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Abstract
We study the harmonic polytope, which arose in Ardila, Denham, and Huh’s work on
theLagrangian geometry ofmatroids.Wedescribe its combinatorial structure, showing
that it is a (2n − 2)-dimensional polytope with (n!)2 (

1 + 1
2 + · · · + 1

n

)
vertices and

3n − 3 facets. We also give a formula for its volume: it is a weighted sum of the
degrees of the projective varieties of all the toric ideals of connected bipartite graphs
with n edges; or equivalently, a weighted sum of the lattice point counts of all the
corresponding trimmed generalized permutahedra.

Mathematics Subject Classification 52B20 · 52B05 · 52A39 · 14M25 · 05A15 · 05E14

1 Introduction

Motivated by the Lagrangian geometry of conormal varieties in classical algebraic
geometry, Ardila, Denham, and Huh [4] introduced the conormal fan �M,M⊥ of a
matroidM—a Lagrangian analog of the better known Bergman fan�M [6]. They used
the conormal fan �M,M⊥ to give new geometric interpretations of the Chern-Schartz-
MacPherson cycle of a matroid—introduced by López de Medrano et. al. [13]—and
of the h-vectors of the broken circuit complex BC(M) and independence complex
I (M) of M. This geometric framework allowed them to prove that these vectors are
log-concave, as conjectured by Brylawski and Dawson [11,14] in the 1980s.
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In their work, Ardila, Denham, and Huh encountered two polytopes associated to
a positive integer n: the harmonic polytope Hn,n and the bipermutohedron �n,n ; the
first is a Minkowski summand of the second. Their geometric origin is explained in
Sect. 2. This paper studies the harmonic polytope Hn,n ; its name derives from the fact
that its number of vertices is (n!)2Hn where Hn = 1+ 1

2 +· · ·+ 1
n is the nth harmonic

sum. The harmonic polytope has nice vertex and inequality descriptions, shown in
Propositions 3.5 and 3.7 . We also give a combinatorial formula for its f -vector; we
note that giving such a description for an arbitrary polytope is #P-hard. [15,22]

Computing the volume of an arbitrary polytope is a very difficult task [7]. In princi-
ple, one could compute the volume of a given polytope by constructing a triangulation
and adding the volumes of each of the maximal dimensional simplices. In practice,
this is not a feasible approach: Dyer and Frieze showed that the problem of finding the
volume of a polytope is #P-hard [16]. Even among polytopes with well-understood
face structures, few exact volume formulas are known.

Our main result is Theorem 1.1, which computes the volume of Hn,n . We use the
combinatorial structure of the harmonic polytope Hn,n to show that its volume is a
weighted sum of the degrees of the toric ideals of all bipartite multigraphs on n edges;
or equivalently, of the lattice point counts of all the corresponding trimmed generalized
permutahedra.

Theorem 1.1 The normalized volume of the harmonic polytope is

Vol(Hn,n) =
∑

�

i(P−
� )

(v(�) − 2)!
∏

v∈V (�)

deg(v)deg(v)−2

=
∑

�

deg(X�)

(v(�) − 2)!
∏

v∈V (�)

deg(v)deg(v)−2,

summing over all connected bipartite multigraphs � on edge set [n]. Here i(P−
� ) is

the number of lattice points in the trimmed generalized permutahedron P−
� of �, X�

is the projective embedding of the toric variety of � given by the toric ideal of �, V (�)

is the set of vertices of �, and v(�) := |V (�)|.
To prove Theorem 1.1 we observe that the harmonic polytope can be expressed

as a Minkowski sum of simplices, so its volume is a sum of the associated mixed
volumes. Following an idea of Postnikov [25], each mixed volume equals the number
of isolated solutions of a system of polynomial equations by Bernstein–Khovanskii–
Kushnirenko’s theorem, and we can try to count those solutions. In Postnikov’s case
this is easy because one obtains a system of linear equations, which has 0 or 1 solution.
Our setting is much more subtle because our equations are not linear. To count their
common solutions, we establish a connection with the theory of toric edge ideals
[29,31]. This connection allows us to express each mixed volume in terms of the
degree of a toric ideal, the volume of an edge polytope, or the number of lattice points
of a trimmed generalized permutahedron.

In order to get an approximation for the volume of the harmonic polytope, it is
desirable to count the non-zero terms in the sum of Theorem 1.1. We show that the
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non-zero mixed volumes are in bijection with the pairs of forests on [n] whose union
is connected. We count them in Proposition 5.1 by computing in the Möbius algebra
of the partition lattice.

2 Motivation: the Lagrangian geometry of matroids

This section, which is logically independent from the rest of the paper, provides the
geometric motivation for this project; it assumes some familiarity with the geometry
of matroids. Our discussion overlaps with [4, Section 2.8]; for further details we refer
the reader to [1,2,4].

The harmonic polytope and the bipermutahedron arose naturally in Ardila, Den-
ham, and Huh’s construction [4] of the conormal fan of a matroid. They used the
bipermutahedron to provide a combinatorial model for the Lagrangian geometry of
matroids, and derive interesting combinatorial consequences. Our goal in this section
is to explain that the harmonic polytope is the universal polytope that is contained in
all such models.

2.1 Combinatorial Hodge theory and log-concavity for matroids

The Chow ring, the Bergman fan, and f -vectors The story begins with the proof
by Huh [20], Huh–Katz [19], and Adiprasito–Huh–Katz [1] of a series of conjectures
by Rota, Heron, Mason, and Welsh in the 1970s and 1980s. Their strongest result
is that the f -vector f0, f1 . . . , fr−1 of the broken circuit complex of a matroid M is
log-concave.

When M is realizable as a hyperplane arrangement over the complex numbers, De
Concini and Procesi’s wonderful compactification of the arrangement complement is
a smooth complex projective variety, whose Chow ring A∗(M) satisfies the Kähler
package. Feichtner and Yuzvinsky [17] gave an elegant combinatorial presentation for
this Chow ring. There are natural classesα andβ in A∗(M)whose intersection numbers
deg(αkβr−1−k) equal the f -vector above for k = 0, 1 . . . , r−1. The Hodge-Riemann
relations then imply the desired log-concavity result.

When M is not realizable, there seems to be no algebro-geometric context for this
proof, but there is a tropical substitute: Ardila and Klivans’s Bergman fan �M, which
is a triangulation of the tropical linear space TropM ofM. Its Chow ring A∗(M) coin-
cides with the Chow ring above in the realizable case. The approach above can be
“tropicalized” to include all matroids, but there are significant new hurdles to over-
come. The main technical result of Adiprasito–Huh–Katz [1] is that this combinatorial
Chow ring A∗(M) still satisfies the Kähler package for all M, even in the absence of
algebraic geometry. The main combinatorial result is that the intersection numbers
deg(αkβr−1−k) still equal the desired f -vector; this is an algebraic combinatorial
computation in terms of the flags of flats of M, which correspond to the cones of the
Bergman fan �M.
The conormal Chow ring, the conormal fan, and h-vectorsHuh [21] and Ardila–
Denham–Huh [4] recently proved stronger conjectures from the 1980s by Brylawski
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and Dawson. The strongest is that the h-vector h0, h1 . . . , hr of the broken circuit
complex of a matroid M is log-concave.

When M is representable over a field of characteristic zero, Huh identified two
classes γ and δ in the Chow ring of Varchenko’s variety of critical points and proved
that the intersection numbers deg(γ kδn−2−k) now give the desired h-vector, which is
log-concave by the Hodge-Riemann relations.

When M is not realizable, the key tropical geometric object is the conormal fan
�M,M⊥ of the matroid. Ardila–Denham–Huh [4] showed that the resulting Chow

ring A∗(M,M⊥) still satisfies the Kähler package. Combinatorially, the proof that
the degrees deg(γ kδn−2−k) still give the desired h-vector is now much more intricate.
It involves giving a Lagrangian interpretation of the Chern-Schwartz-MacPherson
classes of the matroid, and studying the combinatorics of the biflags of biflats of M,
which correspond to the cones of the conormal fan �M,M⊥ .

2.2 The conormal fan: an origin story

A central question in Ardila-Denham-Huh’s program was the following: How should
one define the conormal fan� = �M,M⊥ and the correspondingChow ring A∗(M,M⊥)

of a matroid M? This is the question that led to the harmonic polytope and the biper-
mutahedron, as we now explain.

When M is the matroid of a subspace V of C
E , the conormal fan �M,M⊥ is a

tropical model of the projectivized conormal bundle of V . Since M⊥ is the matroid
of the orthogonal complement of V , we expect the conormal fan to be supported on
Trop(M) ×Trop(M⊥) ⊂ Nn ×Nn , where Nn = R

n/R. A desirable fan structure � on
this support should have the following properties:

1. There are classes γ and δ in its Chow ring whose intersection numbers give the
desired h-vector.

2. The Chow ring is tractable for algebraic combinatorial computations, so we can
prove 1.

3. The fan is a subfan of the normal fan of a polytope, so its ample cone is nonempty.
4. The fan is Lefschetz, so we can derive the desired log-concavity results.

Requirement 4. is resolved in [4] by showing that being Lefschetz only depends on
the support of the fan – and Trop(M) × Trop(M⊥) is the support of a Lefschetz fan
�M × �M⊥ by [1] – and not on the fan structure that we choose. Thus we can focus
on the first three.

Requirement 2. is stated imprecisely, but a very desirable initial property is that our
fan � is simplicial. In this case the Chow ring A(�) of the toric variety X(�) has an
algebraic combinatorial presentation due to Brion [10], and an interpretation in terms
of piecewise polynomial functions due to Billera [9]. These results make it possible
to carry out intersection-theoretic computations in this Chow ring. Thus the first fan
structure on Trop(M) × Trop(M⊥) that we might try to use is the product of Bergman
fans �M × �M⊥ . It is simplicial, it does have a nice combinatorial structure, and it is
a subfan of the normal fan of the product of permutohedra �n × �n , addressing 2-4.
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However, requirement 1. poses a problem. Relying on the geometry of the repre-
sentable case, we expect the classes γ and δ in the conormal Chow ring A∗(M,M⊥) =
A∗(�) should be the pullbacks of a piecewise linear function α on NE under the maps

π : � −→ �M σ : � −→ �n

π(x, y) = x σ(x, y) = x + y

where �n is the reduced normal fan of the standard simplex and � is our desired
fan structure on Trop(M) × Trop(M⊥). Here the piecewise linear function α can be
regarded as a class in the Chow ring of the matroid A∗(M) (where it is the class α of
[1]) or in the Chow ring of �n . If � equals �M ×�M⊥ or any refinement of it, the first
map is a map of fans, and γ is well defined. However, the second map is not a map of
fans for � = �M × �M⊥ . Thus the product fan structure will not serve our purposes;
we need to subdivide it further. How might we do this?

At this point, it is instructive to return to the case of tropical linear spaces above. In
that case, one wants a similarly convenient fan structure for the tropical linear space
Trop(M). Fortunately, one can do this for all matroids on [n] at once, by intersecting
Trop(M) with the permutohedral fan �n . The result is the Bergman fan �M ofM, and
the intersection theoretic computations in Trop(M) become computations with flags
of flats.

Similarly, we might try to find a suitable fan structure of Trop(M) × Trop(M⊥)

for all matroids M on [n] simultaneously, by intersecting them with an appropriate
complete fan. There is a minimal candidate: the coarsest common refinement of the
product of permutohedral fans �n ×�n – which induces the fan structure �M ×�M⊥
– and σ−1(�n) – the coarsest fan that guarantees that the class δ is well-defined. The
resulting fan is the harmonic fan.

The harmonic fan is the reduced normal fan of a polytope, namely, the Minkowski
sum

Hn,n := (�n × �n) + Dn,

of the product of twopermutohedra�n×�n and the diagonal simplex Dn = conv{ei+
fi }i∈E . Thus requirement 3. above is satisfied. The resulting polytope is the harmonic
polytope.
Combinatorialmodels for the Lagrangian geometry ofmatroids The harmonic
polytope has a drawback for our geometric purposes: it is not simple, so the resulting
fan structure on Trop(M) × Trop(M⊥) is not simplicial, posing numerous obstacles.
Thus we wish to find a simple polytope that has the harmonic polytope Hn,n as a
Minkowski summand, and has simple enough combinatorial structure that we can
carry out computations. Ardila–Denham–Huh propose the bipermutohedron �n,n as
a solution; the combinatorics of this polytope is studied in detail in [3]. Its faces are
indexed by biflags of subsets of [n].

The conormal fan�M,M⊥ is then defined as the intersection of Trop(M)×Trop(M⊥)

with the bipermutahedral fan �n,n ; its faces are indexed by the biflags of biflats of
M. The resulting intersection-theoretic computations in the Chow ring A∗(M,M⊥)

require an intricate, interesting analysis of these biflags; this can be done using a
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tropical geometric approach [4, Sections 3,4] involving Chern-Schartz-MacPherson
classes. There is also an algebraic combinatorial approach [5] involving an intricate
analysis of the biflags of biflats of ordered matroids. Both of these approaches require
significant new ideas and lead to new developments.

As far as we know, there is nothing canonical about the choice of the bipermutahe-
dron �n,n above. It is natural to wonder whether there are alternative, perhaps easier
approaches:Are there other simple polytopes inwhose normal fanswe could carry
out these Lagrangian geometric computations on matroids? On the other hand,
the harmonic polytope Hn,n is canonical: Every such simple polytope in Nn × Nn

must contain the harmonic polytope as a summand.
For every such simple polytope P in Nn × Nn that we can find, we expect that the

program above will produce a combinatorial model for the Lagrangian geometry of
matroids on [n]. The building blocks of this model will be given by the face structure
of the polytope P , and how it interacts with each matroid M on [n]. The resulting
intersection theoretic computations will teach us about the Lagrangian combinatorics
of matroids. This seems to be a direction of study worth pursuing further.

3 The harmonic polytope

Having motivated the study of the harmonic polytope, we now analyze it in detail.
Let n be a positive integer and let [n] := {1, . . . , n}. Consider two copies of R

n with
respective standard bases {ei : i ∈ [n]} and {fi : i ∈ [n]}. For any subset S of [n],
we write

eS =
∑

i∈S
ei , fS =

∑

i∈S
fi .

We also consider the (n − 1)-dimensional vector space Nn := R
n/Re[n].

The (inner) normal fan N (P) of a polytope P ⊂ R
n is a complete fan in the dual

space (Rn)∗ whose cones are

N (P)Q := {w ∈ (Rn)∗ : Pw ⊇ Q}

for each nonempty face Q of P , where Pw = {x ∈ P : w(x) = miny∈P w(y)} is
the w-minimal face of P . The face poset of the normal fan of P is isomorphic to the
reverse of the face poset of P . The relative interior of a cone σ is the interior of σ

inside its affine span. In particular, the relative interior of N (P)Q is

N (P)◦Q := {w ∈ (Rn)∗ : Pw = Q}.

The chambers of N (P) are the cones of maximal dimension.
The normal fan of the permutohedron

�n = conv
{
(x1, . . . , xn) | x1, . . . , xn is a permutation of [n]

}
⊆ R

n
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is the permutohedral fan �n ⊂ Nn , also known as the braid fan or the type A Coxeter
complex. It is the complete simplicial fan in R

n whose chambers are cut out by the
n-dimensional braid arrangement, the real hyperplane arrangement in R

n consisting
of the

(n
2

)
hyperplanes

zi = z j , for distinct elements i and j of [n].

The face of the permutohedral fan containing a given point z in its relative interior is
determined by the relative order of its homogeneous coordinates (z1, . . . , zn).

Let Dn be the (n − 1)-dimensional simplex,

Dn := conv
{
ei + fi : i ∈ [n]

}
⊆ R

n × R
n .

The normal fan of the simplex Dn is the simplicial fan �n,n whose n chambers are
the cones

Ck =
{
(z, w) ∈ R

n × R
n | min

i∈[n](zi + wi ) = zk + wk

}
.

Recall that theMinkowski sum andMinkowski difference of polytopes P and Q in
R
d are

P + Q = {p + q : p ∈ P, q ∈ Q}, P − Q = {r ∈ R
d : r + Q ⊆ P}.

The following polytope is our main object of study.

Definition 3.1 The harmonic polytope is the Minkowski sum

Hn,n := Dn + (�n × �n) ⊂ R
n × R

n .

The harmonic fan is its reduced normal fan N (Hn,n) in Nn × Nn .

Figure 1 shows the harmonic polytope H2,2 and its reduced normal fan. The normal
fan of a Minkowski sum of two polytopes is the coarsest common refinement of their
normal fans, see e.g. [32, Proposition 7.12]. Therefore, the normal fan of Hn,n is the
coarsest common refinement of the normal fans of Dn and�n ×�n . Its lineality space
is R{e[n], f[n]}.

3.1 The face structure of the harmonic polytope

The cone of the harmonic fan containing a point (z, w) ∈ Nn ×Nn is determined by:
• the set of indices i for which the minimum of zi + wi is attained,
• the reverse1 relative order of the zi s, and
• the reverse relative order of the wi s.

1 Of course, this is the same information as the relative order of the zi s. We use the reverse order because
it is consistent with our choice of working with inner normal fans.
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Our next task is to characterize the triples that arise in this way.
Recall that an ordered set partition of [n] is a sequence π = E1| · · · |E� such that

E1 ∪ · · · ∪ E� = [n] and Ei ∩ E j = ∅ for all i = j . The length of π is �(π) := �. The
ordered set partitions of [n] form a poset under adjacent refinement, where π ≤ π ′
if every block of π ′ is a union of a set of consecutive blocks of π . For example
14|3|26|8|57 ≤ 134|26|578.
Definition 3.2 The poset of harmonic triples HTn is defined as follows:

1. A harmonic triple τ = (K ;π1, π2) on [n] consists of a nonempty subset K ⊆ [n]
and two ordered set partitions π1 and π2 of [n] such that

(a) The restrictions π1|K and π2|K of π1 and π2 to K are opposite to each other,
and

(b) If j /∈ K appears in the same or a later block than k ∈ K in one of the set
partitions π1 and π2, then j must appear in an earlier block than k in the other
set partition.

2. The poset of harmonic triples HTn is defined by setting (K ;π1, π2) ≤ (K ′;π ′
1, π

′
2)

if and only if K ⊆ K ′, π1 is an adjacent refinement of π ′
1, and π2 is an adjacent

refinement of π ′
2.

3. A fine harmonic triple is a minimal element of the poset HTn . A coarse harmonic
triple is a maximal element of HTn − {̂1}.
Notice that the maximum element 1̂ of HTn is the triple ([n], [n], [n]). The fine

harmonic triples are the minimal elements, for which K consists of a single element k,
andπ1 andπ2 only have blocks of size 1 – and hencemay be thought of as permutations
in one-line notation.

Example 3.3 Consider the triple (3467, 45|8|2|1379|6, 6|1|59|237|8|4), were we omit
the brackets and write the elements of K in bold for easier readability. The reader is
invited to verify that this triple satisfies the required conditions to be harmonic. On the
other hand, j = 1 and k = 3 do not satisfy condition (b) in the non-harmonic triple
(3467, 45|8|2|1379|6, 6|5|237|89|14).

Proposition 3.4 The combinatorial structure of the harmonic fan N (Hn,n) is as fol-
lows.

1. The cones of the harmonic fan are in bijection with the harmonic triples on [n].
2. The dimension of the cone labeled by τ = (K ;π1, π2) is �(π1)+�(π2)−�(π1|K )−

1.
3. Two cones σ and σ ′ of the harmonic fan satisfy σ ⊇ σ ′ if and only if their harmonic

triples satisfy τ ≤ τ ′ in HTn.

Proof 1. Given a cone σ of the harmonic fan, we define the triple τ(σ ) as follows.
Let (z, w) be an interior point of σ . We let K be the set of indices k for which the
minimum of zk + wk is attained, π1 be the partition encoding the reverse relative
order of the zi s, and π2 be the reverse relative order of the zi s, and π2 be the reverse
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•
(2; 1|2, 1|2)

(2; 1|2, 12)

• (2; 1|2, 2|1)

(12; 1|2, 2|1)

• (1; 1|2, 2|1)

(1; 12, 2|1)
•(1; 2|1, 2|1)

(1; 2|1, 12)

•(1; 2|1, 1|2)

(12; 2|1, 1|2)

•(2; 2|1, 1|2)
(2; 12, 1|2)

•(12; 12, 12)

(1; 2|1, 2|1)

(2; 1|2, 1|2)

(1; 2|1, 1|2)(1; 1|2, 2|1)

(2; 2|1, 1|2)(2; 1|2, 2|1)

(12; 12, 12)

(1; 2|1, 12)

(2; 12, 1|2)

(1; 12, 2|1)

(2; 1|2, 12)

(12; 2|1, 1|2)(12; 1|2, 2|1)

(k;π1, π2) (2; 1|2, 1|2) (2; 1|2, 2|1) (2; 2|1, 1|2) (1; 1|2, 2|1) (1; 2|1, 1|2) (1; 2|1, 2|1)(
x1 x2
y1 y2

) (
1 3
1 3

) (
1 3
2 2

) (
2 2
1 3

) (
2 2
3 1

) (
3 1
2 2

) (
3 1
3 1

)

Fig. 1 The harmonic polytope H2,2 in Z
2 × Z

2 and its reduced normal fan. The faces correspond to the
harmonic triples on [2]. The table lists the fine harmonic triples (k; π1, π2) and the corresponding vertices
of H2,2

relative order of the wi s. For example, we have for the following cone σ ,

zk + wk is minimum for k = 3, 4, 6, 7

z6 < z1 = z3 = z7 = z9 < z2 < z8 < z4 = z5
w4 < w8 < w2 = w3 = w7 < w5 = w9 < w1 < w6

that
τ(σ ) = (3467, 45|8|2|1379|6, 6|1|59|237|8|4).

Since zk + wk is constant for k in K , the relative order of the zks is exactly the
opposite of the relative order of the wks, so (a) holds. Also, if j /∈ K appears in
the same or a later block than k ∈ K in, say the first set partition, then we have
zk ≥ z j . But then zk + wk < z j + w j implies that wk < w j , so j must appear
before k in the second set partition. Therefore (b) also holds.
Conversely, suppose τ = (K ;π1, π2) is a harmonic triple, and let us construct a
point (z, w) whose associated triple is τ . We begin by defining the values of zk and
wk for k ∈ K . We let zk = a where k is in the ath block of π2|K and wk = b
where k is in the bth block of π1|K . Then the zks and wks are in the order specified
by π1|K and π2|K , respectively, and, since π1|K and π2|K are opposites of each
other, zk + wk = c where π1|K and π2|K have c − 1 blocks.
Now define the values of z j for j /∈ K as follows. If j is in the same block of π1
as k ∈ K set z j = zk . Define the remaining entries z j to have the order stipulated
by π1, while making each one of them very large – say, within a small ε > 0 of
the first entry zk such that zk > z j , if there is one. For example, for the triple
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τ = (3467, 45|8|2|1379|6, 6|1|59|237|8|4) of Example 3.3, we may set

z6 = 1 < z1 = z3 = z7 = z9 = 2 < z2 = 2.8 < z8 = 2.9 < z4 = z5 = 3

w4 = 1 < w8 = 1.9 < w2

= w3 = w7 = 2 < w5 = w9 = 2.8 < w1 = 2.9 < w6 = 3.

By construction, the order of the zi s (resp. the wi s) is the opposite of the order
dictated by π1 (resp. π2). Also zk + wk = c is constant for k ∈ K . It remains to
show that z j + w j > c for j /∈ K . Assume contrariwise that z j + w j ≤ c. Then
for any k ∈ K we must have z j ≤ zk or w j ≤ wk . Assume it is the former, and
choose k ∈ K where zk is minimum such that zk ≥ z j . By construction, we have
z j > zk − ε. Furthermore j comes after k in π1, so it must come before k in π2;
by construction, we have w j > (wk + 1) − ε. Thus z j + w j > c + 1 − 2ε > c,
a contradiction. We conclude that τ is the label of a cone of the harmonic fan
containing (z, w), as desired.

2. The set of points (z, w) ∈ Nn ×Nn that give rise to the ordered set partitions π1 and
π2 have (�(π1)− 1)+ (�(π2)− 1) degrees of freedom. The condition that zk +wk

are equal for all k ∈ K introduces �(π1|K ) − 1 = �(π2|K ) − 1 linear constraints.
3. To go up the face poset from the cone indexed by (K ;π1, π2), we need to turn

some of the defining equalities into inequalities. The effect of this on the label is
to remove elements from K and break a parts of π1 and π2 into adjacent parts. ��

Using Proposition 3.4, one may check that the harmonic fan is neither simple nor
simplicial, already for n = 3. We now give the vertex and inequality description of
the harmonic polytope.

Proposition 3.5 The number of vertices of the harmonic polytope Hn,n is

v(Hn,n) = (n!)2
(
1 + 1

2
+ 1

3
+ · · · + 1

n

)
.

Proof By Proposition 3.4 we need to count the fine harmonic triples τ = (K ;π1, π2);
these are the ones where K = {k} and both π1 and π2 are permutations. To specify
τ , we first specify the element k. Out of the remaining n − 1 elements, we choose
which a of them precede k in π1 and follow k in π2, which b of them precede k in
both π1 and π2, and which c of them follow k in π1 and precede k in π2. Finally we
choose the order of the a + b elements preceding k in π1, the order of the c elements
following k in π1, the order of the b + c elements preceding k in π2, and the order of
the a elements following k in π2. It follows that

v(Hn,n) = n
∑

a+b+c=n−1

(
n − 1

a, b, c

)
(a + b)! c! a! (b + c)!

= n!
∑

a+b+c=n−1

(a + b)!(b + c)!
b!
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= n!
n−1∑

a=0

(

a!(n − 1 − a)!
n−1−a∑

b=0

(
a + b

a

))

= n!
n−1∑

a=0

(
a!(n − 1 − a)!

(
n

a + 1

))

= (n!)2
n−1∑

a=0

1

a + 1
,

as desired. ��
Let us give a concrete description of the vertices of Hn,n .

Proposition 3.6 The vertices of the harmonic polytope Hn,n are

vτ = ek + fk + (π−1
1 , 0) + (0, π−1

2 )

for the fine harmonic triples τ = (k;π1, π2) on [n], where π−1 denotes the inverse of
the permutation π in one-line notation.

Proof Consider a point (z, w) in the interior of the chamber of the normal fanN (Hn,n)

corresponding to a fine harmonic triple τ = (k;π1, π2). The minimal vertex of Hn,n

in the direction (z, w) is

(Hn,n)z,w = (Dn)(z,w) + (�n × 0)(z,w) + (0 × �n)(z,w)

= (ek + fk) + (π−1
1 , 0) + (0, π−1

2 )

as desired. ��
For example, Fig. 1 showshow the harmonic polytope H2,2 sits in the latticeZ

2×Z
2.

Its inner normal fan is the harmonic fan, which coincides with the bipermutohedral
fan (only) for n = 2; the orientation shown here matches the one in [4, Figure 4].

For a larger example, the vertex of the harmonic polytope H5,5 corresponding to
the fine harmonic triple τ = (4; 53412, 14352) on [5] is

vT =
(
0 0 0 1 0
0 0 0 1 0

)
+

(
4 5 2 3 1
0 0 0 0 0

)
+

(
0 0 0 0 0
1 5 3 2 4

)

=
(
4 5 2 4 1
1 5 3 3 4

)

since 53412−1 = 45231 and 14352−1 = 15324.

Proposition 3.7 The number of facets of the harmonic polytope Hn,n is 3n − 3.

Proof In light of Proposition 3.4 we need to enumerate the coarse harmonic triples;
that is, those for which �(π1) + �(π2) − �(π1|K ) − 1 = 1. We consider three cases.
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(i) �(π1) = 1: In this case �(π1|K ) = 1 so we must have �(π2) = 2; say π2 = S|T .
Then we have τ = (K ; [n], S|T ), and for this triple to be harmonic wemust have
K = T . Therefore τ = (T ; [n], S|T ). The corresponding ray of the harmonic
fan is e[n] + fT .

(ii) �(π2) = 1: Similarly we obtain τ = (T ; S|T , [n]). The corresponding ray of the
harmonic fan is eS + f[n].

(iii) �(π1) > 1 and �(π2) > 1: Since (�(π1)− �(π1|K ))+ (�(π2)− 2) = 0 and both
summands are nonnegative, we must have �(π2) = 2 and �(π1) = �(π1|K ).
Similarly �(π1) = 2 and �(π2) = �(π2|K ). Let us write

π1 = S|S′, π2 = T |T ′, and π1|K = KS|KS′ , π2|K = KT |KT ′ .

Since KS|KS′ = KT ′ |KT , an element j ∈ S′ − KS′ would contradict Defini-
tion 3.2.1(b), so we must have S′ = KS′ = KT . Similarly T ′ = KT ′ = KS .
Then K = KS ∪ KS′ = S′ ∪ T ′. Also S′ ∩ T ′ = KS ∩ KS′ = ∅, so S ∪ T = [n].
Thus

τ = ([n] − (S ∩ T ); S|([n] − S), T |([n] − T )) for S ∪ T = [n].

The corresponding ray of the normal fan is eS + fT .

We conclude that the rays of the harmonic fan are the vectors eS + fT where S and
T are non-empty, they are not both equal to [n], and S∪T = [n]. There are 3n−3 such
vectors because we can choose freely, for each i ∈ [n], whether (a) i is in S and not T ,
(b) i is in T and not S, or (c) i is in both S and T ; but the three pairs ([n],∅), (∅, [n])
and ([n], [n]) are invalid. ��

As introduced in [4], a bisubset of [n] is a pair S|T of nonempty subsets of [n], not
both equal to [n], such that S ∪ T = [n]. The previous proof shows that they are in
correspondence with the facets of Hn,n . More precisely, we have:

Proposition 3.8 The harmonic polytope Hn,n is given by the following minimal
inequality description:

∑

e∈[n]
xe = n(n + 1)

2
+ 1,

∑

e∈[n]
ye = n(n + 1)

2
+ 1,

∑

s∈S
xs +

∑

t∈T
yt ≥ |S|(|S| + 1) + |T |(|T | + 1)

2
+ 1 for each bisubset S|T of [n].

Proof The first two equations hold, and determine a codimension two subspace per-
pendicular to the lineality space R{e[n], f[n]} of N (Hn,n). The minimal inequality
description is then determined by the rays eS + fT for the bisubsets S|T . We have
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Fig. 2 A harmonic table of size
3 on [9]

8
2

5 19

4 37 6

4

37

6

min
(x,y)∈Hn,n

(eS + fT )(x, y)

= min
(x,y)∈Dn

(eS + fT )(x, y) + min
(x,y)∈�n×0

eS(x, 0) + min
(x,y)∈0×�n

fT (0, y)

= 1 + (1 + 2 + · · · + |S|) + (1 + 2 + · · · + |T |),

which implies the given description. ��
We now offer an alternative description of the faces of the harmonic polytope,

which gives rise to a formula for the f -vector. A harmonic table T on [n] of size
� =: �(T) is a triangular table having 2� + 1 rows and 2� + 1 columns of lengths
2� + 1, 2� − 1, 2� − 1, . . . , 3, 3, 1, 1, respectively, decorated with the following data:

• A labeling of the even columns with nonempty, pairwise disjoint subsets of [n].
• A labeling of the even rows with the same subsets, listed in the opposite order.
• A placement of each element of [n] not used as a row or column label in one box
of the table.

We let ci (T) and ri (T) denote the number of elements in column 2i+1 and row2i+1
of T, respectively. Figure 2 shows a harmonic table of size 3 on [9], with c1(T) = 2,
r1(T) = 3, r2(T) = 1, and all other ci (T) and ri (T) equal to 0.

Let F(m) be the Mth Fubini number (or ordered Bell number), which counts the
ordered set partitions of [m]. Also recall that the Stirling number of the second kind
S(m, p) counts the number of unordered set partitions of M into p parts.

Proposition 3.9 The number of faces of the harmonic polytope Hn,n is

f (Hn,n) =
∑

T

�(T)∏

i=0

(
F(ci (T))F(ri (T))

)

summing over all harmonic tables on [n]. The number of d-dimensional faces of Hn,n

is

fd(Hn,n) =
∑

T

∑

a,b

�(T)∏

i=0

(
S(ci (T), ai ) ai ! S(ri (T), bi ) bi !

)
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summing over all harmonic tables T on [n] and all sequences a = (a0, a1, . . . , a�)

and b = (b0, b1, . . . , b�) with � = �(T) and
∑

i ai + ∑
i bi + � = 2n − d − 1.

Proof A harmonic triple T = (K ;π1, π2) can be constructed in five steps, with
the help of a harmonic table, as follows. This process is illustrated in Figure 2,
which shows the harmonic table that gives rise to the harmonic triple T =
(3467, 45|8|2|1379|6, 6|1|59|237|8|4) of Example 3.3.

1. Choose the subset K of [n].
2. Choose the ordered set partition π1|K =: K1| · · · |K�. This automatically deter-

mines π2|K , which is its reverse. Record this data on a triangular table T of size
�, labeling the 2i th column from left to right and the 2i th row from bottom to top
with the set Ki .

3. Choose, for each element j ∈ J := [n] − K , its position relative to K1, . . . , K� in
the ordered set partition π1, and its position relative to K1, . . . , K� in the ordered
set partition π2. Record this information in the table T as follows. If j is in the same
block as Ki in π1 (resp. in π2), put it in the column (resp. row) labeled by Ki in T. If
j is between blocks Ki and Ki+1 in π1 (resp. in π2), put it in the unlabeled column
(rep. row) between the columns (resp. rows) labeled by Ki and Ki+1 in T. Notice
that, by item 1(b) in the Definition 3.2 of a harmonic triple, all these numbers will
land inside the triangular table.

4. Choose the relative order of the elements of J = [n]−K in the ordered set partition
π1. To do this, it suffices to choose, for each i , the relative order of the elements of
J that appear between blocks Ki and Ki+1 of π1 for each i . These are precisely the
ci (T) elements in column 2i + 1, and their order is given by an arbitrary ordered
set partition of that size, so there are F(c1(T)) . . . F(c�(T)) such choices.

5. Choose the relative order of the elements of J = [n]−K in the ordered set partition
π2. As in step 4, there are F(r1(T)) . . . F(r�(T)) such choices.

Each harmonic triple on [n] – and hence each face of the harmonic polytope Hn,n

– arises in a unique way from this procedure. This proves the first formula.
ByProposition3.4.2, thed-dimensional faces of the harmonic polytope Hn,n dimen-

sion d correspond to the harmonic triples (τ ;π1, π2) with d = �(π) + �(π2) −
�(π1|K ) − 1. For the harmonic table T given by (τ ;π1, π2), let ai (resp. bi ) denote
the length of the ordered set partition of the ci (T) elements in column 2i + 1 (resp.
the ri (T) elements in column 2i + 1) has length ai (resp. bi ), for i = 1, . . . , �(T).
Then �(π1) = �(T) + ∑

i ai and �(π2) = �(T) + ∑
i bi , and �(π1|K ) = �(T), so

d = �(T) + ∑
i ai + ∑

i bi − 1. There are S(ci (T), ai ) ai ! (resp. S(ri (T), bi ) bi !) such
ordered set partitions for each i , from which the result follows. ��

For fixed k and �, there are
(n
k

)
choices for a set K of k elements, there are �! S(k, �)

choices for an ordered set partition K1| · · · |K� of K of size �, and there are (2�+1)+
2(2�−1)+· · ·+2(3)+2(1) = 2�2 +2�+1 choices for where to place each element
not in K in the harmonic table. Therefore the number of harmonic tables for [n] is

n−1∑

k=1

k∑

�=1

(
n

k

)
S(k, �) �! (2�2 + 2� + 1)n−k .
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Using Proposition 3.9 one can compute the f -vector of the first few harmonic poly-
topes:

f (H1,1) = (1, 1),

f (H2,2) = (1, 6, 6, 1),

f (H3,3) = (1, 66, 144, 102, 24, 1),

f (H4,4) = (1, 1200, 4008, 5124, 3072, 834, 78, 1).

3.2 The harmonic polytope and the bipermutohedron

As stated in the introduction, the harmonic polytope is one of two polytopes that arose
in Ardila, Denham, and Huh’s work on the Lagrangian geometry of matroids. The
other one is the bipermutohedron. We now describe the combinatorial relationship
between them. Only for this subsection, we assume familiarity with the construction
of the bipermutohedral fan �n,n and the bipermutahedron �n,n in [4, Section 2].

Wehave shown that the harmonic polytopehas 3n−3 facets and (n!)2(1+ 1
2+· · ·+ 1

n )

vertices. In turn, the bipermutohedron has 3n − 3 facets and (2n)!/2n vertices. The
harmonic polytope is a Minkowski summand of (a multiple of) the bipermutohedron,
as shown by the following proposition, originally discovered in [4, Proposition 2.11].
We give an alternative proof that makes the combinatorial relationship between these
objects more explicit.

Proposition 3.10 The harmonic fan is a coarsening of the bipermutohedral fan.

Proof Suppose a point (z, w) ∈ Nn × Nn is in the interior of cone σB of the biper-
mutohedral fan �n,n , corresponding to a bisequence B. Then zk + wk is minimized
precisely for the set K of indices k ∈ [n] that appear only once in B. This places the
point (z, w) in the chart Ck of the bipermutohedral fan for each k ∈ K . Fix one such
k.

Now, as explained in [4, Proposition 2.9], the order of the first occurrences of
each i ∈ [n] in the bisequence B is determined by the reverse order of the numbers
Zi = zi − zk , which is the reverse order of the zi s. Similarly, the order of the second
occurrences of each i ∈ [n] in the bisequence B is determined by the reverse order of
the numbers Wi = wk − wi , which is the order of the wi s.

We conclude that (z, w) is in the interior of the cone of the harmonic fan indexed by
the harmonic triple (K ;π1, π2) where K is the set of elements of [n] appearing only
once in B, π1 is the ordered set partition obtained from the order of the first occurrence
of each i in B, and π2 is the ordered set partition obtained by reversing the order of
the second occurrence of each i in B. ��

For example, if (z, w) is in the interior of the cone of the bipermutohedral
fan �6,6 indexed by the bisequence B = 34|2|356|1|247|6, then (z, w) is in the
interior of the cone of the harmonic fan N (H6,6) indexed by the harmonic triple
τ = (157; 34|2|56|1|7, 6|247|1|35).
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4 The volume of Hn,n

The goal of this section is to compute the volume of the harmonic polytope. As stated
in the introduction, computing the volume of an arbitrary polytope is a very difficult
task; we need to use in an essential way the combinatorial structure of our polytope.
Our computation relies on the theory ofmixed volumes and the Bernstein-Khovanskii-
Kushnirenko Theorem which relates these volumes to the enumeration of solutions
of systems of polynomial equations. It also relies on the theory of toric edge ideals to
enumerate those solutions. Before reviewing the basics of this theory, let us comment
on the definition of volume used here.
Normalizing the volume Most of the polytopes that we study are not full-
dimensional in their ambient space, and we need to define their volumes and mixed
volumes carefully. Let P be a d-dimensional polytope on an affine d-plane L ⊂ Z

n .
Assume L ∩ Z

n is a lattice translate of a d-dimensional lattice �. We call a lattice
d-parallelotope in L primitive if its edges generate the lattice�; all primitive parallelo-
topes have the same volume. Then we define the normalized volume of a d-polytope P
in L to be Vol(P) := EVol(P)/EVol(�) for any primitive parallelotope � in L , where
EVol denotes Euclidean volume. By convention, the normalized volume of a point is
1. Throughout the paper, all volumes and mixed volumes are normalized in this way.

4.1 Mixed volumes and Bernstein–Khovanskii–Kushnirenko’s Theorem

Theorem 4.1 ([24]) There is a unique function MV(Q1, . . . , Qd) defined on d-tuples
of polytopes in R

d , called the mixed volume such that for any collection of polytopes
P1, . . . , Pm in R

d and any nonnegative real numbers λ1, . . . , λm, we have

Vol(λ1P1 + · · · + λm Pm) =
∑

i1,...,id

MV(Pi1 , . . . , Pid )λi1 · · · λid , (1)

summing over all ordered d-tuples (i1, . . . , id) with 1 ≤ ik ≤ m for 1 ≤ k ≤ d.
Moreover, the function MV(Q1, . . . , Qd) is symmetric; that is, MV(Q1, . . . , Qd) =
MV(Qσ(1), . . . , Qσ(d)) for any permutation σ of [d].

Mixed volumes have the following algebraic interpretation.

Theorem 4.2 (Bernstein–Khovanskii–Kushnirenko Theorem) [8] Let A1, . . . , Ad ⊂
Z
d be d finite sets of lattice points, and let Qi = conv(Ai ) for i = 1, . . . , d. If the

number of solutions in the torus (C∗)d to the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

α∈A1

λ1,αx
α = 0,

...∑

α∈Ad

λd,αx
α = 0
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is finite for a given choice of complex coefficients λi,α , then that number is bounded
above by d!MV(Q1, . . . , Qd).Moreover, if the coefficientsλi,α are sufficiently generic,
the number of solutions equals d!MV(Q1, . . . , Qd).

The BKKTheorem is most often used to count or bound the solutions to a system of
polynomial equations by computing the corresponding mixed volume. As Postnikov
showed in his computation of volumes of generalized permutahedra [25], it can also
be used in the reverse direction. This will be our approach as well: we will compute
mixed volumes by counting the solutions to the associated systems of polynomial
equations. This is seldom possible. In Postnikov’s case it is easy because he obtains
systems of linear equations, which have 0 or 1 solutions. In our case it is also possible,
though new ideas are needed. Our systems of equations are not linear, but they are
bilinear, and this allows us to express the resulting enumeration problems in terms of
the combinatorics of toric ideals of graphs and the enumeration of lattice points in
polytopes.

To apply this general discussion to the harmonic polytope, we begin by defining
the segments

�i j := conv{ei , e j } and �ī j̄ := conv{fi , f j } for 1 ≤ i < j ≤ n.

The permutohedron equals �n = e[n] +
∑

i< j
�i j [25, Proposition 2.3] so the

harmonic polytope equals

Hn,n = e[n] + f[n] +
∑

i< j

�i j +
∑

i< j

�ī j̄ + Dn ⊂ R
n × R

n . (2)

The first two summands e[n] and f[n] simply introduce translations, so we focus on
the remaining ones. Given graphs G and G ′ on vertex set [n] with edge multisets
{i1 j1, . . . , ir jr } and {ī1 j̄1, . . . , īs j̄s}, respectively, we define their mixed volume to be

MV(G,G ′) := MV(�i1 j1, . . . ,�ir jr ,�ī1 j̄1, . . . , �īs j̄s , Dn, . . . , Dn︸ ︷︷ ︸
k times

) (3)

where k = 2n−2− r − s. We also let
( 2n−2
G,G ′;Dn

)
denote the number of distinct permu-

tations of the sequence (�i1 j1 , . . . ,�ir jr ,�ī1 j̄1, . . . , �īs j̄s , Dn, . . . , Dn). Combining
(1) with the fact that mixed volumes are symmetric, we obtain:

Vol(Hn,n) =
∑

G,G ′

(
2n − 2

G,G ′; Dn

)
MV(G,G ′), (4)

summing over all pairs of graphs G and G ′ on [n]. Therefore it remains to compute
the mixed volumes MV(G,G ′).

Remark 4.3 The normalized volume Vol(Hn,n) is equal to the Euclidean volume
of the projection of Hn,n onto Z

{2,...,n} × Z
{2,...,n}. This projection of Hn,n is
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equal to the Minkowski sum of the images under this projection of the poly-
topes appearing in (2). Thus MV(G,G ′) is the mixed volume of the projections of
�i1 j1 , . . . ,�ir jr ,�ī1 j̄1, . . . ,�īs j̄s , Dn, . . . , Dn onto Z

{2,...,n} × Z
{2,...,n}.

The BKK Theorem then tells us that (2n − 2)!MV(G,G ′) counts the solutions in
(C∗)n × (C∗)n to the following system of equations:

E(G,G′) :

⎧
⎪⎪⎨

⎪⎪⎩

xi = λi j x j , for i j ∈ E(G) ν11x1y1 + · · · + ν1nxn yn = 0

yi = μi j y j , for ī j̄ ∈ E(G′)
...

x1 = y1 = 1 νk1x1y1 + · · · + νknxn yn = 0,

(5)

where G and G ′ have r and s edges respectively, k := 2n − 2 − r − s, and the
coefficients λi j , μi j , νi j are chosen generically.

4.2 Mixed volumes, toric ideals, root polytopes, and trimmed generalized
permutahedra

In this section we compute the mixed volumes (3) of the harmonic polytope. We begin
by showing that most of them vanish.

Lemma 4.4 If G or G ′ contains a cycle then the mixed volume MV(G,G ′) = 0.

Proof By Theorem 4.2, (2n − 2)!MV(G,G ′) counts the solutions in (C∗)n × (C∗)n
to the system of equations E(G,G ′). Suppose that G contains the cycle

i1 → i2 → · · · → i� → i1.

for some vertices i1, . . . , i� ∈ [n]. The equations of the corresponding k edges

xi1 = λi1i2xi2 . . . xik−1 = λik−1ik xik xik = λik i1xi1

imply that xi1 = (λi1i2 · · · λik−1ikλik i1)xi1 . Since the λi j s are chosen generically, the
only solution to this equation is xi1 = 0. It follows that the system of equations
E(G,G ′) has no solutions in the torus (C∗)n × (C∗)n , and MV(G,G ′) = 0. ��

Our next goal is to describe the non-zeromixed volumesMV(G,G ′). To accomplish
it, we will require some additional constructions.

The bipartite graph and the root polytope Fix graphs G and G ′ on [n]. Let
I = {I1, . . . , Ip} and J = {J1, . . . , Jq} be the set partitions of [n] into connected
components of G and G ′, respectively. Let I (k) and J (k) denote the parts of I and
J containing vertex k for k ∈ [n]. Define the bipartite graph � = �I,J with vertex
set I ∪ J and n edges I (k)J (k) for 1 ≤ k ≤ n. This graph may have several edges
connecting the same pair of vertices.We give the edge I (k)J (k) the label k. Notice that
the label of a vertex in � is just the set of labels of the edges containing it. Therefore
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we can remove the vertex labels, and simply think of � as a bipartite multigraph on
edge set [n].

The edge polytope of � is

R� := conv{eIa + fJb : Ia ∈ I, Jb ∈ J , Ia ∩ Jb = ∅}
= conv{eI (1) + fJ (1), . . . , eI (n) + fJ (n)} ⊂ R

p × R
q ,

writing eI (1), . . . , eI (p) and fJ (1), . . . , fJ (p) for the standard bases of R
p ∼= R

I and
R
q ∼= R

J . This polytope lives on the codimension 2 subspace cut out by the equations
x1 + · · · + xp = y1 + · · · + yq = 1.

Example 4.5 Consider the following graphs

•2

•1•4

•3

•6•5

G =

•6•5

•4 •1

•2•3

G ′ =

.

The partitions corresponding to these graphs are I = {12, 34, 56} and J =
{1456, 23}, omitting brackets for easier readability. The associated bipartite multi-
graph is

�I,J =
•

•

•

• •
1

2 4 3 5

6
=

•
23

•12

•
1456

•34 •56

and the corresponding edge polytope is

R� = conv(ea + fA, ea + fB, eb + fB, eb + fA, ec + fA, ec + fA) ⊂ R
abc × R

AB,

writing a = 12, b = 34, c = 56 and A = 1456, B = 23.

Lemma 4.6 The only lattice points of the edge polytope R� are its vertices.

Proof The polytope R� is contained in the sphere S centered at the origin with radius√
2, so it can only contain lattice points of norm 0, 1, or

√
2. Since R� lies on the

hyperplanes
∑

i xi = 1 and
∑

i yi = 1, it cannot contain a lattice point of norm 0 (the
origin) or 1 (a point of the form ±ei or ±fi ). Therefore every lattice point in R� must
be of the form ei + f j for some i, j ∈ [n]. These points are all on the surface of the
sphere S, so they are in convex position; therefore, if a point ei + f j is in R� , it must
in fact be a vertex of R� . The result follows. ��
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A lattice polytope P is normal if for all positive integers k and all lattice points x
in kP there exist lattice points x1, . . . , xk in P such that x = x1 + · · · + xk . A lattice
polytope P is very ample if the above property holds for all sufficiently large integers
k. This is a favorable property algebro-geometrically, because if P is very ample then
the lattice points of P provide a concrete projective embedding of the toric variety XP

of P , as follows. Let P ∩ Z
d = {a1, . . . , as} =: A. The projective embedding of XP

is the Zariski closure of the image of the map

(C∗)d −→ CP
s−1

t �−→ (ta1 , . . . , tas )

and its defining ideal IA is the kernel of the homomorphism

ϕ : C[x1, . . . , xs] −→ C[t±1
1 , . . . , t±1

d ]
xi �−→ tai .

The map above induces the map of lattices

ϕ̂ : Z
s −→ Z

d

ei �−→ ai ,

where e1, . . . , es is the standard basis of Z
s . The kernel of ϕ is the toric ideal

IA = 〈xu − xv : u, v ∈ N
s, ϕ̂(u) = ϕ̂(v)〉 ⊂ C[x1, . . . , xs];

see [12, §2.1 and §2.3].

Proposition 4.7 If � is bipartite, the edge polytope R� is normal.

Proof Let

C� = cone(R�) = {λ q : q ∈ R�, λ ≥ 0} ⊂ R
n × R

n

be the coneover the polytope R� . Consider a lattice point x in k R� . The coneC� is gen-
erated by the vertices of R� , so x is a positive combination of them. By Caratheodory’s
theorem, x can be expressed a positive combination of only e linearly independent
vertices of R� , say v1, . . . , ve, for some e ≤ dim R� . But the vector configuration
{ei + f j : 1 ≤ i, j ≤ n} is unimodular, so v1, . . . , ve form a lattice basis for
cone(v1, . . . , ve) ∩ (Zn × Z

n). It follows that x is a positive integer combination of
v1, . . . , ve ∈ R� . We conclude that R� is normal as desired. ��
The toric ideal, the toric variety, and the trimmed generalized permutahedra
The graph � = �I,J gives rise to a ring homomorphism

R[ze : e edge of �] −→ R[yv : v vertex of �]
ze �−→ yi y j where edge e joins vertices i and j
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The kernel of this homomorphism is called the toric ideal I� of�; it is a homogeneous
ideal given by the cycles of even length in �:

I� = 〈ze1 ze3 · · · ze2k−1 − ze2 ze4 · · · ze2k : e1e2 · · · e2k is a cycle of �〉;

see [18, Section 5.3]. This ideal is related to the edge polytope as follows.

Proposition 4.8 If � is a bipartite graph, the projective variety of the toric ideal I� is
an embedding of the toric variety X� of the edge polytope R� .

Proof This holds thanks to Lemmas 4.6 and 4.7 ; see [12, §2.3]. ��
The following polytopes will also play an important role. Consider the Minkowski

sums

P� :=
p∑

i=1

�nbr(Ii ) ⊂ R
q and Q� :=

q∑

j=1

�nbr(J j ) ⊂ R
p

where �I := conv{ei : i ∈ I }, and where nbr(Ii ) = { j ∈ [q] :
Ii J j is an edge of �} and nbr(J j ) = {i ∈ [p] : Ii J j is an edge of �} denote the
neighborhoods of Ii and J j in �. Finally, define the trimmed generalized permutahe-
dra of � to be the Minkowski differences

P−
� := P� − �[q] ⊂ R

q and Q−
� := Q� − �[p] ⊂ R

p

Example 4.9 We return to Example 4.5. The toric ideal of � is

I� = 〈z1z3 − z2z4, z5 − z6〉 ⊂ C[z1, z2, z3, z4, z5, z6].

The generalized permutahedra associated to � are

P� = �abc + �ab ⊂ R
abc and Q� = 2�AB + �A ⊂ R

AB

and the trimmed generalized permutahedra are

P−
� = �ab ⊂ R

abc and Q−
� = �AB + �A ⊂ R

AB .

In general, the polytopes P−
� and Q−

� live in different dimensions and can be very
different from each other. However, wewill see that they always have the same number
of lattice points.

Putting it all togetherWenowhave all the ingredients to describe themixed volumes
MV(G,G ′).

Proposition 4.10 Let G and G ′ be acyclic graphs on [n] and � be the corresponding
bipartite graph, having p and q vertices on each side of the bipartition. The following
numbers are equal:
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1. The (2n − 2)-dimensional mixed volume MV(G,G ′) multiplied by (2n − 2)!.
2. The (p + q − 2)-dimensional volume of the edge polytope R� multiplied by (p +

q − 2)!.
3. The number i(P−

� ) of lattice points in the trimmed generalized permutahedron
P−

� in R
q .

4. The number i(Q−
� ) of lattice points in the trimmed generalized permutahedron

Q−
� in R

p.

Furthermore, the numbers above are zero if and only if � is disconnected. If � is
connected, the numbers above are equal to:

5. the degree of the projective embedding V (I�) of the toric variety X� .

Recall that all volumes are normalized so the volume of a primitive parallelotope
in any dimension is 1.

Proof Let E(G,G ′) be the system of Eq. (5) associated to the mixed volume
MV(G,G ′). By Theorem 4.2, the quantity in 1. counts the solutions in (C∗)n × (C∗)n
to E(G,G ′).
(1. = 2.) The set of solutions to E(G,G ′) is the variety V (IG,G ′ + J ), where

IG,G ′ := 〈
xi − λi j x j : i < j, i j ∈ E(G)

〉 + 〈
yi − μi j y j : i < j, i j ∈ E(G ′)

〉

J := 〈
νi1x1y1 + · · · + νin xn yn : 1 ≤ i ≤ k

〉 + 〈x1 − 1, y1 − 1〉

in C[x±
1 , . . . , x±

n , y±
1 , . . . , y±

n ].
Consider the subspace L ⊂ C

n × C
n given by

L = {(x1, . . . , xn, y1, . . . , yn) : xi=λi j x j for i j ∈ E(G) ,yi=μi j y j for i j ∈ E(G ′)}

and the projection

ψ̃ : L −→ C
p × C

q

(x1, . . . , xn, y1, . . . , yn) �−→ (xmin I1 , . . . , xmin Ip , ymin J1 , . . . , ymin Jq ).

Note that for (x, y) ∈ L if we have xmin Ia = 0 then xi = 0 for all i ∈ Ia , since Ia is
a connected component in G; the same holds for the ys. Therefore ψ̃ is injective and,
since dim(L) = p+q = dim(Cp ×C

q), it follows that ψ̃ is an isomorphism of affine
varieties. Moreover, xmin Ia = 0 if and only if xi = 0 for some i ∈ Ia ; the same holds
for the ys. This implies that the restriction of ψ̃ to L∩ (

(C∗)n × (C∗)n
)
is a morphism

with image (C∗)p×(C∗)q . Thismorphismdefines the following isomorphismbetween
the coordinate rings of L ∩ (

(C∗)n × (C∗)n
)
and (C∗)p × (C∗)q :

ψ : C[x±
I1
, . . . , x±

Ip
, y±

J1
, . . . , y±

Jq
] −→ C[x±

1 , . . . , x±
n , y±

1 , . . . , y±
n ]/IG,G ′

xIa �−→ x̄min Ia

yJb �−→ ȳmin Jb .
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Let J be the image of J in the quotient C[x±
1 , . . . , x±

n , y±
1 , . . . , y±

n ]/IG,G ′ . By
Noether’s isomorphism theorems we have

C[x±
1 , . . . , x±

n , y±
1 , . . . , y±

n ]/(IG,G ′ + J )

∼= (
C[x±

1 , . . . , x±
n , y±

1 , . . . , y±
n ]/IG,G ′

) /(
(IG,G ′ + J )/IG,G ′

)

∼= C[x±
I1
, . . . , x±

Ip
, y±

J1
, . . . , y±

Jq
]/ψ−1((IG,G ′ + J )/IG,G ′

)

= C[x±
I1
, . . . , x±

Ip
, y±

J1
, . . . , y±

Jq
]/ψ−1(J ). (6)

Note that for 1 ≤ m ≤ n we have x̄m = λ x̄min I (m) and ȳm = μ ȳmin J (m) for
nonzero scalars λ and μ. Thus we have, for i ∈ [k],

ψ−1(νi1 x̄1 ȳ1 + · · · + νin x̄n ȳn) = ηi1xI (1)yJ (1) + · · · + ηin xI (n)yJ (n)

for some nonzero constants ηi j that are generic if the νi j s are sufficiently generic. We
conclude that ψ−1(J ) is generated by k generic equations whose Newton polytope is
equal to R� , together with xI (1) − 1 and yJ (1) − 1. Recall that k = 2n − 2 − r − s
where r and s are the numbers of edges of G and G ′ respectively. Since these graphs
are acyclic, r = n− p and s = n−q, so k = p+q −2 equals the ambient dimension
of the Newton polytope R� .

By the BKK Theorem, the left-hand side of (6) is a variety consisting of (2n −
2)!MV(G,G ′) points and the right hand side is a variety consisting of (p + q −
2)!Volp+q−2(R�) points. Therefore these two numbers are equal to each other.
(2. = 3. = 4.) In the case that � is connected, Postnikov [25, Theorem 12.2] showed
that the (p + q − 2)-dimensional volume of the edge polytope R� times (p + q − 2)!
equals i(P−

� ) and i(Q−
� ).

Now assume � is disconnected. Say � = �1 ∪ �2 where �1 and �2 have vertex
sets I1 ∪ J1 and I2 ∪ J2 for I1 ∪ I2 = I and J1 ∪ J2 = J .

First observe that R� is the convex hull of the union of the edge polytopes R�1 and
R�2 . But these two polytopes have dimension atmost |I1|+|J1|−2 and |I2|+|J2|−2,
respectively, so R� has dimension at most |I| + |J | − 4 = p + q − 4, and hence its
(p + q − 2)-dimensional volume is 0.

On the other hand, by the definition of P� ,

P� ⊂
⎧
⎨

⎩
x ∈ R

q :
∑

j∈J1

x j = |I1|,
∑

j∈J2

x j = |I2|
⎫
⎬

⎭
.

so dim(P�) < q − 1 = dim(�[q]). Therefore P−
� = P� − �[q] = ∅ and i(P−

� ) = 0.
The proof that i(Q−

� ) = 0 is analogous.
We have shown that (1.) = (2.) = (3.) = (4.). We have also shown that if � is

disconnected this number is 0. On the other hand, if � is connected, then dimR� =
p + q − 2 by [18, Lemma 5.4], so its volume is nonzero.
(2. = 5. if � is connected.) The (p + q − 2)-dimensional volume of R� equals the
degree of V (I�) by [30, Theorem 4.16]. ��
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4.3 An illustrative example

Let us verify that (2n − 2)!MV(G,G ′) = i(P−
I,J ) = i(Q−

I,J ) for the graphs in
Example 4.5. This case is small enough that we can do it by hand, and it illustrates
the need for the machinery of Sect. 4.2. Here n = 6, so 10!MV(G,G ′) is the number
of solutions to the system E(G,G ′)

E(G,G′) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = λ12 x2, y1 = μ14 y4, ν11 x1y1 + · · · + ν16 x6y6 = 0,

x3 = λ34 x4, y2 = μ23 y3, ν21 x1y1 + · · · + ν26 x6y6 = 0,

x5 = λ56 x6, y4 = μ45 y5, ν31 x1y1 + · · · + ν36 x6y6 = 0,

y5 = μ56 y6,

x1 = 1, y1 = 1.

for a generic choice of coefficients. The first two columns of E(G,G ′)may be rewritten
as

1 = X12 := x1 = λ12 x2, X34 := x3 = λ34 x4, X56 := x5 = λ56x6
1 = Y1456 := y1 = μ14 y4

= μ14μ45 y5,= μ14μ45μ56 y6, Y23 := y2 = μ23 y3, Y6 := y6,

so E(G,G ′) reduces to the following system of equations:

HI,J :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η11 X12Y1456 + η12 X12Y23 + η13 X34Y23 + η14 X34Y1456 + η15 X56Y1456 + η16 X56Y1456 = 0,

η21 X12Y1456 + η22 X12Y23 + η23 X34Y23 + η24 X34Y1456 + η25 X56Y1456 + η26 X56Y1456 = 0,

η31 X12Y1456 + η32 X12Y23 + η33 X34Y23 + η34 X34Y1456 + η35 X56Y1456 + η36 X56Y1456 = 0,

X12 = Y145 = 1,

where each coefficient ηi j is obtained by multiplying νi j with the λs (or their inverses)
along a path from i to min I (i) in G and the μs (or their inverses) along a path from
j to min J ( j) in G ′. These coefficients are generic if the original λs, μs, and νs are
sufficiently generic. This reduction of E(G,G ′) toHI,J is central to the proof of (1.
⇐⇒ 2.) in Proposition 4.10.

If we write

z1 = X12Y1456 = 1, z2 = X12Y23, z3 = X34Y23, z4 = X34Y1456,

z5 = X56Y1456, z6 = X56Y1456

we get a generic system of 3 equations in 5 unknowns z2, . . . , z6. Solving this system,
we obtain an expression for each of z2, . . . , z4 as a linear function of z5 and z6. Now,
the zi s satisfy two equations

z1z3 = z2z4, z5 = z6

coming from the two even cycles formed by edges 1, 2, 3, 4 and edges 5, 6 in �,
respectively. Thus z2, z3 and z4 can be expressed linearly in terms of z6, and the
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equation z1z3 = z2z4 turns into a quadratic equation satisfied by z6, which has 2
solutions. Reversing the steps of our computation, we obtain 2 solutions to the original
system. We conclude that 10!MV(G,G ′) = 2. This agrees with the fact that P−

� =
�ab ⊂ R

abc and Q−
� = �AB + �A ⊂ R

AB each contain two lattice points.
The procedure above works for general acyclic graphs G and G ′ such that � is

connected; the relations among the zi s are precisely given by the toric ideal I� . The
last step of the computation cannot be done by hand in general; instead, one needs to
know the degree of I� . We find it by computing the number of lattice points in P−

I,J
or in Q−

I,J – whichever is easier.

4.4 The volume

We are finally ready to prove Theorem 1.1.

Theorem 1.1 The volume of the harmonic polytope is

Vol(Hn,n) =
∑

�

i(P−
� )

(v(�) − 2)!
∏

v∈V (�)

deg(v)deg(v)−2

=
∑

�

deg(X�)

(v(�) − 2)!
∏

v∈V (�)

deg(v)deg(v)−2,

summing over all connected bipartite multigraphs � on edge set [n]. Here i(P−
� ) is

the number of lattice points in the trimmed generalized permutahedron P−
� of �, X�

is the projective embedding of the toric variety of � given by the toric ideal of �, V (�)

is the set of vertices of �, and v(�) := |V (�)|.

Proof We use the notation of Sects. 4.1 and 4.2. By (4) and Lemma 4.4 we have that

Vol(Hn,n) =
∑

G,G ′
acyclic

(
2n − 2

G,G ′; Dn

)
MV(G,G ′)

=
∑

G,G ′
acyclic

(2n − 2)!
k! MV(G,G ′),

since the graphs G and G ′ have no repeated edges. Write � for the bipartite graph
associated to G and G ′, abusing notation. Applying Lemma 4.10, and noting that
v(�) − 2 = p + q − 2 = k, it follows that
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Vol(Hn,n) =
∑

G,G ′
acyclic

Volv(�)−2(R�)

=
∑

(G,G ′) acyclic
s.t. � connected

i(P−
� )

(v(�) − 2)! .

Since the summands on the right only depend on the partitions I,J associated to
G,G ′ we can combine the terms in as follows:

Vol(Hn,n) =
∑

� connected

i(P−
� )

(v(�) − 2)! · AC(�),

where AC(�) denotes the number of acyclic graphs G,G ′ whose bipartite graph is
�. Now, the edges of the bipartite graph � determine the labels I = {I1, · · · , Ip} and
J = {J1, · · · , Jq} of the vertices of �; we need these to be the partitions of [n] into
the connected components of G and G ′, respectively.

We specify an acyclic graph G (resp. G ′) with components I (resp. J ) by spec-
ifying, for each I ∈ I (resp. J ∈ J ), a tree with |I | (resp. |J |) vertices. There are
|I ||I |−2 (resp. |J ||J |−2) such trees. By definition of �I,J , deg(I ) = |I | for any I ∈ I
(and similarly for any J ∈ J ). We thus conclude that

Vol(Hn,n) =
∑

� connected

deg(X�)

(|V (�)| − 2)!
∏

v∈V (�)

deg(v)deg(v)−2.

as desired. ��
Using Theorem 1.1 one can readily compute the volumes of the first few harmonic

polytopes:

Vol(H1,1) = 1, Vol(H2,2) = 3, Vol(H3,3) = 33, Vol(H4,4) = 2848/3.

5 The number of non-zeromixed volumes

In this section we compute the number of non-zero mixed volumes of the harmonic
polytope, in its Minkowski sum decomposition (2). This is the number of summands
that contribute to the volume of the harmonic polytope Hn,n in (1). We do so with the
help of the Möbius algebra of the partition lattice, which is denoted �n .2

If π = {B1, . . . , Bk} is a set partition of [n], we let �(π) := k be the number of
parts of π , and

t(π) := |B1||B1|−2 · · · · · |Bk ||Bk |−2.

2 This should not be confused with the permutohedron, which makes no further appearances in the paper.
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Let �n be the lattice of set partitions of [n] ordered by refinement, so σ ≤ τ if every
block of τ is a union of blocks of σ .

Proposition 5.1 The harmonic polytope Hn,n = e[n] + f[n] +∑
i< j �i j +∑

i< j �ī j̄ +
Dn has

an := number of pairs of forests (F1, F2) on [n] such that F1 ∪ F2 is connected

=
∑

σ∈�n

(−1)�(σ )(�(σ ) − 1)!
( ∑

τ≤σ

t(τ )
)2

non-zero mixed volumes.

Proof A non-zero mixed volume cannot involve either of the summands e[n] or f[n],
since the corresponding equations λ x1 · · · xn = 0 and μ y1 · · · yn = 0 have no solu-
tions on the torus forλ andμ generic. Thuswe focus on themixed volumesMV(G,G ′).

By Lemma 4.4 and Proposition 4.10, we have that MV(G,G ′) = 0 if and only if
G,G ′ are forests and the associated bipartite graph � = �I,J is connected. Thus to
prove the first statement we will show that G ∪ G ′ is connected if and only if � is
connected.

Suppose that G ∪ G ′ is connected. A path

i1 → i2 → . . . → i�

in G ∪ G ′ gives rise to a path in � as follows. For j = 1, . . . , �, replace the edge
i j → i j+1 in G ∪ G ′ with the edge J (i j ) → I (i j ) = I (i j+1) if i j i j+1 ∈ E(G), and
with I (i j ) → J (i j ) = J (i j+1) in� if i j i j+1 ∈ E(G ′)Note that the resulting path can
easily be modified into a path starting at I (i1) or J (i1) by adding or removing the edge
I (i1)J (i1); a similar modificationworks for I (i�) or J (i�). Now, to find a path between
any two vertices of �, pick an element of each vertex, construct a path between these
elements in G ∪G ′, and use the procedure above to obtain a path between the desired
vertices in �.

Conversely, suppose that � is connected and consider any two vertices i, i ′ of
G ∪ G ′. Consider a path

P : I (i1) → J (i1) = J (i2) → I (i2) = I (i3) → . . . → J (i�−1) = J (i�) in �,

where i1 = i and i� = i ′. For each 1 ≤ j ≤ � − 1, we have either I (i j ) = I (i j+1)

or J (i j ) = J (i j+1); since these are connected components of G or G ′, we can find a
path in either G or G ′ from i j to i j+1. We are then able to construct a path in G ∪ G ′
from i to i ′ by replacing each edge of the path P in � with a path from i j to i j+1 in
G ∪ G ′. This concludes the proof of the first equation.

Now, to choose a pair of forests (F1, F2) on [n] such that F1 ∪ F2 is connected,
we first choose the set partitions π1 := π(F1) and π2 = π(F2), where π(F) denotes
the partition of [n] given by the connected components of F . Notice that F1 ∪ F2
is connected if and only if π1 ∨ π2 = 1̂ in the partition lattice. Having chosen the
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partitions π1 and π2, it simply remains to choose the forests F1 and F2 that give rise to
them; there are t(π1) and t(π2) choices for those forests, respectively. It follows that

an =
∑

π1,π2∈�n
π1∨π2=̂1

t(π1)t(π2).

Now we compute in the Möbius algebra A(�n) of �n ; this is the real vector space
with basis�n equipped with the bilinear multiplication given by the join of the lattice;
in symbols,

A(�n) := R �n where σ · τ := σ ∨ τ.

It follows from the definitions that

an = [̂1] T 2 for T :=
∑

π∈�n

t(π)π, (7)

where [π ]α denotes the coefficient of a set partitionπ ∈ �n in an element α ∈ A(�n),
when expressed in the standard basis.

As explained in [26, Section 3.9], it is useful to define the following elements of
the Möbius algebra A(�n):

δτ :=
∑

σ≥τ

μ(τ, σ )σ for τ ∈ �n .

These elements form a basis for A(�n) because Möbius inversion tells us that

τ =
∑

σ≥τ

δσ , for τ ∈ �n .

Furthermore, they are pairwise orthogonal idempotents:

δσ δτ =
{

δσ if σ = τ,

0 otherwise,

which makes them very useful for computations in A(�n). We compute

T =
∑

τ∈�n

(
t(τ )

∑

σ≥τ

δσ

)

=
∑

σ∈�n

s(σ ) δσ ,

where

s(σ ) :=
∑

τ≤σ

t(τ ) for σ ∈ �n .
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Therefore, using the orthogonal idempotence of the δσ s, we have

T 2 =
∑

σ∈�n

s(σ )2δσ

=
∑

σ∈�n

(
s(σ )2

∑

τ≥σ

μ(σ, τ )τ
)

=
∑

τ∈�n

( ∑

σ≤τ

μ(σ, τ )s(σ )2
)
τ

It follows from (7) that

an =
∑

σ∈�n

μ(σ, 1̂) s(σ )2

=
∑

σ∈�n

(−1)�(σ )(�(σ ) − 1)! s(σ )2,

using the facts that the interval [σ, 1̂] in the partition lattice �n is isomorphic to
the smaller partition lattice ��(σ) – because the coarsenings of σ are obtained by
arbitrarily merging blocks of σ – and the Möbius number of the partition lattice �k is
μ�k (̂0, 1̂) = (−1)k−1(k − 1)!. ��

Using Proposition 5.1, one easily computes by hand the first values of the sequence:

a1 = 1, a2 = 3, a3 = 39, a4 = 1242.

6 Future directions

1. Find other simplicial polytopes with an elegant combinatorial structure that have
the harmonic polytope as a Minkowski summand.

2. Use 1. to discover and explore other combinatorialmodels for Lagrangian geometry
of matroids. Section 2 explains that the bipermutahedron is one such polytope, and
leads to a theory of Lagrangian combinatorics of matroids, which is the subject of
[5]. Other answers to 1. will lead to other such theories, and give rise to interesting
matroid-theoretic directions.

3. Study the Ehrhart polynomial and h∗-polynomial of Hn,n .
4. Find a triangulation or subdivision of Hn,n that will shed light on 3. In particular,

Hn,n is a Minkowski sum of one simplex and n(n − 1) segments, and its mixed
subdivisions are likely to have a rich combinatorial structure.
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