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Abstract
A non-quantitative version of the Freiman–Ruzsa theorem is obtained for finite stable
sets with small tripling in arbitrary groups, as well as for (finite) weakly normal subsets
in abelian groups.
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Introduction

A finite subset A of a group G is said to have doubling K if the product set A · A =
{a · b | a, b ∈ A} has size at most K |A|. Archetypal examples of sets with small
doubling (where K is constant as the size of the group G, and the set A, tend to infinity)
are cosets of subgroups. Theorems of Freiman–Ruzsa type assert that sets with small
doubling are “not too far” from being subgroups in a suitable sense. Specifically,
Freiman’s original theorem [6] asserts that a finite subset of the integers with small
doubling is efficiently contained in a generalized arithmetic progression. A proof of
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an analogous statement for arbitrary abelian groups was given by Green and Ruzsa
[7], based on Ruzsa’s proof of Freiman’s theorem [16]. A version of the result for
abelian groups of bounded exponent with a particularly pleasing proof was given by
Ruzsa in [17]. His result asserts that if A is a finite subset of an abelian group (G,+)

of exponent r such that |A + A| ≤ K |A|, then A is contained in a subgroup H of G
of size at most K 2r K 4 |A|. For G = F

n
p with p a fixed prime, the exponent can be

improved to 2K − 1 (see [5] and references therein). By considering the union of a
subspace and K arbitrary linearly independent elements, it is not difficult to see that
any bound on the size of a subgroup containing A must be exponential in K .

However, this example is still highly structured in the sense that a large part of
the set has the structure of a subgroup, which suggests a natural reformulation of
the problem. The Polynomial Freiman–Ruzsa Conjecture, which remains one of the
central open problems in additive combinatorics, asserts that a subset A of doubling
K in F

∞
2 can be covered by C1(K ) many cosets of some subspace of size C2(K )|A|,

where both C1(K ) and C2(K ) are polynomials in K ; or equivalently, that there are
constants C3(K ) and C4(K ), each polynomial in K , such that for some coset v+ H of
a subspace H of size C3(K )|A|, we have that A∩(v+ H) has size at least |A|/C4(K ).
For the best bounds known to date see [18,20].

The above formulation of the Freiman–Ruzsa theorem resonates with a classical
setting in model theory, namely weakly normal groups. Weakly normal groups, also
known as 1-based stable groups, are groups for which every definable set is a boolean
combination of instances of weakly normal formulae (see Sect. 2). In a weakly normal
(stable) group, every definable subset is a boolean combination of cosets of definable
subgroups [9]. Furthermore, every type over a model is the generic type of a coset of
a (type-)definable subgroup: the subgroup is its model-theoretic stabiliser. Roughly
speaking, a large proportion of a given definable set intersects a coset of a definable
group, so they are commensurable.

For non-abelian groups, the suitable notion of doubling is tripling K , that is, the
cardinality of A·A·A is bounded by K |A|. Indeed, sets of small tripling have small dou-
bling, but the converse need not hold. In this context, phenomena of Freiman–Ruzsa
type are present in recent work of Hrushovski [11, Corollary 4.18], who showed that
a set of small tripling in a (possibly infinite) group of bounded exponent is commen-
surable with a subgroup, inspired by classical results and techniques from stability
theory in a non-standard setting.

Motivated byHrushovski’swork, in this notewe adapt the local approach to stability
of Hrushovski and Pillay in [10, Theorem 4.1] in order to obtain a non-quantitative
version of the Freiman–Ruzsa theorem for arbitrary (possibly infinite) groups under
the assumption of stability. We say that a subset A of G is r -stable if there are no
elements a1, . . . , ar , b1, . . . , br in G such that b j ·ai belongs to A if and only if i ≤ j .
In particular, we prove the following result.

Theorem A Given real numbers K ≥ 1 and ε > 0 and a natural number r ≥ 2, there
exists a natural number n = n(K , ε, r) such that for any (possibly infinite) group G
and any finite r-stable subset A ⊆ G with tripling K , there is a subgroup H ⊆ A · A−1

of G with A ⊆ C · H for some C ⊆ A of size at most n. Moreover, there exists C ′ ⊆ C
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such that

|A	(C ′ · H)| ≤ ε|H |.

In particular, it follows from the Plünnecke-Ruzsa inequalities that

|A	(C ′ · H)| ≤ εK 2|A|.

In the case when G is abelian, it suffices to assume that A has doubling K . Fur-
thermore, we shall prove that, when G is abelian, the subgroup H can be taken to be
a boolean combination (of complexity only depending on K , ε and r ) of translates of
A.

In particular, on choosing ε = 1, Theorem A implies that there is some natural
number n0 = n(K , 1, r) such that anyfinite r -stable subset A of tripling K is contained
in n0 translates of a subgroup H ⊆ A · A−1. It follows that |A ∩ g · H | ≥ |A|/n0 for
some subgroup H ≤ G and some g ∈ A, which is a qualitative result in the spirit of
Freiman–Ruzsa. As in the previous paragraph, when G is abelian, the complexity of
such a subgroup H as a boolean combination of translates of A can be bounded solely
in terms of K and r .

The above result dovetails with a suite of arithmetic regularity lemmas under the
additional assumption of stability that have been obtained recently by Terry and the
third author [25,26], as well as by Conant, Pillay and Terry [2]. However, without
the assumption of small doubling/tripling, the bound on the symmetric difference is
at best ε|H |. Furthermore, the group H so obtained in [2,25,26] has finite index in
G so its size comparable to |G|, but not necessarily to |A|. The Theorem A is also
reminiscent of work of Sisask [21, Theorem 5.4], who combined the assumption of
small doubling with that of bounded VC-dimension in vector spaces over finite fields.
Finally, we remark that closely related results were obtained by Conant [3, Corollary
1.4] for groups of bounded exponent. In a previous version of this article, Theorem A
was stated with the upper bound

|A	(C ′ · H)| ≤ ε|A|,

which was subsequently improved by Conant [4, Theorem 1.6] to the current upper
bound. Conant’s methods do not use the full power of stability but instead work in the
more general setting of finite VC-dimension. We later noticed that our (non-standard)
techniques already implied the finer bound in terms of H .

We also explore the interaction between model theory and recent work in additive
combinatorics in a second direction. In [8] Green and Sanders showed that subsets
of a locally compact abelian group G which are elements of the Fourier algebra
A(G) belong to the coset ringW(G). They also gave an upper bound for the boolean
complexity of the representation as elements in W(G) of such sets in terms of their
Wiener norm. More recently, Sanders [19] showed that smallness of this norm implies
stability, hence A(G) = W(G) ⊆ S(G), where S(G) denotes the ring of stable
subsets of G. He further observed that when G is not finite, it is possible for the latter
inclusion to be strict.
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In this paper we shall consider the ring WN (G) of subsets of G generated by all
instances of weakly normal formulae, defined in Sect. 2. It is not difficult to see that
WN (G) is contained in yet not identical to the stability ring S(G). Actually, we have
the chain of inclusions

W(G) ⊆ WN (G) ⊆ S(G).

In fact, we shall show that WN (G) is equal toW(G) for abelian G (see Proposition
4.3). This is a local reformulation of the celebrated result by Hrushovski and Pillay
[9, Theorem 4.1]. We further deduce a result of Freiman–Ruzsa type for finite subsets
inWN (G).

Mimicking the definition of Sanders in [19], we say that a subset A of G has an
(r , k, l)-weakly normal representation if

A =
k⋃

j=1

B j ∩
l⋃

i=1

G \ Cr ,

where all the relations B1(x + y), . . . , Bk(x + y), C1(x + y), . . . , Cl(x + y) are
r -weakly normal.

Theorem B Given natural numbers r , k, and l, there are natural numbers n = n(r , k, l)
and m = m(r , k, l) such that for any abelian group G and any subset A ⊆ G with an
(r , k, l)-weakly normal representation, there are subgroups H1, . . . , Hn of G, each
contained in A − A, with

A ⊆
n⋃

i=1

gi + Hi ,

for some g1, . . . , gn in A. Furthermore, each Hi is a boolean combinations of com-
plexity at most m of translates of A.

In particular, if A is finite, we have that |A ∩ (g + H)| ≥ |A|/n for some g in A
and some subgroup H ≤ G contained in A − A.

In contrast to Theorem A, the subset A above need not have small doubling or
tripling. Indeed, there is no correlation for finite sets between having a weakly normal
representation and small doubling: consider the group G = F

2
p and let A be the subset

(Fp × {0} ∪ {0} × Fp), which has a (2, 2, 0)-weakly normal representation. However,
the quantity

|A + A|
|A| = p2

2p − 1

is not uniformly bounded for large p.
Throughout this paper, we will assume a certain familiarity with model theory.

We refer the reader to [24] for an excellent introduction to the subject. Basic notions
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related to local stability and weak normality are recalled and developed in Sects. 1
and 2 , respectively. Section 3 is devoted to a discussion of Keisler measures on a
certain boolean algebra arising from sets of small tripling, and the associated measure-
theoretic stabilizers. The proofs of our main results are given in Sect. 4.

1 Local stability

We work inside a sufficiently saturated model U of a complete theory T with infinite
models in a language L.

Recall that a formula ϕ(x, y) is r -stablewith respect to the partition of the variables
into the tuples x and y if there are no tuples a1, . . . , ar , b1, . . . , br such that ϕ(ai , b j )

holds if and only if i ≤ j .
A formula is stable if it is r -stable for some r . Stable formulae are closed under

boolean combinations (see [25] for a finitary version of this fact). A set X isϕ-definable
over a subset A of parameters if it is definable by a boolean combination of instances
ϕ(x, a)with a in A. By a ϕ-type over a subset A wemean amaximal finitely consistent
collection of instances of the form ϕ(x, a) or ¬ϕ(x, a′) for a, a′ in A.

The space of ϕ-types Sϕ(U) is a compact Hausdorff 0-dimensional topological
space, with basic clopen sets of the form

[X ] = {p ∈ Sϕ(U) | p ∪ {X(x)} is finitely consistent},

where X(x) is ϕ-definable. Given a stable formula ϕ(x, y) and a partial L-type π(x),
the collection

Xπ = {q(x) ∈ Sϕ(U) | q(x) ∪ π(x) is finitely consistent}

is a closed, hence compact, subset of Sϕ(U) with integer-valued Cantor-Bendixson
rank CBϕ(π). Thus, any element q(x) in Xπ can be isolated from all other types of
rank at least CBϕ(q) by the neighbourhood [χ ] of some formula χ(x). Furthermore,
the space Xπ contains only finitely many elements of maximal rank. The number of
such elements is the ϕ-multiplicity of π , see [1, Chapter 6].

If ϕ(x, y) is stable, then every ϕ-type p(x) over a small submodel M is definable,
that is, there is a formula θ(y) with parameters over M such that

ϕ(x, m) ∈ p ⇐⇒ θ(m),

for all m in M . Furthermore, the definable set θ(y) above is unique and can be defined
by a positive boolean combination of instances ϕ(a, y) with parameters in M (cf. [10,
Lemma 5.4]). We refer to this definable set as the ϕ-definition (dpϕ)(y) of p. Given
a superset B ⊇ M of U, there is a unique ϕ-type over B extending p which is again
definable over M , namely

{ϕ(x, b) | (dpϕ)(b)} ∪ {¬ϕ(x, b′) | ¬(dpϕ)(b′)}.
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We refer to this type as the non-forking extension p|B(x) of p(x) to B. The global
non-forking extension of p is the ϕ-type p|U. In fact, the unique global non-forking
extension of p(x) is the only element in X p of rank CBϕ(p), so p has ϕ-multiplicity
1 (cf. [1, Proposition 6.13 & Corollary 6.15]).

Henceforth, wewill assume that the underlying structureU carries a definable group
structure (G, ·) without parameters. In order to analyse the structure of an arbitrary
stable subset A ofG, it suffices expand the language by a distinguished unary predicate,
whose realisations are exactly the elements in A. Thus,wemay assume that the formula
ϕ(x, y) = A(y · x) is stable, for some fixed definable subset A of G.

Note that ϕ(x, y) is equivariant (see [10, Definition 5.13]), that is, every left-
translate of an instance of ϕ is again an instance of ϕ. Given a stable equivariant
formula ϕ(x, y), there is a distinguished subgroup of G which is ϕ-definable, relative
to G, as first observed in [10]. The following fact can be found in [2, Theorem 2.3].

Fact 1.1 Given a stable equivariant formula ϕ(x, y) and a definable group G over a
model M , there is a subgroup G0

ϕ of finite index in G which is ϕ-definable over M

(relative to G) such that for any coset C of G0
ϕ and any ϕ-definable subset X , either

X ∩ C or C \ X is generic, in the sense that finitely many translates cover G.

The Cantor-Bendixson rank of a union is the maximum of the ranks of the sets in
the union, so every generic ϕ-definable subset of G has maximal Cantor-Bendixson
rank CBϕ(G(x)). On the other hand, if X is a ϕ-definable subset of G of maximal
Cantor-Bendixson rank CBϕ(G(x)), it must be generic: indeed, since G0

ϕ has finite
index in G, there must be a coset C of G0

ϕ such that X ∩ C has rank CBϕ(G(x)). We
need only show that C ∩ X is generic. Otherwise, the set C \ X is generic, so finitely
many translates will cover G. Each such translate has maximal rank, yet every coset
of G0

ϕ contains a unique ϕ-type of maximal rank.
Given a ϕ-type p(x) over a submodel M , we define its stabilizer to be the subgroup

Stabϕ(p) = {
g ∈ G | ∀u

(
(dpϕ)(u) ↔ (dpϕ)(u · g)

)}
.

The stabilizer is clearly a definable subgroup of G with parameters from M . The
following elementary remark shows that the stabilizer is ϕ-definable whenever G is
abelian.

Remark 1.2 If (G,+) is abelian, then the subgroup Stabϕ(p) is ϕ-definable over M .

Proof Let q(x) be the unique global non-forking extension of p(x). Choose a ϕ-
formula

χ(x) =
∨

j∈J

∧

i∈I

ϕ(x, bi j ) ∧ ¬ϕ(x, ci j )

such that q lies in the neighborhood [χ ], with χ(x) of Cantor-Bendixson rank CBϕ(p)

and ϕ-multiplicity 1.
Now, an element g in G belongs to Stabϕ(p) if and only if the ϕ-type g + q equals

q, that is, if and only if χ(x) − g belongs to q, or equivalently, if and only if
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∨

j∈J

∧

i∈I

(dpϕ)(bi j + g) ∧ ¬(dpϕ)(ci j + g).

Recall that (dpϕ)(y) is a positive boolean combination of instances ϕ(a, y). Since G
is abelian, the formula ϕ(x, y + z) is equivalent to ϕ(x + y, z), so the above condition
on g is equivalent to a boolean combinationψ(z, a′) of instances of ϕ(a′, z), for some
choice of parameters a′ in G. In particular, the formula

∃u∀z
(
Stabϕ(p)(z) ↔ ψ(z, u)

)

holds in U. Since M is an elementary substructure of U, there are some parameters m
in M such that Stabϕ(p)(M) equalsψ(M, m), and thus the ϕ-formulaψ(z, m) defines
the subgroup Stabϕ(p) in G. ��

Note that if G is abelian, then ϕ(x, y) = ϕ(y, x). Given global ϕ-types p(x) and
q(y) in Sϕ(U), Harrington’s lemma [1, Lemma 6.8] yields that

q(y) ∈ [(dpϕ)(y)] ⇔ p(x) ∈ [(dqϕ)(x)].

A standard argument yields the following result, whose short proof we include for
completeness.

Remark 1.3 If (G,+) is abelian, then given a ϕ-type p over M

CBϕ(Stabϕ(p)) ≤ CBϕ(p).

Proof Let q be a global type in [Stabϕ(p)] of maximal rank, and choose a realization
b of q�M . Note that q is a non-forking extension of q�M , since Stabϕ(p) is definable
over the model M . Let a realize the non-forking extension p|M∪{b}, which is definable
over M by the formula (dpϕ)(y). Thus, the element a +b realizes p, since−b belongs
to Stabϕ(p).

Let us first show that b realizes the non-forking extension q�M∪{a} of q�M . It suffices
to see that ϕ(a, b) holds if and only if (dqϕ)(a). Now,

(dqϕ)(a) ⇐⇒ p|U(x) ∈ [(dqϕ)(x)] Harrington⇐⇒ q(y) ∈ [(dpϕ)(y)]
⇐⇒ (dpϕ)(b) ⇐⇒ ϕ(x, b) ∈ p|M∪{b} ⇐⇒ ϕ(a, b) holds.

As the formula ϕ is equivariant, addition by an element preserves the rank of formulae,
so

CBϕ(Stabϕ(p)) = CBϕ(q�M ) = CBϕ(q�M∪{a}) = CBϕ(b/M ∪ {a})
= CBϕ(a + b/M ∪ {a}) ≤ CBϕ(a + b/M) = CBϕ(p),

as desired. ��
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2 Weak normality

Given a natural number k, a formula ψ(x, y) is k-weakly normal if, whenever the
instancesψ(x, b1), . . . , ψ(x, bk) are pairwise distinct, the intersection

⋂k
i=1 ψ(x, bi )

is empty [9]. A formula is weakly normal if it is k-weakly normal for some natural
number k. The conjunction of weakly normal formulae is again weakly normal. How-
ever, neither the negation nor the disjunction of two weakly normal formulae need
necessarily be weakly normal.

It is easy to see that a k-weakly normal formula is k-stable. If not, there is a sequence
(ai , bi )1≤i≤k witnessing the failure of stability. Since a j belongs to ψ(x, b j ) but not
to ψ(x, bi ) for i < j , the instances are pairwise distinct. However, the element a1
belongs to their common intersection, soψ(x, y) is not k-weakly normal. Furthermore,
a formula ψ(x, y) is 2-stable precisely if it is 2-weakly normal. Indeed, if ψ(x, y) is
not 2-weakly normal, we can find two distinct instances ψ(x, b1) and ψ(x, b2) with
non-empty intersection. We may assume that there is some a2 in ψ(x, b2) \ ψ(x, b1).
As the intersectionψ(x, b1)∩ψ(x, b2) is non-empty, choose a1 inψ(x, b1)∩ψ(x, b2)
and note that

ψ(ai , b j ) ⇔ 1 ≤ i ≤ j ≤ 2,

so ψ(x, y) is not 2-stable.
Formulae which are 2-stable are very special. For example, in the setting of a group

G with a fixed definable subset A, the formula ϕ(x, y) = A(y · x) is 2-stable if and
only if A is either empty or a coset of a subgroup of G. Recall that a subset A of an
abelian group G is Sidon if, whenever the 4-tuple (a1, a2, a3, a4) of elements of A
satisfies a1 − a2 = a3 − a4, then a1 = a2 (and hence a3 = a4) or a1 = a3 (and thus
a2 = a4). Sidon subsets of the integers, such as 2N or 3N, are 3-stable, but need not
lie in the coset ringW(Z) [19].

Remark 2.1 In general, stability need not imply weak normality. For a Sidon set A of
cardinality at least k, the formula A(x + y) cannot be k-weakly normal. Choose k
distinct elements a1, . . . , ak in A and consider the collection of sets (−a j + A)1≤ j≤k .
The element 0 belongs to their common intersection, yet they are pairwise distinct
sets.

Since a definable set is defined over a submodel N if and only if it only has finitely
many distinct automorphic copies over N (see for example [1, Proposition 1.11]), we
deduce the following easy observation concerning sets defined by an instance of a
weakly normal formula.

Remark 2.2 Let X be a definable set given by an instance of a weakly normal formula.
Then the set X is definable over any submodel containing a realization of X .

A remarkable property of every weakly normal formula ψ is that the definition
(dpψ) of every local type p over an arbitrary set of parameters is explicit, in contrast
to a general stable formula (cf. [24, Theorem 8.3.1]): indeed, given a k-weakly normal
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formulaψ(x, y), an instanceψ(x, a) belongs to theψ-type p = tpψ(c/A) if and only
if it contains the set

Xp,ψ =
⋂

ψ(x,a′)∈p

ψ(x, a′).

This set is definable since it is the intersection of at most k − 1 instances in p (notice
that Xp,ψ is the empty set if and only if the collection of positive instances ψ(x, a′)
in p is empty). It suffices to set

(dpψ)(y) = ∀x
(Xp,ψ (x) → ψ(x, y)

)
when Xp,ψ �= ∅,

and

(dpψ)(y) = (y �= y) otherwise.

Remark 2.3 Assume that the formula χ(x, y) is a boolean combination of weakly
normal formulae. Then every χ -type p is definable over any submodel containing a
realization of p.

Note that we do not require that the submodel contains the parameter set of p,
which is assumed to be small with respect to the saturation of U.

Proof If the formula χ(x, y) is a boolean combination of the weakly normal formulae
ψ1(x, y), . . . , ψr (x, y), then theχ -type p = tpχ (c/A) is determined by the collection
of types q1 = tpψ1

(c/A), . . . , qr = tpψr
(c/A). Hence, the χ -definition (dpχ) is

determined by the definable sets {(dqi ψi )}1≤i≤r . Each (dqi ψi ) is determined by the
corresponding definable set Xqi ,ψi , as in the previous discussion, which is definable
over any submodel containing c, by Remark 2.2. ��

A well-known result of Hrushovski and Pillay [9, Lemma 4.2] shows that, in a
theory where all formulae are boolean combinations of weakly normal ones, types are
generic in cosets of their stabilizers. In particular, groups definable in such theories
are virtually abelian, that is, abelian-by-finite. We will provide a local version of their
results for abelian groups, following closely [15, Lemma 2.6 & Remark 2.7].

Lemma 2.4 Let (G,+) be abelian and assume that the formula ϕ(x, y) = A(x + y) is
a boolean combination of weakly normal formulae. Given a ϕ-type p over a model M,
there exists some element m in M such that p|U lies in the neighborhood [m+Stabϕ(p)],
that is, the type p implies the ϕ-formula over M defining the coset m + Stabϕ(p).

Furthermore, the proof of the above result yields that CBϕ(Stabϕ(p)) = CBϕ(p),
but this fact will not be used in the sequel.

Proof Let a be a realization of p(x). Since G is abelian, every coset of H = Stabϕ(p)

is ϕ-definable (since ϕ(x, y) is equivariant). We want to show that the coset H + a
is ϕ-definable over M . It suffices to show that it is definable over M , for M is an
elementary substructure. Since the element a lies in H + a, if this coset is definable
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over M , then the type p must imply the corresponding ϕ-formula over M defining it.
Remark 1.3 yields then the equality of ranks.

To prove that H +a is definable over M , we need only show that H +a is definable
over a submodel N � M such that tp(a/N ) is an heir of tp(a/M): indeed, suppose that
H + a is definable over such N , so there are an LM -formula θ(x, z) and some tuple
n in N such that the formula θ(x, n) defines H + a. Note that this coset is definable
over M ∪ {a}. In particular, the formula

∀x
(
(H + u)(x) ↔ θ(x, n)

)

belongs to tp(a/N ). Thus, we find a tuple m in M such that θ(x, m) defines H + a,
by inheritance of tp(a/N ) over M .

Now choose a ϕ-type q(x) over M of maximal Cantor-Bendixson rank CBϕ(G).
The extension q|M∪{a} is definable over M , so it is finitely satisfiable over M [14,
Lemma I.2.16]. Thus we can find some element c such that the type tp(c/M ∪ {a})
is finitely satisfiable over M and extends q|M∪{a}. By a dual argument, we can find a
submodel N � M containing c such that tp(a/N ) is an heir of tp(a/M).

Claim The element a realizes p|M∪{c−a}.

Proof of Claim We need only show that ϕ(a, c − a) holds if and only if (dpϕ)(c − a)

holds. Observe first that

CBϕ(G) = CBϕ(q) = CBϕ(q|M∪{a}) = CBϕ(tpϕ(c/M ∪ {a}))
= CBϕ(tpϕ(c − a/M ∪ {a})) ≤ CBϕ(tpϕ(c − a/M)) ≤ CBϕ(G).

Hence, equality holds everywhere, so r(y) = tpϕ(c − a/M ∪ {a}) is definable over
M and has maximal rank CBϕ(G).

Now, the formula ϕ(a, c − a) holds if and only if ϕ(a, y) belongs to r(y), that is,
if and only if the element a realizes (drϕ)(x), which is definable over M . Hence, the
formula ϕ(a, c − a) holds if and only if p|U lies in [(drϕ)], which is equivalent to r|U
being contained in [(dpϕ)], by Harrington’s lemma. Since [(dpϕ)] is definable over
M and the element c −a realizes r , the latter is equivalent to (dpϕ)(c −a), as desired.

��Claim

Since c = a + (c − a), the element c realizes the complete ϕ-type

p|M∪{c−a} + (c − a) = {θ(x) ϕ-formula over M ∪ {c − a} | θ (x − (c − a))

∈ p|M∪{c−a}},

which is again a complete ϕ-type over M ∪ {c − a}. In particular, the global ϕ-type
p|U + (c − a) is a non-forking extension of p|M∪{c−a} + (c − a). By Remark 2.3, both
types are definable over N (which contains c).

Let us now show that the coset H + a is definable over N . It suffices to show that
every automorphism σ fixing N pointwise fixes the coset (setwise). Since p|U+(c−a)
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is definable over N , the automorphism σ fixes p|U + (c − a), so

p|U + (c − a) = σ(p|U + (c − a)) = p|U + (c − σ(a)),

since p|U is definable over M . Thus, we have p|U − a = p|U − σ(a), that is,

p|U = p|U + (a − σ(a)),

and hence a − σ(a) lies in H = Stabϕ(p), as desired. ��
In analogy to the classical result for weakly normal theories, we conclude that

ϕ-definable sets are boolean combination of cosets of ϕ-definable groups whenever
ϕ(x, y) = A(x + y) is a boolean combination of weakly normal formulae.

Corollary 2.5 In an abelian group G (written additively), assume that the formula
ϕ(x, y) = A(x + y) is a boolean combination of weakly normal formulae. Every
ϕ-definable set is a boolean combination of cosets of ϕ-definable subgroups.

Note in particular that a coset of a ϕ-definable subgroup is a boolean combination
of translates of A.

Proof By a straightforward application of [24, Lemma 3.1.1], it suffices to show that
whenever two ϕ-types p1 and p2 over a submodel M imply the same M-definable
cosets of ϕ-definable subgroups (over M), then p1 and p2 are the same.

Let a1 realize p1 and choose a realization a2 of p2|M∪{a1}. Set H1 = Stabϕ(p1) and
H2 = Stabϕ(p2). By Lemma 2.4, both cosets a1+H1 and a2+H2 are M-definable. By
assumption, since p1 clearly implies the formula defining a1 + H1, every realization
of p2 lies in a1 + H1, and similarly for p1. In particular, the element a1 − a2 lies in
H1 ∩ H2. The rank computation

CBϕ(H2) ≤ CBϕ(p2) = CBϕ(p2|M∪{a1}) = CBϕ(tpϕ(a2/M ∪ {a1}))
= CBϕ(tpϕ(a2 − a1/M ∪ {a1})) ≤ CBϕ(tpϕ(a2 − a1/M)) ≤ CBϕ(H2)

yields that a2 − a1 realizes the non-forking extension of q = tpϕ(a2 − a1/M) over
M ∪{a1}. As in the proof of Remark 1.3, Harrington’s Lemma implies that a1 realizes
p1|M∪{a2−a1}. Since a2 −a1 lies in H1 = Stabϕ(p1), we have that a2 = a1 + (a2 −a1)
realizes p1. Thus the types p1 and p2 are equal, as desired. ��

3 Ideals andmeasures

AKeisler measure μ is a finitely additive probabilitymeasure on some boolean algebra
of definable subsets of the ambient model [12]. Archetypal examples are measures
μp, with two possible values 0 and 1, given by global ϕ-types p, that is, for every
ϕ-definable set X ,

μp(X) = 1 ⇔ p ∈ [X ].
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Given a Keisler measure μ, the collection of sets of measure zero forms an ideal,
that is, it is closed under subsets and finite unions. A partial type is said to be wide
(with respect to μ) if it contains no definable set of measure zero. In particular, since
the collection of measure-0 sets forms an ideal, every wide partial type π(x) over a
parameter set A can be completed to a wide complete type over any arbitrary subset
B containing A: indeed, the collection of formulae

π(x) ∪ {¬ϕ(x) | ϕ(x) ∈ LB with μ(ϕ(x)) = 0}

is clearly finitely consistent, and any completion of this partial type is wide. Note that
we do not require that every formula in the completion has measure.

The measure μ is said to be definable over the submodel M (see [22, Definition
3.19]) if for every L-formula ϕ(x, y) and every ε > 0, there is a partition of U

|y| into
LM -formulae ρ1(y), . . . , ρm(y) such that for all pairs (b, b′) realizing ρi (y) ∧ ρi (z),
we have that

|μ(ϕ(x, b)) − μ(ϕ(x, b′))| < ε.

In particular, the set of tuples b with μ(ϕ(x, b)) = 0 is type-definable over M and the
map

Sy(M) → [0, 1]
tp(b/M) �→ μ(ϕ(x, b))

is continuous, so the value μ(ϕ(x, b)) only depends on tp(b/M). Note that a global
ϕ-type p is definable over M if and only if the corresponding measure μp is.

Every Keisler measure admits an expansion of the original language L in which it
becomes definable (cf. [11, Section 2.6]). In this case, a formula of positive measure
does not fork over ∅, see [11, Lemma 2.9 & Example 2.12].

In the presence of an ambient group G, we will consider the following notion of an
acceptable set, which was introduced as a near-subgroup in [11, Definition 3.9].

Definition 3.1 Adefinable subset A ofG is acceptable if there exists aKeislermeasure
μ on a boolean algebra of definable subsets of (A∪ A

−1 ∪{idG})3 such thatμ(A) > 0,
the set A ∪ A

−1 ∪{idG} has measure 1 and μ(Y ) = μ(X) for all definable measurable
subsets X and Y of (A ∪ A

−1 ∪ {idG})3 whenever Y is a translate of X .

Example 3.2 Let G be an abelian group, or more generally, an amenable group,
equipped with a finitely additive probability measure μ. Every subset of positive
measure becomes an acceptable subset of G witnessed by the restriction of μ with
respect to a suitable boolean algebra of (A ∪ A−1 ∪{idG})3. As above, we can expand
the language of groups to a suitable language L in such a way that both A and the
measure μ are definable.

Example 3.3 Consider a finite non-empty subset A of a (possibly infinite group)G with
tripling K , that is, with |A · A · A| ≤ K |A|. Then B = A∪ A−1∪{idG} has size at least
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|A| and most 2|A|+1, and it follows from Ruzsa calculus that |B · B · B| ≤ 14K 3|A|.
Given a subset X ⊆ B · B · B, set

μ(X) = |X |
|B · B · B| .

We have thus obtained a finitely additive measure μ such that μ(A) ≥ (14K 3)−1.
Hence, the set A is acceptable (with respect to the measure μ).

Furthermore, if G is abelian, it follows from the Plünnecke-Ruzsa inequality [23,
Corollary 6.29] that we need only assume that A has small doubling.

Given an acceptable subset A of G with respect to the finitely additive definable
measureμ and a complete type p(x) over a submodel M containing the formula A(x),
define its (measure-theoretic) stabilizer Stab(p) to be the group generated by the set

st(p) = {g ∈ G : g · p(x) ∪ p(x) is wide}.

Note that st(p) contains the identity element ofG, whenever the type p is wide. The set
st(p), and hence Stab(p), is invariant under automorphisms of U fixing M pointwise.

Inspired by the corresponding results in geometric stability theory, Hrushovski
proved in [11, Theorem 3.5] that the measure-theoretic stabilizer is type-definable
and equals the set st(p) · st(p), whenever p is a wide type containing an acceptable
subset A(x) with respect to some (definable) measure μ. Furthermore, the stabilizer
is a normal subgroup of the group 〈A〉 generated by A and has of bounded index in
〈A〉, that is, the number of cosets of Stab(p) in 〈A〉 is bounded by the cardinality
of saturation of the ambient model U. For our purposes, we need a much weaker
statement, namely, that st(p) contains some wide complete type, for which we will
now give a simple proof.

Lemma 3.4 Let A be an acceptable subset of G with respect to the measure μ, which
we assume to be definable over a submodel M. Given a wide type p(x) over M
containing the formula A(x), there exists a wide type q(x) over M whose realizations
belong to the M-invariant set st(p).

Proof Consider a sequence (ai )i∈N of realizations of p such that tp(ai/M ∪ {a j } j<i )

is wide. By a standard Ramsey argument, we may assume that the sequence is indis-
cernible over M . Set q = tp(a−1

2 · a1/M). Since st(p) is M-invariant, it suffices to
show that the realization a−1

2 · a1 of q belongs to st(p). Otherwise, the partial type
a−1
2 · a1 · p(x) ∪ p(x) is not wide and neither is a1 · p(x) ∪ a2 · p(x) by translation-
invariance of the measure (for A is acceptable and a2 is an element of A). Thus, we
can find some M-definable set X(x) in p(x) contained in A(x) such that

μ(a j · X ∩ ai · X) = 0 for i �= j .
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As the definable set X is wide, there exists some natural number k such that 1
k <

μ(X) = μ(a j · X) for all j in N, so

μ
( k⋃

i=1

ai · X
)

=
k∑

i=1

μ(ai · X) = k · μ(X) > 1,

which contradicts the assumption that μ is a probability measure. ��
A standard application of Ruzsa’s covering argument (cf. [23, Lemma 2.14]) yields

the following auxiliary result, which resonates with Lemma 2.4.

Lemma 3.5 Let A be an acceptable subset of G with respect to the measure μ, which
we assume to be definable over a submodel M. Given a wide M-definable subgroup
H ⊆ A · A−1 of G, there is some finite subset C of A(M) such that A is contained in
C · H.

Proof Note that a · H ⊆ (A∪ A−1)3 is wide for every a in A. Hence, choose amaximal
subsetC of A (inU) such that (c · H)∩(c′ · H) = ∅ for every c �= c′ inC . In particular,
given any a in A, there is some c in C such that (a · H) ∩ (c · H) is non-empty. Thus,
the element a lies in c · H and so A ⊆ C · H .

For each c in C , we have that μ(c · H) = μ(H) > 1
k for some k in N. As in the

proof of Lemma 3.4, we deduce that C is finite. Since both A and H are definable
over the model M and A is contained in C · H , we can take C to be a subset of A(M),
as desired. ��
Proposition 3.6 Let A be an acceptable subset of G with respect to the measure μ,
which we assume to be definable over a submodel M, and assume that the formula
ϕ(x, y) = A(y · x) is stable. Then there exists some M-definable subgroup H of G
contained in A · A−1 such that A ⊆ C · H for some finite subset C of A(M).

Furthermore, if G is abelian, then H can be taken to be a boolean combination of
translates of A.

Proof Since the definable set A(x) is wide, we may extend it to a wide complete L-
type p(x) over M . The ϕ-type q = p�ϕ contains the instance ϕ(x, idG) = A(x), so
the M-definable group H = Stabϕ(q) is clearly contained in A · A−1.

In order to conclude the result by Lemma 3.5 (together with Remark 1.2 when G
is abelian), it suffices to show that H is wide. By Lemma 3.4, the set

st(p) = {g ∈ G(U) : g · p(x) ∪ p(x) is wide}

contains a wide type over M . So we need only show that st(p) ⊆ H . Let
g ∈ st(p) and denote by q|U(x) in Sϕ(U) the global non-forking extension of q = p�ϕ .
Since formulae of positive measure do not fork over ∅, we have that the partial type
g · q(x) ∪ q(x) does not fork over M , hence it is a restriction of q|U(x). In particular,
the global ϕ-type g−1 · q|U(x) is a non-forking extension of q(x). By uniqueness of
the global non-forking extension, we conclude that

g−1 · q|U(x) = q|U(x),
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so g−1, and thus g, lies in H as desired. ��

4 Main results

We are now in a position to prove our main results. Let us begin by recalling Theorem
A in the introduction for the reader’s convenience.

Theorem 4.1 Given real numbers K ≥ 1 and ε > 0 and a natural number r ≥ 2, there
exists a natural number n = n(K , ε, r) such that for any (possibly infinite) group G
and any finite r-stable subset A ⊆ G with tripling K , there is a subgroup H ⊆ A · A−1

of G with A ⊆ C · H for some C ⊆ A of size at most n. Moreover, there exists C ′ ⊆ C
such that

|A	(C ′ · H)| < ε|H |.

In particular, we conclude that

|A	(C ′ · H)| < (εK 2)|A|,

by the Plünnecke-Ruzsa inequality.

Remark 4.2 It follows from Proposition 3.6 that when G is abelian, the subgroup H
can be taken to be a boolean combination (whose complexity only depends on K , ε
and r ) of translates of A.

Proof The proof proceeds by contradiction.Assuming that the statement does not hold,
there are fixed K , ε and r such that for each n in N, we find a finite r -stable subset An

of a group Gn with tripling K such that there are no subgroup H ⊆ An · A−1
n and a

finite subset C of An of size n with An contained in C · H and |An	(C ′ · H)| < ε|H |
for some C ′ ⊆ C .

Following the approach of [11, Section 2.6] (see also [2, Proof of Theorem 1.3] and
[13, Section 2.3]), we consider a suitable expansion L of the language of groups and
regard each group Gn as an L-structure Mn . Choose a non-principal ultrafilter U on N

and consider the ultraproduct M = ∏
U Mn . The language L is chosen in such a way

that the sets A = ∏
U An and B = ∏

U Bn are L-definable in the group G = ∏
U Gn ,

where Bn = An ∪ A−1
n ∪ {idG}. Furthermore, the counting measure

μn(Xn) = |Xn|
|Bn · Bn · Bn| ,

induces a definable Keisler measure μ, namely the standard part of limU μn , on the
boolean algebra of L-definable subsets of B · B · B, such that the set A is acceptable.
Now choose a sufficiently saturated elementary extension U of the model M and note
that μ is definable over M . Also, every collection of subgroups of Mn induces an
M-definable group in G(U), and vice versa.
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Note that the formula ϕ(x, y) = A(y · x) is r -stable, by Łoś’s theorem. Moreover,
by construction the set A is acceptable. Hence, by Proposition 3.6, there is an M-
definable subgroup H contained in A · A−1 such that A ⊆ C · H , for some finite set
C in A(M). By Fact 1.1, after possibly increasing the size of C , we may assume that
H is H0

ϕ .
Let C ′ be the collection of coset representatives c in C such that A∩ (c · H) is wide.

Since μ is finitely additive and A ⊆ C · H , we have that

μ(A) =
∑

c∈C

μ
(

A ∩ (c · H)
) =

∑

c∈C ′
μ

(
A ∩ (c · H)

) = μ
(

A ∩ (C ′ · H)
)
,

so

μ
(

A \ (C ′ · H)
) = μ(A) − μ

(
A ∩ (C ′ · H)

) = 0.

Thus, in order to compute μ
(

A	(C ′ · H)
)
, we need only consider

μ
(
(C ′ · H) \ A

) =
∑

c∈C ′
μ

(
(c · H) \ A

)
.

For c in C ′, note that the definable set c−1((c · H) \ A) equals H \ (c−1 · A), which
is contained in A · A−1, and hence has a (real-valued) measure. Since μ(H) > 0,
the measure μ normalised by μ(H) induces a left-invariant Keisler measure on the
definable subsets of H of the form X ∩ H , where X is ϕ-definable over M . By [2,
Theorem 2.3 (vi)], such a measure is unique and furthermore wide sets are exactly the
generic sets (cf. Fact 1.1). By construction of H0

ϕ , we conclude thatμ(H \c−1 · A) = 0
for c in C ′, so

μ
(

A	(C ′ · H)
) = μ

(
A \ (C ′ · H)

) + μ
(
(C ′ · H) \ A

) = 0 <
ε

2
· μ(H).

However, for n ≥ |C | sufficiently large, we conclude by Łoś’s theorem that the
corresponding trace An is contained in C(An) · H(Gn) and

∣∣An	(
C ′(An) · H(Gn)

)∣∣ < ε|H(Gn)|.

This yields the desired contradiction. ��

We now turn to the proof of Theorem B in the introduction. First, we note that a
straightforward compactness argument yields (non-quantitative) bounds on the com-
plexity of the representation of a weakly normal subset as a boolean combination of
suitably chosen subgroups. The fact that the subgroups in Proposition 4.3 below can
be expressed as bounded boolean combinations of translates of A goes beyond [19,
Theorem 1.4].
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Proposition 4.3 Given natural numbers r , k, and l, there are natural numbers n =
n(r , k, l) , m = m(r , k, l) and t = t(r , k, l) such that for any abelian group G and
any subset A ⊆ G with an (r , k, l)-weakly normal representation, the set A is a
boolean combination of complexity at most t of cosets of subgroups H1, . . . , Hn of
G. Moreover, each subgroup Hi is a boolean combination of complexity at most m of
translates of A.

Proof Otherwise, as in the proof ofTheorem4.1, assume that, for fixedpositive integers
r , k and l, there are n,m and t inN, and an abelian groupGn,m,t and a subset An,m,t such
that An,m,t admits an (r , k, l)-weakly normal representation, but it is not a boolean
combination of complexity at most t of cosets of n subgroups of G, each of which is
a boolean combination of complexity at most m of translates of the set An,m,t .

Set Gn = Gn,n,n and An = An,n,n . Since each An has an (r , k, l)-weakly normal
representation, there are r -weakly normal subsets Bn,1, . . . , Bn,k and Cn,1, . . . , Cn,l

such that

An =
k⋃

j=1

Bn, j ∩
l⋃

i=1

Gn \ Cn,i .

We consider an expansion L′ of L with k + l new predicates and regard each
group Gn as an L′-structure Mn , where the predicates are interpreted as the sets
Bn,1, . . . , Bn,k, Cn,1, . . . , Cn,l . Choose a non-principal ultrafilterU onN, and consider
the ultraproduct G = ∏

U Gn . The definable set A = ∏
U An admits an (r , k, l)-

weakly normal representation, by Łoś’s theorem, thus the definable set A is a boolean
combination of r -weakly normal formulae.

By Corollary 2.5, the definable set A is a boolean combination of complexity at
most t0 of n0 definable subgroups, each of which is itself a boolean combination of
complexity at most m0 of translates of A.

Łoś’s theorem gives the desired contradiction, by choosing n ≥ n0 + m0 + t0
sufficiently large. ��

Theorem 4.4 Given natural numbers r , k, and l, there are natural numbers n =
n(r , k, l) and m = m(r , k, l) such that for any abelian group G and any subset A ⊆ G
with an (r , k, l)-weakly normal representation, there are subgroups H1, . . . , Hn of G,
each contained in A − A, with

A ⊆
n⋃

i=1

gi + Hi ,

for some g1, . . . , gn in A. Furthermore, each Hi is a boolean combination of com-
plexity at most m of translates of A.

Proof As in the proof of Proposition 4.3, if the statement does not hold, there are fixed
integers r , k and l such that for each n and m in N, we find an abelian group Gn,m and
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a subset An,m such that An,m admits an (r , k, l)-weakly normal representation, yet

An,m �

n⋃

i=1

gi + Hi ,

for any g1, . . . , gn in An,m , for all subgroups H1, . . . , Hn of Gn,m , each contained in
An,m − An,m , which are boolean combinations of complexity at most m of translates
of An,m .

Set Gn = Gn,n and An = An,n . Choose a non-principal ultrafilter U on N, and
consider the ultraproduct G = ∏

U Gn . Choose a sufficiently saturated elementary
extension U of the model M = ∏

U Mn . As observed before, the definable set A =∏
U An admits an (r , k, l)-weakly normal representation, by Łoś’s theorem, so the

formula ϕ(x, y) = A(x + y) is a boolean combination of r -weakly normal formulae.
Let F be the family of cosets m + H , where m belongs to A(M) and the definable

subgroup H ⊆ A − A over M is given by a finite boolean combination of translates
of A. By Łoś’s theorem, no finite collection ofF covers A: otherwise, considering the
traces of these subgroups in the corresponding Gn,n for sufficiently large n, we would
have that An,n is covered by a finite union of translates of these subgroups, which have
bounded complexity as boolean combinations of translates of An,n .

By compactness, we obtain a complete ϕ-type p(x) over M containing the formula
A(x) = ϕ(x, idG) such that the partial type

p(x) ∪ {¬(m + H)(x)}m+H∈F ,

is consistent. By Remark 1.2, the subgroup Stabϕ(p) is ϕ-definable, so it is a boolean
combination of translates of A. ClearlyStabϕ(p) ⊆ A−A, by construction. Lemma2.4
yields that the type p contains the definable set

(
A∩(m+Stabϕ(p))

)
(x), for somem in

M . In particular, the M-definable set
(

A ∩ (m +Stabϕ(p))
)
(x) is non-empty, so there

is a realisation in M , since M is an elementary substructure. Replacing the element
m, we may assume that it lies in A(M). Hence, the coset m +Stabϕ(p) belongs to the
family F , which contradicts our choice of p and hence implies the result. ��

As an immediate consequence we obtain the result for finite sets stated as Theorem
B in the introduction. An analogous result holds whenever G carries a finitely additive
probability measure μ on the boolean algebra of translates of A with μ(A) > 0.
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