --- + l(ry) and r; are non-trivial}.

We will prove the proposition by induction on /(L). If /(L) = 0, then L = R and
we are done. Now assume that the proposition holds if /(L) < n — 1, and consider the
case (L) =n>1.

We will proceed by inverse induction on s(L). Observe that there is no L such that
s(L) = I(L) + 1, so there is nothing to prove in this case. Assume that we can prove
the proposition if /(L) = n and s(L) > k + 1, and consider the case /(L) = n and
s(L) =k.

Letry, ...r, be aset of non-zero generators of L such thatn = [(r1)+---I(r). Let
H be the group generated by Uf.‘zl supp(r;). Since G is locally indicable there exists
asurjective : H — Z.Let N = kera and t € H such that ()N = H. We write

lij .
r= Zu,"/r,-j with 0 # r;j € E* N.
J

Let L’ be a left ideal of R generated by {r;;}. Observe that

D 10ij) < Y 1) and [{rij} > s(L) = k.

i,j i

Thus, we obtain that either [(L") < I[(L) or (L") =I(L) and s(L") > s(L). Hence we
can apply the inductive hypothesis and obtain thatrkg (L") > 0. Thus Homg (L', £) #
0.Let 0 # ¢ € Homg(L', £).

Put § = E x H. Observe that § = E x N[x*!; 7], where 7 is conjugation by u;.
Let £ Ee the Ore division ring of fractions of E[x*; 7], where 7 is conjugation by u;.
Then & has a natural S-ring structure. We denote by dimg the corresponding Sylvester
module rank function on S. By Proposition 2.5(1), rk 7 is equal to the natural extension
of the restriction of tkg on E % N.

Let Lo and L{, be the left ideals of S generated by {r;} and {r;;} respectively.
We have that Ly < L. Every element m of L can be written in a unique way as

m=3; u,jmj, where m; € E % N N L. We define

$m) =Y xIp(m).
J
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This defines a homomorphism of left S-modules $ t Ly — E. Since ¢ is not trivial,
there exists r;; such that ¢ (r;;) # 0. Therefore, ¢ (r;) # 0. Thus, the restriction of ¢
on Ly is not trivial. Hence, by Lemma 3.1, dimg(Lg) > 0.

Let dim’g be the Sylvester module rank function associated to the division S-ring
£. Since the restrictions of rke and tkgon E x N coincide, [15, Lemma 8.3] implies
that kg <tk gas Sylvester matrix rank functions on E * H, and so

dim"g(Lo) > dimg(Lo) > 0.
Now observe that L = R ®g Lo. Hence
dimg(L) = dim’g(Lo) >0
and we are done. O

Corollary 3.4 Let G be an amenable locally indicable group and let E be a division
ring. Then D¢ is the universal division ring of fractions of E * G.

Proof Observe that E * G satisfies the right Ore condition and so D¢ is isomorphic
as E * G-ring to the classical ring of fractions Q(E * G). Since any finitely generated
left submodule of Q(E * G) is isomorphic to a left ideal of E * G, Proposition 3.2
and Proposition 3.3 imply the desired result. O

We remark that Corollary 3.4 can be also proved using arguments similar to the ones
used in the proof of [10, Lemma 2.1]. Also it is worth to be mentioned here that, by a
result of D. Morris [22], a left orderable amenable group is always locally indicable.

3.3 A criterion for a group to be Lewin

In this subsection we will show that in order to prove that a Hughes-free embeddable
group G is Lewin, itis enough to consider only group algebras E[G]. As before, by rk g
we denote the Sylvester matrix rank function on E[G] induced by the homomorphism
E[G] — E that sends all the group elements from G to 1.

Proposition 3.5 Let G be a locally indicable group and E a division ring. Assume that
for every division ring £,

(1) Dgig exists and
(2) tkpg g, = ke as Sylvester matrix rank functions on E[G].

If for a crossed product E x G, the space Py, (E x G) is not empty, then E x G has
the Hughes-free division ring Dg.g and, moreover, Dgq is universal.

Proof First let us show that Dg, exists. Let ¢ : E* G — £ be adivision E x G-ring.
Write R = E * G = @4 Rg. We fix an invertible element u, € R, foreach g € G.
For every g1, g» € G we define

_ -1
(g1, 82) = Ug g Uy, € E.
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Observe that € is a E % G-bimodule. This allows us to convert the E-space R =
®gecEv, into aring by putting

Vea = (¢(ug)a¢(ugl))vg and  vev, = @(a(g, h)ven, 8. h € G, aek.

Clearly the ring R has a structure of a crossed product R = £ % G. Define the map
¢:ExG— ExGby

SO kgug) = plkg)vg, kg € E.

geG geG

Then 5 is a homomorphism.
For each g € G we put w, = qb(u;l)vg € &% G. Then w, commutes with the
elements from £ and for every g, h € G,

wewn = ¢ (uy Vg (g, Yon = ¢y, N (ug Hvguy

= ¢, NPy NP (g, M)vgh = ¢ Uy )vgn = we.
Thus, we obtain that R = & [G]. In particular Dg,;, and so, Dg,g exist and
5# (tkp,,.) is equal to rkp,. ;-

Now, we want to show that Dg.¢ is universal. In other words we want to show that
tkp,.. = " (kg). Let ¥ : £ % G — & be the map that sends all wg to 1. Denote by
rk’g the Sylvester matrix rank function on { * G induced by . By our assumptions,
rk/g <1kp,,;. Now observe that ¢ = ¥ o ¢. Hence

¢*(ke) = (¥ 0 §) (tke) = ¢ (Y (tke)) = $* (1K) < ¢" (tkopy, ) = tkpy g
as Sylvester matrix rank functions on E x G. O
Corollary 3.6 Any subgroup of a Lewin group is Lewin.

The corollary implies that our definition of Lewin group is equivalent to the one of
Séanchez ([25, Definition 6.18]).

3.4 Proofs of Theorem 1.2 and Corollary 1.3

Let F be a free group freely generated by a finite set S, and let M and { M; }; cny be normal
subgroups of F'. We put G = F/M and G; = F /M, and assume that (G;, SM;/M;)
converges to (G, SM /M). Assume that for all i, G; is locally indicable and Dg(g;
exists. Since G; are quotients of F, abusing notation, we will also refer to rk g, as
a Sylvester matrix rank function on E[F].

Let w be an arbitrary non-principal ultrafilter on N. We put

tk = limrkpyg | € Paiv (ELF]).
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Observe that for every g € M, rk(g — 1) = 0. Thus, rk is also a Sylvester matrix rank
function on E[G]. We want to show that rk corresponds to the Sylvester matrix rank
function of a Hughes-free division E * G-ring. This will prove Theorem 1.2.

For each i we fix a left-invariant Conradian order <; on G;. Define an order < on
G by

fM<hM if{i e N: fM; <; hM;} € o.

The definition does not depend on the choice of representatives, because for every
me M,theset{i € N:m € M;}is in w. It is also clear that < is left-invariant and
Conradian. In particular, this proves that G is locally indicable.

Denote by o the canonical homomorphism F — G ; and extend it to the homomor-
phisma; : E[F] — Dgig,). The rank function rk corresponds to the homomorphism

a = () : ELF1 = [ [Peen = ([ [ Peici)/ 1o
w ieN

with I, = {(d;) : lim,, rka[Gi] (d;) = 0}. Observe that ]_[w DE[c,] 1s a division ring.
We denote by D the division closure of « (E[F]) in [ [, PE[c,]- As we have observed
before, for each m € M, a(m — 1) = 0. Thus, D is a epic division E[G]-ring. We
are going to show that D is free with respect to <. For simplicity, in what follows, for
each j € N, Dg(g;) is denoted by D;.

Let H be a finitely generated subgroup of G and let N be the maximal convex
subgroup of H. Let hy, ..., h, € H be in distinct cosets of N. We want to show that
a(hy), ..., a(hy,) are Dy p, -linearly independent. Without loss of generality we will
assume that H = G.

Let L;/M; be the maximal convex subgroup of G; with respect to <;. By
Proposition 2.1, since < ; is Conradian, there exists order-preserving homomorphism
¢; : G; — R such that ker¢p; = L;/M;. Without loss of generality we see
¢; as an element of H L(F;R). We can multiply ¢ ; by a scalar in such way that
maxses [ (s)] = 1. Let ¢ = lim,, ¢; € H'(F;R) and L = ker ¢. Observe that ¢ is
non-trivial, M < ker ¢ and ¢ is order-preserving with respect to < if we consider it
asamap G — R. In particular, N = L/M.

For each i choose f; € F such that h; = f; M. By way of contradiction, assume
that there are dy, ..., d, € Dy p such that

dia(fi) + - +dya(fn) =0 inD @)

with d; # 0 for some 1 <i <n.

Consider the subring R of D generated by Djs G),p and N. It is a quotient of a
crossed product Dy, 1,0 * (N /[G, G]). Since N /[G, G]is finitely generated abelian,
Dic.c1.p0 * (N/[G, G)) is left and right Noetherian. Thus, R is also left and right
Noetherian. Since R is a domain, Dy p is the classical division ring of fractions of R.
Hence, without loss of generality we can assume that d; € R in (2). Therefore, there
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are f;; € L and d;; € Djg ), p such that
di =" dir - a(fi).
I

Since hy, ..., h, € H belong to distinct cosets of N, all values ¢ (f1), ..., ¢ (f,) are
distinct. Let € = minj; [¢(f;) — ¢(fi)]. Since for all i, j, ¢(fi;) = 0, we obtain
that

ke N: Iguinl = foralli, Land I6x(f5) — $u(f)l = o forall i % j) € 0,

Thus, without loss of generality we assume that for every k € N, ¢ (fiy)| < § for all

i.land |ge(f7) — G (f;)] = 3¢ foralli # j.
Since d;; € DG,y p- dir are in the division closure of a (E[([F', F])]). Therefore,
we can write

dii = (diig)x and d; = (Z dukauf,-z)) e [[Dx. with dix € D6, 6,1,
1 w

k
Since di(f1) + - - - + dya(f,) = 0, we obtain that
keN: > der(fir- f;) =0} € w.
il
Thus, we can assume that Zi), dikar (fir - fi) = 0 for all k € N. Observe that since
o (fin)l < § and |gi () — pu(fi)] = 3.
&k (firy - fi) # & fijn, - f)  ifi # .

Recall that Dy, is free with respect to <. In particular, this implies that for all 7,
(Z dilkotk(fil)) ax(f) = duxow(fir - fi) = 0.
l l

Since this holds for all k, d; = O for all i. This shows that D is free with respect to <,
and so it is Hughes-free by Proposition 2.4. This finishes the proof of Theorem 1.2.

Proof of Corollary 1.3 Without loss of generality we may assume that G is finitely
generated. Hence G is a limit of a collection of locally indicable amenable groups
{G;}. Thus, by Theorem 1.2, for every division ring &, there exists Dg(g|. Moreover,
since by Corollary 3.4, rkg[g,) = rke as Sylvester matrix rank functions on £[G;],
Theorem 1.2 also implies that tke[g; > rke as Sylvester matrix rank functions on
E[G]. Now, by Proposition 3.5, we obtain that Dg|¢ is universal. ]
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3.5 Examples of Lewin groups
The following theorem shows that the groups that appear in Theorem 1.1 are Lewin.

Theorem 3.7 Let G be a locally indicable group.

(1) If all finitely generated subgroups of G are Lewin, then G is also Lewin.

(2) Any subgroup of a Lewin group is also Lewin.

(3) G is Lewin if G has a normal Lewin subgroup N such that G /N is amenable and
locally indicable.

(4) Any limit in G, of Lewin groups which is Hughes-free embeddable is Lewin.

(5) A finite direct product of Lewin groups is Lewin.

Proof The first statement follows directly from the definition of Lewin groups and the
second one from Corollary 3.6. Let us prove now part (3).

First observe that G is Hughes-free embeddable by [12] (see also [25, Theorem
6.10]). Let £ be a division ring. Observe that the restriction of rkDg[(;] on E[N]is equal
torkpgy, and Dgig) = Q(Dgy) * G/N) as E[G]-rings. Thus, by Proposition 2.5(1),

rkpg[c] = rkDE[N]'

Denote by rk; the Sylvester matrix rank function on £[N ] coming from the obvious
map E[N] — fé’v Then, again by Proposition 2.5(1), we obtain that rkpg;,,, =
tkoe(G/n) = K- .

Since N is Lewin, tkp, > rkfg, andso,tkpy,, > rké. Thus, tkpy6) = KDy )
as Sylvester matrix rank functions on E[G]. Since G/N is amenable and locally
indicable, Corollary 3.4 implies that rkp,; , = rke. Hence rkp,;, = rke. Using
Proposition 3.5, we obtain (3).

The fourth statement follows from Proposition 3.5 and Theorem 1.2.

Consider now the fifth claim. First let us prove that the direct product G = G| x G2
of two Lewin groups G| and G is again Lewin. By [12], G is Hughes-free embeddable.
Let & be a division ring. Consider the natural homomorphisms

¢1:EIG] — E[G1], ¢2:E[G1] —> &€ and ¢33 =¢r0¢) : E[G] — £.
Since G, is Lewin,
KD 1621 = KD, In P(Dgig[G2D).
Therefore, since Dgjg) = DDS[G]][GZJ’
kD) = ¢} (tkpgg ) in PELGD).
Since G is Lewin,

KDy = Pi(tke) in P(E[G1]).
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Hence, we conclude that

kDgig = @1 (kpg ) = ¢ (95 (ke)) = ¢ (tke)  in P(E[G)).

Since £ is arbitrary, applying Proposition 3.5, we obtain that G is Lewin. The case of
two groups implies that (5) holds for an arbitrary finite product of Lewin groups. 0O

4 Universality of rkg

As we have already mentioned in Introduction, when G is locally indicable rkg =
1KDg- In this section we compare rkg with other natural Sylvester matrix rank
functions on C[G].

4.1 The condition rkg > rk{q;

In this subsection we will see several consequences of the condition rkg > 1k{1).
Recall that rkyy) is an alternative expression for rk¢ that has appeared in the previous
sections. We start with the following useful proposition.

Proposition 4.1 Let H be a finitely generated group and assume that H is not indi-
cable. Then tky1y is maximal in P(Q[H]). In particular, any group G for which Q[G]
has a universal division ring of fractions, is locally indicable.

Proof Suppose that H has the following presentation.
H = (x1,....,xq|r1,1r2,...).

Reordering the relations {r;} of H, without loss of generality we can assume that the
abelianization of the group

H={(xy,....xqlri,r2, ..., 1q)

is already finite.
Let F be a free group generated by x,...,xq4. Foreach | < i < d, we write
ri —1=Y_ a;j(x; — 1), where a;; € Z[F]. Let

X1 — 1
A = (a;j) € Maty(Z[F]) and B = : € Maty 1 (Z[F)).
xqg — 1
Denote by ‘A and B the matrices over Z[H] obtained from A gnd B, respectively, by
applying the obvious homomorphism Z[F] — Z[H]. Since H has finite abelianiza-

tion, we obtain that

rk{1y(A) =d — dimg H,(H; Q) =d.
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Let tk € P(Q[H]) satisfy rk > rk(y;. In particular,
rk(A) > k(1) (A) = rk1)(A) = d.

ry — 1
Since AB = : , we obtain that AB = 0. Thus, by [13, Proposition 5.1(3)],
rg — 1
tk(B) = 0. Therefore, rk(a) = 0 for every a € I, where I is the augmentation ideal
of Q[H]. Since Q[H]/I is a division ring and so it has only one Sylvester matrix rank
function, rk = rky1). This shows the first part of the proposition.
Assume now that Q[G] has a universal division ring of fractions D. Let H be a

finitely generated subgroup of G. If H is not indicable, then, as we have just proved,
the restriction of tkp on Q[ H] is equal to rkyyy. Since rkp is faithful, H = {1}. O

In the next proposition we will show that the condition rkg > rky1y implies that
tkg > rkg for any amenable quotient G of G.

Proposition 4.2 Let G be a group and N a normal subgroup with G/ N amenable. Let
K be a subfield of C. Assume that tky > rk1y in P(K[N]). Then kg > rkg/n as
Sylvester matrix rank functions on K[G].

Proof By Proposition 2.5, rk is the natural extension of rk y and rkg,y is the natural
extension of rk{yy. Since rky > rky1y in P(K[N]), we obtain that tkg > rkg,y in
P(K[G)) O

Corollary 4.3 Let G be a group and N a normal subgroup with G/N residually
amenable. Let K be a subfield of C. If tkg > rk(1y in P(K[G]), then k¢ > rtkg/n
holds as well.

Proof Without loss of generality we may assume that G is finitely generated. Then
there exists a chain G = Ng > N; > N, > --- of normal subgroups of G such that
G/ Ni is amenable and NNy = N. By [13, Theorem 1.3],

kg Ny = leII;Orkg/Nk in P(K[G])).

By Proposition 4.2, kg > rkg,n, in P(K[G]) for every k. Hence rkg > rkgn holds
as well. O

We conjecture that the corollary holds without the condition that G/N is residually
amenable.

Conjecture 3 Let G be a group and let K be a subfield of C. Assume that tkg > k(1
in P(K[G]). Thentkg > rkg in P(K[G]) for any quotient G of G.

4.2 Proof of Corollary 1.5

It is clear that part (1) of of Corollary 1.5 implies part (2). Kielak proved in [18] that
in order to show (1), it is enough to prove that the first L2-Betti number of G is zero.
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Using Theorem 1.1, we will show that the condition (2) of Corollary 1.5 implies that
the first L2-Betti number of G is zero.

First, let us recall the definition of RFRS groups. A group G is called residually
finite rationally solvable or RFRS if there exists a chain G = Hy > H; > --- of
finite index normal subgroups of G with trivial intersection such that H;y; contains
a normal subgroup K, of H; satisfying that H; /K,y is torsion-free abelian. The
following proposition implies that RFRS groups are residually poly-Z.

Proposition 4.4 Let G be a finitely generated group, and let
G=Hy>H >Hy>--->H,> -

be a chain of finite index normal subgroups of G with (\,—y H, = 1. Suppose that
for every n > 0 there exists a subgroup K,+1 < H, such that K,+1 < H,4+1 and
H,/K,+1 is poly-Z. Then G is residually poly-7Z.

Proof A pro-p version of this result is proved in [ 16, Proposition 5.1]. The same proof
works in our case. We include it for the convenience of the reader.
Forn > 1 let

Ro= () skg'<G
8€G/Hy—1

be the normal core of K, in G. Since the direct product of poly-Z-groups is poly-Z

and a subgroup of a poly-Z group is poly-Z, the group H,_1/K, is poly-Z as well.
For every n > 1 set

LnZHE,'QG

i<n

and note that since ()2, H, = 1, this is a chain of subgroups that satisfies
o o0

We shall argue, by induction on 7, that G/L, is poly-Z. For n = 1 we have

DX
=
ﬁjg

n=

G/L, = G/K, = Hy/K, is poly-Z.
Oncen >2wehave L,, = L,_1 N E,,, and by induction G/L,_1 is poly-Z. Thus,
since an extension of two poly-Z groups is poly-Z, it suffices to show that L,,_1/L,
is poly-Z. Indeed, since K, < H,_1, we have that

Ly_1/Ly=Ly /L1 N En = Ln—lgn/En = Hn—l/gn is POIY'Z-

Therefore, we conclude by recalling that a subgroup of a poly-Z group is poly-Z. O
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Now let us prove that the condition (2) of Corollary 1.5 implies that the first L>-
Betti number of G is zero. Let H be a subgroup of finite index such that there exists
a normal subgroup N of H with H/N = Z and H|(N; Q) is finite-dimensional.

Assume that H has the following presentation.

H={(x1,....,xql7r1,12,...).
Observe that H|(N; Q) = H|(H; Q[H/NJ).
Let F be a free group generated by xi,...,xq and consider Q[H/N] as an
F-module. Then H,(F; Q[H/N]) = Q[H/N1%~! as a Q[H/N]-module. Since

Q[H/N] is a PID, we can reorganize the relations {r;} and without loss of gener-
ality we can assume that H| (H; Q[H /N]) is finite-dimensional, where

H={(xy,...,xqlr1,r2, ..., ra—1),

¢ : H — H is the canonical surjection and N = o~ H(N).

Foreachl <i <d—1,wewriter; — 1 = Z?:l ajj(xj — 1), where q;; € Z[F].
Let
X1 — 1
A= (a,:/) € Mat(d_l)xd(Z[F]) and B = € Matg 1 (Z[F)).
xqg — 1

Denote by ‘A and B the matrices over Z[H] obtained from A and Q resp~ect’ivvely,
by applying the obvious homomorphism Z[F] — Z[H]. Since H,(H; Q[H/N]) is
finite-dimensional, we obtain that

kv (A) =tk /N (A) = kg y(A)=d—1.
By Proposition 4.4, H is residually poly-Z. By Corollary 4.3, rky > rk{1) in

P(Q[H]). Thus, by Corollary 4.3, rk 7 (A) > tkg/n(A) = d — 1. Hence, since H is
infinite, the sequence

A B
12(H)4! P, 12(H)¢ P, I’(H) - 0

is weakly exact. Therefore, the first L2-Betti number of H vanishes, and so the first
L2-Betti number of G vanishes as well.

4.3 Proof of Corollary 1.6
Consider the cellular chain complex of X

3p+l

C®): . 2C (RN 2, BB 2IC, 1 (R)]... > 7 0.
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Since G acts freely on Xand X = X /G is of finite type, we obtain that
ZICp(X)] = Z[G]"r is a free Z[G]-module of finite rank and the connected mor-
phisms 9, are represented by multiplication by matrices A over Z[G]. Hence we
obtain the following equivalent representation of C(X):

CXy: ...... zZiGre A ey A Gy 7 - o.

Therefore, if p > 1 the pth Betti number of X and the pth L>-Betti number of X can
be expressed in the following way.

bp(X)=n,—(kj(Ap)+1k1)(Ap11)) and b (X)=n, — (tk (A ) +1kG (A p11)).

Thus, Corollary 1.4 implies that b (X) < b,(X)if p > 2.1f p = 1, then kG (A;) =
1 and k(1 (A;) = 0. Therefore 5> (X) < by (X) — 1.
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5 Appendix: The universal division ring of fractions of group rings of
division rings and RFRS groups

In this section G is assumed to be a finitely generated RFRS group and E is a division
ring. By Proposition 4.4, G is residually poly-Z. Therefore, Corollary 1.3 implies that
DE[c) exists and it is universal. In this section we will give an alternative description
of Dgc) (see Theorem 5.10). Our proof follows essentially the argument of Kielak
[18], where this description is done when E = Q.

5.1 Characters

A character of G is a homomorphism from G to the additive group of real numbers
RR. The set of characters Hom(G, R) is denoted also by H'(G; R). A character ¢ is
called irrational if ker ¢ /[G, G] is a torsion group.

If H is a subgroup of finite index of G then the restriction map embeds H'(G; R)
into H'(H: R). In what follows, we will often consider H!(G; R) as a subset of
H'(H:R).
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If H is a normal subgroup of G then G acts on H'(H; R):for¢ € H'(H; R) and
g € G, we denote by ¢¢ the character that sends & € H to ¢(ghg™ ).

Let G = Hy > H; > H> > --- be a chain of subgroups of G of finite index and
n > 0.Forany U C H'(H,; R) we denote

U, =U° and Uy_; = (Up)° N H' (Hy_1; R) when 1 <k <n.

We say that U is (G, {H,}i>0)-rich if Uy contains all the irrational characters of G.
When G and {H;};>0 are clear from the context, we will simply say that U is rich.

Lemma5.1 Let G = Hy > H) > Hy > --- be a chain of subgroups of G of finite
index.

(1) If U is rich in HY(H,: R) and g € G, then U8 is also rich.
(2) The intersection of two rich subsets of H'(H,: R) is again rich.

Proof Claim (1) is clear. Let us show the second claim.
First observe that if U and V are two open subsets of R, then

NV =0)°’ny)y°. 3)
Indeed, let x € (U)° N (V) and let O (x) be a neighborhood of x such that
ox)cuUNvV.
Consider y € O(x), and let O(y) be an arbitrary neighborhood of y such that
O(y)cUNYV.
In particular, there exists z € U N O(y). Recall that U is open. Consider an arbitrary
neighborhood O (z) of z such that O(z) € U N V. Since V is open, O(z) NU NV is
not empty. Hence z € U NV, and so, y € U NV as well. Thus, O(x) C U NV and

xeUnNv)e.
Now let U and V be two rich subset of H'(H,; R) and let W = U N V. We put

U, =U° and Us_; = (Up)° N H' (Hy_1; R), when 1 <k <n,
and similarly we define Vj and Wj.

Then we have that W,, = U,, N V,,. Now, assume that we have proved that W =
U N Vi for some k < n. Then we obtain that

_ - 3
W1 = (W)’ NH (Hi—1; R) = (Ux N V)’ N H (Hi—1; R) ) U1 0 Viy.

In particular, W contains contains all the irrational characters of G, and so, W is rich.
O

We will need the following criterion of richness.
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Lemma5.2 Let G = Hy > H| > Hy > --- be a chain of subgroups of G of finite
index. Take non-negative integers n > k > 0. Let U be an open subset of H' (Hy; R)
and let V be an open subset of H L(H,: R). Assume that U is rich and all the irrational
characters of U belong to V. Then V is also rich.

Proof We put V,, = V° and V;_; = (V;)° N H'(H;_1; R) when 1 < i < n. Then
by the inverse induction on 7, we obtain that all the irrational characters of U belong
alsoto V; forn <i <k.Hence U C Vj. This clearly implies that V is rich. O

5.2 Novikov rings

Let S * G be a crossed product and let ¢ € H'!(G; R). Denote by || lp @ norm on
S x G defined by

1) " sigilly = max{27?) 5 # 0}

L

Our convention is that [|0]| = 0. Let ﬂ\cd’ be the completion of S x G with respect

to the metric induced by the norm || ||4. The ring s*/\cf’ is called the Novikov ring
of S x G with respect to ¢.

Let N = ker¢. Then ¢ is also a character of G/N and ﬂ\Gd) is canonically
isomorphic to (m¢. We will not distinguish between these two rings.

< =¢ . .
Any elementof S % G can be represented in the following form } 72, a; g, where
a; € S* N and {¢(gi)}ien 18 an increasing sequence tending to the infinity.
We would like to construct an environment, where we can calculate the intersection

Dergi N E/[E]d). In order to do this, consider the following commutative diagram of
of injective homomorphisms of rings.

E[G] < DElay
| oo )
EIGI” <>Fos Dy, » G/N’

where the maps are defined as follows.

Notice that m¢ is a division ring and Dg(g) is the classical Ore ring
of fractions of Dg[y| * G/N. Therefore, the map o, ¢ is the unique extension of the
embedding

~ A~ ?
DE[N] *G/N —> DE[N] k G/N .

Since Hughes-free division ring is unique, for every subgroup H of G, the division
ring Dgy) can be identified with the division closure of E[H] in Dg(g). Thus, the

ring m¢ can be identified with the closure of

'DE[NQH] *(H/(NNH)) = 'DE[NQH] x*(HN/N) C DE[N] * G/N
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in m¢ with respect to the topology induced by || ||¢. Using this identifi-
cations, we obtain that oy ¢ is the restriction of «¢ 4. Therefore, in the following we
will simply write o instead of ag .

The map B¢, 4 can be defined as the the continuous (with respect to || ||4) extension
of the map

E[G] = E[N]%G/N < Dgin} % G/N.

Let H be a normal subgroup of G of finite index. Then the restriction of ¢ on H
=0

is a character of H and E/[I?]d) can be identified with the closure of E[H] in E[G]
with respect to the topology induced by || [|4. It follows from the definitions that By

is the restriction of B¢ 4 on E/[I7]¢. Thus, in the following we will simply write B
instead of B 4.
For any subset S of H'(G; R) we put

DE[G],S ={x e DE[G] : 06¢(x) € Im ,3¢, for every ¢ € S}. %)

If ¢ € H'(G;R), we will simply write Dgjc},4 instead of DgGy,¢}- Therefore, by
our definition,

Dricrs = [ ) PEiGle-
¢eS

Proposition 5.3 Let H be a normal subgroup of G of finite index and let S be a subset
ole (G; R). Then Dgny,s is G-invariant and Dg(c), s is equal to the ring generated
by DEgwy,s and G. In particular Dg(g).s is a crossed product Dgmy,.s * G/H.

Proof 1t is clear that Dg[p),s and G are contained in Dgj(g).s-
Now let x € Dg(gy,s- Let Q be a transversal of H in G. Since Dg[g] = DEg(n) *
G/H, we can write

X = Z Xqq
qeQ

with x; € Dgy). We want to show that
Xq € DE[H],S for all q < Q (6)

This will prove the proposition. Observe that this claim does not depend on the choice
of Q, because H C Dgjpy,s.

In order to prove (6), it is enough to show that for every ¢ € S, x;, € Dgg),¢. Put
N =ker¢pand T = HN. Let Q; be a transversal of H in T and Q, a transversal of
T in G. We assume that Q = Q1 Q. Thus, we obtain that

X = Z Ygq2, Where yg, = Z Xg14291-
42€Q2 q1€Q1
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Since ker ¢ < T and T has finite index in G,

FiGT = @ FiiT e
@eQ

Thus, for all q2 € Q2, Ygr € DE[T],¢-

Without loss of generality we can also assume that Q; C N. Thus Q; is also a
transversal of N N H in N.

Foreachr € ¢(T) = ¢ (H), choose, h, € H such that ¢(h,) = r. Then there are
riy > rp > r3 > --- such that we can write

00
ag(xg) = Zh"iai»q with a; 4 € DginnH].

i=1

For each g € Q2, we obtain that

00
oy (¥gr) = Zhri( Z ai,q1q291)-
i=1

q1€01

Since ay(yg,) € Im By, we obtain that for each i > 1,

Z @i q10291 € E[N].
qeQ

Therefore, foreachi > 1and g € Q, a; 4 € E[N N H]. This implies, that ay(x,) €
Im ,3(,5, and so, Xq € DE[H],(]} for every q. O

Let H be a normal subgroup of finite index of G and let S be a subset of H'(H; R).
Then we put

DEgic),s = Z DE(H,58-
geG

In view of Proposition 5.3, this definition is coherent with the previous definition of
DErGy,s in (5).

Observe that if S is G-invariant, then g’lDE[H],Sg C Dgn)y,s for all g, and so,
DE(c).s 1s equal to the subring of Dgg) generated by G and Dgq),s. In this case
DEc), s has a structure of a crossed product D[, s * G/H . For arbitrary S, Dg[g),s
is not always a subring of Dg|g).

Let ¢ € H'(H; R). We denote by ¢ the G-orbit in H'(H;R). Then DE[Gl,¢ 18
aright Dy pc-module. Let N = ker ¢. As in (4) we have

E[H] < DE[H]
) 1% , 7
Y ™

E[H] <P Dy, + H/IN®
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which induces another commutative diagram

E[G] — DE~[G]
s i SV C®
E[H]" ®gn) EIG] =P Dgiyyx H/N D 111,66 Dei6,46

where &y and /§¢ are homomorphisms of right E[G]-modules defined in the following
way. Fix a right transversal Q of H in G. Then B¢ is defined on a basic tensor by

Bo(b ®q) = Bp(b) ® q.

In order to define &g, we write an element a € Dgg) as a = ) .o aqq, With
ay € DEg(g), and define

agla) = Za¢(aq) ®q.
qeQ

Observe that with this new notation we also have

DEGl.g = 1x € DE[G) : Gp(x) € Im By). )

5.3 Continuity of || ||
Let¢ € HY(G;R)and x € DE[G)- Then we put

lxllg = llag () lg-

Proposition 5.4 Let x € Dg[g). Then the map H'(G;R) — R defined by

¢ = lxllg

is continous.

Proof Let G/K be the maximal torsion-free abelian quotient of G. Let R be a subring
of Dg|c) generated by Dk and G. Then the ring D) is isomorphic to the classical
Ore ring of fractions of R. Thus, there are y € R and 0 # z € R such that x = yz .
Since ||x|lp = ||y||¢||z||;1, it is enough to prove the proposition in the case x € R.
Thus, let us assume that x € R.

Let A be a transversal of K in G. Then we can write x = Zaer

a finite subset of A, and, for each a € Ag,x, € DEg(k). Observe that

Xqa, where Ag is

Ixllg = max{llally : a € Ao} = max{27?@ : a € A}.

This clearly implies that ||x || is a continuous function in ¢. O
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5.4 Invertibility over Novikov rings

Let H be a normal subgroup of G of finite index and ¢ € H'(H; R). In this subsection
we want to give a sufficient condition for x € D¢ 46 to have its inverse in Dg(g,¢-

Let Go be a subgroup of G containing H and let Q be a transversal of H in Gy.
Observe that

$%0 = (9% : g e Go} = {¢* : g€ 0} =97
We can decompose any x € DGy asx = Y .o Xqq Withxg € Dgip). The (Q, ¢)-
norm of x is defined by
Nl
1xllg.0 = max{llxglly lg'I" = ¥ € $2.q € 0}.
By the definition, || |4, has the following properties.

Lemma5.5 Letzy,z2 € Dgpuyand g € Q. Then

(1) llziz2qll¢,0 < llz1ll¢,0llz2¢llp,0-
(2) llzigllg.0 = lzilg.0llgllg.0-

Observe thatif ¢ € H 1(Go; R) € H'(H; R) is a restriction of some character of
Gy, then ||x|lg,0 = llxllg, and so, in this case || ||, is multiplicative. However, if
¢ is an arbitrary character of H 1(H; R), then || lg, 0 is not multiplicative in general.
This motivates the notion of the defect of || |4, o-

llg1921l4.0

def o (¢) = max {—
¢ lg1llg.0llg2llg.o

: 611,612€Q}-

Observe that if g; € H, then by Lemma 5.5, ||q1921l4,0 = llg1lls,0llg21l¢,0,- Thus,
def o (¢) is always at least 1. We have the following consequence of Proposition 5.4.

Corollary 5.6 Let H be a normal subgroup of finite index of G, H < Gy < G and Q a
transversal of H in Go. Let x € Dg(c,)- Then the following functions on H'(H;R),

¢ = llxllg.o and ¢ — defp (@),

are continuous.
We will use the following properties of || [|4, 0.

Proposition 5.7 Let H be a normal subgroup of finite index of G, H < Gy < G and
Q a transversal of H in Go. Let ¢ € H'(H; R). Then for every w, z € DE[Gols

lz+wllg, o0 <max{lizllg,0. lwllg,o} and |z - wlg, 0 <lzllp,0 - lwllg, o - def ().
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Proof If g € Go, let g € Q be such that Hg = Hg. We write z = quQ 249 and
w= quQ wyq, with z4, wy € Dg(g). Then

—1
z7+w= Z(Zq —+ wq)q and z-w = Z Z qu(qu)ql q192

qeQ q€Q \9=9192

Lety € ¢<. Since lzg +wglly < max{llzglly, lwglly}, we obtain that [|z+w]lg, 0 <

max{||zllg,0, lwllg,o}
Observe that

Lemma 5.

. 5
lzgy (we)T qig2llg,0 =< llzg llg,0llwg, g, 0llg1G21l9, 0
< lizgllg.0llq1llg,0llwg, llg.0llg2ll¢, 0 def o (@)

Lemma 5.5

=" lzgqillg.ollwlig. o defo(@) < lizllg.ollwlig, o def o ().

Therefore ||z - wllp,0 < llzllg,0 - llwllg,o - def g (). m|

Corollary 5.8 Let H be a normal subgroup of finite index of G, H < Gg < G and Q
a transversal of H in Go. Let ¢ € H! (H;R) and let w, y € DE[GO]’(,)Q. Assume that
w is invertible in D) 40 and

Iyllg,0 - lw™ g0 < defo ()2
Thenw +7y # 0and (w + y)~' € DEGo).0-
Proof By Proposition 5.7,
(w —i—y)w_1 =1—2z with ||z]l¢,0 < defQ(qS)_l.

In particular w + y # 0.
Let us put € = ||z]|4,p def g (¢). Then € < 1 and, by Proposition 5.7,

n

€
12" g0 < ————.
defQ(¢)

Thus, if we write

Zn — Z Zq,l’lqv Wlth Zq,n S DE[H],¢Q’
q€Q

then we obtain that for every ¢ € ¢<,

_ . (10)

1z"llp.0 €"
L 1
llg'@lly”  defo(e)lig!2l,”

”Zq,n”i// =
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Consider

v=>)" (izq,n> ®4q,

q€Q \n=0

and observe that, by (10), v € Im Bw. On the one hand we have that

v(l —2)

k
5 (im e o) a2
n=0

qe0
k
(klggo'él” (X:(:)Z)) (-2 = lim fy( - =11

On the other hand,

Gy(1-2Hl-=ay(H)=1® L
Thus, &y ((1 — 2)~!) = v. By (9), we conclude that (1 — 2)~! € Dg(gy),¢» and so,
(w + y)_l € DEGy),¢- O

5.5 A description of Dgg).
For any x € Dg(g) and any normal subgroup H of finite index in G we put
Un(x) ={¢p € H'(H;R) : x € DgG1.¢}-

Informally, Ug (x) consists of the set of characters of H such that x can be represented

as a matrix over E[H ]¢.

Lemma 5.9 Let Hy < Hj be two normal subgroups of G of finite index. Let A be a
transversal of Hy in G. Consider x € Dg|g) and write x = Z Xqa withxg € Dg(my).
acA

Then

Uty (x) = () Uiy (xa).

acA

Proof Let ¢ € H'(H,; R). By the definition,

Driclg = Y Drimgg and Deimyig = Y DEfm)¢8-
geG geH;

Therefore, DE[G],(]b = ZaEA DE[H[],(]&a' Thus, X € DE[G],¢ if and only if Xa €
DEginy,¢ foralla € A. Hence, Up, (x) = (),ea Un, (Xa). O
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Since G is RFRS, there exists a chain G = Hy > H; > --- of finite index normal
subgroups of G with trivial intersection such that H; | contains a normal subgroup K;
of H; satisfying H; /K is torsion free abelian. The chain { H;} satisfying this property
is called witnessing. We fix a witnessing chain {H;} in G. Let Kg[g) denotes the set
of all x € Dg(c such that for some k > 0, Uy, (x) is (G, { H;})-rich for every n > k.

In this section we prove the following theorem. This is the main result of Appendix.

Theorem 5.10 We have that Kgi1 = DE[G)-

First let us see that g is a subring of Dg(g). Indeed, if a, b € Kg(g), using
Lemma 5.1, we obtain that there exists k > 0 such that for every n > k there is a
G-invariant rich subset U,, of HI(H,,; R) with a, b € Dg(g),u,- Since Dg(g),u, 1s a
subring of DE[G], a—+ b, ab € DE[G]~ Hence K:E[G] a subring of DE[G]-

Thus, in order to show that Kg[G] = DEg[c], we have to prove that for any 0 # x €
KEiG), x~! € Kg(g). First let us consider the case where x € E[G].

Proposition 5.11 Let 0 # x € E[G]. Then x is invertible in Kg[g).

Proof Write x =},

show that x~! € K E[G] by induction on [supp x|. The base of induction is clear. Let
us assume that |supp x| > 1. There exists k > 0 such that

agg and denote by suppx = {g € G : a, # 0}. We will

{gHi : g € suppx}| =1 and [{gHk+1: g € suppx}| > 2.

Let A be a transversal of Hyy1 in Hi. Hence, there exists g € G such that we can
write

X = Zxaag, with x, € E[Hpy+1].

acA

Since g, ¢! € KE[G], without loss of generality we may assume that g = 1. In
particular, x € E[Hy].
For each i > k we fix a transversal Q; of H; in Hy. For any a € A, we put

Vie=1{¢p € H'(H;;R) : ||x —xqallg.0; - |(xa@) " llp.0; < def o, (#)72).

Let Vi = U,y Vi

acA
Claim 5.12 For eachi > k, the set V; is rich in H'(H;; R).
Proof First observe that Corollary 5.6 implies that V; ,, and so, V; are open in

H'(H;; R). Let ¢ be an irrational character of H'(Hy:; R). Since {H;} is a witnessing
chain and ¢ is irrational, ker ¢ < Hy 1. Therefore, there exists a € A such that

1 1
[xe@) g N1xa@) g0

X = xqallg,0; = Ix = xaallp < l[(xa@)llp =
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Since def g, (¢) = 1, we obtain that ¢ € V; , for all i > k, and so V; contains all
irrational characters of Hj. Now the claim follows from Lemma 5.2. O

By the inductive assumption, x,a is invertible in Kg[g). Thus, there exists n > k
such that foreveryi > nanda € A, Uy, ((xqa)~Y) is rich in H'(H;, R). We put

q
W= (w N UH,(<xaa>—1>> :

qeQ; acA

By Lemma 5.1, W; is rich. Let ¢ € W;. Observe that W; is Hj-invariant. Hence

qbQi cvin ﬂaeA UH,.((xaa)_l). There exists a € A such that¢ € V; ,. Observe that

X — Xqa, Xqa, (xaa)q € DE[Hk],¢Qi' By Corollary 5.8, xle DE[Hk],qb - DE[G],({)-

Thus, W; € Up, (x_l) and we are done. O
Now, we consider the general case.

Proof of Theorem 5.10 'We will show that x~! € K¢ for every 0 # x € Kg[G) by
induction on the level /(x) of x, that is defined as follows.

[(x) =min{n —k : x € Dg(p,) and Ug, (x) is rich for every i > n}.

Consider first the case I(x) < 0. Then x € Dgy,] and Uy, (x) is rich for every i > k.
Let Hi/K be the maximal torsion-free abelian quotient of Hy. Let R be the subring
of Dg(n,) generated by D g and Hy. Since Dy, is the classical ring of quotients
of R, we can write x = yzfl with non-zero y, z € R. Let A be a transversal of K in
Hj.. Then there are finite subsets Ap and By of A such that

y = Z Yea, 7= Z zqa with non-zero y,, z, € Dg[k)-
acAg acBy

Let ¢ be an irrational character of Hy. Observe that ¢ takes different values on the
elements of Ap and on the elements of By. Therefore, there are unique a4 € Ag and
by € By such that

¢(ap) = min{p(a) : a € Ap} and ¢(by) = min{¢(b) : b € By}.

Claim 5.13 Let ¢ be an irrational character of Hy and w = (ya¢a¢)(zb¢b¢)_l. Then
Ixllg = llwllg > llx — wllg. Moreover, if x € Dgn,,¢, then w € E[H].

Proof The claim follows directly from the definitions. O
Let
T = {wap = (yaa)(zph) ™" : a € Ao, b € Bo} N E[H].

Since T~! C K E[G) (Proposition 5.11), there exists n such that Ug, (w1 is rich for
everyw € T andi > n.
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For each i > n let Q; be a transversal of H; in Hy. Foreach w € T andi > n we
put

Viw =1 € H'(H;R) : |lx — w0 - lw gy o < defg, (@)%

and V; = Uyer Vi w. Observe that V; are open and if ¢ € H'(H;; R), def g, (¢) = 1.
Thus, by Claim 5.13, foralli > n, V; contains all the irrational characters of (U, (x))°.
Since (Up, (x)) is rich, Lemma 5.2 implies that V; is rich for i > n.

For each i > n we define

q
wi= () (w NUr@ N[ UH,-(w—1>) :

q€Q; weT

By Lemma 5.1, W; is rich. Let ¢ € W;. Observe that W; is H-invariant. Hence
ngi cvin ﬂweT Ug, (w‘l). There exists w € T such that ¢ € V; ,,. Observe that
X —w,w, (w)’] € DE[HkWQ,- . By Corollary 5.8, xle DetHy,¢ C DEf6)¢- Thus,
W; C UHl.(xil). Thus, xle ’CE[G]~

Now, we assume that /(x) > 0 and that the non-zero elements of g(g) of level
less than of /(x) are invertible in Kg[g). There are n and k such that [(x) = n — &k,
x € Dgrny, and Uy, (x) is rich for every i > n.

Let A be a transversal of Hyy in Hy. Hence, we can write

X = Zxaag, with x, € Dggy -
acA

By Lemma 5.9, for every a € A, x, € Kg[g) and [(x,) < [(x).
For each i > k we fix a transversal Q; of H; in Hy. For any a € A we put

Via=1{p € H'(H;:R) : |x — xqallp.0; - (xa@) g0, < defg, (¢)7?}.

Let V; = U,cn Via- Arguing as in the proof of Claim 5.12, we obtain that all V; are
rich. By the inductive assumption, x,a is invertible in Kg[¢]. Thus, there exists n > k
such that foreveryi > nanda € A, Up, ((xqa)~Y) is rich in H'(H;, R). We put

q
wi= ) (v,» NUxE N[ UHi((xaa)_1)> :

qeQ; acA

By Lemma 5.1, W; is rich. Let ¢ € W;. Observe that W; is Hj-invariant. Hence
o2 Ccvin Maca UHi((xua)_l). There exists a € A such that¢ € V; ,. Observe that
X = Xqd, Xqd, (Xq@) " € Dpyy 50, By Corollary 5.8, x~! € Dgyy).9 € DE(G1.4-
Thus, W; C Up;, (x_l) and we are done. O
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