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Abstract

In this article we use techniques from tropical and logarithmic geometry to construct
a non-Archimedean analogue of Teichmiiller space 7’9 whose points are pairs con-
sisting of a stable projective curve over a non-Archimedean field and a Teichmiiller
marking of the topological fundamental group of its Berkovich analytification. This
construction is closely related to and inspired by the classical construction of a non-
Archimedean Schottky space for Mumford curves by Gerritzen and Herrlich. We
argue that the skeleton of non-Archimedean Teichmiiller space is precisely the tropi-
cal Teichmiiller space introduced by Chan—Melo—Viviani as a simplicial completion
of Culler—Vogtmann Outer space. As a consequence, Outer space turns out to be a
strong deformation retract of the locus of smooth Mumford curves in 7.

Mathematics Subject Classification 14T20 - 14H10 - 14G22

Introduction

Let g > 2 and suppose for now that we are working over C. Teichmiiller space 74  is
the universal cover of the moduli space M g of smooth curves of genus g. Itis acomplex
analytic space that functions as a fine moduli space of smooth curves X (of genus g)
together with a Teichmiiller marking, that is a an equivalence ¢: 711(X) — ﬂgl,
where

ﬂg:(oq,[31,...,ocg,Bg’[oq,[31]~~~[ocg,(39]:1>

T Here 711 (X) denotes the fundamental groupoid of X; since X is connected, an equivalence

b:m(X) = TTg amounts to choosing an outer isomorphism class 7t7 (X, x) = Ty for one (and
hence all) base points x € X.
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denotes the fundamental group of a fixed Riemann surface of genus g.

The moduli space Mg™®P of stable tropical curves of genus g is a combinato-
rial analogue of M that captures the combinatorics of the dual complex of the
Deligne-Mumford compactification M 4 of M. A candidate for a tropical analogue
of Teichmiiller space is Outer space CV g in the sense of Culler—Vogtmann (see [28]),
which arrived in the world of mathematics well before the recent spark in interest
in tropical geometry (see [21, Section 5]). Outer space is a moduli space of metric
graphs T together with an equivalence ¢: 71q (T') — Fg, where Fg denotes the free
group on g generators. In [26] Chan, Melo, and Viviani, building on [28], construct
a tropical analogue Tg;mp of Teichmiiller space as a natural simplicial completion of
Outer space CV ¢4 by allowing contractions of loops to vertices with integer weights.

Denote by Mg“ the non-Archimedean analytic space associated to Mg (in the
sense of Berkovich), where the base field is carrying the trivial absolute value.
In [7] (based on earlier work in [78]) Abramovich, Caporaso, and Payne describe
the connection between the algebraic and the tropical moduli space: they show
that the moduli space of tropical curves is the target of a natural tropicalization
map tropy: Mg™ — Mg P that sends a smooth projective curve X over a non-
Archimedean field to its dual tropical curve I'x (i.e. the minimal skeleton of X™
decorated by certain vertex weights keeping track of the genus of components in
the reduction). Moreover, it is shown that Mg"°P may be naturally identified with
the non-Archimedean skeleton of M ¢ (defined with respect to the Deligne-Mumford
compactification), so that trop is, in particular, a strong deformation retraction. Moti-
vated by this beautiful story for Mg, one might be tempted to ask:

Which space tropicalizes to tropical Teichmiiller space?

A non-Archimedean Teichmiiller space

From now on let K be an algebraically closed non-Archimedean field (not necessarily
carrying the trivial absolute value). In this article, inspired by the work of Gerritzen
and Herrlich on a non-Archimedean analogue of Schottky space [31,32,36,38], we
use methods from tropical and logarithmic geometry to construct a non-Archimedean
Teichmiiller space 7'9. Roughly speaking, a point in 7'9 is a stable projective curve X
over a non-Archimedean extension L of K together with an equivalence

$:my (X) — Fy,

where by = by (X%™) denotes the first Betti number of X®™, thought of as a topolog-
ical space.

Theorem A The non-Archimedean Teichmiiller space ?g is an analytic Deligne-
Mumford stack that is smooth, separated and without boundary.

We write 7 for the locus of smooth curves in ?g and 71;@“1 as well as ’Z%A“m for
the locus of stable or respectively smooth Mumford curves in 79.
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Tropicalization

=t . . . . .
Denote by TgrOp the canonical compactification of T;mp that parametrizes tropical
curves I where we allow the edge lengths to be co. There is a natural tropicalization
map
= =trop
tropg: Tg — Ty
that sends a pair (X, &) as above to the dual tropical curve I'x of X together with the

natural induced marking ¢: 77 (I’x) — Fp, (using that I’x is a strong deformation
retract of X™). We show the following analogue of the main result of [7].

Lo = =tr .
Theorem B The natural tropicalization map trop g : Ty — Ty °¥ has a section that

=trop . . —
makes T4 Y into a strong deformation retract of Ig.

In particular, the restriction of trop 4 to the locus 7g of smooth curves in 7'9 induces
a strong deformation retraction onto the (non-extended) tropical Teichmiiller space
Tq.

At this occasion, we point out that we prove Theorem B over any algebraically
closed non-Archimedean field, contrary to the main result of [7] which is only proved
over an algebraically closed field with the frivial absolute value. For this purpose
we generalize in Sect. 4.5 below the construction of a Berkovich skeleton relative to
a simple normal crossing divisor carried out in [34] to normal crossing divisors on
smooth Deligne-Mumford stacks with good reduction. We also generalize [7, Theorem
1.2.1] to any algebraically closed non-Archimedean base fields in Theorem 4.4.

Restricting the contraction in Theorem B to the locus of smooth Mumford curves
we find the following.

Corollary C The restriction of the tropicalization map to ’Z%/I”m makes the Culler—
Vogtmann Outer space CV g into a strong deformation retract of ’]%’[“m.

Our construction of ?g uses the tropical construction of ’]j;mp and, in order to
lift this to the algebraic world, it uses methods from logarithmic geometry in the
sense of Fontaine-Kato-Illusie (see [44]) and, in particular, the theory of Artin fans,
as developed in [6,12,23,77]. In fact, we define a logarithmic algebraic stack ’]'E,Og as
the fibered product

og __ log Top
7—; = Mg XM’érop Ifé

along the natural tropicalization morphism trop : ./\/llgo9 — M;mp introduced
in [23]. This way we obtain a smooth, universally closed, non-separated Deligne-
Mumford stack fgog locally of finite type over Z in which the complement of the
locus of smooth curves in fgo 9 is a divisor with simple normal crossings (over Z). We
then define the non-Archimedean Teichmiiller space 7y as the analytic generic fiber
of the base change of Z75°? to the valuation ring R of K.
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Non-Archimedean Schottky space and its tropicalization

In [30-32,36,38] Gerritzen and Herrlich construct a closely related non-Archimedean
analogue S of Schottky space over the locus of Mumford curves in ./\/lz,ln (also see
[35,49] for the original complex construction and [62] for an incarnation of this in
the language of formal schemes). They crucially use Mumford’s non-Archimedean
analogue of Schottky uniformization for maximally degenerate curves (as introduced
in [56]; also see [29,52] for further details).

A point in Sy is a is PGL(L)-conjugacy class of a faithful representation Fg —
PGL; (L) with discontinuous image for a non-Archimedean extension. Denote by
QcC P{’a“ the open set of ordinary points of the induced operation of Fg on P}_’an.

Then Q/Fg is a Mumford curve X™ and the induced equivalence 711 (X) = Fgisa
marking in the above sense. So we have a natural morphism Sy — 74 whose image
is the locus TgM“m of smooth Mumford curves.

Denote by S the natural partial compactification of S 4 that extends their construc-
tion by faithful and discontinuous operations on trees of projective lines (constructed in
[38] as a rigid-analytic space). Then the above morphism Sy — 7 naturally extends

to a morphism §g — 79 whose image is the locus ?évl "M of stable Mumford curves
in 79 .

Herrlich [40] was already aware that there is a natural “tropicalization map” from
S to Culler—Vogtmann Outer space CV 4. In this article we expand on this realization
and recover his map as the composition Sy — TgM“m — CVg. We refer the reader

to the upcoming [63] for a detailed examination of the relationship between Sy and
TMum
g -

The quotient by Out(Fg)

Consider the natural forgetful map 743 — M, that forgets the marking. There is a
natural operation of Out(Fg) on 74 with respect to which the forgetful map 74 — Mg
is invariant. The quotient stack [ Mg / Out(Fg)] is not isomorphic to ﬂgn, since non-
Archimedean curves with non-maximal reduction will always have stabilizer groups
that are not present in ﬂgn. We, however, have the following weaker Theorem D.

Theorem D The relative coarse quotient T /man Out(Fg) over Mgn is equal to
9
<7 an

Mg
Here the relative coarse quotient ?g / wen Out(Fg) is the relative coarse moduli
g
space of [?g/Out(Fg)] over ﬂgn, i.e. the morphism ng/ Out(Fg)] — ﬂgn is
initial among all factorizations

[79/Out(Fg)] — X — ﬂg“

such that X — Mgn is representable (see [9, Theorem 3.1] for the concept of rel-

ative coarse moduli spaces in the algebraic category). In our case, this means that
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Tq / e Out(Fg) up to natural equivalence is the only analytic stack that gives rise

to such a factorization.

For a stable vertex-weighted graph G denote by 7 and U the affinoid domains
of 7'9 and ﬂgn respectively that parametrize stable curves of genus g for whom the
underlying graph of the dual tropical curve is equal to G. Then Theorem D means that
we have an equivalence

Z{G ~ ﬁG/Out(Fb][G))]

for every stable vertex-weighted graph G with Betti-number by (G) = h'! (G).
As a consequence of Theorem D, we finally obtain:

Corollary E The coarse moduli space of the quotient ﬁ'g / Out(Fq )] is naturally iso-
morphic to the coarse moduli space Mg“ of ﬂgn.

Here the compatibility of forming coarse moduli space with taking analytification
follows from [27, Theorem 1.2.1 and 1.2.2] on the analytification of algebraic spaces
and étale equivalence relations.

Complements and remarks

1. Let g,n > 0 such that 2g — 2 +n > 0. Our construction admits an immediate
generalization to the case curves with marked points (as introduced in [48]). In
fact, one may construct a non-Archimedean Teichmiiller space 74 » parametrizing
smooth projective curves over a non-Archimedean extension L together with n
distinct marked points p1,...,pn € X(L) and a fixed equivalence 7t (X™) ~
Fp, (x) as the fiber product

7 “—an
Tg,n = 'Tg Xmgn Mg,n .

Analogues of the above results for 74 v, immediately follow from this description
and the natural forgetful map ?gyn+] — ?g,n functions as a universal curve.

2. In[54] Mochizuki develops another approach to the non-Archimedean uniformiza-
tion of My that goes by the name p-adic Teichmiiller theory (also see [55]). As
explained [55, Section 1.1] this is based on a p-adic analogue of Fuchsian uni-
formization via so-called indigenous bundles, while our approach is essentially
based on Mumford’s non-Archimedean analogue of Schottky uniformization (as
introduced in [56]). Mochizuki, in particular, argues that Mumford’s uniformization
”does not strongly depend on the prime p”, since e.g. Frobenius automorphisms
play no significant role. The fact that our space Zjéog is actually defined over Z is
another incarnation of this heuristic.

3. In this article we only use the topological fundamental group of a Berkovich ana-
lytic curve X™. So, for example, for curves with good reduction our construction
introduces nothing new. The author believes there should be a “’better” analogue
of Teichmiiller space over the p-adic numbers that uses a different analogue of the
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fundamental group of X4™, e.g. the tempered fundamental group of André [8]. In
[71, Chapter III] Scholze constructs a p-adic version of Siegel upper half plane in
the framework of perfectoid spaces. A promising direction of future research could
be to use his methods to try to construct a p-adic analogue of Teichmiiller space.
We refer the reader to [68] for further indications towards an abelian version of
such a construction.

4. In an upcoming project [63] Poineau and Turchetti generalize Gerritzen-Herrlich
Schottky space S 4 to a hybrid (Archimedean and non-Archimedean) analytic space
over Spec Z. Its fiber over a non-Archimedean place of Z is exactly the non-
Archimedean Gerritzen-Herrlich Schottky space Sy and over the Archimedean
place it is the complex-analytic Schottky space Sy ¢ (as in [35,49]). An interest-
ing trajectory for future research would be to develop a theory of hybrid analytic
stacks in order to study the hybrid analytification of Z'lgog, to compare it with the
Poineau-Turchetti construction in [63], and to study its tropicalization from both
an Archimedean and a non-Archimedean perspective.

5. In their project [63], Poineau and Turchetti, in particular, construct a uniformiza-
tion of the universal Mumford curve. In our framework, we can recover this as
follows: Denote by _O_tm]D the troplcal moduli stack of tuples (( 1), f: r— F)
consisting of a stable tropical curve (F, 1) with one marked leg together with a
length-preserving morphism f: 'St — T from the stabilization I'St of T (without
the marked leg) to a stable tropical curve I" of genus g that is a universal cover of the
underlying weighted graphs. There is a natural morphism Qg"°P — Mg?p that

is given by sending ((F, 1), f) to (T, f(1)) and we may again build its logarithmic
analogue as the fibered product

log __ log trop
Qg —Mg 1 XMZr$p Qg .

If we apply the Raynaud generic fiber to Qbo 9, we find a non-Archimedean analytic
stack Q4 together with morphisms

NS g
M

that functlons as a non-Archimedean uniformization of the whole universal curve
Mg g, 1 — ./\/l ™. So there is a natural operation of Fg on Qg such that the relative

coarse quotlent Qg / Men Fg is isomorphic to /\/lg 1 and the restriction of (1) to
o ,
a smooth Mumford curve X in Mg“ is exactly the presentation X¢™ ~ Q /Fg of

XM as a quotient of an open subset of pl.an by a Schottky group (as in [56]).
In [43] Ichikawa constructs the universal deformation of a Mumford curve via
Schottky groups in order to study the extension problem for Teichmiiller modular
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forms. His construction of a universal deformation may be recovered by considering
the formal fiber of Q4 over a Mumford curve in M.

6. Of course it is natural to wonder whether there is also a connection between
the classical complex analytic Teichmiiller space 7y ¢ and its tropical analogue

T;mp. In [33], Gerritzen and Herrlich construct a smooth compactification gg,c
of Archimedean Schottky space, whose boundary combinatorics around the strata
of maximally degenerate Riemann surfaces captures exactly the combinatorics
of Culler—Vogtmann Outer space CV 4. We expect that a careful recasting of the
extended Schottky spaces Sg ¢ in terms of logarithmic geometry would allow us to

construct a tropicalization morphism Slgf’(g — T4"°P in the category of logarithmic
C-analytic stacks.
In [37] Herrlich uses this compactification (and Abikoff’s bordification of Teich-
miiller space [4]) to construct a partial compactification of Teichmiiller space 7’Tg’<c
as a complex ringed space that admits an operation of the mapping class group so
that the coarse moduli space of ﬁ'g,(c /MCGy4 ] is isomorphic to the coarse moduli
space MQ,C over C. For every symplectic homomorphism \: I'y — Fq there is
an open subset 7g () C 7 ¢ (containing 74 ¢ as an open and dense subset) that
admits a morphism 74 () — gg’(c (given by composing the Teichmiiller marking
with ). Composing such a morphism with the (conjectural) tropicalization mor-
phism from above, would provide us with a procedure to tropicalize Teichmiiller
space Ty ¢ C Ty (W),

7. Our article is by no means the first instance where moduli functors combine both
algebraic/analytic and tropical data. In particular, we refer the reader to the follow-
ing works:

e to[79,81] for anon-Archimedean counting of holomorphic cylinders on Calabi-
Yau surfaces, to [69,70] for a logarithmic/tropical reinterpretation of the Vakil-
Zinger blow of moduli spaces of elliptic stable maps on toric varieties, and
to [66] and [67] for an approach to a degeneration formula [3] and a product
formula [39] in logarithmic Gromov-Witten theory;

e to [58,59], to [41,42,50], as well as to [11] and [53] for an approach towards
constructing a compactification of the universal Jacobian and a resolution of
the universal Abel-Jacobi map;

e to [14] for a construction of a compactification of a strata of abelian differen-
tials using combinatorial data which may be translated into tropical language
expanding on [57]; and

e to [47] for a modular interpretation of toroidal compactifications of the moduli
space Ag of principally polarized complex abelian varieties.

Incarnations of the identification between the tropical analogue of a moduli space
and its non-Archimedean skeleton, beyond [7], have also appeared in [25] for Hurwitz
spaces, in [74] for the moduli space of weighted stable curves, in [65] for rational
curves on toric varieties, in [24] for moduli spaces of spin curves, in [57] for moduli
spaces of effective divisors, and in [10,22] for the universal Jacobian, as well as in
[19] for Jacobians, in [20] for symmetric powers, and in [51] for Prym varieties.
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1 Tropical moduli stacks

In this section we introduce the basic terminology that we need to study tropical moduli
spaces and introduce the moduli space of tropical curves. Our presentation is distilled
from [7,23,77].

1.1 Cones and cone complexes

An (abstract) rational polyhedral cone is a tuple (o, M) consisting of a topological
space o together with a finitely generated free subgroup M of the group of continuous
real-valued functions on ¢ such that the evaluation map o — Hom(M, R) induces a
homeomorphism between o and a strictly convex rational polyhedral cone in Ny :=
Hom(M, R) (i.e. a finite intersection of rational half-spaces). A morphism of rational
polyhedral cones (0, M) — (o’, M) is a continuous map o — o that pulls back
M’ to M. We usually drop the reference to M from our notation.

The dual monoid of arational polyhedral cone ¢ is the submonoid S ; of those func-
tions in M that are non-negative on 0. We may recover o from S via the identification
0 = Hom(Ss, R ). In fact, the association (o, M) — S defines an equivalence of
between the category RPC of rational polyhedral cones and the category of finitely
generated and integral (i.e. fine), saturated, and sharp monoids. A face T of 0 is a
subset along which a function u € Sy vanishes. It naturally carries the structure of
a rational polyhedral cone and the dual monoid of T is given by the quotient S,,/S7,,
where S, denotes the localization

So = {s —ku|s € Sg and k € N}

and S7 is the submonoid of units in S,,. A face morphism is a morphism T — o that
induces an isomorphism between T and a face of ¢. Notice here that, in particular, all
automorphisms of a rational polyhedral cone are face morphisms. We say that a face
morphism is proper if it is not an isomorphism.

Definition 1.1 A (rational polyhedral) cone complex is X is a topological space |Z|
together with a collection of closed subsets o; (with i € I) that cover |X| and carry the
structure of a rational polyhedral cone subject to the following axioms:

(1) The intersection oy N 07 is a (necessarily finite) union of faces of each o; and oj.
(2) For every face T of oy there is j € I such that 05 = 7.
(3) A subset A C |Z|is closed if and only if A N o is closed for all i € 1.

In other words, a cone complex X is a colimit (in the category of topological spaces)
over a poset of cones connected by face morphisms (see [23, Section 2.1] for details).
A morphism £ — X’ of cone complexes is a continuous map |Z| — |Z’| such that for
every cone oy C X there is a cone 0']-/ C X/ such that f factors through a morphism
oy — cr]-’ in RPC. We denote the category of rational polyhedral cone complexes by
RPCC.

A morphism f: £ — X’ is said to be strict, if the induced map o; — o is
a face morphism. Denote the class of strict morphism by Pgirict. By [23], strict
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morphisms define a subcanonical Grothendieck topology Tgtrict on RPCC, and the
triple (RPCC, Tstricts ]P)st-rict) defines a geometric context in the sense of [23,
Section 1].

Remark 1.2 The category RPCC is naturally equivalent to the category of (fine and
saturated) Kato fans, an incarnation of the geometry over the field with one element
introduced in [45] (see [75, Prop. 3.7]). Strict morphisms hereby correspond exactly
to local isomorphism of Kato fans.

1.2 Cone stacks and combinatorial cone stacks

Let X be a cone complex. We identify X with its associated functor of points

hy: RPCC — Sets
Y — Hom(L', %)

so that, by Yoneda’s Lemma, we can think of ¥ as both a presheaf and as a category
fibered in groupoids RPCC/X over RPCC. We, in particular, say that a category
fibered in groupoids over RPCC is representable by X if it is equivalent to RPCC/X.

Definition 1.3 A (rational polyhedral) cone stack is a category C fibered in groupoids
over RPCC that is a stack with respect to the strict topology Tgirict that fulfils the
following two axioms:

(i) the diagonal A: C — C x C is representable by cone complexes; and
(ii) there is a cone complex X and a (necessarily representable) morphism £ — C
that is strict and surjective.

The map X — Cis also called a chart of C. Cone stacks naturally form a 2-category.
Its morphisms are morphism of categories over RPCC. The usual techniques for
working with stacks apply to this situation as well. In particular, given a strict surjective
groupoid object R = U in RPCC the quotient [U / R} is cone stack, and, conversely,
given a chart U — C of a cone stack C, the fiber product U x¢ U is representable by
a cone complex R so that R =2 U defines a strict and surjective groupoid object in
RPCC and we have a natural equivalence [U/R] ~ C.

In [23, Section 2.2] the authors have introduced a combinatorial characterization
of cone stacks.

Definition 1.4 A combinatorial cone stack is a category fibered in groupoids over
RPC', the category of rational polyhedral cones with only face morphisms.

By [23], there is a natural equivalence between the 2-category of cone stacks and
the 2-category of combinatorial cone stacks. Given a cone stack C an object in the
associated combinatorial cone stack is a strict morphism o — C from a rational
polyhedral cone o into C and a morphism is a commuting diagram



39 Page100f34 M. Ulirsch

which is automatically a face morphism. Conversely, given a combinatorial cone stack
CC°™Y the associated cone stack C is the unique stack over (RPCC, Tgirict) whose
fiber over a cone o is the groupoid HOM(o, C<°™P).

1.3 Coarse moduli spaces and generalized cone complexes

In the following we write FAN, when we think of RPC' as a category fibered in
groupoids over itself. So for every cone stack C, there is a tautological morphism
ceomb ., FAN.

Definition 1.5 A cone stack C is said to have faithful monodromy, if the tautological
morphism C°°™® — FAN is representable.

In other words, this means that morphisms in C°°™P are all actual face morphism.
Alternatively, one may also think of cone stacks with faithful monodromy as (relative)
sheaves over the category FAN.

Proposition 1.6 Let C be a cone stack. Then there is a cone stack C with faithful
monodromy together with a strict morphism C — C that is initial among all strict
morphisms from C into cone stacks with faithful monodromy.

In other words C — C — FAN is the initial factorization of the tautological
morphisms C — FAN such that C — FAN is representable. So the C — C is the
relative coarse moduli space of C over FAN. In a way, the morphism C — C plays the
role of the morphism of an algebraic stack to its coarse moduli space. Therefore we
refer to C — C and, in a slight abuse of notation, to C as the coarse moduli space of
C.

Proof of Proposition 1.6 Using the identification of cone stacks with Artin fans from
[23, Theorem 3] (see also Sect. 3.3 below), Proposition 1.6 is a special case of [6,
Propostion 3.1.1]. The combinatorial cone stack CS°™P has the same objects as C.
For two objects oc and 3 in C°°™P over cones ¢ and T respectively, the morphisms in
Cco™MP are the image of Home(, B) in Hom (o, T). We may now easily verify that
Ccomb fylfils the axioms of a category fibered in groupoids over RPC', that it has
faithful monodromy, and that C°™P — C€9™MP i initial among all strict morphisms
to combinatorial cone stacks with faithful monodromy. a

Cone stacks are a refinement of the notion of a generalized cone complexes, as
introduced in [7] as a generalization of cone complexes.

Definition 1.7 [7] A generalized cone complex as a topological space together with a
presentation as a colimit of a diagram of (not necessarily proper) face morphisms.

A morphism of generalized cone complexes is a continuous map that locally factors
through a morphism in RPC. The combinatorial cone stack associated to a cone stack
with faithful monodromy defines a generalized cone complex. Conversely, adding all
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faces and pullback of invariant automorphisms, the defining diagram of a general-
ized cone complex generates a combinatorial cone stack. In fact, we have a natural
equivalence (of 1-categories)

{cone stacks with faithful monodromy} / {Z-isomorphisms} ~ { generalized cone complexes}.

1.4 Graphs

Expanding on [72] and [23], a graph G consists of a set X = X(G) together with an
idempotent root map r: X — X and an involution i: X — X such thatr =1ior. We
refer to the set V(G) = r(X) as the set of vertices of G and to its complement as
the set H(G) of half edges of G. An element in the quotient H(G)/1 is of the form
[h ~ i(h)] for an half-edge h of G; we refer to [h ~ i(h)] as a finite edge when
h # i(h) and otherwise as a leg. So the quotient X /i decomposes as a disjoint union
V(G)UE(G)UL(G), where E(G) is the set of finite edges and L(G) is the set of legs.

We say that a graph G is finite, if X(G) is finite. An order onanedge e = [h ~ i(h)]
is the choice of a relation h < i(h) or h > i(h). For an ordered edge e = [h < i(h)],
we write € for the same edge with the reverse order [h > i(h)] . A pathy in a graph G
is a tuple (vp; eq, ..., en) consisting of a vertex vy and ordered edges e; of G such
thatr(h;) = v and for every ordered edge e; = [hi < }NH] (withT < i < n)wehave
r(hi) = T(ﬂi_H ). We write v; for the vertex r(hy) = r(i(hi41)) and v, = r(hn).
Note that this notation is consistent, since vo = 7(i(hq)), and that the specification
of vy in a path is only necessary, when the tuple (e, ..., en) is empty; in this case
the tuple (vq, (}) refers to the constant path at v and will be abbreviated by vy. Given
two paths y = (voser,...,en)andy’ = (vis e}, ..., e/ ,) withvy = v, we write

Yoy’ =(voser,....en €], ..., e /)

for the concatenation of y andy’. We say that G is connected, if for any two vertices
v, w there is a path y in G with vo = v and vy, = w. A path is said to be closed if
Vo = Vn; in this case we refer to vo = vy, as the base point of the path y. From now
on we assume that all our graphs are connected.

A vertex weight on a graph G is a function h: V(G) — Zx¢; a marking m on
the set of legs of G is a choice of total order on L. Whenever convenient we drop the
reference to h and m from our notation and denote a weighted (marked) graph simply
by G.

The valence val(v) of a vertex v of G is the number of half edges h with r(f) = v.
A weighted marked graph is said to be stable, if for all vertices v € V(G) we have

2h(v) —2+val(v) > 0.

The genus g(G) of G is defined to be b1 (G) + 3, oy h(v).
Let G, G’ be two weighted marked graphs. A (generalized) weighted edge con-
traction is a map 7t: X — X' that fulfils the following axioms:

e 71 commutes with commutes with r, i, and h;
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e the preimage 71! (f/) of each half-edge h’ € H(G’) consists of precisely one
element f (which is necessarily a half-edge of G);

e 7 induces an order preserving bijection L — L’; and

e for every v/ € V(G’) the preimage 7t~ (v) is a connected finite weighted graph
of genus h(v’).

We denote by Jg . the category, whose objects are finite weighted stable graph G of
genus g with n marked legs, and whose morphisms are weighted edge contractions.

1.5 Tropical curves

Definition 1.8 Let P be a monoid. A tropical curve T over P is a finite weighted graph
G(I") = (G, h, m) together with a generalized edge length |.|: E(G) — P —{0}.

A tropical curve I" (over P) is said to be stable, if G(T") is stable. The genus g(T") of
a tropical curve is the genus of the underlying weighted graph G(T"). A (generalized)
weighted edge contraction 7: T — T/ of tropical curves I over P and '’ over P’
consists of a monoid homomorphism 7°: P — P’ and a weighted edge contraction
mt: G(T') — G(T) such that

e 71 contracts an edge if and only ™ (le|)
\

0a
e if 1(e) = e € H(G'), then 7 (le|) = )

el

Let g, n > O such that 2g — 2 +n > 0. By [23, Proposition 2.3], there is a unique
stack Mgrﬂp over (RPCC, Tg¢rict), Whose fiber over a cone o is the groupoid of
stable tropical curves of genus g with 1. marked legs. We refer to Mg 1"
stack of tropical curves (of genus g with n marked points).

as the moduli

Theorem 1.9 ([23] Theorem 1) The stack ./\/lthTOLp is a cone stack.

trop

In fact, one way to prove this, is to realize that Mg ," is the cone stack associated

to the combinatorial cone stack, defined by the functor

Job, — RPC’
G+— o =R54(G),

where a weighted edge contraction G — G’ naturally induces a face morphism og/ —
0G.

The moduli stack ./\/ltm]O does not have faithful monodromy, since there are non-
trivial automorphisms of graphs that only induces a trivial permutation of the set of
edges. Nevertheless, the image of Jg , in RPC' has faithful monodromy and, by
[77, Theorem 1.3] the resulting cone stack (with faithful monodromy) functions as a

coarse moduli space for M ¢"nP, in the sense that it is initial among all strict morphisms

MG'P — C to cone stacks with faithful monodromy. In a slight abuse of notation

we denote by Mg"nP both the coarse moduli space of Mg nP
generalized cone complex.

and the associated
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2 Uniformization in the tropics

In this section we first recall from [13,72] the theory of graphs of groups and their
fundamental groups. We then use these techniques to expand on [26] and construct
tropical Teichmiiller space ’f;wp as a cone stack that is representable by a cone

complex Tgmp.

2.1 Graphs of groups

Definition 2.1 A graph of groups G is a graph G = (V, E, L) together with

e a group G, for every vertex v of G;

e a group Gy for every half-edge f of G together with an isomorphism Gy — Gi(f)
denoted by g — g; and

e monomorphisms G¢ — G, (¢) for every half-edge f of G denoted by g +— a9.

The group G, is called the vertex group of the vertex v € V(G) and Gy the edge
group of f € F(G).

A word in a graph of groups G is a pair (v, g) consisting of a path v = (vo;
e1,...,en) in G consisting of ordered edges e; = [fi < 171} connecting v;_1 to v;
(withT <i<mn)andatupleg = (go, ..., gn) of elements g; € G,. Let (v, g) and
(v’,g’) be two words in G such that the path v’ starts at the end point of vy, i.e. for
which we have vj = vy, 1. The concatenation of (v, g) and (y’, g’) is given by the
concatenation y oy’ of y and 'y’ and the tuple

gog =(g0,.-..9n-1,9n-90: 97+ ---» Ins) -

Concatenation of words is associative and, writing (v, 1) for the trival word at the
vertex v, we have (vg, 1GV0) o(v,g) = (v.g) = (v, g o (vn, 1g,, ). Moreover,

for every word (v, g), there is an inverse word (y~', g~ ') given by the inverse
—1 1 1

v =(ey ,...,6?]) of v and the vector g~ = (g ', .... gy )
Definition 2.2 Let G be a graph of groups and v € V(G). The fundamental groupoid
711 (G) of G is the groupoid defined as follows:

e Its objects are the vertices of G.
e The set of morphisms between two vertices v and v’ is the set of words (7y, g) in
G modulo the relations generated by

—1

e=e¢e and ea% ! = a9

for all oriented edges e = [f < ﬂ and g € G¢. The composition of two morphisms
is given by the concatenation of words in G.

For a vertex v € V(G) the fundamental group 11 (G, v) of G based at v is the group
of automorphism of v in 711 (G).
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Suppose that G is a graph and G = (G, 1) is the trivial graph of groups on G, i.e.
the groups G,, and Gy, are all trivial. Then 711 (G) = 711 (G), the classical fundamental
groupoid of the graph G (defined combinatorially). For every graph of groups G
with underlying graph G, the canonical morphism G — (G, 1) induces a surjective
homomorphism 711 (G) — 711 (G); its kernel is the normal subgroupoid generated by
all the G,,.

Letw € V(G) be another base point of G. Lety be a path connecting v to w. Then
there is a natural isomorphism

US| (G, \)) SN S| (G, W)

ar—»y’lay.

2.2 From weighted graphs to graphs of groups

To a weighted graph (G, h) we associate a graph of groups G(G, h) with underlying
graph G by endowing every vertex with the free group Fy,(,,) on h(v) generators and
every half-edge f with the trivial group (together with the unique monomorphisms
Gf = 1 — Gy(f)). We refer to 74 (G(G, h)) as well as to 714 (G(G, h),v) for a
base point v € V(G) as the fundamental groupoid of (G, h) and respectively the
Sfundamental group 71 (G, hIv) of (G, h) with base point v).

Proposition 2.3 For a weighted edge contraction ¢: (G’,h') — (G, h) there is an
equivalence

S| (G(G/, h/)) ~ T (G(G, h))

Proof Let ¢: (G',h/) — (G, h) be a weighted edge contraction. Choose base
points v/ € V(m'(v)) for every v € V(G’) and denote by G () the graph of
groups (with underlying graph G) whose group at a vertex v € V(G) is given by
e (G(n_] (v))Jv’ ) (and trivial groups along all edges). The choice of an isomor-

phism 7 (G(ﬂ*] (v))J v’) ~ Fy(y) induces the desired equivalence 71 (G’, h') ~
71 (G(G, h)). 0

Corollary 2.4 For a finite weighted graph (G, h) of genus g there is an equivalence
71 (G(G, h)) ~ Fg.

Proof Apply Proposition 2.3 to the weighted edge contraction (G, h) — (%, g) that
contract G to a point with vertex weight g = g(G, h). O

This allows us to define the following.

Definition 2.5 Let (G, h) be a finite weighted graph. A Teichmiiller marking on (G, h)
is an equivalence

b: 11 (G(G, h)) — Fy.
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In other words, a Teichmiiller marking is an outer isomorphism class ¢, : 711 (G, v) —
Fg for one (and, since G is connected, all) v € V(G).

Definition 2.6 Let (G, h) be a finite weighted graph of genus g. Two equivalences
di:m (G, h) = Fg (for i = 1, 2) are said to be topologically equivalent, if for one
(and therefore all) v € V(G) the induced surjective homomorphisms

Fq P, 1 (G(G, h),v) — m1 (G, v)

fori =1, 2 are equal.

Topological equivalence defines an equivalence relation on the class of all Teich-
miiller markings; we write [d): G() = Fg] for the topological equivalence class
associated to a Teichmiiller marking.

2.3 Tropical Teichmiiller space

Given a tropical curve I" (over a monoid P), we write G(I") for the graph of groups
associated to the underlying weighted graph (G, h) of I'. Moreover, we denote 711 (I') =
71 (G(T) and 71 (T, v) = 71 (G(T), v) for v € V(G). A Teichmiiller marking on
a tropical curve I is a Teichmiiller marking on the underlying finite weighted graph
G(T).

Let g > 2. By [23, Proposition 2.3] there is a unique stack 7y °P over
(RPCC, ’tstﬁct) whose fiber over a rational polyhedral cone o is the groupoid of
pairs consisting of a stable tropical curve ' of genus g together with a topological
equivalence class of Teichmiiller marking [¢: G(T') = Fg].

Theorem 2.7 The space ’Z'gmp is representable by a cone complex Tgmp.
Following [26] we introduce the following terminology.

Definition 2.8 The cone complex Témp is called tropical Teichmiiller space.

Proof of Theorem 2.7 Consider the category Tg whose objects are tuples (G, h, [d)])
consisting of a vertex-weighted graph (G, h) of genus g and a topological equiva-
lence class of a Teichmiiller marking [d): G(G,h) = Fg] and whose morphism are
weighted edge contractions. We note that, for a weighted edge contraction (G, h) —
(G’,h'), a Teichmiiller marking ¢: 71y ((G(G, h)) — Fg naturally induces a Teich-
miiller marking of (G’, h/) by Proposition 2.3. The natural function Tg — RPCf
given by (G, h, [§]) — oG hId]) = R;(OG) makes Tg into a category fibered in
groupoids over RPCT, i.e. into a combinatorial cone stack. The associated cone stack
is equivalent to 74 °P, since strict morphisms ¢ — 7¢"°P from rational polyhedral
cones naturally correspond to objects in Tg.

We now show that Tg — RPC' defines a cone complex: The operation of the
automorphism group of a finite graph on its fundamental groupoid is faithful. Therefore
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the automorphism group of (G, h, [¢]) in Tg is trivial and thus Tg — RPCf is fibered
in sets (and not groupoids). It is a poset, since, whenever we have two weighted edge
contraction (G, h) = (G’, h'), there already is an automorphism of (G, h) that makes
the diagram

(G.h) = (G.h)

~

G/ h/

commute. Thus the colimit of the diagram Tg — RPC is a cone complex T;;mp. O

Remark 2.9 The locus of pairs (T, [¢]) in Témp where the vertex weight function
is trivial is precisely the equal to space of metric graphs together with a Teichmiiller
marking ¢: 711 (") — F4 (without reference to topological equivalence, since all
vertex groups of G(I") are trivial). As explained in [26, Section 3.2] this space is
naturally homeomorphic to the (not volume-normalized) Outer space in the sense of
Culler and Vogtmann [28]. In [28] the authors impose the that for metric graphs I" in
CV 4 the condition

D lel=1

ecE(l)

on the total length of " holds. As in [26], we do not follow this convention.

2.4 The quotient by Out(Fg)

There is natural operation of the group Aut(Fg) on 7y °P that is given by send-
ing (T, [¢]) to (T, [g o ¢]) for g € Aut(Fg). An equivalence ¢: 71 (I') — Fg is
determined only up to inner automorphisms of Fg and so the group Inn(Fg) of inner
automorphisms of F ¢ acts trivially on ’]'gmp . Thus there is a natural induced operation
of Out(Fg) = Aut(Fg)/Inn(Fg) on ’fémp.

Consider now the natural morphism Té,mp — /\/lgmp that is given by forgetting
the Teichmiiller marking. Since Out(Fg4) only operates on the markings, the map

Ty °P — My P is invariant under this operation and there is an induced morphism
(7577 OuFg)] - MY

Theorem 2.10 The relative coarse moduli space of [ TOp/ Out(F ] over ./\/ltmp

is naturally equivalent to /\/ltrop

Proof The induced morphism [’Tgmp / Out(Fg )] — MBrOp is essentially surjective,
since every tropical curve I can be endowed with a Teichmiiller marking ¢: 7t1 (I') —
Fg. Itis full, since every weighted edge contraction ¢: I' — I'’ induces an equivalence
m1(T") = m1(T"’) by Proposition 2.3. Going from [’szp/ Out(Fg)] to the relative
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coarse moduli space over Mgmp makes the induced map also faithful and thus the
result follows. o

3 Lifting via Artin fans

In this section we use methods from logarithmic geometry in the sense of Kato-
Fontaine-Illusie [44] and, in particular, the theory of Artin fans (as in [5,6,12,23,77]),
to lift tropical Teichmiiller space to the world of algebraic geometry and to study the
process of tropicalization.

3.1 Logarithmic structures

Recall from [44] that a logarithmic structure on a scheme X is a pair (Mxy, ox)
consisting of

e a sheaf of monoids Mx defined on the étale topology on X, and
e a monoid homomorphism ox: Mx — (Ox, ) that induces an isomorphism

—1 o )k
oy O&*OX

We refer to the tuple X = (X, M, ax) consisting of a scheme X and a logarithmic
structure (My, ax) as a logarithmic scheme. Whenever convenient we drop the ref-
erence to ocx and simply write X = (X, otx) for a logarithmic scheme. We write My
for the quotient M = My / MY, which is known as the characteristic monoid of X.

A logarithmic scheme X is called fine and saturated if étale locally there is a
homomorphism Px — (Ox, -) from the constant sheaf Py associated to a fine and
saturated monoid P to (Ox, ) such that the logarithmic structure M is given via the
pushout square

Px — 0x

le l

PX4>MX

For further details on logarithmic geometry we refer the avid reader to [44], [2],
and [60]. From now on the terms logarithmic scheme or logarithmic stack will always
refer to a fine and saturated logarithmic scheme or logarithmic stack. We denote the
category of (fine and saturated) logarithmic scheme by LSch and the category of (fine
and saturated) logarithmic stacks by LSt.

3.2 Logarithmic curves

A logarithmic curve over a logarithmic base scheme S is a logarithmically smooth
morphism X — S that is proper, integral, saturated, and has geometrically connected
fibers of dimension one.
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Theorem 3.1 ([46] Theorem 1.3) Let X — S be a logarithmic curve. Then, étale
locally on S, every point x of X has an étale neighborhood V together with a morphism
7. V — S such that one of the following holds:

(i) V = Spec Os[u] with My, = m*Mg;
(ii) V = Spec Og[u] with My = m*Mg & Nv with oy (V) = u; or
(i) V = Spec Os[x, yl/(xy — t) for some t € Og and

My =m"Mgs ® N & NB /(o + p = 3)

for some b € T*Mg with ey(a) =x, ev(B) =y, and eg(8) = t.

So the underlying family of curves X — S is flat and proper, and each fiber is a
nodal curve with a finite number of (a priori unordered) sections that do not meet the
singularities in each fiber. We define the moduli stack ./\/lg?ﬁ of logarithmic curves to
be the unique stack over LSch whose fiber over a logarithmic base scheme S is the
groupoid of stable logarithmic curves of genus g with n marked sections.

The connection with the classical Deligne-Knudsen-Mumford moduli stack M g n
is established by the following:

Theorem 3.2 ([46] Theorem 4.5) The moduli stack is represented by the pair
(Mg n, Mg n) where Mﬂg LS the divisorial logarithmic structure associated to

the boundary divisor of ﬂg,n, i.e. the complement of the locus Mg n of smooth
n-marked curves of genus g in Mg n.

3.3 From cone stacks to Artin fans
Let o be a rational polyhedral cone. Denote by .4 the quotient stack
A = [ Spec Z[Ss]/ Spec Z[SIP]]

of the affine toric variety Spec Z[S] by the diagonalizable group Spec Z[S]. By
[61, Proposition 5.17], for every logarithmic scheme X there is a natural isomorphism

Homy g¢ (X, .Ag) = Homypjon (So‘, MX>

Asin [77] this observation implies that the association ¢ — A defines full and faithful
functor from RPC to the category of logarithmic stacks. We refer to a logarithmic stack
of the form Ay as an Artin cone.

Definition 3.3 An Artin fan is a logarithmic algebraic stack that admits a cover by a
disjoint union of Artin cones that is strict and étale.

In [23] we have seen the following:

Theorem 3.4 ([23] Theorem 3) The category of Artin fans is naturally equivalent to
the category of cone stacks.
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When T is a face of a rational polyhedral cone o, the induced homomorphism
Ss — St determines an open immersion A C Ag. So, if X is a rational polyhedral
cone complex, then we may construct the associated Artin fan Ay as

Az = | Ao
oCXx

In general, given a cone stack C, we may choose a strict groupoid presentation [U / R] ~
C in RPCC and construct the associated Artin fan A¢ as the quotient of the induced
strict étale groupoid

Ar = Ay

Remark 3.5 In [23] the proof of Theorem 3.4 is only written for logarithmic schemes
over a field k. It, however, directly generalizes to logarithmic schemes over Z (and in
fact to any other logarithmic base scheme with trivial logarithmic structure).

In order to keep our notation less bulky, we usually denote both the cone stack C
and the associated Artin fan A with the same letter C.

3.4 Construction of 'I;og

Let g, n > O such that 2g — 2 +n > 0. By [23, Theorem 4] the Artin fan associated
to the tropical moduli stack Mg'nP is the category whose fiber over a logarithmic
scheme S is the groupoid of families of tropical curves over S. A family of tropical
curves over S consists of

e a collection (Ts) of tropical curves I's € Mg'n? (Ms) with edge lengths in the

characteristic monoid Mg indexed by all geometric points s of S; and

e for every étale specialization t ~» s of geometric points of S a weighted edge
contraction I's — T such that, whenever Iy is metrized via the composition
llt~s: E(T) — Mg s — Mgy, the tropical curve I} is given by contracting
those edges e in I’y for which |e|¢..s = 0.

Again by [23, Theorem 4], there is a natural modular logarithmic tropicalization
morphism

log. lo tro
tropg’n: Mg'8 — Mg'RP

that is strict, smooth, and surjective. It is given by associating to a logarithmic curve
X — S the family (Ix,) of dual tropical curves of each fiber X5 over a geometric
point s of S. The dual tropical curve I'x of a logarithmic curve X over a logarithmic
point S is defined as follows:

o the underlying graph G is the dual graph of the stable curve X, so thatits vertices v
correspond to the irreducible components X,, of X, an edge connecting two vertices
v, v/ to a node connecting the two components X,, and X,,» and the legs of Gx
emanating from v correspond to the marked points on X,,;
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e the vertex weight h(v) is the genus of the normalization X, of X ; and
e the edge length [e| € Mg s of an edge e of G(X) is the logarithmic deformation
parameter . € Mg ; at the node pe, as explained in Theorem 3.1 (ii) above.

Definition 3.6 We define 7> to be the fiber product

IZ-trop

og __ log
fé =My X mier g
over the logarithmic tropicalization morphism tropy’®: My°¢ — M™°P and the
natural morphism 7 °P — Mg P that forgets the Teichmiiller marking.

Using the above description of Mgmp as a stack over LSch the stack ’T;Og is
the category whose fiber over a logarithmic scheme S is the groupoid of logarithmic
curves X — S in M;Og (S) together with a topological equivalence class of a Teich-
miiller marking [d)s sy (Ts) — Fg] on every dual tropical curve I's (where s are the
geometric points of S) that are compatible with étale specialization.

Theorem 3.7 The logarithmic stack ’Zjéog is representable by a pair (Zjéog, Mslog)
g.n

consisting of:

(i) a Deligne-Mumford stack Z;og, that is smooth, universally closed, and locally
of finite type over 7, and
(ii) a fine and saturated logarithmic structure M,Z.log that is associated to the com-
9

plement of the locus of smooth curves in Zl‘gog, which has normal crossings over
Z.

Proof We may define 79 as the fibered product

7—tro‘p

o I
Zlg 9 :Mg XM‘érop Zg

Since 74 P — M§°P is strict and surjective, it immediately follows that fgog is

smooth, universally closed, and locally of finite type over Z. We endow fgog with
the logarithmic structure M 104 that is associated to the pullback of the boundary
JE— g [
divisor of Mg, which has normal crossings, since the boundary divisor on Mg has
normal crossings on the map ’fémp — METOP is strict and therefore also smooth (in
fact, étale locally an isomorphism). By [23, Theorem 4], the tropicalization morphism

M;Og — Mgmp is strict and therefore we have

7—trop

og ~ log
’]’g — Mg XM’éro‘p Lg

This, together with [46, Theorem 4.5], i.e. Theorem 3.2 above, implies our claim. O

Remark 3.8 The moduli stack 7}30 9 is not separated. The reason is that e.g. in a stable
degeneration of a smooth curve, we have exactly one equivalence class of Teichmiiller
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markings in the generic fiber and very many in the special fiber, whenever its dual
graph has non-trivial cycles.

Remark 3.9 1t follows a posteriori from Theorem 3.14 that the boundary divisor of
Sy even has simple normal crossings, i.e. that all strata of the boundary divisor are
smooth over Z.

The following Theorem 3.10 lifts Theorem 2.10 to the logarithmic category.

Theorem 3.10 The relative coarse moduli space of the stack quotient [’Z'EO 9 / Out(Fq )]
over /\/llgg is equivalent to ﬂ;o 9

Proof By Theorem 2.10 the relative coarse moduli space of the stack quotient
TEOP / Out(Fq4)] over M5 °P is equivalent to M5"°P. The claim is an immediate
g g g q g

consequence of this and of the definition of Ty 9 as a fibered product M9 x Mtrop
<]

Top
Ty°P. 0
3.5 From the fundamental category of a logarithmic stack to its tropicalization

Let X' be a logarithmic algebraic stack. Denote by ﬁ1 (X) the category whose objects
are the geometric points x — X and whose morphisms are étale specializations x ~» Y
in X. We say that an étale specialization x ~ y is strict, if the induced map M Xy —
My« is an isomorphism.

Definition 3.11 The fundamental category TT; (X) of a logarithmic stack X is defined
to be the localization of TT; (X) along the class of strict specializations.

For a geometric point x — X we write o, for the rational polyhedral cone
Hom (ﬂ;ﬁx,R>o). For an étale specialization x ~-» y the induced morphism
Oox — Oy is a face morphism and, whenever x ~» y is strict, this map is an iso-
morphism. So there is a natural functor TT; (X) — RPC' given by the association
X — Ox.

Proposition 3.12 If X is a logarithmically smooth (over a base scheme S with trivial
logarithmic structure), then the functor x — oy makes 111 (X) into a category fibered
in groupoids over RPC f,

Proof We may check the two axioms of a category fibered in groupoids étale locally
on X and so we may assume that X’is an affine toric variety Spec Og[P] over S (where
P is a fine and saturated monoid). In this case TT; (Spec Og [P]) is equivalent to the
poset of (generic points of) torus orbits of Spec Os[P]. Then the statement follows
from the order-reversing correspondence between torus orbits of Spec Os[P] and faces
of op = Hom(P, R>).

O

In other words, Proposition 3.12 tells us that Ty (X) is a combinatorial cone stack.
As explained in Proposition 1.6 above, we may associate to IT; (X) its coarse moduli
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space C . So the combinatorial cone stack C§° ™Mb with faithful monodromy and comes

with a strict morphism TT; (X) — C that is initial among all strict morphisms to cone
stacks with faithful monodromy.

Proposition 3.13 Let X be logarithmically smooth (over a base scheme S with trivial
logarithmic structure). Then there is a strict morphism X — Cy that is initial among
strict morphism to cone stacks with faithful monodromy.

Here, we again lift Cy to the category of logarithmic stacks as an Artin fan. In [6,
Propositon 3.1.1] we see that every (reasonable) logarithmic stack X admits a strict
morphism X — Ay to an Artin fan with faithful monodromy that is initial among all
strict morphisms to Artin fans with faithful monodromy. When X is logarithmically
smooth, Proposition 3.13 tells us that the Artin fan associated to Cy is equivalent to
Ay so that the diagram

o

C/\g—>AX

commutes. We refer to tropy: X — Cy as the logarithmic tropicalization morphism
associated to X' and to Cy as the logarithmic tropicalization of X.

Proof of Proposition 3.13 Let us first assume that X'is represented by a logarithmically
smooth scheme X that is small, i.e. that X has a unique closed logarithmic stratum.
In this case, the lift of Cx is given by A where o is the rational polyhedral cone
Hom(My, R> () dual to the characteristic monoid of X. The strict morphism X — A
is the one associated to the identity under the natural correspondence

Homyp g¢ (X, ./40‘) = Hompen (So‘, MX)

from [61, Proposition 5.17]. We may now continue our argument as in [6, Proposition
3.1.1] and show that this morphism is initial among strict morphisms to Artin fans
with faithful monodromy. In the general situation (when X is not small), both Ay
and Cy arises as colimits of representable morphisms over Olsson’s stack LOGg of
logarithmic structures over S (as introduced in [61]) and therefore both constructions
agree. O

3.6 Tropicalization of M9 and 7,°

The following Theorem 3.14 will imply Theorem B from the introduction (see Theo-
rem 4.4 below). In the case of Mlgog it also rephrases [77, Theorem 1.3].

Theorem 3.14 The logarithmic tropicalization of Mgog is isomorphic to the coarse
moduli space Mgmp and the logarithmic tropicalization of ’Zjéog is equivalent to
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'Z'gmp so that the natural diagram

trop
troy ‘ N};}OQ
,Z-‘grop ~ 67109
9
l )
1
M 90 ° tro
tropy ngog
trop
M g CMlgog

commautes.

Proof The first step of the proof consists of a stack-theoretic and logarithmic reinter-
pretation of the proof of the main result in [7]. It is based on the following facts, which
be found e.g. in [1] and [7]:

e The boundary strata of Mg are in natural one-to-one correspondence with stable
weighted graphs of genus g.

e An étale specialization ng ~» Mg of generic points of boundary strata that is not
an isomorphism corresponds to a weighted edge contraction G — G'.

e There is an isomorphism MHG ~ NE(G) gyuch that the group of automorphisms
of MHG induced by self-specializations g — 1 (called the monodromy group

of the stratum in [7]) agrees with the group of permutations of NF (G) induced by
automorphisms of G.

These three facts together imply that there is a natural equivalence between the coarse
moduli space of ./\/lgm]D and C MLos Since, by [23, Theorem 4] the tropicalization

map trop is strict, the lower trlangular diagram in (2) commutes by the universal

property from Proposition 3.13.

In the second step we notice that by construction of 'Ztog as a fiber product

Mgog X ptrop Tgwp, we also have the following facts:

e The logarithmic strata of ’Z'gog are in a natural one-to-one correspondence with
pairs consisting of a stable weighted graph of genus g and a topological equivalence
class of Teichmiiller markings;

e An étale specialization ng ¢ ~ NG’ [¢/] Of generic points of boundary strata
that is not an isomorphism corresponds to a weighted edge contraction G — G’
that makes the resulting diagram of Teichmiiller markings commute up to inner
automorphisms.

e Both the monodromy group and the automorphism group of (G, [¢]) are trivial.

Thus there is a natural equivalence between ’Z't "°P and the C,Z.],og Since the tropical-

ization map tropy is strict, as a base change of a strict troplcallzatlon map, the upper
triangular diagram is commutative by the universal property in Proposition 3.13.
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Finally, we observe that the two back squares in (2) commute by construction and
thus the front square commutes, since trop is surjective. a

4 Skeletons and tropicalization

Throughout this section let K be an algebraically closed non-Archimedean field with
valuation ring R. In this section we construct Sy by applying Raynaud’s generic fiber
functor to Sbog and identify its non-Archimedean tropicalization map with a strong
deformation retraction onto the skeleton.

4.1 Extended (generalized) cone complexes

Given a rational polyhedral cone o, its canonical extension is defined to be

0 = Hom(Sg, R)o) .
Here we write @20 for the additive monoid E%) = R L{oo}. One may think of G as
a compactification of ¢ given by adding further faces at infinity (see e.g. [64, Section
5] for details). As in [7,75], we define the canonical extension T of a (generalized)
cone complex X as the colimit of the diagram that arises when we replace all cones in
the defining diagram by their canonical extensions.

In the following we write Mgmp and T;mp for the coarse moduli spaces of Mgmp
and ’szp in the sense of Sect. 1.3 respectively. Both Mgmp and Témp are objects
in the 2-category of cone stacks with faithful monodromy and in the category of
generalized cone complexes. Denote by V;mp and Ttgmp their canonical extensions.
The points of Mg °P are in natural one-to-one correspondence with stable tropical
curves of genus g with real edge lengths and the points of TS "°P are pairs consisting of
a stable tropical curve of genus g and a topological equivalence class of Teichmiiller
markings. Their canonical extensions parametrize the same data, only we allow the
edge lengths of the tropical curves to take non-zero values in the additive monoid
R>0 = R>o U{oo} (see [7, Section 4] for details). Outer space CVy °P in the sense
of Culler-Vogtmann [28] is the locus of metric graphs in Tg™°P, i.e. as the locus of
tropical curves with all vertex weights equal to zero.

4.2 Non-Archimedean tropicalization of M4

Denote by ﬂgn the non-Archimedean analytic stack associated to ﬂg’K. We refer
the reader to [76,80] for the basic definitions of non-Archimedean analytic stacks and
implicitly identify Mg“ with its underlying topological space, as introduced in [76,
Section 3].

There is a natural non-Archimedean tropicalization map

- an T tro
tropg: My — My v
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that associates to a point in ﬂ;m, corresponding to a stable curve X over a non-
Archimedean extension L of K, its dual tropical curve TI'x. Let us explain this:

The valuative criterion for properness, applied to Mg tells us that there is a finite
extension L’ of L such that the base change X;/ admits a stable model X over the
valuation ring R’ of L’. In other words, there is a proper and flat scheme X over R’
with reduced fibers of dimension one such that the generic fiber is isomorphic to Xy
and the special fiber X} is a stable nodal curve over the residue field of R’. The dual
graph G y,, of X is the graph with vertices are the irreducible components of X and an
edge between two vertices for every node connecting the corresponding components.
A vertex weight h: V(Gy,) — Zx0 on Gy, associates to a vertex the genus of the
normalization of the corresponding component. Etale locally around every node, the
scheme X is given by xy = 7, for two coordinates x and y and an element r € R’.
The edge length on Gy, is given by |e| = val(r.). Notice hereby that for the edges e
corresponding to nodes that were already present in the generic fiber, we always have
le| = 0. The dual tropical curve Tx is the tropical curve given by the tuple (G x,, h, |.)
(with edge lengths in E%)).

It follows a posteriori from the identification of this map with the strong deformation
retraction onto the non-Archimedean skeleton in Theorem 4.4 below that trop 4 is well-
defined and continuous.

4.3 Raynaud’s generic fiber functor

Berkovich analytification defines a functor from the category of schemes locally of
finite type over K to the category of non-Archimedean analytic spaces. By [15] a
scheme X locally of finite type over K is separated if and only X“™ is a Hausdorff
space. Since we are considering the non-separated stack Slgog, we therefore want to
work with a different analytification functor, known as Raynaud’s generic fiber functor
(as introduced in [16]).

It associates to a flat scheme 2 locally of finite type over R a Berkovich analytic
space Zy, that functions as an analytic generic fiber of the formal completion of
Z along the maximal ideal of R. Suppose that 2~ = Spec .o/ is affine and write
X = Spec A for its generic fiber, where A = & ®g K. In this case, the Raynaud
generic fiber is the affinoid domain in X¢™ whose points are those seminorms |.|x on
A for which |al, < 1forall a € 7, i.e. those seminorms that extend to a bounded
seminorm on .7

In general, when 2 is not affine, the Raynaud generic fiber 2 is given by glueing
the affine patches of 2. A pointin 2, may be represented by a morphism Spec R” —
& from a valuation ring R’ that extends R. Two morphisms SpecR’ — 2" and
Spec R — 2 represent the same point if and only if there is a valuation ring Q that
extends both R’ and R” such that the induced diagram

Spec QO —— SpecR’

l l

SpecR/ —— &
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commutes. By the valuative criteria, the Raynaud generic fiber 25, is an analytic
domain in the Berkovich analytic space 2¢'™ associated to the algebraic geometric
generic fiber Zx of 2" if and only if 2" is separated over R, and 27, is isomorphic
to 27¢™ if and only if 2" is proper over R.

In [80], Yu has extended the generic fiber functor (.) to a functor

()n: Alg.Stacksg, joc 1 /k — An.Stacksy

such that, whenever 2~ = [% /%] is a groupoid presentation of an algebraic stack
Z that is flat and locally of finite type over R, we have

I [%n/%n]'

Again a point in 273 may be represented by a morphism SpecR’ — 2" from a
valuation ring R that extends R. Two morphisms Spec R’ — 2" and SpecR" — 2
then represent the same point if and only if there is a valuation ring Q that extends
both R’ and R” such that the induced diagram

Spec O —— SpecR’

l l

SpecR" —— 2

is 2-commutative. Yet again, by the valuative criteria, the Raynaud generic fiber 27 is
an analytic domain in the Berkovich analytic stack 2/&'™ if and only if 2 is separated
over R, and .25, is equivalent to .2 ¢™ if and only if 2" is proper over R.

4.4 Non-Archimedean Teichmiiller space and its tropicalization

Recall from Sect. 3.4 that Z’;Og is the underlying algebraic stack of ,]-gog =
Mgo 9 % Lrop ’Z'gmp .Itis a smooth and universally closed, but not separated Deligne-
g

Mumford stack over Spec Z. We write Zj‘golg for the base change of 74>? to the valuation
ring R.

Definition 4.1 The extended non-Archimedean Teichmiiller space 79 over Kis defined
to be

Iq = Zlg?lg.n :
A point in ?g, is represented by a tuple (X, ¢) where X is a stable curve of genus
g over a non-Archimedean extension L of K together with a Teichmiiller marking of
the dual tropical curve I'x of its stable reduction. It is well-known that the geometric
realization |[I'x| of T'x as a metric space arises as the minimal skeleton of the non-
Archimedean analytic space X{'™ (see [15,18] for details). A Teichmiiller marking on
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I’x amounts to the choice of an equivalence 71y (X®™) = 7ty (ITx|) — Fp, where by
is the Betti number of both X?™ and its minimal skeleton |I'x|. So, in particular, we
have a natural non-Archimedean tropicalization map

= =t
tropg: 7g — TgTOP

(x, b1 (XOM) = Fb1) — (rx, b: m (INx]) = Fb1) .

We define 7 as the locus of pairs (X, ¢) where X is a smooth curve and refer to
it as the non-Archimedean Teichmiiller space over K. It also arises as the preimage

tropg1 ( T;mp) of the locus of non-extended tropical curves (with edge lengths only

in R instead of @20 = Ry U {oo}) and as the preimage of the analytification
Mg“ of Mg under the natural map 74 — ﬂg“ that forgets the marking.

Proof of Theorem A Since Zléo 9 is smooth over Z, its base change to R is smooth over R
and therefore the Raynaud generic fiber is G-smooth over K. Let G be stable weighted
graph of genus g and consider the rational polyhedral cone og = R;(OG ), which
parametrizes all tropical curves whose underlying graph is a weighted edge contraction

of G. Write U, for the affine toric variety Spec Z[S 5] associated to 0. There is a

natural morphism og — ./\/lgTOp that induces a morphism Ugs — ./\/ltgm]D (here the

right hand side is the really the Artin fan A MEroP ). The base change
UO_G = UO-G XMgrop r]'gT'Op

is a non-separated toric variety. Each of its maximal torus-invariant open affine subsets
is isomorphic to U, since Ty °P — Mg °P is a strict cover. Thus, applying the
Raynaud generic fiber functor, we obtain a morphism U c.Rn — Ugg Ry without
boundary. Since ?9, — ﬂgn arises étale locally as a base change of such morphisms,
it also without boundary. This proves that 7'9 is without boundary over K, since ﬂgn
is. Since 7'9 is G-smooth and without boundary, it is also smooth.

In order to show that 7 is separated we show that the diagonal morphism A: 75 —
7‘9 X ?9, is proper. Let U — 79 X 79 be a morphism from a strict analytic space L. This
corresponds to a flat and proper analytic family X — U of stable curves together with
a family of Teichmiiller markings of the dual tropical curves, compatible with étale
specialization. The fiber product 7 X7y xT, U is representable by an analytic space
V whose points are exactly the triples (x, y, ¢) consisting of two points x,y € U
and an isomorphism ¢: Xx — Xy, that is compatible with the Teichmiiller markings
on the dual tropical curves. Since the diagonal morphism ﬂgn — ﬂgn X ﬂgn
is proper, the base change of V. — U to any affinoid domain in U is finite and this
implies that V — U is without boundary. Any compact subset A in U will be a subset
of a finite union of affinoid domains and thus this also implies that the preimage of A
in V is compact. Therefore V — U is a proper morphism and, since U was chosen
arbitrarily, this implies that the diagonal morphism A: ?g — ?9, X ?g is proper. O
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Proof of Theorem D This immediately follows from Theorem 3.10 and the fact that
both the functors (.) ® Spec R and (.)r, preserve (2-)colimits. O

4.5 Non-Archimedean skeletons of stacky normal crossing pairs with good
reduction

Let (27, 2) be a strictly semistable pair over R, consisting of a flat scheme 2~
locally of finite type over Spec R whose generic fiber is smooth and whose special
fiber has strict normal crossings and an effective strict normal crossing divisor ¥ =
Dy + -+ Ds on Z which includes the special fiber. In [34, Section 4] the authors
expand on a construction of Berkovich in [17] and show that the generic fiber 25
admits a strong deformation retraction p( g ¢): 2y — 2y onto a closed subset

(2, 2) of 2y, the skeleton of the strictly semistable pair (2, 9).

Remark 4.2 In [34] the authors always require that 2~ be proper over R. This assump-
tion is not necessary, if we work with the Raynaud generic fiber 25, instead of the
Berkovich analytic space of the algebraic generic fiber of 2.

For the purpose of this article we assume that 2~ is smooth over R, i.e. that 2
has good reduction. In this case, the skeleton (2, 2) canonically has the structure
of an extended cone complex: The space X is naturally stratified by locally closed
subschemes; the strata are the connected components of the smooth locus of Dy, N- - N
Dy, . If % C 2 is small open subset of 2~ (or a building block in the terminology of
[34, Section 4.3]), i.e. if it contains a unique closed stratum, the skeleton is naturally
homeomorphic to the extended cone 49~ = Hom (ﬂ@ ﬁ%)) and the retraction

P(2.9) is given by

X — (MQ—)O@/O;‘,}/ —lo—ng)

R>0) - 3)
Here Mg denotes the natural divisorial logarithmic structure on .2~ associated to
the divisor 2, i.e. the sheaf of sections of s € Ox such that s|j, 5 € OF; this way
Mgy =Mg/ % is identified with the sheaf of effective Cartier divisors with support
in 2. In general, for every strictly semistable pair (2", &) there is a cover by small
open subsets %; as well as a cover 7 Y of ; N %; by small open subsets 7} Y Then
the extended cone complex Z(.2", 2 ) is the colimit of the induced diagram of proper
face morphisms EV‘? < Oy, and the retraction map is defined by (3) on every small
open subset 7 C 2.

In the following Lemma 4.3, we generalize this construction to the case of a stacky
normal crossing pair (2, 9) with good reduction, i.e. to the case of a Deligne-
Mumford stack 2" that is smooth over Spec R together with an effective Cartier divisor
2 on Z thathas (stack-theoertically) normal crossings. We say that an étale morphism
f: U — X is small, if (%, 1*2) is a strictly semistable pair with good reduction
that is small.

Lemma4.3 Let 2 be a Deligne-Mumford stack that is smooth over R and let 9 be
an effective Cartier divisor on 2~ with (stack-theoretically) normal crossings. Then
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there is a strong deformation retraction p( g gy: Xn — 2y onto a closed sub-

set (2, D), the non-Archimedean skeleton associated to (2, 2). The skeleton
(2, D) is naturally homeomorphic to the extended generalized cone complex asso-
ciated to C(Z", ) and, on a small étale neighborhood % — 2, the retraction map
P(2°,9) is given by the non-Archimedean tropicalization map

%11 — Oy = Hom(mg)/, R)())

— —log|.
X —> (Mq/ — Oo)//Of?/ LH)%

R>o) -
Proof Consider the category Q(2°, 2) whose objects are small étale morphisms
f: % — Z and whose morphisms are commutative diagrams

U ————

h V4
N e @
X

suchthat f*2 = (goh)* 2. There is a natural functor Q(2", 2) — RPC/ thatis given
by % +— oy . Denote by My the divisorial logarithmic structure on 2~ associated
to & and note that (Z°, M g) is logarithmically smooth over Spec R (with the trivial
logarithmic structure). The generalized cone complex associated to C(.Z°, Mg) is
precisely the colimit over the diagram of all o9, in Q(Z", Z), since every geometric
point has of 2" has a small open étale neighborhood, in which it is in the deepest
stratum.

The underlying topological space of 25, is the colimit of all f,: %, — 2, for
f: % — Z in Q(Z, 2). Moverover, for every diagram (4) the induced diagram of
retraction maps

is commutative. So the pg descend to a retraction map 2, — 25, whose image
is defined to be the skeleton (2", Z) of 2 . It is precisely the colimit of all 5y,
taken over the small étale neighborhoods f: % — 2 in Q(Z", Z) and therefore
isomorphic to the canonical extension of the generalzed cone complex associated to
C(Z, Mg).

In order to show that there is a strong homotopy equivalence between p 2~ and the
identity on 25, we need to observe that the induced diagram of homotopies on (4) is
commutative. This argument has already been carried out in [73, Section 3.3] and [7,
Proposition 6.1.4] over base fields with trivial absolute; it carries over to our situation
without any changes. a
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4.6 Skeletons of 7 and M

The following Theorem 4.4 expands on Theorem B from the introduction and gener-
alizes the main result of [7] to the case of a non-trivially valued base field.

Theorem 4.4 The skeleton of M;n is isomorphic to M;mp and the skeleton of Ty is

isomorphic to ?tgmp so that the natural diagram

T

tr(‘)py ‘ PTg

=trop
7,

~ —=

5(T,)

| ®)
x|
M)

-~ f

tropg/
trop

Mg

commautes.

Proof of Theorem 4.4 Use Theorem 3.14 together with Lemma 4.3 applied to ﬂgn

and 7’9 . The commutativity of diagram (5) follows form the commutativity of diagram
(2) in Theorem 3.14. O

Proof of Corollary C For a stacky normal crossing pair (X, D), the homotopy between
P(x,p) and identity preserves the fibers of p(y p); this may be checked étale locally
only toric varieties, on which the homotopy is defined via the torus operation. Using
Theorem 4.4, we may therefore restrict the homotopy to the locus of smooth Mumford
curves in 74 and find that the tropicalization defines a strong deformation retraction
onto Culler—Vogtmann Outer space CV 4. m]

Remark 4.5 Denote by CV g the canonical extension of Culler—Vogtmann Outer space,

where we allow the edge lengths of graphs to attain value oo (i.e. the closure of CV 4

inT trOp) The same argument as in the proof of Corollary C shows that CV is a

strong deformation retract of the locus YJZ[ of stable Mumford curves in 7, g-
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