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Abstract
Wepropose an alternative definition for families of stable pairs (X , D)over an arbitrary
(possibly non-reduced) base in the case in which D is reduced, by replacing (X , D)

with an appropriate orbifold pair (X ,D). This definition of a stable family ends up
being equivalent to previous ones, but has the advantage of being more amenable to
the tools of deformation theory. Adjunction for (X ,D) holds on the nose; there is no
correction term coming from the different. This leads to the existence of functorial
gluingmorphisms for families of stable surfaces and functorialmorphisms from (n+1)
dimensional stable pairs to n dimensional polarized orbispaces. As an application, we
study the deformation theory of some surface pairs.

Mathematics Subject Classification 14D23, 14J10, 14J17, 14E30

1 Introduction

Since the introduction of the space of stable curves by Deligne and Mumford [11], the
theoryofmodular compactifications ofmoduli spaces of varieties has held a central role
in algebraic geometry. The class of stable pairs (X , D), first introduced in dimension
2 by Kollár and Shepherd-Barron [31], give a natural generalization of stable curves to
higher dimensions. Building on significant advances in the minimal model program,
boundedness, properness, and projectivity of the coarse space has been proven for the
space of stable pairs [4,7,16–18,26,28,30,31].

One subtle aspect is the notion of a flat family of stable pairs over an arbitrary
base. The first difficulty is that the natural polarization KX + D on a stable pair
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is only a Q-divisor, so the associated sheaf OX (KX + D) is not locally free. The
second difficulty is that the family of divisors D is not flat when the coefficients
are small. Kollár introduced moduli problems to address these difficulties in [22,27]
respectively. However, infinitesimal deformations and obstruction theories for these
moduli problems are not well understood in general since the moduli functor does not
simply parametrize flat families of pairs (X , D) → B which are fiberwise stable (see
e.g. [26, Chapter 6.1] and [27, Problem 13] for discussions).

In this paper we propose an alternative solution to the first difficulty for pairs (X , D)

with D reduced, which is more amenable to the tools of deformation and obstruction
theory.1 Building upon the work of Abramovich and Hassett [2], we replace (X , D)

with an associated twisted stable pair (X ,D). Admissible families of stable pairs
become just flat families of twisted stable pairs with no extra condition.

1.1 Advantages of twisted stable pairs

(1) We can compute admissible deformations and obstructions of stable pairs via usual
deformations and obstructions of twisted stable pairs (Corollary 1.2 and Sect. 1.4).

(2) We extend the gluing formalism of [25, Theorem 5.13] to families over arbitrary
bases giving functorial morphisms that describe the boundary of the moduli of
stable surfaces (Theorem 1.4).

(3) Adjunction for twisted stable pairs is well behaved in families and induces a
functorial morphism from the moduli of twisted stable pairs to the moduli of
canonically polarized orbifolds in one dimension lower (Theorem 1.3).

1.2 Moduli of twisted stable pairs

One way to address the issue that OX (KX + D) is not a line bundle is to choose
an appropriate reflexive power which is a line bundle; but different choices would
result in different moduli problems. Therefore Kollár introduced the following, more
canonical, condition on a flat family π : (X , D) → B where D is reduced: the sheaves
ω

[m]
π (mD) are flat and commute with base change for every m (see [22]). This is not

a fiberwise condition, but rather a global condition on the family. When the base
is normal and the fibers are stable, Kollár’s condition is equivalent to requiring that
KX/B + D is Q-Cartier on the total space but the condition is more subtle when the
base is non-reduced [3].

In [2], Abramovich and Hassett showed that imposing Kollár’s condition is equiv-
alent to working with an associated orbifold X → B. When D = 0, they constructed
a proper Deligne-Mumford stack parametrizing such canonically polarized twisted
stable varieties. Our first result is to extend this approach, incorporating a non-zero
reduced divisor D, and simplifying the construction of the moduli space of stable pairs
in this setting:

Theorem 1.1 (Theorems 3.9 and 3.12) There exists a proper Deligne-Mumford stack
Kn,v parametrizing n-dimensional twisted stable pairs (X ,D) of volume v where X
1 In this setting the family of divisors is automatically flat (see Corollary 3.6).
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is an orbifold with no stabilizers in codimension one,D is a reduced divisor, KX +D
is a Cartier ample divisor, and (X ,D) has semi-log canonical singularities.

To incorporate the divisor into the framework of [2], we replace D with the
morphism of sheaves OX (KX ) → OX (KX + D). In particular, we consider pairs
(X , φ : ωX → L) where (X ,L) is a polarized orbispace (see Definition 2.10) and φ

is a nonzero morphism which cuts out the divisorD as the support of its cokernel (see
3.1.1, 3.7 and 3.10).

The upshot, by taking the coarse space, is that twisted stable pairs (X → B, φ :
ωX → L) are equivalent to flat families π : (X , D) → B with stable fibers and that
satisfy Kollár’s condition for the log canonical sheaves: the sheaves ω

[m]
π (mD) are flat

and compatible with base change for every m.

Corollary 1.2 Let (X ,D) be a twisted stable pairwith trivial stabilizers in codimension
1 and coarse space (X , D). Then infinitesimal deformations of the associated pair
(X , φ : ωX → L) are in bijection with infinitesimal deformations of the stable pair
(X , D) that satisfy Kollár’s condition.

1.3 Applications to gluing and adjunction

The formalism of twisted stable pairs simplifies the adjunction formula. There is no
longer a correction term coming from the singularities of X :

Theorem 1.3 (Proposition 4.7 and Corollary 4.8) Let (X ,D) be a twisted stable pair.
Then L∣

∣D ∼= ωD. Moreover, let (X → B, φ : ωX → L) be a twisted stable pair over
an arbitrary base and suppose that D → B is an S2 morphism. Then (D → B,L∣

∣D)

is a family of canonically polarized orbifolds with semi-log canonical singularities.

The first part of Theorem 1.3 is essentially saying that the different (see Sect. 4.2)
of (X , D) is replaced by the orbifold structure of (X ,D). We study the precise relation
between the different on (X , D) and the stabilizers on (X ,D) at the end of Sect. 4.
For surfaces, the second part of Theorem 1.3 gives us a morphism from K2,v to the
moduli space of orbifold stable curves.

As an application, we show that in the case of surfaces, the gluing results of [25,
Theorem 5.13] can be extended to the orbifold setting and can be done functorially
for families over an arbitrary base. More precisely, we construct the algebraic stack
G2,v of gluing data consisting of triples (X ,D, τ : Dn → Dn) where (X ,D) is an
object of K2,v as in Theorem 1.1, Dn is the normalization of D, and τ : Dn → Dn is
a generically fixed point free involution which preserves the preimage of the nodes of
D. Denote by Kω

2,v the moduli stack of stable surfaces.

Theorem 1.4 (Theorems 5.17 and 5.20) There is a morphism G2,v → Kω
2,v which on

the level of closed points sends a triple of gluing data as above to the stable surface
given by gluing the coarse space D ⊂ X along the involution τ as in [25, Theorem
5.13].

Theorem1.4 is an analogue for stable surfaces of the gluingmorphisms that describe
the boundary of the moduli space of stable curvesMg [21]. In Sect. 5.3 we show that
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there exists a finite stratification ofKω
2,v such that each boundary stratum is the image

of a family of gluing data under the morphism in Theorem 1.4.

1.4 Applications to deformation problems

As a first application of our approach, we compute the admissible deformations and
obstructions for a plt surface pair (X , D). If we denote with (X ,D) its associated
twisted stable pair, then we have equivalencies

Def(X , ωX → L) ∼= Def(X , ωX ⊗ L−1 → OX ) ∼= Def(X ,G → OX )

where G = ωX ⊗L−1. But by Lemma 4.12 when (X , D) is a plt surface, the surface
X is Gorenstein. Therefore, G is a line bundle, so G → OX induces a morphism
ψ : X → [A1/Gm]. In particular,

Def(X , ωX → L) = Def(ψ).

The explicit description of the stabilizers ofX aroundD shows thatψ is representable,
so by [36] the space Def(ψ) is controlled by the cotangent complex LX /[A1/Gm ].

In Sect. 6 we use this approach to explicitly compute the admissible deformations
and obstructions of a K3 surface with an A1 singularity at a point p, and a divisor D
which is not Cartier passing through the singular point. Using twisted stable pairs we
prove that the Kollár’s moduli space of stable pairs is smooth of dimension 19 at such
a point and agrees with the moduli space of the quasi-polarized K3 pairs obtained by
resolving the singularity. In forthcoming work we will extend this approach to study
the deformations and obstructions for pairs in higher dimensions.

1.5 Outline

In Sect. 2 we recall the background we need on singularities of the MMP [20,24]
and polarized orbispaces [2]. In Sect. 3 we give the definition of twisted stable pair
(Definition 3.7) and we prove Theorem 1.1.

In Sect. 4 we study the local properties of polarized orbispaces in order to compare
our moduli functor with the Q-Gorenstein deformations used by [14] and to prove
Theorem 1.3. In Sect. 5 we prove Theorem 1.4 on gluing morphisms. In Sect. 6 we
give an example deformation theoretic computation using twisted stable pairs.

Conventions

Wework over an algebraically closed field k of characteristic 0. Unless otherwise spec-
ified, all the stacks will be of finite type over k. A stack X has property P generically
if there is an open embeddingU → X which intersects all the irreducible components
of X , such that the points of U have property P . When an algebraic stack X admits a
coarse space, unless otherwise stated we will denote its coarse space by X . When we
say that a diagram of stacks commutes, we mean it 2-commutes.
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2 Background on theminimal model program and polarized
orbispaces

This section is divided into three subsections. In the first one, we begin by recalling
the properties we need about the singularities of the MMP. Then we introduce the
analogous singularities for a Deligne-Mumford (DM) stack. In the second subsection
we recall the definition of the different. Finally, in the last subsection we recall the
relevant constructions and definitions from [2].

2.1 Singularities of theMMP

In this subsection we recall the properties of the singularities that appear in the MMP,
which are relevant for the rest of the paper. For a more detailed exposition, and for the
definitions of lc, slc, plt, demi-normal and Du Bois, we refer to [20,25].

We begin by introducing the following notation:

Notation 2.1 We say that an open subset U ⊂ X is big if the complement of U has
codimension at least 2 in X .

Definition 2.2 [15] A coherent sheaf F is said to be reflexive if the natural map F →
(F)∗∗ is an isomorphism. For an arbitrary sheaf F , the double dual F∗∗ is called the
reflexive hull. More generally, the reflexive hull of the tensor powers are called the
reflexive powers and denoted F [n] := (F⊗n)∗∗.

Reflexive sheaves are well behaved for S2 schemes and for S2 morphisms (see e.g.
[15]). The following lemma is known to the experts. For convenience we include a
proof.

Lemma 2.3 Consider a flat S2 morphism π : X → B from a DM stack X to a
scheme, and let U ⊆ X be an open substack which is big on each fiber. Let E be a
reflexive sheaf on X , and let F be a coherent sheaf on X . Then the restriction map
HomX (F , E) → HomU (F|U , E|U ) is an isomorphism.

Proof Up to replacing X with an atlas, we can assume it is a scheme, which we
denote by X . Let j : U → X be the inclusion of U . Since E is reflexive and U
is big along each fiber, from [15, Proposition 3.6.1] the morphism E → j∗( j∗E)

is an isomorphism. Therefore, by the adjunction between j∗ and j∗, we have
HomX (F , E) ∼= HomX (F , j∗( j∗E)) ∼= HomU ( j∗(F), j∗(E)). �	
Consider f : X → B a flat separated morphism of locally Noetherian DM stacks with
S2 and pure d-dimensional fibers. Let ω·

f be the relative dualizing complex.

Definition 2.4 We define the relative canonical sheaf ωX/B or ω f to be the sheaf
H−d(ω·

f ).

Definition 2.5 Given f : X → B a flat morphism of DM stacks, we say that f is
Gorenstein if ω·

f 
qis ω f and ω f is locally free. In general, we denote by U ( f ) ⊂
X the f -Gorenstein locus, that is, the largest open subset where the morphism is
Gorenstein.

We highlight the following useful observation:
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Observation 2.6 Let f : X → B be a flat family of DM stacks and let B ′ → B a
morphism. Consider the pullback f ′ : X ′ := X ×B B ′ → B ′ and let h : X ′ → X be
the first projection. Then h−1(U ( f )) = U ( f ′).

When we assume that the fibers are Gorenstein in codimension 1, thenωX/B agrees
with the pushforward ι∗ωU ( f )/B where ι : U ( f ) ↪→ X the inclusion of the relative
Gorenstein locus (see [33, Sect. 5]). In this case ωX/B is in fact a reflexive sheaf [33,
Proposition 5.6].

Next we generalize the definitions for singularities of pairs to DM stacks:

Definition 2.7 Consider a pair (X ,
∑

aiDi ) consisting of a DM stack X and reduced
equi-dimensional closed substacksDi of codimension 1 with ai ∈ Q(0,1]. We say that
the pair (X ,

∑
aiDi ) is log canonical or lc (resp. semi-log canonical or slc) if there

is an étale cover f : Y → X by a scheme such that (Y ,
∑

ai f ∗Di ) is log canonical
(resp. semi-log canonical).

The following observation follows from [25, 2.40, 2.41 andCorollary 2.43] (see also
[25, Proposition 2.15] and see [25, Definition 5.1] for the definition of demi-normal).

Observation 2.8 Consider a pair (X ,
∑

ai Di ) consisting of a demi-normal scheme X
and pure codimension 1 reduced subschemes Di . Let f : Y → X be an étale surjective
morphism, or a finite surjective morphism that is étale in codimension 1, with Y demi-
normal. Then the pair (X ,

∑
ai Di ) is lc (resp. slc) if and only if (Y ,

∑
ai f ∗Di ) is lc

(resp. slc).

The main consequences of Observation 2.8 are the following:

• Definition 2.7 does not depend on the choice of the étale cover Y ;
• Consider a pair (X ,

∑
aiDi ) with X a demi-normal DM stack that is a scheme

in codimension 2. Let X (resp. Di ) be the coarse space of X (resp. Di ). Then
(X ,

∑
ai Di ) is lc (resp. slc) if and only if (X ,

∑
aiDi ) is lc (resp. slc).

2.2 The different

In this subsection we recall the definition of different. We refer the reader to [25,
Definition 2.34 and Chapter 4] for further details.

Suppose (X , D+	) is an lc pair, where D is a divisor with coefficient 1 and 	 is a
Q-divisor. If X and D are smooth, then the usual adjunction formula gives a canonical
isomorphism

OX (KX + D + 	)
∣
∣
D

∼= OD(KD + 	
∣
∣
D). (1)

If either X or D are singular, Eq. (1) may no longer hold. However, there is a canonical
correction term given by the different.

More precisely, suppose (X , D+	) is lc and let ν : Dn → D be the normalization
of D. Since KX + D + 	 is Q-Cartier, for m divisible enough one can compare
(m(KX + D + 	))

∣
∣
Dn and m(KDn + 	

∣
∣
D). Using this, one can define an effective

divisor DiffDn (	), such that

KDn + 	
∣
∣
D + DiffDn (	) ∼Q (KX + D + 	)

∣
∣
Dn . (2)
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Wewill see that DiffDn (	) is an actual effective divisor on Dn , not just a divisor class.
There are two equivalent definitions for DiffDn (	) and both will be useful in the

sequel.

2.2.1 The different, 1st definition

Writing D as a sum of its irreducible components and applying Eq. 2 to each compo-
nent, one can see that it suffices to define DiffDn (	) in the case where D is irreducible.
Consider then p : Y → X a log-resolution of (X , D + 	), and let T := p−1∗ D. Then
we have the following commutative diagram.

T
i

pT

Y

p

Dn
j

X

On Y , we can write p∗(KX + D + 	) = KY + T + F where F is a Q-divisor. Then
i∗ p∗(KX + D + 	) = KT + F

∣
∣
T . Now we can define the different as

DiffDn (	) := (pT )∗(F
∣
∣
T ).

We remark that this definition only depends on the points of codimension at most 2
on X , so to check properties of the different it suffices to consider the case in which
X is a surface. Then from [25, Proposition 2.35] the different satisfies the following
properties:

(1) DiffDn (	) does not depend on the choice of a log resolution, and
(2) DiffDn (	) is an effective divisor.

2.2.2 The different, 2nd definition

One can also define the different using the Poincaré residue map. We review the
definition below. See [25, Definition 4.2] for more details. Let Z ⊆ X to be the union
of Supp	 ∩ D with the closed subset where either Supp(D) or X are singular. Then
on X � Z there exists a canonical isomorphism

R : ωX (D)
∣
∣
(D�Z)

→ ωD�Z

given by the Poincaré residue map. For m divisible enough so that ω
[m]
X (m(D + 	))

is Cartier, consider the mth tensor power R⊗m . Since the normalization morphism
ν : Dn → D is an isomorphism on the locus where D is smooth and since	|D\Z = 0,
R⊗m pulls back to a rational section of

HomDn

(

ν∗(ω[m]
X (m(D + 	))), ω

[m]
Dn

)
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which we also denote by R⊗m . Now ω
[m]
Dn is Cartier in codimension 1 so the rational

sectionR⊗m defines a divisor 	◦
m in codimension 1 on Dn and we denote its closure

by 	m . Then we can define the different by

DiffDn (	) := 1

m
	m .

2.3 Polarized orbispaces and Kollár families ofQ-line bundles

In this subsection, we recall the definitions from [2]. All our stacks are assumed to be
of finite type over a field k unless otherwise noted.

Definition 2.9 [2, Definition 2.3.1] A cyclotomic stack is a separated DM stack X
such that the stabilizers of the points of X are finite cyclic groups.

An important example of a cyclotomic stack is the weighted projective stack
P(ρ1, . . . , ρn), defined as the stack quotient

[

(An \ 0)/Gm
]

where Gm acts on the
i th coordinate ofAn by weight ρi > 0. Moreover, any closed substack of a cyclotomic
stack is cyclotomic.

We will consider polarized orbispaces, which are cyclotomic stacks analogous to
projective varieties (see [2, Definitions 2.3.11, 2.4.1 and 4.1.1]):

Definition 2.10 Let f : X → B be a flat proper equi-dimensional morphism from a
cyclotomic stack to a scheme. Assume that each fiber of f is generically an algebraic
space. Let π : X → X be the coarse space and fX : X → B the induced map. A
polarizing line bundle is a line bundle L on X such that:

(i) For every geometric point ξ ∈ X (Spec(K )), the action of Aut(ξ) on the fiber of
L is effective, and

(ii) There is an fX -ample line bundle M on X and an N > 0 such that LN ∼= π∗M .

A pair (X → B,L) as above is a polarized orbispace.

Remark 2.11 We do not require the fibers of f to be connected.

Remark 2.12 Line bundles satisfying Condition (i) of Definition 2.10 are called uni-
formizing line bundles in [2]. This condition is equivalent to requiring that the induced
map to BGm is representable [2, Proposition 2.3.10].

Note that a weighted projective stack with the line bundle O(1) is a polarized
orbispace and by [2, Corollary 2.4.4], any polarized orbispace is a closed substack of
a weighted projective stack.

Now one can define a category fibered in groupoids OrbL as follows. The objects
|OrbL(B)| over a scheme B are polarized orbispaces (X → B,L). A morphism of
(π : X → B,L) → (π ′ : X ′ → B ′,L′) over a map g : B → B ′ consists of a
morphism f : X → X ′ and an isomorphism φ : f ∗L′ → L, such that the following
diagram is cartesian
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X
f

π

X ′

π ′

B
g

B ′.

Theorem 2.13 [2, Proposition 4.2.1] The stackOrbL is algebraic and locally of finite
type.

Remark 2.14 Contrary to our conventions, we do not claim thatOrbL is of finite type.

For our purposes the relevance of polarized orbispaces lies in their relation with
Kollár families of Q-line bundles:

Definition 2.15 [2, Definition 5.2.1] A Kollár family of Q -line bundles is the data of
a pair ( f : X → B, F) consisting of a morphism of schemes f and a coherent sheaf
F on X satisfying the following conditions:

(1) f is flat with fibers that are reduced, S2, and of equi-dimension n;
(2) For every fiber Xb, the restriction F

∣
∣
Xb

is reflexive of rank 1;

(3) For every n the formation of F [n] commutes with base change for maps B ′ → B,
and

(4) For each Xb, there is an Nb divisible enough such that F [Nb]∣∣
Xb

is a line bundle.

Points (1), (2) and (4) do not pose any major difficulty as they are fiberwise condi-
tions. However, point (3) is difficult to check and is not automatic (see [3]). In [2],
Abramovich and Hassett give a stack theoretic characterization of families satisfying
condition (3) which we now review.

First, observe that given a Kollár family of Q-line bundles ( f : X → B, F), one
can consider the varietyP(F) := SpecOX

(
⊕

n∈Z
F [n]) lying over B. There is a natural

action ofGm over B induced by the grading and taking the quotientXF := [P(F)/Gm]
gives a cyclotomic stack which is flat over B [2, Proposition 5.1.4]. Moreover, the
fibers of g are reduced and S2 with trivial stabilizers in codimension one. If we further
assume that f is proper and that Fb is an ample Q-line bundle for each b ∈ B, then
the natural line bundle O(1) on XF makes (g : XF → B,O(1)) into a polarized
orbispace. Abramovich and Hassett show that this coresponence can be reversed:

Theorem 2.16 [2, Sect. 5] Consider ( f : X → B,L) a polarized orbispace. Assume
that for every b ∈ B the fiber Xb is reduced and S2 with trivial stabilizers in codi-
mension one. Let p : X → X be the coarse space. Then (X → B, p∗(L)) is a Kollár
family of Q-line bundles.

In particular, consider a Kollár family of Q-line bundles (X → Spec(A), F) over
a local Artin ring A and let A′ → A be an extension of local Artin rings. Then the
deformations of (X → Spec(A), F) along Spec(A) → Spec(A′) which satisfy the
condition (4) of Definition 2.15 are identified with the deformations of the polarized
orbispace (g : XF → Spec(A),O(1)).

Definition 2.17 We will say that a polarized orbispace (X → B,L) satisfying the
assumptions of Theorem 2.16 is an Abramovich-Hassett (or AH) family. Given a
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Kollár family of Q-line bundles (X → B, F), we will call (XF → B,O(1)) the
associated AH family.

Finally, [2] also proves the existence of a locally of finite type (but not necessarily
of finite type) algebraic stack which parametrizes canonically polarized orbispaces [2,
Definition 6.1.1]).

Definition 2.18 Following [2], we define the moduli space parametrizing AH families
of canonically polarized orbispaceswith atworst slc singularities byKω

slc. Furthermore,
we denote by Kω

n,v ⊆ Kω
slc the substack parametrizing those polarized orbispaces of

dimension n and volume v.

3 Themoduli space of twisted stable pairs

The goal of this section is to present a definition of a family of stable pairs over an
arbitrary base, using polarized orbispaces. We then construct an algebraic stackMn,v

of these twisted stable pairs.
We start with the usual definition of a stable pair:

Definition 3.1 An slc pair (X , D) is a stable pair if KX + D is ample.

There are two obstacles one has to overcome in order to generalize this to a notion
of families of stable pairs. The first is that the Q-divisor KX + D is only defined up
to rational equivalence. Moreover, the divisor D itself is an actual Weil divisor rather
than just a divisor class: even when D is Cartier, the condition of the pair being slc is
not invariant under linear equivalence. Thus one needs to find a suitable definition for
a family of divisors, over an arbitrary base scheme B.

To address the first point, it is natural to consider Kollár families of Q-line bundles
(X → B, F) where F restricts to the reflexive sheaf O(KX + D) along each fiber.
As we saw in the previous section, this is equivalent to considering flat families of
polarized orbispaces. To address the second point, we follow an idea originally due
to Kollár (see [24, p. 21]) and used by Kovács and Patakfalvi in [30]: we replace the
data of D with the morphism of sheaves OX (KX ) → OX (KX + D).

3.1 The stack of pairsH

We begin by defining a category H fibered in groupoids over Sch/k, consisting of
pairs of a polarized orbispace and a morphism of sheaves as above.

3.1.1 The objects ofH

For every scheme B, an object ofH(B) consists of a pair ( f : X → B, φ : ωX /B →
L), with ( f : X → B,L) a polarized orbispace and φ a morphism such that:

(1) f : X → B is a flat family of equi-dimensional demi-normal stacks, and
(2) for every b ∈ B, φb is an isomorphism at the generic points and codimension one

singular points of Xb;
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Remark 3.2 Note that we do not assume that the fibers of f are connected. This will
simplify the definition of the moduli of gluing data in Sect. 5.

3.1.2 The arrows ofH

Consider two schemes B1 and B2 and a morphism a : B1 → B2. Suppose α := ( f1 :
X1 → B1, φ1 : ωX1/B1 → L1) and β := ( f2 : X2 → B2, φ2 : ωX2 → L2) are
objects in H(B1) and H(B2) respectively. An arrow � : α → β lying over a is the
data of a morphism (μ, ν) of the objects (X1 → B1,L1) and (X2 → B2,L2) ofOrbL
such that following diagram is commutative:

μ∗ωX2/B2

μ∗(φ2)

ωX1/B1

φ1

μ∗L2 ν
L1.

Here μ∗ωX2/B2 → ωX1/B1 is a canonical morphism, defined as follows. By Obser-
vation 2.6, there is a morphism U ( f1) → U ( f2). Since U ( fi ) → Bi is Gorenstein,
this induces a unique canonical isomorphism (see [9, Theorem 3.6.1])

μ∗∣∣
U ( f1)

(ωU ( f2)/B2) → ωU ( f1)/B1 . (3)

Letting ι j : U ( f j ) → X j be the inclusion, we have

ι∗2(ωX2/B2) = ι∗2(ι2∗ωU ( f2)/B2)
∼= ωU ( f2)/B2 ,

and so Eq. 3 induces a map

ι∗1μ∗(ωX2/B2)
∼= μ∗∣∣

U ( f1)
(ι∗2(ωX2/B2))

∼= μ∗∣∣
U ( f1)

(ωU ( f2)/B2) → ωU ( f1)/B1 .

Then the push pull adjunction gives the map μ∗(ωX2/B2) → (ι1)∗(ωU ( f1)/B1) =
ωX1/B1 .

Theorem 3.3 The category H is an algebraic stack locally of finite type.

Proof Consider the algebraic stackOrbL, let (X ,L) → OrbL be the universal polar-
ized orbispace, and assume that X → OrbL has relative dimension n. The locus
O(1) → OrbL where the fibers are S2 and reduced is open by [13, Théorème 12.2.4].
Furthermore, the condition of having at worst nodal singularities is open, so there is
an open substack O(2) ↪→ O(1) where the fibers of X (2) := X ×OrbL O(2) → O(2)

are demi-normal.
Now over O(2), we can consider the relative canonical sheaf ωX (2)/O(2) which

is reflexive and equal to ι∗(ωU/O(2) ) where U is the relative Gorenstein locus of

X (2) → O(2). Denoting by L(2) the pullback of L to X (2), we have that the Hom-
stack H′ := HomO(2) (ωX (2)/O(2) ,L(2)) is algebraic and locally of finite type by [32,
Proposition 2.1.3]. We will check that H is a substack of H′ by identifying H′ with



40 Page 12 of 44 D. Bejleri, G. Inchiostro

the stack of pairs ( f : X → B, φ : ωX /B → L). That is, for every scheme B there is
an equivalence of categories

Hom(B,H′) → {( f : X → B, φ : ωX /B → L)}

where (X → B,L) is induced by a morphism B → O(2).
Indeed given a morphism B → H′, we can first compose it with the natural map

H′ → O(2) to get a map B → O(2) and thus a family of demi-normal polarized
orbispaces (X → B,L). Then the universal property of the Hom stack identifies the
category of liftings as in the dotted arrow below

H′

B
π O(2)

withmaps φ0 : π∗(ωX (2)/O(2) ) → L. Now sinceL is a line bundle, φ0 factors uniquely

through the reflexive hull of the source, so we obtain φ
[1]
0 : π∗(ωX (2)/O(2) )[1] → L.

Notice that

π∗(ωX (2)/O(2) )
[1] ∼= ωX /B

so settingφ := φ
[1]
0 gives a pair.We leave it to the reader to check this is an equivalence

of categories.
For any B and any object ( f : X → B, ωX /B → L) ∈ H′(B), condition (1) is

satisfied by construction since ( f : X → B,L) is an object of O(2)(B). We must
show that (2) imposes an algebraic condition. In fact, we will show that it cuts out
H as an open substack of H′. Let (X (3),L(3)) denote the pullback of the universal
polarized orbispace toH′ and let � : ωX (3)/H′ → L(3) be the universal morphism.

Since π : X (3) → H′ is Gorenstein in codimension one, ωπ is a line bundle in
codimension one and a morphism of line bundles is an isomorphism if and only if it
is surjective. Thus we need to show that requiring � to be surjective at generic points
and at the codimension one singular points of the fibers of π is an open condition.

Webeginwith the generic points. ConsiderC := Supp(Coker(�)). SinceC → X (3)

is a closed embedding and X (3) → H′ is proper, C → H′ is proper. We need to show
that the locus where the fibers of C → H′ have dimension at most (n − 1) is open.
Since C and H′ are tame DM stack, and formation of coarse spaces commutes with
base change, it suffices to show that the locus where the fibers of the coarse moduli
map C → H ′ have dimension at most (n − 1) is open. This follows from upper-
semicontinuity of fiber dimension.

Finally we consider the codimension one singular points. Let S ⊂ X (3) be the
singular locus of π : X (3) → H′. It is a closed substack of X (3) so that the map toH′
is proper. Let �S be the restriction of � to S and CS be the support of its cokernel.
Then it suffices to show that the locus where the fibers of CS → H′ have dimension at
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most (n−2) is open. Since CS is a closed substack ofS, it is proper and the result again
follows from upper-semicontinuity of fiber dimension applied to the coarse map.

Thus H is an open substack of the algebraic stack H′. �	

3.2 The family of divisorsD

Next we produce a family of divisors from the data of a pair ( f : X → B, φ :
ωX /B → L) ∈ H(B), and study its properties.

Lemma 3.4 Suppose ( f : X → B, φ : ωX /B → L) is an object of H(B). Then the
morphism φ ⊗ L−1 : ωX /B ⊗ L−1 → OX is injective.

Proof The statement is étale local so we can replaceX with an étale cover and assume
it is a scheme. The sheaf ωX /B ⊗L−1 is reflexive by [33, Proposition 5.6]. Therefore
by [15, Proposition 3.5], if j : U ( f ) → X is the open embedding of the Gorenstein
locus,

ωX /B ⊗ L−1 ∼= j∗ j∗(ωX /B ⊗ L−1) and OX ∼= j∗ j∗(OX ).

This means that for every open subset V ⊆ X the restriction morphism (ωX /B ⊗
L−1)(V ) → (ωX /B ⊗ L−1)(V ∩ U ( f ) is an isomorphism. Therefore, it suffices to
show that (ωX /B ⊗ L−1)(V ∩ U ( f )) → OX (V ∩ U ( f )) is injective. Namely, we
can assume without loss of generality that ωX /B is a line bundle.

Now the statement is local so suppose that B = Spec(A), X = Spec(R) with
g : Spec(R) → Spec(A) where R is a flat A-module, and ωX /B ⊗ L−1 ∼= OX and
denote φ ⊗ L−1 by ψ . Then ψ : R → R is an R-module homomorphism which is
necessarily multiplication by some a ∈ R. Our goal is to show that a is not a zero
divisor.

From the commutativity condition on morphisms and point (2) in the definition
of objects of H, the element a is not a zero divisor when restricted to each fiber of
X → B. For any ring C and C-module M , we will denote by AssC (M) the associated
primes ofM , and byDivC (M) the set of zero divisors forM. It is essential now to recall
that DivC (M) = ⋃

p∈AssC (M) p. Then the following chain of implications finishes the
proof:

a /∈
⋃

p∈Spec(A)

DivR(R/pR) ⇒ a /∈
⋃

p∈Spec(A), q∈AssR(R/pR)

q ⇒

⇒ a /∈
⋃

p∈AssA(A), q∈AssR(R/pR)

q
(∗)�⇒ a /∈

⋃

q∈AssR(R)

q ⇒ a /∈ DivR(R),

where the arrow labelled with (∗) follows from [34, Theorem 23.2 (ii)] and its proof.
�	

Notation 3.5 The ideal sheaf given by taking the image of φ ⊗ L−1 in Lemma 3.4
will be denoted by OX (−Dφ) and the resulting closed substack will be denoted by
Dφ ⊆ X . Furthermore, wewill drop the subscript φ when there is no risk of confusion.
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Corollary 3.6 Let ( f : X → B, φ : ωX /B → L) be an object of H(B) and suppose
that for each b ∈ B, Xb is Du Bois. Then Dφ → B is flat and commutes with base
change.

Proof Wewill drop the subscriptφ inDφ . Let B ′ → B be amorphism and consider the
pullback (X ′ → B ′, φ′ : ωX ′/B′ → L′). Let g : X ′ → X be the resulting morphism.

By the exact sequence of Tor and using that X → B is flat, it suffices to show that
the morphism g∗(OX (−D)) → g∗OX ∼= OX ′ is injective. Since the fibers are Du
Bois, the relative canonical sheaf commutes with base change by [19, Corollary 1.5],
so g∗(ωX /B) ∼= ωX ′/B′ . Thus

g∗(OX (−D)
) ∼= g∗ (

ωX /B ⊗ L−1
) ∼= g∗(ωX /B

) ⊗ g∗(L)−1 ∼= ωX ′/B′ ⊗ (L′)−1.

By the commutativity condition in the definition of H, the composition ωX ′/B′ ⊗
(L′)−1 ∼= g∗(OX (−D)) → OX ′ is the map φ′ ⊗ (L′)−1 which is injective by Lemma
3.4 and identifies g∗(OX (−D)) with OX ′(−D′). �	

3.3 The stackMn,v

We are now ready to introduce the stack of twisted stable pairs Mn,v as a category
fibered in groupoids over Sch/k.

Definition 3.7 For B a scheme, an object of Mn,v(B) consists of a pair ( f : X →
B, φ : ωX /B → L) ∈ H(B) such that

(1) for every b ∈ B, (Xb,Db) is an slc pair of dimension n, and
(2) for every b ∈ B, the volume of Lb is v.2

Morphisms are given by morphisms in H. We will call an object of Mn,v over B, a
twisted stable pair over B.

Remark 3.8 Despite the fact that Mn,v is defined as a full subcategory of H, it is not
immediate that it is a substack. The issue is that condition (1) in Definition 3.7 is not
compatible with base change a priori. However, by [25, Theorem 5.14] the fibersXb of
a twisted stable pair are Du Bois. Therefore, by Corollary 3.6,D is flat and commutes
with base change soMn,v is a category fibered in groupoids.

Theorem 3.9 The stack Mn,v is algebraic and locally of finite type.

Proof Since the stack of pairsH is algebraic by Theorem 3.3, it suffices to show that
Mn,v is an open substack. Thus we will check that (1) and (2) in Definition 3.7 are
open conditions.

Condition (1). Consider a family of pairs ( f : X → B,L, φ : ωX /B → L) ∈ H.
We need to show that the locus in B where (Xb,Db) is slc is open. It suffices then to
show that it is constructible, and stable under generalization. Our proof is inspired by
[26, Lemma 4.48] and [2, Lemma A.2.1]. See also [30, Lemma 5.10].

2 The volume of a line bundle on X is defined to be the volume of the corresponding Q-Cartier divisor on
the coarse space.
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We begin with some initial reductions. By Corollary 3.6,D → B is flat for objects
ofMn,v soMn,v is contained in the substackH1 ⊂ H whereD → B is flat. By [13,
Theorem 11.3.1], H1 ⊂ H is open. Furthermore, Mn,v is contained in the substack
H2 ⊂ H1 where the fibers of D → B are reduced. Since D → B is flat and proper,
then H2 ⊂ H1 is open by [13, Theorem 12.2.1]. Thus without loss of generality, we
may suppose that D → B is flat with reduced fibers.

Next we show that the locus in B where (Xb,Db) is slc is constructible. For that, we
can assume that B is irreducible. Letη be the generic point of B and consider the generic
fiber (Xη, ωXη/η → Lη). Let Yη → Xη of (Xη,Dη) be a log-resolution, which exists
forDMstacks by functorial resolutionof singularities (see for example [43]). Since B is
locally of finite type over a field, this resolution can be spread out to give a simultaneous
log-resolution π : Y → X ∣

∣
U of (X ∣

∣
U ,D∣

∣
U ) for a suitable open subset U ⊆ B

using the method of [26, Lemma 4.48]. Then we have ωY/U ⊗ OY (π−1∗ (D∣
∣
U )) ∼=

π∗(L∣
∣
U ) ⊗ OY (

∑
di	i ) for appropriate irreducible π -exceptional divisors 	i and

coefficients di . Then for every b ∈ U , the pair (Xb,Db) is slc if and only if di ≥ −1
for every i which is a constructible condition by Chevalley’s Theorem.

To show that being slc is stable under generalization, we proceed as in [30, Lemma
5.10]. Consider a family of demi-normal orbifolds X → Spec(R) over a DVR R and
assume we have a divisor D such that KX +D is Q-Cartier. After passing to an étale
cover, we may assume (X ,D) are schemes. If the closed fiber (Xp,Dp) is slc, then
by inversion of adjunction ([39, Corollary 2.11]) we conclude that the pair (X ,D) is
slc so the condition is stable under generalization.

Condition (2). We need to show that the locus in H where the fibers have volume
v is open for every integer v. Since H is locally of finite type, we can restrict to an
open connected substack H0 of finite type. Let (X0,L0) → H0 be the pullback of
the universal polarized orbispace and let π : X0 → X0 be the relative coarse space
of X0 → H0. Since X0 is of finite type, there exists an m such that L⊗m

0 = π∗L for
some line bundle L on X0. It suffices to know that the self intersection (L

∣
∣
(X0)b

)n is
locally constant, which follows from the flatness of X0 → H0. �	

Observe that the stackMn,v comes with a morphism toOrbL. From [2, Corollary
5.3.7], there is an open embedding KL → OrbL parametrizing cyclotomic stacks
which are S2 and have no stabilizers in codimension one.

Definition 3.10 Let Kn,v := KL ×OrbL Mn,v → Mn,v be the open substack
parametrizing orbispaces which have no stabilizers in codimension one. We call Kn,v

the Kollár component of Mn,v and define the twisted stable pairs parametrized by
Kn,v the AH twisted stable pairs.

By Theorem 2.16, the objects ofKn,v are the twisted stable pairs ( f : X → B, φ :
ωX → L) such that ( f : X → B,L) is the associated AH family of a Kollár family
of Q-line bundles. That is, they are twisted stable pairs that are also AH families as in
Definition 2.17.

Notation 3.11 Let Kc
n,v denote the open substack of Kn,v parametrizing connected

twisted stable pairs.
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Theorem 3.12 The stacks Kc
n,v and Kn,v are proper and DM.

Proof It suffices to prove the desired claim for Kc
n,v . We divide the proof into three

steps.
Kc

n,v is of finite type: First, note that Kc
n,v is locally of finite type since it is an

open substack ofMn,v . Therefore, it suffices to show that Kc
n,v is quasi-compact and

to do this it suffices to find a surjective morphism from a quasi-compact scheme.
This follows from the results [16,22] (see also [23]). By [16, Theorem 1.1], there is a
projective morphism of quasi-projective varieties X → B, with a divisor D ⊆ X such
that every stable pair of dimension n and volume v appears as (Xb, Db) for a certain
b ∈ B. Up to replacing B with a resolution, wemay assume that B is smooth. By taking
the flattening stratification, we can assume that X → B is flat. Using boundedness
and proceeding as in [22, Corollary 25], we can stratify further so that (KXb + Db)

[m]
commutes with base change for every m ∈ Z. In particular, we can consider the
associated AH family ( f : X → B,L). On the locus U where f is Gorenstein and
has trivial stabilizers, we have a morphism ω f

∣
∣U → L∣

∣U which extends uniquely to a
morphism ω f → L by Lemma 2.3. Since every point of Kc

n,v corresponds to the AH
stack of a fiber of X → B and B is of finite type, it follows that Kc

n,v is as well.
Kc

n,v is proper: The valuative criterion for properness now follows from [26, The-
orem 2.50 and Proposition 2.76 (2)].

Kc
n,v is DM: Consider an AH twisted stable pair (X → Spec(k), ωX → L), and

let X be the coarse space of X . Since X has no generic stabilizers, an automorphism
of X which induces the identity on X is the identity. So it suffices to know that the
pair (X , D) has finite automorphisms where D is the coarse space of Dφ . This is [30,
Proposition 5.5]. �	
Remark 3.13 Note that the coarse space of Kc

n,v exists by the Keel-Mori theorem and
is projective by the work of Kovács-Patakfalvi [30]. �	

4 Local and global structure of twisted stable pairs

The goal of this section is to study the twisted stable pairs of Definition 3.7. The
section is divided into two subsection. In the first one we focus on the properties of an
AH family, and we give conditions that are equivalent to having a morphism to an AH
family. In the second section we study the local structure of a twisted stable pair in a
neighbourhood of the divisor D. By a careful analysis of the case that X is a surface,
we show that the the only contribution to the different on a twisted stable pair comes
from the double locus of D (see Proposition 4.7 and Corollary 4.8).

4.1 Global structure of AH families

In this subsection, we study the following questions. Given an AH family X → B
over a scheme B with coarse space X and a morphism f : Y → X from a DM stack
Y , then:

(1) when can we lift f to a map Y → X ;
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(2) when is such a lift to be an isomorphism?

Among other things, this will allow us to relate our definition of a family of twisted
stable pairs over the spectrum of an Artin ring with the Q-Gorenstein deformations of
Hacking in [14] (see Corollary 4.5).

Proposition 4.1 Suppose (X → B, F) is a Kollár family of Q-line bundles with asso-
ciated AH family (X → B,L). Let p : X → X be the coarse space map and consider
a morphism f : Y → X from a scheme Y . Then the groupoid HomX (Y ,X ) of maps
lifting f is equivalent to the following groupoid:

• objects are given by pairs (G, φ) where G is a line bundle on Y , and φ :
⊕

n∈Z
f ∗(F [n]) → ⊕

n∈Z
G⊗n is a homomorphism of graded OY -algebras, and

• morphisms between (G1, φ1) → (G2, φ2) are given by an isomorphism of line
bundles ψ : G1 → G2 such that φ2 = (

⊕

n ψ⊗n) ◦ φ1.

Proof Recall that, as a stackover X ,wehaveX = [P(F)/Gm] = [SpecOX
(
⊕

n∈Z
F [n])

/Gm]. Therefore for a scheme Y over X , the groupoid X (Y ) is equivalent to the
groupoid of Gm-torsors E → Y , with a Gm-equivariant morphism E → P(F)

over X . This is equivalent to a Gm-equivariant morphism E → P(F) ×X Y ∼=
SpecOY

(
⊕

n∈Z
f ∗(F [n])). There exists a unique line bundle G on Y such that the

Gm-torsor E → Y may be written as SpecOY
(
⊕

n∈Z
G⊗n)). To conclude the proof it

suffices to notice that Gm-equivariant morphisms

SpecOY
(
⊕

n∈Z

G⊗n)) → SpecOY
(
⊕

n∈Z

f ∗(F [n]))

correspond to gradedOY -algebra homomorphisms
⊕

n∈Z
f ∗(F [n]) → ⊕

n∈Z
G⊗n . �	

Corollary 4.2 Let (p : X → B, F) a Kollár family of Q-line bundles with associated
AH family (X → B,L). Consider a DM stack Y with a morphism f : Y → X.
Assume that there is a line bundle G onY and an isomorphism of gradedOX -algebras⊕

n∈Z
f∗(G⊗n) ∼= ⊕

n∈Z
F [n]. Then there is a morphism g : Y → X over X such

that the following diagram is cartesian.

P(G) P(F)

Y X

Proof First observe that

HomOY

(

f ∗
⊕

n
F [n],

⊕

n
G⊗n

)

∼= HomOX

(
⊕

n
F [n], f∗

⊕

n
G⊗n

)

∼= HomOX

(
⊕

n
F [n],

⊕

n
f∗(G⊗n )

)

.

The graded morphism in the hypothesis gives an equivariant morphism ofGm-torsors,

P(G) → SpecOY ( f ∗(
⊕

n

F [n])) ∼= P(F) ×X Y
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which is an isomorphism since every equivariant morphism between torsors is an
isomorphism. The resulting Gm-equivariant map P(G) → P(F) induces Y ∼=
[P(G)/Gm] → [P(F)/Gm] ∼= X and the diagram is cartesian by [38, Exercise
10.F]. �	

Note that in Corollary 4.2, if we assume that Y → X is the coarse space, we
cannot conclude that the morphismY → X is an isomorphism. For example, consider
Y = Bµ2 with G = OY and X = X = Spec(k) with L = OX . The problem is that Y
might have more stabilizers than X . The following lemma shows that this is the only
reason for the failure of Y → X to be an isomorphism.

Lemma 4.3 In the situation of Corollary 4.2, supposeY is separatedwith coarse space
X. Then the morphism g : Y → X is the relative coarse space of the map Y → BGm

induced by G. In particular, ifY → BGm is representable, that is, if G is uniformizing,
then g : Y → X is an isomorphism.

Remark 4.4 We point the reader to [6, Theorem 3.1] for the definition and existence
of relative coarse spaces.

Proof Let Y → Y ′ → BGm the relative coarse space of the map Y → BGm . Then
Y ′ → BGm is representable and equips Y ′ with a line bundle G′ that pulls back to G.
Next, we claim that f factors through f ′ : Y ′ → X . Indeed, let b : Y ′ → X ′ be the
coarse space of Y ′. By universal property of the coarse space, we have a commutative
diagram

Y a

f

Y ′

b

X c X ′

.

The maps a, b and f induce bijections on geometric points by definition of coarse
moduli space, therefore c induces a bijection on geometric points. Moreover, since we
are in characteristic zero, all stacks involved are tame, therefore by [6, Theorem 3.1],
we have a∗OY ∼= OY ′ , f∗OY ∼= OX and b∗OY ′ ∼= OX ′ . Therefore, by functoriality
of pushforward, c∗OX ∼= OX ′ and we conclude that c is an isomrphism and that
f ′ = c−1 ◦ b.
Furthermore, by commutativity of the above diagram, we have that f ′∗(G′)⊗m =

f∗(G)⊗m = F [m]. ThuswemayapplyCorollary 4.2 to obtain amorphism g′ : Y ′ → X
and it suffices to prove g′ is an isomorphism. In particular, without loss of generality
wemay assume thatY → BGm is representable andwewish to prove that g : Y → X
is an isomorphism.

To prove this claim, note first that the question is local over X , so from [38, Theorem
11.3.1] we can assume that X = V /G andY = [V /G] for a finite groupG. Moreover,
we can assume that V = Spec(A) is affine. Then G corresponds to a locally free A-
module M with a G-action and the coarse space of G ∼= [Spec(⊕n∈Z

M⊗n)/G] is
given by
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SpecOX

(
⊕

n∈Z

((M⊗n)G)

)

= SpecOX

(
⊕

n∈Z

f∗(G⊗n)

)

∼= SpecOX

(
⊕

n∈Z

F [n]
)

= P(F).

Now, by [2, Proposition 2.3.10] the representability of Y → BGm implies that
for every p ∈ Y , the action of AutY (p) on Gp is faithful. Then P(G) =
SpecOY (

⊕

n∈Z
G⊗n) is already an algebraic space so it is isomorphic to its coarse

space: P(F) ∼= P(G). Thus, since P(F) → X is a smooth atlas and the diagram of
Lemma 4.2 is cartesian, g is an isomorphism. �	

Lemma 4.3 allows us to compare our definition of twisted stable family with Q-
Gorenstein deformations in the case where the divisor D is Cartier. Recall that to any
Q-Gorenstein variety, one may associate a canonical covering stack (see [14, Sect.
3.1]) which controls Q-Gorenstein deformations.

Corollary 4.5 Let (X , D) be an slc pair where D is a Cartier divisor. Then KX is
Q-Cartier and the canonical covering stack X ′ → X is isomorphic to the AH stack
X for the Q-line bundle L = KX + D.

Proof Consider the coarse space map p : X ′ → X and let G := KX ′ + p∗D. Then:

(1) G is a line bundle with p∗(G⊗n) = OX (KX + D)[n], and
(2) for every point q ∈ X ′, the action of AutX ′(q) on Gq is faithful.

Point (1) follows since both sides of the equality are reflexive and they agree on the big
open set where p is an isomorphism. Point (2) holds because the action of AutX ′(q)

on (KX ′)q is faithful by definition, the action on (p∗D)q is trivial, and the tensor
product of a trivial and a faithful representation is a faithful representation. Thus we
may apply Lemma 4.3 to conclude that X ∼= X ′. �	

4.2 Local structure of twisted stable pairs

The goal of this subsection is to study the local structure of X along the divisor D.
First, we prove Theorem 1.3 (see Proposition 4.7 and Corollary 4.8) which says that
on a twisted stable pair the singularities of X do not contribute to the different. Then
we explore the relationship between the stack structure on D and the different on the
coarse space of the pair (Lemmas 4.12 and 4.11).

We start with the local notion of a twisted pair:

Definition 4.6 A twisted pair of relative dimension n over B is a pair ( f : X → B, φ :
ω f → L) where X is an open substack of an X ′ with ( f ′ : X ′ → B, φ′ : ω f ′ → L)

a twisted stable pair of relative dimension n, f = f ′∣∣X and φ pulled back from φ′.

Proposition 4.7 Let ( f : X → B, φ : ω f → L) be a twisted pair of relative dimen-
sion 2. Then L∣

∣Dφ

∼= ωDφ/B.

Proof We drop the subscript φ in Dφ . The proof follows closely [25, p. 152].
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Let ι : D → X denote the natural closed embedding. From Grothendieck dual-
ity, since f is Cohen-Macauley and D → B is Gorenstein, we have ι∗ωD/B

∼=
Ext1(ι∗OD, ω f ). Consider the exact sequence

0 → OX (−D) → OX → ι∗OD → 0.

Taking HomX (−, ω f ) induces a morphism

Hom(OX , ω f ) → Hom(OX (−D), ω f ) → Ext1(ι∗OD, ω f ) → Ext1(OX , ω f ) = 0

where the last term is 0 since OX is locally free. But from Lemma 3.4, the ideal
OX (−D) is defined as ω f ⊗ L−1, therefore

Hom(OX (−D), ω f ) ∼= Hom(ω f ⊗ L−1, ω f ) ∼= Hom(ω f , ω f ) ⊗ L.

Now fromLemma 2.3, takingU the f -Gorenstein locus, we haveHom(ω f , ω f ) ∼=
OX . Therefore the sequence above gives a surjective morphism L → ι∗(ωD/B). This
induces a surjective morphism ι∗(L) → ωD/B , but a surjective morphism of line
bundles is an isomorphism. �	
Corollary 4.8 Let (X → Spec(k), ωX → L) be a twisted stable pair of any dimension.
ThenL∣

∣D ∼= ωD. Moreover, whenD is S2, it is an slc canonically polarized orbispace.

Proof By [29, Lemma 3.7.5], the canonical sheaf ωZ is S2 on any excellent scheme Z
admitting a dualizing complex. Furthermore, by [8, Proposition 1.2.16], the property
of being S2 can be checked after finite étale base change. Therefore ωD is an S2 sheaf
onD. Now, wemay apply Proposition 4.7 on the codimension 2 points ofX to see that
ωD agrees with L∣

∣D in codimension 1 on D. Since both sheaves are S2, we conclude
that L∣

∣D ∼= ωD via the canonical residue map of Proposition 4.7.
If D is S2, since it is nodal in codimension 1, it is demi-normal. In particular by

inversion of adjunction [39, Lemma 2.11] D is slc. Finally, ωD is a polarizing line
bundle since it is the pullback of one by a closed embedding. �	
Remark 4.9 Usually when one considers questions about adjunction for stable pairs,
one works with the normalization of the divisor n : Dn → D. By Corollary 4.8, we
have that (ι ◦ n)∗L = n∗ωD. Since D is nodal in codimension 1, this latter sheaf is
isomorphic to ωDn (G) where G is the preimage of the double locus of D. Therefore,
we may interpret the corollary as stating that the only contribution to the different on
Dn comes from the double locus of D.

Note that in general, we have an adjunction morphismMn,v → OrbL given by

(X → B, φ : ωX → L) �→ (Dφ,L∣
∣Dφ

).

Indeed Dφ → B is flat with reduced fibers (Corollary 3.6) and L∣
∣D is a polarizing

line bundle. Consider the locus U ⊆ Mn,v where Dφ → Mn,v is S2 which is open
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by [13, Théorème 12.1.6] and the fact that the morphism is closed. Over U , Corollary
4.8 gives us that (Dφ → B,L∣

∣Dφ
) is a family of canonically polarized slc orbispaces

of dimension (n − 1) and so over this locus, the morphism above lands in the open
substack of Orbω of those orbispaces with slc singularities.

The following corollary follows from Proposition 4.7 and [25, Proposition 2.35,
(3)]:

Corollary 4.10 Let (X ,D) be a twisted surface pair over Spec(k) and p ∈ D such
that D is smooth at p. Then X is smooth at p.

Proposition 4.7 tells us that in replacing a surface pair (X , D) with its associated
AH pair (X ,D), the different on D gets replaced by the stack structure onD. Our goal
now is to make explicit the relation between the stack structure onD and the different
on D.

Lemma 4.11 Consider (X , D) an lc surface and assume that p ∈ D is a nodal point
of D. Then KX +D is Cartier at p and X agrees with its AH stack in a neighbourhood
of p.

Proof From case 2 of the proof of [25, Corollary 2.32], it follows that the singularity of
X at p is a cyclic quotient singularity. In particular, denoting the completed local ring
ÔX ,p by R, there is a morphism π : Spec(k[[x, y]]) → Spec(R) which is the quotient
by a cyclic group G. The action of G is étale in codimension one so π∗KSpec(R) =
KSpec(k[[x,y]]) and the pair (Spec(k[[x, y]]), π∗D) is lc from [25, Corollary 2.43]. But
then p∗D is nodal, and the group G preserves the two branches, so up to an analytic
change of coordinates wemay suppose that D = (xy) and x, y are eigenvectors forG.
Furthermore, the log canonical divisor is Cartier generated by dx∧dy

xy . Then the action
of G on the log canonical divisor is trivial so the log canoical divisor descends to a
Cartier divisor on Spec(R). �	

We are left with understanding D along the points where D is smooth:

Lemma 4.12 Let (X , D) be an lc surface and q ∈ D a closed point at which D is
smooth. Assume that q appears in the different of (X , D) with multiplicity m. Let
(X ,D) be the twisted surface pair associated to (X , D) and let p ∈ D be the point
lying over q with stabilizer group G := AutX (p). Then we have the following.

(1) If p is a smooth point of D, then m = 1 − 1
|G| ;

(2) If p is a node, then m = 1, G = µ2 and G acts by swapping the two branches of
D.

Remark 4.13 For case (1), m determines the stabilizer group since the stack is cyclo-
tomic.

Proof Since the question is local, we may pass to an open subset and assume that X
has no stabilizers outside of p and D has no different outside of q.

For case (1), consider the following commutative diagram.
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D α

πD

X
π

D a X

(4)

Letting n be the index of KX + D, we have the following equalities:

• π∗(n(KX + D)) = n(KX + D) since π is an isomorphism in codimension one,
• a∗(n(KX + D)) = n(KD + mq) by assumption on the different, and
• α∗(n(KX + D)) = nKD by Proposition 4.7.

Putting this together along with commutativity of the above diagram, we obtain

π∗
D(n(KD + mq)) = π∗

Da
∗(n(KX + D)) = α∗π∗(n(KX + D)) = nKD,

or simply π∗
D(KD + mq) = KD. Up to completing around p, we may assume that

coarse map D → D is given by Spec(k[[x]]) → Spec(k[[xr ]]) where r = |G|. In this
case, one readily sees that π∗

D(q) = rp and π∗
DKD = KD − (r − 1)p. Putting this

together with the previous equality, we have then KD = KD − (r −1)p+rmp which
gives m = r−1

r .
For point (2), we may again replace (X ,D)with an étale neighboourhood of p and

assume the following:

(1) there is an lc surface pair (X ′, D′) and a distinguished point p′ ∈ D′;
(2) there is an action of G on X ′ preserving D′ and fixing only q, and
(3) X = X ′/G, D = D′/G and the quotient map sends p′ to p.

Since D is smooth, we know thatG swaps the two branches of D′. Let H be the normal
subgroup of G which preserves the branches of D′. Then the pair (X ′/H , D′/H) is
lc, the map π : X ′ → X ′/H is étale away from q, and D′/H is a nodal curve. But
then from Lemma 4.11 the log canonical divisor L of (X ′/H , D′/H) is Cartier. Since
π is étale in codimension one, KX ′ + D′ ∼= π∗L . In particular, H acts trivially on
(KX ′ + D′)p. Then H = {1} since the action of G on (KX ′ + D′)p is faithful (recall
that X → BGm is representable). Therefore, any non-zero element of G swaps the
branches of D′ and G ∼= µ2.

Finally, consider a diagram as in Diagram 4 above but with the top left corner
replaced by the normalization Dn of D. By Lemma 4.16 below, πD : Dn → D is
an isomorphism. Moreover, by Proposition 4.7 we have (KX + D)|D = KD so that
α∗(KX + D) = n∗KD = KDn + p′ where p′ is the point of Dn lying over the node
p of D by computation of the canonical of a nodal curve. Since πD : Dn → D is an
isomorphism, we conclude that q has coefficient 1 in the different. �	
Remark 4.14 For other relations between the singularities of X along D and the dif-
ferent on D, one can consult [25, Theorem 3.36]. Indeed Lemma 4.12 is essentially a
stacky rephrasing of parts of loc. cit..

Example 4.15 Consider (A2
u,v, D

′ := V (uv)), with the action of Z/2Z that sends
(u, v) �→ (−u,−v). Then D′ is invariant and the quotient is the surface pair (X :=
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Spec(k[x, y, z]/xy − z2), D := V (z)). The divisor D is still a nodal curve and the
pair is lc since it is the quotient of an lc pair (see [25, Corollary 2.43]). Consider now
the action of G := µ2 on X , which sends (x, y, z) �→ (y, x,−z). The action is free
in codimension one and preserves D so (X/G, D/G) is again lc.

The log-canonical divisor on X/G is not Cartier. Indeed, it suffices to show that
the generator of G acts nontrivially on a section of the log canonical divisor on X . By
adjunction, ωX = (ωA3(X))

∣
∣
X so a section of ωX is given by (

dx∧dy∧dz
xy−z2

)
∣
∣
X which is

invariant under G. It follows that G acts on a generator for ωX (D) by

dx ∧ dy ∧ dz

xyz − z3
�→ −dx ∧ dy ∧ dz

zxy − z3

so the log canonical divisor is not Cartier on the quotient. Then the twisted pair
associated to (X/G, D/G) is ([X/G], [D/G]), the divisor D/G is smooth, but [D/G]
is not. By Lemma 4.12, we may conclude that the fixed point p has different 1 on
D/G.

One can argue indirectly that p must have different 1. Indeed the different is an
effective divisor with coefficient at most 1. If it was not 1, then (D/G,DiffD/G(0))
would be klt and (X/G, D/G) would be plt by inversion of adjunction. Then from
[25, Corollary 2.43], the pairs (X , D) and (A2

u,v, V (uv)) would be plt but this is not
the case.

Finally we study how the normalization map Dn → D behaves around the node
point p ∈ D in the situation of point (2) of Lemma 4.12.

Lemma 4.16 Suppose that (X ,D) is an lc twisted surface pair and p ∈ D is a node
lying over a smooth point q of D. LetDn be the normalization ofD. Then the compo-
sition Dn → D → D is an isomorphism in a neighbourhood of each q.

Proof It suffices to check the required map is an isomorphism after taking étale
charts so without loss of generality, we may suppose that D is isomorphic to
[Spec(k[x, y]/xy)/µ2] with the action that sends x �→ y and y �→ x . Since nor-
malization commutes with étale base change, we have that the normalization Dn is
the quotient

[Spec(k[x]) 	 Spec(k[y])/µ2]

with the action (x, y) �→ (y, x). ThenDn is just isomorphic to the scheme Spec(k[z])
by the map x, y �→ z, and we can write the morphisms Dn → D → D as

Spec(k[x]) ∼= [Spec(k[x]) 	 Spec(k[y])/µ2] →
→ [Spec(k[x, y]/xy)/µ2] → Spec(k[x + y]) ∼= Spec(k[t]).

The composition is themorphism inducedby t → x+y → x which is an isomorphism.
�	
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5 Gluingmorphisms for families of twisted stable surfaces

In this section we produce gluing morphisms which describe the boundary of the
moduli of twisted stable surfaces in terms of moduli of twisted stable surface pairs
(see Theorem 1.4). More precisely, in Sect. 5.1, we prove that one can functorially
glue a family of twisted stable surface pairs over an arbitrary base to obtain a family
of twisted stable surfaces. In Sect. 5.2, we define an algebraic stack G2,b of gluing
data. Finally, in Sect. 5.3 we show that the image of G2,v → K2,v stratifies K2,v into
finitely many boundary components.

5.1 Gluingmorphisms for twisted stable surfaces

We begin this subsection by recalling some of the results in [25, Chapter 5].
Consider an slc stable surface X ′ and let X be its normalization with conductor

D ⊆ X . Since X ′ is nodal in codimension 1, the normalization X → X ′ induces a
rational andgenericallyfixedpoint free involution D ��� D. By [25, Proposition 5.12],
this gives a generically fixed point free involution on the normalization τ : Dn → Dn

which preserves the different. This can be summarized by the diagram

Dn X

Dn/τ X ′

which expresses X ′ as the geometric quotient of X by the finite equivalence relation
induced by τ . It follows from [25, Theorem 5.13] that the converse also holds. Namely,
that one can recover X ′ from the data of a stable lc pair (X , D) and a generically
fixed point free involution Dn → Dn which preserves the different. The goal of this
subsection is to understand [25, Theorem 5.13] in terms of twisted stable surfaces,
which will give us a generalization to families over arbitrary bases.

We begin by showing that the fixed point free involution τ and the diagram above
lift to the associated AH stacks. Then we need to understand how to reconstruct the
stack structure of the AH stack X ′ from the data of the AH stack X and the involution
τ . This culminates in the construction of Diagram 5. Finally, in the main result of this
section, Theorem 5.17, we show that each of the steps in the construction of Diagram
5 can be carried out functorially in families of gluing data.

Lemma 5.1 Let (X ,D) be a normal AH twisted stable surface pair, and letDn be the
normalization of D. Denote the coarse space of Dn by Dn and let τ : Dn → Dn be a
different preserving involution on Dn. Then there is a unique involution σ : Dn → Dn

lifting τ :
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Dn σ

coarse space

Dn

coarse space

Dn
τ

Dn

.

Proof It follows from Lemmas 4.16 and 4.12 that the coarse space morphism Dn →
Dn is an isomorphism away from the points where the different has a coefficient
0 < c < 1. These correspond to smooth points of D with nontrivial stabilizer and it
suffices check that we can extend the morphism along such points.

From Lemma 4.12, two points with stabilizers of different orders cannot be
swapped. Locally around such points on the coarse space, we have an involution
τ of Y := Spec(k[[s]]) that we wish to extend uniquely to an involution of themth root
stack Y := [Spec(k[[t]])/(t �→ ζmt)] for some m. Here ζm is a primitive mth root of
unity and tm = s. The required assertion follows from the universal property of root
stacks (see [38, 10.3]). Such a root stack is the universal objects for triples (Y , L, v)

where Y has a morphism f : Y → Spec(k[[s]]), L is a line bundle on Y , and v is a sec-
tion of L . Moreover, we require that there is an isomorphism L⊗m → f ∗OSpec(k[[s]])
sending v⊗m �→ s. �	
Notation 5.2 Let ν : Dn → D be the normalization morphism. We will denote the
nodes of D by N and set 	 := ν−1(N ). Then 	 is a scheme from Lemma 4.11 and
Lemma 4.16.

Lemma 5.3 Consider a normal twisted stable surface pair (X ,D). LetDn be the nor-
malization ofD and let τ : Dn → Dn be an involution onDn which is generically fixed
point free and preserves	. Let X and D be the coarse spaces ofX andD respectively.
Consider the stable surface X ′ obtained from X, D and τ using [25, Theorem 5.13].
Let X ′ be the AH stack associated to (X ′, ωX ′). Then X is the normalization of X ′
and there is a map h : [Dn/τ ] → X ′ which makes the following diagram commute.3

Dn X

[Dn/τ ] h X ′

Proof Recall that X ′ is a scheme away from a finite set of points. Therefore the
normalization ν : Y → X ′ has X as coarse space, and if we denote by p : Y → X
the coarse space map, p∗(ν∗ω⊗n

X ′ ) ∼= (ωX (D))[n] for every n. Indeed both sides are
reflexive and agree on a big open subset where p is an isomorphism by [25, 5.7.1]. But
ωX ′ is a uniformizing line bundle forX ′ (see Remark 2.12), and ν is representable, so
the morphism Y → BGm induced by ν∗(ωX ′) is also representable. It follows from
Corollary 4.2 and Lemma 4.3 that Y ∼= X . In particular we have a map X → X ′
which induces f : Dn → X ′. There is an open dense subset U of Dn where Dn is
a scheme and the two maps f

∣
∣
U , ( f ◦ τ)

∣
∣
U : U → X ′ agree. By [10, Lemma 7.2],

3 For properties of group quotients of DM stack, see [40].
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the arrows f and f ◦ τ agree and so they induce a map h : [Dn/τ ] → Y making the
diagram commute. �	

The canonical line bundle ωX ′ induces a map X ′ → BGm and we obtain a map
[Dn/τ ] → BGm given by composition with the map h from Lemma 5.3. We wish to
understand this map [Dn/τ ] → BGm in terms of X , Dn and τ . First, observe that τ

induces a map ψ : [Dn/τ ] → Bµ2. We can identify Pic(Bµ2) with the characters of
µ2 and we denote by χBµ2 the line bundle corresponding to the sign representation.
Given a morphism Y → Bµ2, we will denote by χY the pull back of χBµ2 to Y .

Now, the involution τ naturally acts on ωDn (	) since τ preserves the different 	.
Thus ωDn (	) descends to a line bundle G on [Dn/τ ].

Proposition 5.4 In the situation above, the line bundle corresponding to [Dn/τ ] →
BGm, namely h∗ωX ′ , is isomorphic G ⊗ χ[Dn/τ ].

Proof Let π : Dn → [Dn/τ ] be the quotient map, let H := h∗ωX ′ , and let σ :
µ2 × Dn → Dn be the action induced by τ . The key ingredient is [25, Proposition
5.8].

From the diagram of Lemma 5.3 and Proposition 4.7, we have π∗H ∼= ωDn (	).
The line bundle H is uniquely determined by the isomorphism α : σ ∗(ωDn (	)) →
p∗
2(ωDn (	)) (see [40, Example 4.3]). To determine α, it suffices to restrict H to a

dense open subset of Dn : we can assume that X and [Dn/τ ] are schemes. Now from
[25, Proposition 5.8], the sections ofH and those of G⊗χBµ2 agree soH ∼= G⊗χBµ2 .�	

Notation 5.5 Wewill denote byC the relative coarse space of themap [Dn/τ ] → BGm

induced by G ⊗ χ[Dn/τ ].

Remark 5.6 Note that themaph : [Dn/τ ] → X ′ factors through auniquemapC → X ′
by the universal property of relative coarse spaces. Indeed, the map [Dn/τ ] → BGm

is by definition the composition of h with the representable morphism X ′ → BGm

induced by ωX ′ .

Example 5.7 Let C be a smooth curve in P2 of high degree and let τ : C → C be
a nontrivial involution. One could take for example {X5

0 + X5
1 + X5

2 = 0}, with the
restriction of the involution of P2 which sends a point [a, b, c] �→ [b, a, c]. Then the
pair (P2,C) is stable, and the involution τ acts onC with finitelymany fixed points. By
Kollár’s gluing construction the triple (P2,C, τ ) gives an slc pair X with normalization
P2 and double locusC . This is an example where [C/τ ] is not isomorphic to C. Indeed,
the quotient [C/τ ] is not a scheme at the fixed points of the involution, however X is
Gorenstein since it has pinch-points singularities at the fixed points of τ , so it is equal
to its Abramovich-Hassett stack.
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Now, since τ sends	 to itself, we can factor	 → C as	 → [	/τ ] → [Dn/τ ] →
C and we have the following commutative diagram.

	 N

Dn ν D X

[	/τ ]
f

C

Lemma 5.8 The map f : [	/τ ] → C is a closed embedding. In particular, the com-
position [	/τ ] → C → BGm is representable.

Proof Since 	 → Dn is a closed embedding, then [	/τ ] → [Dn/τ ] is also a closed
embedding. Therefore the claim follows if we can prove that ψ : [Dn/τ ] → C is an
isomorphism along [	/τ ]. Let π : Dn → [Dn/τ ] be the quotient map.

If q ∈ 	 is such that τ(q) �= q, then π(q) has no stabilizer so ψ is necessarily
an isomorphism in a neighboourhood of π(q). Assume then that τ(q) = q. Formally
locally around q, we can replace Dn with Spec(k[[z]]) and assume the involution τ

sends z �→ −z where z is a uniformizer for q. Since dz/z is a generator of ωDn (	),
τ acts trivially on the fiber of ωDn (	) at q. Therefore, τ acts faithfully on the fiber of
G ⊗ χ[Dn/τ ] at q and so by [2, Proposition 2.3.10], ψ is an isomorphism at π(q). �	

We now define a DM stack S with two representable morphisms g1 : N → S and
g2 : [	/τ ] → S, such that the two morphisms 	 → [	/τ ] → S and 	 → N → S
are isomorphic. We will denote with roman letters the coarse space of a DM stack, as
in the conventions. We define S to be the pushout in algebraic spaces of the diagram
below:

	 N

	/τ S.

Thus S is a disjoint union of points. We determine a stack S with coarse space S by
requiring that for every point q ∈ S, the group Autq(S) is µ2 if there is a µ2 stabilizer
on a point of g−1

1 (q) ∪ g−1
2 (q) and trivial otherwise. Recall these are the only options

for the stabilizers of [	/τ ] andN . Now by Lemma 5.9, themorphisms gi are uniquely
determined.

Lemma 5.9 Let a, b be positive integers with a even. Then, up to isomorphism, there
are unique representable morphisms Spec(k) → Bµb and Bµ2 → Bµa.
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Proof Since k is algebraically closed, there is a unique µb-torsor over Spec(k), so
there is a unique morphism Spec(k) → Bµb. For the claim about Bµ2, consider
the presentation of Bµ2 given by µ2 ⇒ Spec(k), where one arrow σ is the action
of µ2 on the point and the other one π2 is the structure map. Note however, since
μ2 acts trivially on Spec(k) these are both just the structure map. Then a morphism
Bµ2 → Bµa is equivalent to the data of:

(1) A morphism f : Spec(k) → Bµa , and
(2) An isomorphismψ in Bµa(µ2)

∼= Bµa(Spec(k))×Bµa(Spec(k)) between f ◦σ

and f ◦ π2.

Moreover,ψ must satisfy the cocycle condition.More precisely, letm : µ2×µ2 → µ2
be the multiplication and p2,3 the projection onto the second factor µ2 × µ2 → µ2.
Then we require that p∗

2,3ψ ◦ (Idµ2 ×σ)∗ψ = m∗ψ .
Now, there is a unique morphism Spec(k) → Bµa from the previous point. An

isomorphism ψ as above is the data of two automorphisms (α, β) in Bµa(Spec(k)).
Wewill denote by {±1} the two points ofµ2 and by (1, 1), (1,−1), (−1, 1), (−1,−1)
the four points of µ2 ×µ2. To fix the notation, α will be the automorphism over 1 and
β the one over −1. Then the arrows p2,3, Idµ2 ×σ and m behave as follows:

• p2,3(1, 1) = p2,3(−1, 1) = 1 and p2,3(1,−1) = p2,3(−1,−1) = −1;
• Idµ2 ×σ(1, 1) = Idµ2 ×σ(1,−1) = 1and Idµ2 ×σ(−1, 1) = Idµ2 ×σ(−1,−1) =

−1;
• m(1, 1) = m(−1,−1) = 1, whereas m(1,−1) = m(−1, 1) = −1.

In particular, the cocycle condition is the following equality of automorphisms over
μ2 × μ2:

(α, β, α, β) ◦ (α, α, β, β) = (α, β, β, α).

Therefore we must have α ◦ β = β which implies α = Id and that β ◦ β = Id. Thus
the only ψ which satisfy the cocycle condition are (Id, Id) and (Id, β) where β is the
unique element of µa with β2 = Id and β �= Id. This means that there are exactly two
morphisms Bµ2 → Bµa . The first one is the composition Bµ2 → Spec(k) → Bµa
and the second one is induced by the morphism µ2 ↪→ µa as in [38, Exercise 10.F].
Only the second is representable. �	
Proposition 5.10 With notation as above, let X ′ be the AH stack associated to (X ′ →
Spec(k), ωX ′). Then there is a unique representable morphism S → X ′ which makes
the diagram below commutative.
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	 N

Dn D X

[	/τ ]
f

S

C X ′

Remark 5.11 We observe that in general S is not the push-out of [	/τ ] ← 	 → N .
Indeed, consider for instance the case where we have 	 = Spec(k) 	 Spec(k) and
N = [	/τ ] = Spec(k). In this case S = Spec(k), however it is not a push-out in
algebraic stacks. For example, the groupoid of maps S → Bμ2 has a unique object
up to isomorphism, but one can compute that the 2-fiber product

Hom(Spec(k), Bμ2) ×Hom(Spec(k)	Spec(k),Bμ2) Hom(Spec(k), Bμ2)

has two isomorphism classes of objects. This is one of the major difficulties in extend-
ing the construction of this section to higher dimensions.

Proof It suffices to consider the following subdiagram:

N

[	/τ ] S X ′.

Note that N → X ′ is representable because X → X ′ is the normalization (Lemma
5.3) and N → X is a closed embedding. Moreover, [	/τ ] → X ′ is representable
since f is a closed embedding (Lemma 5.8) and C → X ′ is representable (Remark
5.6).

Up to considering one connected component of S at a time, we can assume that
S ∼= Spec(k). Now, recall that the diagram on coarse spaces is a pushout and the
diagram of solid arrows commutes. Then if we replace all the stacks above with their
coarse spaces, we have an arrow q : S = Spec(k) → X ′. In particular, if we denote
µa := AutX ′(q), we have a closed embedding Bµa → X ′ (this follows from [38,
Theorem 11.3.1]). The arrows [	/τ ] → X ′ andN → X ′ factor through Bµa → X ′,
so in the diagram above we can replace X ′ with Bµa . Now the claim follows from
the description of S and Lemma 5.9. �	

We recall a theorem due to David Rydh on the existence of pinchings in algebraic
stacks:
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Theorem 5.12 [41, Theorem A.4] Consider a diagram of solid arrows between alge-
braic stacks over B as below, with i a closed embedding and f a finite morphism.

X i

f

Y
f ′

X ′
i ′

Y ′

Then there are arrows i ′ and f ′ over S, such that the resulting diagram is a pushout
in algebraic stacks. Moreover, i ′ is a closed embedding and f ′ is integral and an
isomorphism away from X . If we take the topological spaces of the algebraic stacks
above, the corresponding square is a pushout in topological spaces. Finally, if X , Y
and X ′ are proper over B, then also Y ′ is proper over B (recall that for us all the
algebraic stacks are of finite type).

Remark 5.13 The construction of Y ′ can be performed smooth locally. In particular, if
we take Spec(A′) → Y ′ a smooth morphism, and we pullback i ′, f ′, i and f through
it, the corresponding diagram will be a pushout in schemes.

The following Lemma is the last technical result we need before proving Theorem
5.17.

Lemma 5.14 The following diagram is a pushout in algebraic stacks:

	 N

Dn D

Proof It suffices to check that it is a pushout étale locally on D so we may suppose
that D = Spec(R) is affine. In this case the diagram is a pushout by the definition of
the conductor (see for example [42]). �	
Nowwe aim at constructingX ′ from the data ofD, τ andX . The situation is sumarized
in the following diagram, where the dashed arrows are pushouts, the wavy ones come
from the universal property of a pushout, and all the arrows are representable. From
the definition of S, the morphism [	/τ ] → S is finite and the map [	/τ ] → C is
a closed embedding from Lemma 5.8. Therefore from [41, Theorem A.4] (restated
above as Theorem 5.12 for convenience) the two maps [	/τ ] → S and [	/τ ] → C
have a pushout C → Q andS → Q. Thus we have amorphism α : Q → X ′. To check
that α is representable, it suffices to check that it is representable after passing to the
pullback to a smooth cover of X ′ by a scheme. Since pushouts commute with smooth
base change (see [41, TheoremA.4, (iv)]), and the pushout of a closed embedding by a
finite morphism between algebraic spaces is an algebraic space [25, Theorem 9.30]4,
it suffices that C → X ′ and S → X ′ are representable, which is true by construction.

4 Such pushouts are often called pinchings or Ferrand pushouts.
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Then by Lemma 5.14, we have a morphismD → Qwhich is representable by [41,
Theorem A.4]. One can check that it is also quasifinite, and D is proper, so D → Q
is finite. Finally, again from [41, Theorem A.4], the two maps D → X and D → Q
admit a pushout Z . As before, we have a representable morphism � : Z → X ′.

	 N

Dn D X

[	/τ ]
f

S X ′

C Q Z.

�

(5)

Proposition 5.15 The morphism � is an isomorphism. In particular, Z is Gorenstein.

Proof From the univesal property of the pushouts and coarse spaces, one can check
that taking the coarse space commutes with pushouts. In particular, by [25, Chapter 5],
the morphism � is an isomorphism on coarse spaces. Furthermore, Z is seminormal
since it is the pushout of seminormal stacks.

Observe that � is an isomorphism away from a finite set of points {q1, ..., qr }. Let
p := qi and letm := |AutX ′(p)| be the index of KX ′ at p. If n := |AutZ (p)|, the line
bundle �∗(ωX ′)⊗n descends to a line bundle in a neighborhood of p ∈ X ′ and agrees
with ω

[n]
X ′ in codimension one so the index m divides n. On the other hand, by repre-

sentability, n divides m. Thus m = n and the morphism �p : AutZ (p) → AutX ′(p)
is bijective. We conclude that � is a proper morphism of seminormal DM stacks such
that Z(Spec(k)) → X ′(Spec(k)) is an equivalence so � is an isomorphism. �	
Example 5.16 Consider (X , D) = (A2

x,y, V (xy)), so D is a nodal curve and consider
the involution τ : D → D which sends (x, y) �→ (−x,−y). Call the resulting slc
surface X ′.

Observe that (ωX (D))
∣
∣
D = ωD is generated by the section dx∧dy

xy which is fixed
by τ . Thus the action on ωD ⊗ χ is non-trivial and C ∼= [Dn/τ ]. Then N = p is
a node, 	 = q1 	 q2 lying above the node which are both fixed points of τ , and
S = [p/µ2] = Bµ2. It follows that Q = [D/τ ] and the AH stack X ′ of X ′ is the
pushout in stacks of D ↪→ A2 and D → [D/τ ]. In particular it has a µ2 stabilizer at
the origin. Therefore ωX ′ has index 2 at the origin.

Using a computer algebra system, one can compute equations for X ′ directly from
the presentation above. They are given by the following ideal in k[a, b, c, d, e]:

(

cd − ae, bd − ce, ab − c2, de − c3, bc2 − e2, ac2 − d2
)

.

Here X ′ is Spec(A) for A the subring of k[x, y] defined by the map

(a, b, c, d, e) �→ (

x2, y2, xy, x2y, xy2
)

.
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We are now ready to prove the main theorem of this subsection, which states that
the construction of Z above can be carried out in families over an arbitrary base.

Theorem 5.17 Consider a twisted stable family of normal surface pairs ( f : X →
B, φ : ω f → L). Assume that Dφ → B has a simultaneous normalization, namely
that there is a flat proper morphismDn → B and a morphism ν : Dn → Dφ such that
for every b ∈ B, the map νb : Dn

b → (Dφ)b is a normalization. Let {σi : B → Dn} be
disjoint sections which surject onto the locus whereDn → Dφ is not an isomorphism.
Finally let τ : Dn → Dn be an involution over B which preserves the closed substack
⊔

σi (B) and which is fiberwise generically fixed point free.
Then there exists a DM stack Z which fits in the commutative diagram below.

Dn X

[Dn/τ ] Z

Moreover,Z → B is flat and proper, and for every p ∈ B, the fiberZp is the AH stack
of the stable surface obtained from gluing data Dn

p, τ
∣
∣
Dn

p
and X p by [25, Theorem

5.13].

Proof Throughout the proof, we will drop the subscript φ onDφ . We will denote by	

the closed substack, which is actually a scheme, given by the sections σi . Furthermore,
we can assume that B is connected.

FromProposition 4.7wehave thatL∣
∣Dn

∼= ωDn/B(	). It descends to a line bundleG
on [Dn/τ ], and we let [Dn/τ ] → C be the relative coarse space of the map [Dn/τ ] →
BGm,B induced by G ⊗ χ[Dn/τ ]. The induced morphism C → B is flat and the
construction of C commutes with arbitrary base change B ′ → B by [6, Proposition
3.4] and [5, Corollary 3.3].

Consider the quotient stack [	/τ ]. Now, 	 ⊆ Dn is a disjoint union of sections
of Dn → B, so 	 ∼= ⊔

B. Since τ acts fiberwise and preserves 	, and since B is
connected, we have that [	/τ ] ∼= [	b/τ ]× B for any b ∈ B. In other words, [	/τ ] is
a constant family over B. Similarly, if we denote byN the singular locus of D → B,
then N ∼= Nb × B and 	 ∼= 	b × B. For any fixed b, considering 	b, [	b/τ ] and
Nb, we can construct Sb as in Proposition 5.10. Now we can define S := Sb × B.
Then S fits into a commutative diagram as below where the maps are the ones from
Proposition 5.10 pulled back to the product. By construction its formation commutes
with base change.

	 N

[	/τ ] S

Now we proceed by constructing the analogous pushouts from Diagram 5 and the
discussion before it. Along the way, we will need to check that our pushouts, which
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are pinchings as in Theorem 5.12, commute with arbitrary basechange B ′ → B. This
will be checked étale locally (see Remark 5.13) using Lemma 5.18.

First we have the following diagram which, as in Lemma 5.14, we claim that is a
pushout:

	 N

Dn D.

Indeed, 	,N ,Dn and D are flat over B, so we can check that the diagram above is a
pushout after pulling back along Spec(k) → B, but this is the content of Lemma 5.14.

Next we construct the analagous pushouts to the dashed ones in Diagram 5. This
produces the desired proper morphism Z → B which is flat and commutes with base
change by the above discussion. So Z satisfies the claimed properties. �	

In the proof of Theorem 5.17, we needed the following technical result to check that
the gluing construction commutes with base change and produces a flat family.

Lemma 5.18 Let R be a ring, and consider two homomorphisms of R-algebras f :
A′ → B ′ and g : B → B ′ with A := A′ ×B′ B their fiber product. Assume that B ′ is
flat over R and that (g,− f ) : B × A′ → B ′ is surjective. Then the square

A′ ⊗R S B ′ ⊗R S

A ⊗R S B ⊗R S

is cartesian for any ring homomorphism R → S. Moreover, if A′ and B are flat over
R, so is A.

Proof First note that the following sequence is exact:

0 → A → B × A′ (g,− f )−−−−→ B ′ → 0.

Since B ′ is flat over R, we also have that

0 → A ⊗R S → (B × A′) ⊗R S → B ′ ⊗R S → 0

is exact. On the other hand, (B × A′) ⊗R S ∼= (B ⊗R S) × (A′ ⊗R S), so A ⊗R S
is the pullback of B ⊗R S → B ′ ⊗R S and A′ ⊗R S → B ′ ⊗R S, proving the first
claim. The second claim follows by applying the long exact sequence of Tori to the
first exact sequence in the proof above. �	
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5.2 Gluing data

In this subsection we package the information of a gluing data into an algebraic stack
G2,v . Therefore, Theorem 5.17 produces a gluing morphism G2,v → Kω

2,n which on
the level of points agrees with the gluing morphism of [25, Theorem 5.13].

Proposition 5.19 There is an algebraic stack G2,v which parametrizes the following
objects. Over a scheme B, the objects of G2,v(B) are quadruples

(( f : X → B, φ : ω f → L); g : Dn → Dφ; {σi : B → Dn}; τ : Dn → Dn)

where:

(1) ( f : X → B, φ : ω f → L) is an object of K2,v(B);
(2) Dn → B is a flat family of orbifold smooth curves and g is a simultaneous

normalization;
(3) For a certain n, we have n disjoint sections σi of Dn → B, such that g ◦ σi (b) ∈

(Dsing
φ )b and such that g is an isomorphism away from

⊔
σi (B), and

(4) τ is a generically fixed point free involution which preserves
⊔

σi (B).

The morphisms are pullback diagrams which satisfy the obvious commutativity con-
ditions.

Proof We will construct G2,v one condition at the time. It suffices to construct G2,v
for a fixed choice of n of point (3), and then to construct G2,v by taking an union over
n ∈ N. Therefore, from now on we consider the number of sections n as part of the
data.

First, consider D → K2,v the universal divisor. Consider the stack O := OrbL
parametrizing smooth polarized orbifold curves, and let CO → O be the universal
curve. Consider now the Hom stack

H1 := HomO×K2,v (CO × K2,v,O × D),

where for the definition and existence of this Hom stack we refer to [6, Theorem
C.2]. OverH1 we have an universal curve C1, obtained from the morphismH1 → O.

Consider then H2 := HomH1(H1, C1)×
n
H1 , which is the stack that parametrizes n

sections of C1 → H1. Let C2 be the universal curve of H2, and finally consider
H3 := HomH2(C2, C2). Over a base B, the objects of H3(B) are the following:

(1) ( f : X → B, φ : ω f → L), an object of K2,v(B);
(2) C → B is a flat family of smooth orbifold curves and a map g : C → D;
(3) n sections σi : B → C, and
(4) τ : C → C a morphism.

Let C be the universal curve over H3, and let D3 → H3 be the pulll-back of D.
Now, according to [37, Corollary 1.6], there is an open substack of H1 which

parametrizes representable morphisms g. So up to replacing H1 with this open sub-
stack, we can assume g to be representable. We will denote with π : C → Cr.c. the
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relative coarse space of C → H3, and let U ⊆ C to be the locus where π is an iso-
morphism, and C → H3 is smooth. Having the sections σi to be disjoint, and to map
to U , is an open condition. Then up to shriking H3, we can assume σi to be disjoint,
and to map to U .

From the upper semicontinuity of the dimension of the fibers, we can also assume
that themorphism C → D3 is quasi-finite. But then it is finite since it is also proper and
representable. Consider now the morphismOD3 → g∗OC , letK1 be its kernel, and let
S1 be the support ofK1. ThenS1 → H3 is proper. Thus from the upper-semicontinuity
of the dimension of the fiber, applied to S1 → H3, there is an open substack where
S1 is empty so g is dominant. Since g is proper it must also be surjective on this
subset. Next let K2 be the cokernel of OD3 → g∗OC and S2 its support. As before,
by upper-semicontinuity there is an open substack where S2 is 0-dimensional and so
g is generically an isomorphism. Since it is also a representable morphism of nodal
curves, the locus where it is not an isomorphism must be contained in the nodes of
D3.

To recap, we have now cut out an algebraic stack where g is a simultaneous nor-
malization and σi (B) are disjoint sections. We need to identify the locus where:

• g
(	n

i=1σi (b)
) = Dsing

b for every b ∈ B, that is, the image of the marked points is
exactly the nodes;

• Fiber by fiber, τ is a generically fixed point free involution.

To address the first bullet point, consider S ′ → D the inclusion of the locus where g is
not an isomorphism. This is a closed embedding, and consider the following cartesian
diagram:

G

h

S ′

⊔n
i=1 σi (H3) D

Then h will be a closed embedding. Requiring h to be an isomorphism is equivalent to
the first bullet point. Then the flattening stratification guarantees that there is a well-
defined closed substack where h is an isomorphism. In other terms, up to replacing
H3 with a locally closed substack, we can assume that the first bullet point is satisfied.

Finally, being an isomorphism is an open condition, so there is an open substack
of H3 where τ is an isomorphism. Observe now that if σ is an isomorphism of an
orbifold nodal curve, such that it agrees with the identity on an open dense subset, then
σ = Id. Thus if τ fixes a generic point of C, then it fixes the irreducible component
that is its closure.

Consider then the following cartesian diagram:

F

ψ

C
Diag

C
(Id,τ )

C ×H3 C.
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F is the fixed locus of τ . We need to cut out the locus where F contains no irreducible
components of C. This is equivalent to F → H3 being finite so by semi-continuity of
fiber dimension, there is an open subset where τ fixes no generic points. Similarly, to
ensure that τ 2 = Id, we can replace in the diagram above τ with τ 2. Let F ′ be the new
fiber product we obtain. Then the locus where τ 2 = Id is the locus where π1 : F ′ → C
is surjective. Or in other terms, where the kernel of the mapOC → (π1)∗OF ′ is zero.
This is the locus where the support of Coker(OC → (π1)∗OF ′) is empty: it is an open
substack of H3. �	

Putting this together with Theorem 5.17 we obtain:

Theorem 5.20 There is a functorial gluing morphism G2,v → Kω
2,v from the stack of

gluing data to the stack of twisted stable surfaces.

5.3 The boundary strata ofK!
2,v

In this subsection, we show that there is a locally closed stratification of Kω
2,v of

equinormalizable surfaces with equinormalizable double locus which are the images
of the gluing morphisms above.

Lemma 5.21 Let f : Y → B be a proper family of generically reduced DM stacks
over a base scheme B. Then there exists a locally closed stratification of B over which
f is simultaneously normalizable.

Proof Using Noetherian induction, it suffices to prove that there is a nonempty open
subset of B where f is simultaneously normalizable. Up to replacing B with its
reduced structure, we can assume that B is reduced. Then it is generically smooth, so
up to further shrinking B we can assume that it is smooth and connected. Consider
ν : Yn → Y the normalization. Up to shrinking B we can assume that Yn → B is
flat. The generic geometric fiber is normal and the locus U in Y where the fibers are
normal is open from [13, Théorème 12.1.6]. So its complementZ := Y �U is closed,
and since f is proper, f (Z) is closed too. Then up to shrinking B we can assume that
Yn → B has normal fibers.

But ν is an isomorphism on the smooth locus of the morphism Y → B, since B is
normal. In particular, for every b ∈ B, the map Yn

b → Yb is an isomorphism at the
generic points of Yb, and it is finite. So it is a simultaneous normalization. �	
Definition 5.22 We let K◦ ⊂ Kω

2,v denote the open substack parametrizing normal
polarized orbispaces and call the complement Kω

2,v \ K◦ the boundary.

Proposition 5.23 There is a finite, locally closed stratification of Kω
2,v \ K◦ such that

each stratum is the image of a family of gluing data under the gluing morphism
G2,v → Kω

2,v . In particular, taking the scheme theoretic images of components under
the gluing morphism stratifies the boundary Kω

2,v \ K◦ into a finite, locally closed
union of boundary components.

Proof Let X → Kω
2,v be the universal twisted stable surface. From Lemma 5.21 there

is a locally closed embedding S → Kω
2,v where the fibers of X → Kω

2,v admit a
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simultaneous normalization. Let X ′ := X ×Kω
2,v

S be the pull back, and let D be
the closed substack which cuts the fiberwise double locus. Again from Lemma 5.21,
there is a locally closed embedding where the fibers of D → S are simultaneously
normalizable. So up to further stratifying S we can assume that both X ′ and D admit
a simultaneous normalization. Let ν : Dn → D be the simultaneous normalization of
D → S.

Let Z be the singular locus of D → S, and F its pull back through ν. Up to
stratifying further S, we can assume that F → S is étale, and up to replacing S with
an étale cover, we can assume that there are disjoint sections σi : S → Dn which
surject to F .

The composition Dn → X ′ is generically a 2 to 1 cover onto its image so Dn is
equipped with a rational involution τ . After further stratifying and applying Lemma
5.1 we can assume that τ is a morphism. One can check fiber by fiber to see that τ

preserves 	Im(σi ). This gives a family of gluing data whose image in Kω
2,v is this

stratum. Finally, by [25, Theorem 5.13], every point of Kω
2,v corresponding to a non-

normal twisted stable surface lies in such a stratum. �	

Remark 5.24 Proposition 5.23 only posits the existence of some finite stratification
and says nothing about how to enumerate the strata, nor the components of G2,v . We
include it to rule out pathological behaviour like the image of G2,v being an infinite
disjoint union of points. One hopes for a more functorial stratification described in
terms of combinatorial and numerical data of the surfaces. Doing this will require a
generalization ofKollár’s theory of hulls and husks, e.g. [23], to cyclotomic stacks.One
also hopes for a generalization of functorial gluing morphisms to higher dimensions
which is a more subtle question (see for example Remark 5.11).

6 The deformation space of an elliptic K3 surface with a section and a
fiber

The goal of this section is to give an explicit computation of the deformations and
obstructions for Kollár families of stable pairs using the formalism of twisted stable
pairs.

Consider a pair (Y , E + F) consisting of a generic elliptic K3 surface with section
E and smooth fiber F . This pair is of log general type and its log canonical model
(X , D) is obtained by contracting the section p : Y → X and taking D = p∗E . Since
p contracts a (−2)-curve, (X , D) is a Gorenstein stable pair with an A1-singularity
and D is a smooth curve passing through the singular point. Note in particular that D
is not Cartier but 2D is.

Since E is rigid and F moves in a pencil, the pair (Y , E + F) is parametrized
by a smooth 19-dimensional moduli space sitting inside a P1-bundle over the 18-
dimensional moduli space of U -polarized K3 surfaces where U is the standard
hyperbolic plane (see e.g. [1, Sect. 2]). Thus one might expect that the moduli space
of the stable pair (X , D) should agree with the 19-dimensional moduli space of
(Y , E + F) described above. It is not hard to see that this is the case set theoreti-
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cally but a priori the infinitesimal deformation space of (X , D) might be larger (see
Remark 6.1).

Analytically locally around the A1-singularity, the pair (X , D) is isomorphic to the
quotient of (A2, {x = 0}) by the action (x, y) �→ (−x,−y) so the associatedAH stack
X is smooth with Cartier boundary divisor D. In particular, the data of the divisor D
is equivalent to the data of a morphism q : X → � := [A1/Gm], and to understand
the deformations and obstructions of (X ,D) it suffices to compute the deformations
and obstructions of q. Note also that X is Gorenstein, p is crepant, and the action fixes
dx ∧ dy so ωX ∼= OX and ωX ∼= OX are both trivial.

A standard computation shows that the cotangent complex L� 
qis [O�
·x−→ O�]

in degrees [0, 1] where x is the Gm-invariant coordinate on A1. Moreover, the map
q : X → � induced by the Cartier divisor D is flat so q∗L�[1] 
qis OD. Since X
is smooth over k, the transitivity triangle for the composition X → � → Spec(k)
shifted by 1 yields

�1
X [0] → LX /� → OD[0] +1−→ .

In particular, Hi (LX /�) = 0 if i �= 0 and we have a short exact sequence

0 → �1
X → H0(LX /�) → OD → 0

which identifies H0(LX /�) with the sheaf of logarithmic differentials �1
X (logD).

We will see (Propositions 6.4 and 6.7) that Def (X ) and Def (X ,D) are both
smooth and 19-dimensional. One can interpret this as follows. Def (X ) is identified
with the deformation space of (Y , E), and the 18-dimensional U -polarized deforma-
tion space of Y is identified with the deformations of the polarized pair (X ,L) where
L is the polarization of the twisted stable pair corresponding to (X , D). Finally the
19-dimensional deformation space of (X ,D) over Def (X ,D) can be identified with
the P1-bundle described above.

Remark 6.1 Using the cotangent complex formalism, one can compute that the
first-order deformation space of the coarse space X is 20-dimensional and can be
identified with Ext1(�X ,OX ). Moreover there are both local and global obstructions
to deforming the non-Cartier subscheme D. After some work, one can show that the
obstructions live in a 2-dimensional space Ext1(�X ,OD), and that there is a map
obs : Ext1(�X ,OX ) → Ext1(�X ,OD) which vanishes if and only if a first order
deformation of X can be followed by a deformation of D ⊂ X . In this example, obs is
in fact surjective. One can then check that the first-order deformation space of (X , D)

is 19-dimensional, matching that of the twisted stable pair (X ,D). We thus conclude
that all first-order deformations of the pair (X , D) lift to deformations of (X ,D) and
in particular they all satisfy Kollár’s condition. However, this is far from clear a priori
and we only know how to check it by first computing the Kollár deformations using
the twisted stable pair (X ,D).
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6.1 Deformation theory ofX

The goal of this subsection is to compute Exti (�1
X ,OX ) ∼= Hi (X , TX ), where TX

denotes the tangent bundle of X .
Let f : X → X be the coarse space map. Since f is finite, surjective and coho-

mologically affine, Hi (X , TX ) ∼= Hi (X , f∗TX ) and the sheaf f∗TX is reflexive.
Consider now the contraction of the section p : Y → X where Y is the elliptic K3
surface with section E as above. The holomorphic symplectic form on Y gives an
identification TY ∼= �1

Y so by [12, Theorem 1.4] we have that p∗TY is reflexive. Both
these sheaves are also isomorphic to the tangent sheaf TX over a big open subset of X
so by reflexivity we have

p∗TY ∼= TX ∼= f∗TX .

By the Leray spectral sequence we have H0(X , TX ) ∼= H0(Y , TY ) and

0 → H1(X , TX ) → H1(Y , TY ) → H0(X , R1 p∗TY
) → H2(X , TX ) → H2(Y , TY ).

Hodge theory of K3 surfaces gives us that

hi (Y , TY ) =
⎧

⎨

⎩

0 i = 0
20 i = 1
0 i = 2

Lemma 6.2 With the notations above, we have R1 p∗TY = H1(E, TY |E )x ∼= kx is a
skyscraper sheaf supported at the singular point of X.

Proof Since p induces an isomorphism Y \ E → X \ p, R1 p∗TY is supported at x .
Then

R1 p∗TY = (R1 p∗TY )̂x = lim←−
n

H1(En, TY |En )

by the theorem on formal functions where En is the nth infinitesimal thickening of E
defined by ideal sheaf In .

Since E ∼= P1 and E2 = −2, the normal bundle sequence for the regular embedding
i : E → Y is

0 → OP1(2) → TY |E → OP1(−2) → 0

which splits since Ext1(OP1(−2),OP1(2)) = 0, giving TY |E ∼= OE (2) ⊕ OE (−2)
and H1(E, TY |E ) = 1.

Consider the closed embedding En ↪→ En+1 for n ≥ 1. There is a short exact
sequence 0 → In/In+1 → OEn+1 → OEn → 0 with In/In+1 ∼= OE (2n), the nth

power of the conormal bundle OE (2) of E ⊂ Y . Tensoring with TY |E we obtain

0 → OE (2n + 2) ⊕ OE (2n − 2) → TY |En+1 → TY |En → 0.
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Since H1(P1,O(2n + 2) ⊕ O(2n − 2)) = 0 for all n ≥ 1, we conclude that the map
H1(En+1, TY |En+1) → H1(En, TY |En ) is an isomorphism and so

lim←−
n

H1(En, TY |En ) = H1(E, TY |E ) = k.

�	
Under the canonical isomorphism in Lemma 6.2, the edge map H1(Y , TY ) →

H0(X , R1 p∗TY ) can be identified with the restriction H1(Y , TY ) → H1(E, TY |E ).

Lemma 6.3 Let g : Y → P1 be a generic elliptically fibered K3 surface with section
E. Then

(1) H1(Y , TY ) → H1(Y , (TY |E ) is surjective, and
(2) H0(�1

g ⊗ OY (E)) = 0.

Proof By taking the long exact sequence in cohomology for 0 → TY (−E) → TY →
TY |E → 0, for part (i) we need to check that H2(TY (−E)) = 0. Using Serre duality,
this is equivalent to

H0(�1
Y (E)) = 0.

We have a short exact sequence of differentials

0 → g∗�1
P1 → �1

Y → �1
g → 0. (6)

Moreover, ωg is a line a bundle which agrees with �1
g on the big open set U ⊂ Y

where g is smooth. Since the singular fibers of g have nodal singularities,�1
g is torsion

free and there is a canonical map �1
g → ωg identifying ωg with the reflexive hull.

The cokernel F is a torsion sheaf supported at the nodes of the singular fibers. A local
computation around each such node p ∈ Y shows that Fp = k is rank 1. Thus we
have a short exact sequence

0 → �1
g → ωg → F → 0 (7)

where F is a direct sum of kp over the 24 nodes of the 24 singular fibers.
Now, OY ∼= ωY ∼= ωg ⊗ g∗(ωP1) so ωg ∼= g∗(OP1(2)). Then H0(ωg(E)) =

H0(OP1(2) ⊗ g∗O(E)) by projection formula. By [35, II.3.7] g∗O(E) ∼= OP1 so
H0(OP1(2) ⊗ g∗O(E)) ∼= k⊕3. Then twisting the exact sequence (7) with O(E) and
computing cohomology we have

0 → H0(�1
g(E)) → H0(ωg(E)) → H0(F(E)).

To check that themorphism H0(ωg(E)) → H0(F(E)) is injective, it suffices to check
that for every section s ∈ H0(ωg(E)) there is a nodal point p of a singular fiber where
s does not vanish. We identified sections of ωg(E) above with degree 2 polynomials
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on P1 which vanish along at most 2 fibers, proving the claim as there are 24 singular
fibers. Therefore H0(�1

g(E)) = 0, proving (2).
Returning to (1), we twist (6) by E and note that �1

P1 = OP1(−2) so

H0(g∗�1
P1(E)) = H0(OP1(−2)) = 0 using projection formula and [35, II.3.7] as

before. Then H0(�1
Y (E)) → H0(�1

g(E)) is injective so H0(�1
Y (E)) = 0 as required.

�	
Putting this all together, we conclude the following:

Proposition 6.4 The deformation space Def (X ) is smooth and 19-dimensional.

Proof Using the long exact sequence

0 → H1(X , TX ) → H1(Y , TY ) → H0(X , R1 p∗TY ) → H2(X , TX ) → H2(Y , TY ) = 0

and surjectivity of H1(Y , TY ) → H0(X , R1 p∗TY ) we have H1(X , TX ) ∼= k⊕19 and
H2(X , TX ) = 0 so the deformation space is unobstructed. �	

6.2 Deformations theory of the twisted stable pair (X ,D).

Following thediscussion at the start of this section,wewish to computeExti (�1
X (logD),

OX ) = Hi (X , TX (− logD)). Consider the residue exact sequence

0 → �1
X → �1

X (logD) → OD → 0. (8)

Lemma 6.5 Ext2(�1
X (logD),OX ) ∼= H0(X ,�1

X (logD))∨ = 0.

Proof The first equality is Serre duality. Consider the connecting homomorphism
k = H0(X ,OD) → H1(X ,�1

X ). One can check that this map sends 1 to c1(L)

where L = OX (D). Since D is ample and X is proper, c1(L) �= 0 so the connecting
homomorphism is injective. Therefore H0(X ,�1

X ) → H0(X ,�1
X (logD)) is an

isomorphism but H0(X ,�1
X ) = H0(X , f∗�1

X ) = H0(X , p∗�1
Y ) = H0(Y ,�1

Y ) =
0. �	
Lemma 6.6

Exti (OD,OX ) ∼=
{

0 i �= 1, 2
k i = 1, 2

Proof We apply the functor RHom(−,OX ) to the sequence 0 → OX (−D) →
OX → OD → 0 using the fact that Exti (L,OX ) = Hi (X ,L−1) for line bundles L.
Moreover, since f : X → X is cohomologically affine and X has rational singularities,
Ri f∗OX = Ri p∗OY = 0 for i > 0 so Hi (X ,OX ) = Hi (Y ,OY ). We conclude that
H0(X ,OX ) = H2(X ,OX ) = k, and H1(X ,OX ) = 0. Putting this together, we
have the following short exact sequences.

0 → k → H0(X ,OX (D)) → Ext1(OD,O) → 0 (9)

0 → H1(X ,OX (D)) → Ext2(OD,O) → k → 0 (10)
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By Serre duality, H0(X ,OX (D)) = H2(X ,OX (−D)) and H1(X ,OX (D)) =
H1(X ,OX (−D)). Taking the long exact sequence of cohomology of 0 →
OX (−D) → OX → OD → 0 we have that H1(X ,OX (−D)) = 0 and
H2(X ,OX (−D)) = k⊕2. Here we have used that H1(X ,OX ) = 0 and
H1(D,OD) = 1 since D is genus 1. Applying this to (9) and (10) finishes the proof.

�	
Putting this all together, we conclude the following.

Proposition 6.7 The deformation space of the twisted stable pair De f (X ,D) is
smooth and 19-dimensional.

Proof Note that Hom(�1
X (logD),OX ) = H0(X , TX (− logD)) vanishes as it injects

into H0(X , TX ) = 0. Using this and applying RHom(−,OX ) to the short exact
sequence (8), we obtain

0 → Ext1(OD,OX ) → H1(X , TX (− logD)) → H1(X , TX ) →
Ext1(OD,OX ) → H2(X , TX (− logD)) → 0.

Applying the previous results, we obtain

0 → k → H1(X , TX (− logD)) → k⊕19 → k → 0

and H2(X , TX (− logD) = 0 so we conclude that H1(X , TX (− logD) is 19-
dimensional and Def (X ,D) = Def (X → �) is unobstructed as claimed. �	
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