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Abstract
In this article we use techniques from tropical and logarithmic geometry to construct
a non-Archimedean analogue of Teichmüller space Tg whose points are pairs con-
sisting of a stable projective curve over a non-Archimedean field and a Teichmüller
marking of the topological fundamental group of its Berkovich analytification. This
construction is closely related to and inspired by the classical construction of a non-
Archimedean Schottky space for Mumford curves by Gerritzen and Herrlich. We
argue that the skeleton of non-Archimedean Teichmüller space is precisely the tropi-
cal Teichmüller space introduced by Chan–Melo–Viviani as a simplicial completion
of Culler–Vogtmann Outer space. As a consequence, Outer space turns out to be a
strong deformation retract of the locus of smooth Mumford curves in Tg.

Mathematics Subject Classification 14T20 · 14H10 · 14G22

Introduction

Let g � 2 and suppose for now that we are working overC. Teichmüller space Tg,C is
the universal cover of themoduli spaceMg of smooth curves of genusg. It is a complex
analytic space that functions as a fine moduli space of smooth curves X (of genus g)
together with a Teichmüller marking, that is a an equivalence φ : π1(X)

∼−→ Πg
1,

where

Πg =
〈
α1,β1, . . . ,αg,βg

∣
∣[α1,β1] · · · [αg,βg] = 1

〉

1 Here π1(X) denotes the fundamental groupoid of X; since X is connected, an equivalence

φ : π1(X)
∼−→ Πg amounts to choosing an outer isomorphism class π1(X,x)

∼−→ Πg for one (and
hence all) base points x ∈ X.
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denotes the fundamental group of a fixed Riemann surface of genus g.
The moduli space M

trop
g of stable tropical curves of genus g is a combinato-

rial analogue of Mg that captures the combinatorics of the dual complex of the
Deligne-Mumford compactification Mg of Mg. A candidate for a tropical analogue
of Teichmüller space is Outer space CVg in the sense of Culler–Vogtmann (see [28]),
which arrived in the world of mathematics well before the recent spark in interest
in tropical geometry (see [21, Section 5]). Outer space is a moduli space of metric
graphs Γ together with an equivalence φ : π1(Γ)

∼−→ Fg, where Fg denotes the free
group on g generators. In [26] Chan, Melo, and Viviani, building on [28], construct
a tropical analogue T

trop
g of Teichmüller space as a natural simplicial completion of

Outer space CVg by allowing contractions of loops to vertices with integer weights.
Denote by Man

g the non-Archimedean analytic space associated to Mg (in the
sense of Berkovich), where the base field is carrying the trivial absolute value.
In [7] (based on earlier work in [78]) Abramovich, Caporaso, and Payne describe
the connection between the algebraic and the tropical moduli space: they show
that the moduli space of tropical curves is the target of a natural tropicalization
map tropg : Man

g → M
trop
g that sends a smooth projective curve X over a non-

Archimedean field to its dual tropical curve ΓX (i.e. the minimal skeleton of Xan

decorated by certain vertex weights keeping track of the genus of components in
the reduction). Moreover, it is shown that M

trop
g may be naturally identified with

the non-Archimedean skeleton of Mg (defined with respect to the Deligne-Mumford
compactification), so that tropg is, in particular, a strong deformation retraction. Moti-
vated by this beautiful story for Mg, one might be tempted to ask:

Which space tropicalizes to tropical Teichmüller space?

A non-Archimedean Teichmüller space

From now on let K be an algebraically closed non-Archimedean field (not necessarily
carrying the trivial absolute value). In this article, inspired by the work of Gerritzen
and Herrlich on a non-Archimedean analogue of Schottky space [31,32,36,38], we
use methods from tropical and logarithmic geometry to construct a non-Archimedean
Teichmüller space Tg. Roughly speaking, a point in Tg is a stable projective curve X

over a non-Archimedean extension L of K together with an equivalence

φ : π1

(
Xan

) ∼−−→ Fb1

where b1 = b1(X
an) denotes the first Betti number of Xan, thought of as a topolog-

ical space.

Theorem A The non-Archimedean Teichmüller space Tg is an analytic Deligne-
Mumford stack that is smooth, separated and without boundary.

We write Tg for the locus of smooth curves in Tg and TMum
g as well as TMum

g for
the locus of stable or respectively smooth Mumford curves in Tg.
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Tropicalization

Denote by T
trop
g the canonical compactification of T

trop
g that parametrizes tropical

curves Γ where we allow the edge lengths to be ∞. There is a natural tropicalization
map

tropg : Tg −→ T
trop
g

that sends a pair (X,φ) as above to the dual tropical curve ΓX of X together with the
natural induced marking φ : π1(ΓX) → Fb1

(using that ΓX is a strong deformation
retract of Xan). We show the following analogue of the main result of [7].

Theorem B The natural tropicalization map tropg : Tg −→ T
trop
g has a section that

makes T
trop
g into a strong deformation retract of Tg.

In particular, the restriction of tropg to the locus Tg of smooth curves in Tg induces
a strong deformation retraction onto the (non-extended) tropical Teichmüller space
Tg.

At this occasion, we point out that we prove Theorem B over any algebraically
closed non-Archimedean field, contrary to the main result of [7] which is only proved
over an algebraically closed field with the trivial absolute value. For this purpose
we generalize in Sect. 4.5 below the construction of a Berkovich skeleton relative to
a simple normal crossing divisor carried out in [34] to normal crossing divisors on
smoothDeligne-Mumford stackswith good reduction.We also generalize [7, Theorem
1.2.1] to any algebraically closed non-Archimedean base fields in Theorem 4.4.

Restricting the contraction in Theorem B to the locus of smooth Mumford curves
we find the following.

Corollary C The restriction of the tropicalization map to TMum
g makes the Culler–

Vogtmann Outer space CVg into a strong deformation retract of TMum
g .

Our construction of Tg uses the tropical construction of Ttrop
g and, in order to

lift this to the algebraic world, it uses methods from logarithmic geometry in the
sense of Fontaine-Kato-Illusie (see [44]) and, in particular, the theory of Artin fans,
as developed in [6,12,23,77]. In fact, we define a logarithmic algebraic stack Tlog

g as
the fibered product

Tlog
g = Mlog

g ×Mtrop
g

Ttrop
g

along the natural tropicalization morphism tropg : Mlog
g → Mtrop

g introduced
in [23]. This way we obtain a smooth, universally closed, non-separated Deligne-
Mumford stack Tlog

g locally of finite type over Z in which the complement of the

locus of smooth curves in Tlog
g is a divisor with simple normal crossings (over Z). We

then define the non-Archimedean Teichmüller space Tg as the analytic generic fiber

of the base change of Tlog
g to the valuation ring R of K.
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Non-Archimedean Schottky space and its tropicalization

In [30–32,36,38] Gerritzen and Herrlich construct a closely related non-Archimedean
analogue Sg of Schottky space over the locus of Mumford curves in Man

g (also see
[35,49] for the original complex construction and [62] for an incarnation of this in
the language of formal schemes). They crucially use Mumford’s non-Archimedean
analogue of Schottky uniformization for maximally degenerate curves (as introduced
in [56]; also see [29,52] for further details).

A point in Sg is a is PGL2(L)-conjugacy class of a faithful representation Fg →
PGL2(L) with discontinuous image for a non-Archimedean extension. Denote by
Ω ⊆ P

1,an
L the open set of ordinary points of the induced operation of Fg on P1,an

L .

Then Ω/Fg is a Mumford curve Xan and the induced equivalence π1(X)
∼−→ Fg is a

marking in the above sense. So we have a natural morphism Sg → Tg whose image
is the locus T Mum

g of smooth Mumford curves.

Denote by Sg the natural partial compactification of Sg that extends their construc-
tion by faithful and discontinuous operations on trees of projective lines (constructed in
[38] as a rigid-analytic space). Then the above morphism Sg → Tg naturally extends

to a morphism Sg → Tg whose image is the locus T Mum
g of stable Mumford curves

in Tg.
Herrlich [40] was already aware that there is a natural ”tropicalization map” from

Sg to Culler–Vogtmann Outer space CVg. In this article we expand on this realization
and recover his map as the composition Sg → T Mum

g → CVg. We refer the reader
to the upcoming [63] for a detailed examination of the relationship between Sg and
T Mum

g .

The quotient byOut(Fg)Out(Fg)Out(Fg)

Consider the natural forgetful map Tg → Mg that forgets the marking. There is a
natural operation of Out(Fg) on Tg with respect to which the forgetful map Tg → Mg

is invariant. The quotient stack
[
Mg

/
Out(Fg)

]
is not isomorphic toMan

g , since non-
Archimedean curves with non-maximal reduction will always have stabilizer groups
that are not present in Man

g . We, however, have the following weaker Theorem D.

Theorem D The relative coarse quotient Tg

/
Man

g
Out(Fg) over Man

g is equal to

Man
g .

Here the relative coarse quotient Tg

/
Man

g
Out(Fg) is the relative coarse moduli

space of
[
Tg

/
Out(Fg)

]
over Man

g , i.e. the morphism
[
Tg

/
Out(Fg)

]
→ Man

g is
initial among all factorizations

[
Tg

/
Out(Fg)

]
−→ X −→ Man

g

such that X → Man
g is representable (see [9, Theorem 3.1] for the concept of rel-

ative coarse moduli spaces in the algebraic category). In our case, this means that
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Tg

/
Man

g
Out(Fg) up to natural equivalence is the only analytic stack that gives rise

to such a factorization.
For a stable vertex-weighted graph G denote by TG and UG the affinoid domains

of Tg and Man
g respectively that parametrize stable curves of genus g for whom the

underlying graph of the dual tropical curve is equal to G. Then Theorem Dmeans that
we have an equivalence

UG �
[
TG

/
Out(Fb1(G))

]

for every stable vertex-weighted graph G with Betti-number b1(G) = h1(G).
As a consequence of Theorem D, we finally obtain:

Corollary E The coarse moduli space of the quotient
[
Tg

/
Out(Fg)

]
is naturally iso-

morphic to the coarse moduli space M
an
g of Man

g .

Here the compatibility of forming coarse moduli space with taking analytification
follows from [27, Theorem 1.2.1 and 1.2.2] on the analytification of algebraic spaces
and étale equivalence relations.

Complements and remarks

1. Let g,n � 0 such that 2g − 2 + n > 0. Our construction admits an immediate
generalization to the case curves with marked points (as introduced in [48]). In
fact, one may construct a non-Archimedean Teichmüller space Tg,n parametrizing
smooth projective curves over a non-Archimedean extension L together with n

distinct marked points p1, . . . ,pn ∈ X(L) and a fixed equivalence π1(X
an) �

Fb1(X) as the fiber product

Tg,n = Tg ×Man
g

Man
g,n .

Analogues of the above results for Tg,n immediately follow from this description
and the natural forgetful map Tg,n+1 → Tg,n functions as a universal curve.

2. In [54]Mochizuki develops another approach to the non-Archimedean uniformiza-
tion of Mg that goes by the name p-adic Teichmüller theory (also see [55]). As
explained [55, Section 1.1] this is based on a p-adic analogue of Fuchsian uni-
formization via so-called indigenous bundles, while our approach is essentially
based on Mumford’s non-Archimedean analogue of Schottky uniformization (as
introduced in [56]).Mochizuki, in particular, argues thatMumford’s uniformization
”does not strongly depend on the prime p”, since e.g. Frobenius automorphisms
play no significant role. The fact that our space Tlog

g is actually defined over Z is
another incarnation of this heuristic.

3. In this article we only use the topological fundamental group of a Berkovich ana-
lytic curve Xan. So, for example, for curves with good reduction our construction
introduces nothing new. The author believes there should be a ”better” analogue
of Teichmüller space over the p-adic numbers that uses a different analogue of the
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fundamental group of Xan, e.g. the tempered fundamental group of André [8]. In
[71, Chapter III] Scholze constructs a p-adic version of Siegel upper half plane in
the framework of perfectoid spaces. A promising direction of future research could
be to use his methods to try to construct a p-adic analogue of Teichmüller space.
We refer the reader to [68] for further indications towards an abelian version of
such a construction.

4. In an upcoming project [63] Poineau and Turchetti generalize Gerritzen-Herrlich
Schottky space Sg to a hybrid (Archimedean and non-Archimedean) analytic space
over SpecZ. Its fiber over a non-Archimedean place of Z is exactly the non-
Archimedean Gerritzen-Herrlich Schottky space Sg and over the Archimedean
place it is the complex-analytic Schottky space Sg,C (as in [35,49]). An interest-
ing trajectory for future research would be to develop a theory of hybrid analytic
stacks in order to study the hybrid analytification of Tlog

g , to compare it with the
Poineau-Turchetti construction in [63], and to study its tropicalization from both
an Archimedean and a non-Archimedean perspective.

5. In their project [63], Poineau and Turchetti, in particular, construct a uniformiza-
tion of the universal Mumford curve. In our framework, we can recover this as
follows: Denote by Ω

trop
g the tropical moduli stack of tuples

(
(Γ̃ , l), f : Γ̃ → Γ

)

consisting of a stable tropical curve (Γ̃ , l) with one marked leg together with a
length-preserving morphism f : Γ̃st → Γ from the stabilization Γ̃st of Γ̃ (without
the marked leg) to a stable tropical curve Γ of genus g that is a universal cover of the
underlying weighted graphs. There is a natural morphism Ω

trop
g → Mtrop

g,1 that

is given by sending
(
(Γ̃ , l), f

)
to

(
Γ , f(l)

)
and we may again build its logarithmic

analogue as the fibered product

Ωlog
g = Mlog

g,1 ×Mtrop
g,1

Ωtrop
g .

If we apply theRaynaud generic fiber toΩ
log
g , we find a non-Archimedean analytic

stack Ωg together with morphisms

Ωg Man
g,1

Man
g

(1)

that functions as a non-Archimedean uniformization of the whole universal curve
Man

g,1 → Man
g . So there is a natural operation of Fg on Ωg such that the relative

coarse quotient Ωg

/
Man

g,1
Fg is isomorphic to Man

g,1 and the restriction of (1) to

a smooth Mumford curve X in Man
g is exactly the presentation Xan � Ω/Fg of

Xan as a quotient of an open subset of P1,an by a Schottky group (as in [56]).
In [43] Ichikawa constructs the universal deformation of a Mumford curve via
Schottky groups in order to study the extension problem for Teichmüller modular
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forms.His construction of a universal deformationmaybe recovered by considering
the formal fiber of Ωg over a Mumford curve in Mg.

6. Of course it is natural to wonder whether there is also a connection between
the classical complex analytic Teichmüller space Tg,C and its tropical analogue
T

trop
g . In [33], Gerritzen and Herrlich construct a smooth compactification Sg,C

of Archimedean Schottky space, whose boundary combinatorics around the strata
of maximally degenerate Riemann surfaces captures exactly the combinatorics
of Culler–Vogtmann Outer space CVg. We expect that a careful recasting of the
extended Schottky spaces Sg,C in terms of logarithmic geometry would allow us to

construct a tropicalization morphism Slog
g,C

→ Ttrop
g in the category of logarithmic

C-analytic stacks.
In [37] Herrlich uses this compactification (and Abikoff’s bordification of Teich-
müller space [4]) to construct a partial compactification of Teichmüller space Tg,C

as a complex ringed space that admits an operation of the mapping class group so
that the coarse moduli space of

[
Tg,C/MCGg

]
is isomorphic to the coarse moduli

space Mg,C over C. For every symplectic homomorphism ψ : Γg → Fg there is
an open subset Tg(ψ) ⊆ Tg,C (containing Tg,C as an open and dense subset) that
admits a morphism Tg(ψ) → Sg,C (given by composing the Teichmüller marking
with ψ). Composing such a morphism with the (conjectural) tropicalization mor-
phism from above, would provide us with a procedure to tropicalize Teichmüller
space Tg,C ⊆ Tg(ψ).

7. Our article is by no means the first instance where moduli functors combine both
algebraic/analytic and tropical data. In particular, we refer the reader to the follow-
ing works:

• to [79,81] for a non-Archimedean counting of holomorphic cylinders onCalabi-
Yau surfaces, to [69,70] for a logarithmic/tropical reinterpretation of the Vakil-
Zinger blow of moduli spaces of elliptic stable maps on toric varieties, and
to [66] and [67] for an approach to a degeneration formula [3] and a product
formula [39] in logarithmic Gromov-Witten theory;

• to [58,59], to [41,42,50], as well as to [11] and [53] for an approach towards
constructing a compactification of the universal Jacobian and a resolution of
the universal Abel-Jacobi map;

• to [14] for a construction of a compactification of a strata of abelian differen-
tials using combinatorial data which may be translated into tropical language
expanding on [57]; and

• to [47] for a modular interpretation of toroidal compactifications of the moduli
space Ag of principally polarized complex abelian varieties.

Incarnations of the identification between the tropical analogue of a moduli space
and its non-Archimedean skeleton, beyond [7], have also appeared in [25] for Hurwitz
spaces, in [74] for the moduli space of weighted stable curves, in [65] for rational
curves on toric varieties, in [24] for moduli spaces of spin curves, in [57] for moduli
spaces of effective divisors, and in [10,22] for the universal Jacobian, as well as in
[19] for Jacobians, in [20] for symmetric powers, and in [51] for Prym varieties.
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1 Tropical moduli stacks

In this sectionwe introduce the basic terminology thatwe need to study tropicalmoduli
spaces and introduce the moduli space of tropical curves. Our presentation is distilled
from [7,23,77].

1.1 Cones and cone complexes

An (abstract) rational polyhedral cone is a tuple (σ,M) consisting of a topological
space σ together with a finitely generated free subgroup M of the group of continuous
real-valued functions on σ such that the evaluation map σ → Hom(M,R) induces a
homeomorphism between σ and a strictly convex rational polyhedral cone in NR :=
Hom(M,R) (i.e. a finite intersection of rational half-spaces). A morphism of rational
polyhedral cones (σ,M) → (σ ′,M ′) is a continuous map σ → σ ′ that pulls back
M ′ to M. We usually drop the reference to M from our notation.

The dual monoid of a rational polyhedral cone σ is the submonoid Sσ of those func-
tions inM that are non-negative on σ. Wemay recover σ from Sσ via the identification
σ = Hom(Sσ,R�0). In fact, the association (σ,M) �→ Sσ defines an equivalence of
between the category RPC of rational polyhedral cones and the category of finitely
generated and integral (i.e. fine), saturated, and sharp monoids. A face τ of σ is a
subset along which a function u ∈ Sσ vanishes. It naturally carries the structure of
a rational polyhedral cone and the dual monoid of τ is given by the quotient Su/S∗

u,
where Su denotes the localization

Sσ =
{

s − ku
∣∣s ∈ Sσ and k ∈ N

}

and S∗
u is the submonoid of units in Su. A face morphism is a morphism τ → σ that

induces an isomorphism between τ and a face of σ. Notice here that, in particular, all
automorphisms of a rational polyhedral cone are face morphisms. We say that a face
morphism is proper if it is not an isomorphism.

Definition 1.1 A (rational polyhedral) cone complex is Σ is a topological space |Σ|

together with a collection of closed subsets σi (with i ∈ I) that cover |Σ| and carry the
structure of a rational polyhedral cone subject to the following axioms:

(1) The intersection σi ∩ σj is a (necessarily finite) union of faces of each σi and σj.
(2) For every face τ of σi there is j ∈ I such that σj = τ.
(3) A subset A ⊆ |Σ| is closed if and only if A ∩ σi is closed for all i ∈ I.

In other words, a cone complexΣ is a colimit (in the category of topological spaces)
over a poset of cones connected by face morphisms (see [23, Section 2.1] for details).
A morphism Σ → Σ ′ of cone complexes is a continuous map |Σ| → |Σ ′| such that for
every cone σi ⊆ Σ there is a cone σ ′

j ⊆ Σ ′ such that f factors through a morphism
σi → σ ′

j in RPC. We denote the category of rational polyhedral cone complexes by
RPCC.

A morphism f : Σ → Σ ′ is said to be strict, if the induced map σi → σ ′
j is

a face morphism. Denote the class of strict morphism by Pstrict. By [23], strict
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morphisms define a subcanonical Grothendieck topology τstrict on RPCC, and the
triple

(
RPCC, τstrict,Pstrict

)
defines a geometric context in the sense of [23,

Section 1].

Remark 1.2 The category RPCC is naturally equivalent to the category of (fine and
saturated) Kato fans, an incarnation of the geometry over the field with one element
introduced in [45] (see [75, Prop. 3.7]). Strict morphisms hereby correspond exactly
to local isomorphism of Kato fans.

1.2 Cone stacks and combinatorial cone stacks

Let Σ be a cone complex. We identify Σ with its associated functor of points

hΣ : RPCC −→ Sets

Σ ′ �−→ Hom(Σ ′,Σ)

so that, by Yoneda’s Lemma, we can think of Σ as both a presheaf and as a category
fibered in groupoids RPCC/Σ over RPCC. We, in particular, say that a category
fibered in groupoids over RPCC is representable by Σ if it is equivalent to RPCC/Σ.

Definition 1.3 A (rational polyhedral) cone stack is a category C fibered in groupoids
over RPCC that is a stack with respect to the strict topology τstrict that fulfils the
following two axioms:

(i) the diagonal Δ : C −→ C × C is representable by cone complexes; and
(ii) there is a cone complex Σ and a (necessarily representable) morphism Σ → C

that is strict and surjective.

The map Σ → C is also called a chart of C. Cone stacks naturally form a 2-category.
Its morphisms are morphism of categories over RPCC. The usual techniques for
workingwith stacks apply to this situation aswell. In particular, given a strict surjective
groupoid object R ⇒ U in RPCC the quotient

[
U

/
R
]
is cone stack, and, conversely,

given a chart U → C of a cone stack C, the fiber product U ×C U is representable by
a cone complex R so that R ⇒ U defines a strict and surjective groupoid object in
RPCC and we have a natural equivalence

[
U/R

]
� C.

In [23, Section 2.2] the authors have introduced a combinatorial characterization
of cone stacks.

Definition 1.4 A combinatorial cone stack is a category fibered in groupoids over
RPCf, the category of rational polyhedral cones with only face morphisms.

By [23], there is a natural equivalence between the 2-category of cone stacks and
the 2-category of combinatorial cone stacks. Given a cone stack C an object in the
associated combinatorial cone stack is a strict morphism σ → C from a rational
polyhedral cone σ into C and a morphism is a commuting diagram

σ σ ′

C
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which is automatically a face morphism. Conversely, given a combinatorial cone stack
Ccomb, the associated cone stack C is the unique stack over (RPCC, τstrict) whose
fiber over a cone σ is the groupoid HOM(σ, Ccomb).

1.3 Coarsemoduli spaces and generalized cone complexes

In the following we write FAN, when we think of RPCf as a category fibered in
groupoids over itself. So for every cone stack C, there is a tautological morphism
Ccomb → FAN.

Definition 1.5 A cone stack C is said to have faithful monodromy, if the tautological
morphism Ccomb → FAN is representable.

In other words, this means that morphisms in Ccomb are all actual face morphism.
Alternatively, one may also think of cone stacks with faithful monodromy as (relative)
sheaves over the category FAN.

Proposition 1.6 Let C be a cone stack. Then there is a cone stack C with faithful
monodromy together with a strict morphism C → C that is initial among all strict
morphisms from C into cone stacks with faithful monodromy.

In other words C → C → FAN is the initial factorization of the tautological
morphisms C → FAN such that C → FAN is representable. So the C → C is the
relative coarse moduli space of C over FAN. In a way, the morphism C → C plays the
role of the morphism of an algebraic stack to its coarse moduli space. Therefore we
refer to C → C and, in a slight abuse of notation, to C as the coarse moduli space of
C.

Proof of Proposition 1.6 Using the identification of cone stacks with Artin fans from
[23, Theorem 3] (see also Sect. 3.3 below), Proposition 1.6 is a special case of [6,
Propostion 3.1.1]. The combinatorial cone stack Ccomb has the same objects as C.
For two objects α and β in Ccomb over cones σ and τ respectively, the morphisms in
Ccomb are the image of HomC(α,β) in Hom(σ, τ). We may now easily verify that
Ccomb fulfils the axioms of a category fibered in groupoids over RPCf, that it has
faithful monodromy, and that Ccomb → Ccomb is initial among all strict morphisms
to combinatorial cone stacks with faithful monodromy. �	

Cone stacks are a refinement of the notion of a generalized cone complexes, as
introduced in [7] as a generalization of cone complexes.

Definition 1.7 [7] A generalized cone complex as a topological space together with a
presentation as a colimit of a diagram of (not necessarily proper) face morphisms.

Amorphism of generalized cone complexes is a continuous map that locally factors
through a morphism in RPC. The combinatorial cone stack associated to a cone stack
with faithful monodromy defines a generalized cone complex. Conversely, adding all
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faces and pullback of invariant automorphisms, the defining diagram of a general-
ized cone complex generates a combinatorial cone stack. In fact, we have a natural
equivalence (of 1-categories)

{

cone stacks with faithful monodromy
}/{

2-isomorphisms
} � {

generalized cone complexes
}

.

1.4 Graphs

Expanding on [72] and [23], a graph G consists of a set X = X(G) together with an
idempotent root map r : X → X and an involution i : X → X such that r = i ◦ r. We
refer to the set V(G) = r(X) as the set of vertices of G and to its complement as
the set H(G) of half edges of G. An element in the quotient H(G)/i is of the form[
h ∼ i(h)

]
for an half-edge h of G; we refer to

[
h ∼ i(h)

]
as a finite edge when

h �= i(h) and otherwise as a leg. So the quotient X/i decomposes as a disjoint union
V(G)	E(G)	L(G), where E(G) is the set of finite edges and L(G) is the set of legs.

We say that a graphG is finite, ifX(G) is finite. An order on an edge e =
[
h ∼ i(h)

]

is the choice of a relation h < i(h) or h > i(h). For an ordered edge e =
[
h < i(h)

]
,

we write e for the same edge with the reverse order
[
h > i(h)

]
. A path γ in a graphG

is a tuple (v0; e1, . . . , en) consisting of a vertex v0 and ordered edges ei of G such
that r(h̃1) = v0 and for every ordered edge ei =

[
hi < h̃i

]
(with 1 � i � n) we have

r(hi) = r(h̃i+1). We write vi for the vertex r(hi) = r(i(hi+1)) and vn = r(hn).
Note that this notation is consistent, since v0 = r(i(h1)), and that the specification
of v0 in a path is only necessary, when the tuple (e1, . . . , en) is empty; in this case
the tuple (v0, ∅) refers to the constant path at v0 and will be abbreviated by v0. Given
two paths γ = (v0; e1, . . . , en) and γ ′ = (v ′

0; e
′
1, . . . , e ′

n ′)with vn = v ′
0, we write

γ ◦ γ ′ = (v0; e1, . . . , en, e ′
1, . . . , e ′

n ′)

for the concatenation ofγ andγ ′.We say thatG is connected, if for any two vertices
v,w there is a path γ in G with v0 = v and vn = w. A path is said to be closed if
v0 = vn; in this case we refer to v0 = vn as the base point of the path γ. From now
on we assume that all our graphs are connected.

A vertex weight on a graph G is a function h : V(G) → Z�0; a marking m on
the set of legs of G is a choice of total order on L. Whenever convenient we drop the
reference to h and m from our notation and denote a weighted (marked) graph simply
by G.

The valence val(v) of a vertex v of G is the number of half edges h with r(f) = v.
A weighted marked graph is said to be stable, if for all vertices v ∈ V(G) we have

2h(v) − 2 + val(v) > 0 .

The genus g(G) of G is defined to be b1(G) +
∑

v∈V h(v).
Let G,G ′ be two weighted marked graphs. A (generalized) weighted edge con-

traction is a map π : X → X ′ that fulfils the following axioms:

• π commutes with commutes with r, i, and h;
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• the preimage π−1(f ′) of each half-edge h ′ ∈ H(G ′) consists of precisely one
element f (which is necessarily a half-edge of G);

• π induces an order preserving bijection L
∼−→ L ′; and

• for every v ′ ∈ V(G ′) the preimage π−1(v) is a connected finite weighted graph
of genus h(v ′).

We denote by Jg,n the category, whose objects are finite weighted stable graph G of
genus g with n marked legs, and whose morphisms are weighted edge contractions.

1.5 Tropical curves

Definition 1.8 Let P be a monoid. A tropical curve Γ over P is a finite weighted graph
G(Γ) = (G,h,m) together with a generalized edge length |.| : E(G) → P − {0}.

A tropical curve Γ (over P) is said to be stable, if G(Γ) is stable. The genus g(Γ) of
a tropical curve is the genus of the underlying weighted graph G(Γ). A (generalized)
weighted edge contraction π : Γ → Γ ′ of tropical curves Γ over P and Γ ′ over P ′
consists of a monoid homomorphism π� : P → P ′ and a weighted edge contraction
π : G(Γ) → G(Γ ′) such that

• π contracts an edge if and only π�(|e|) = 0 and
• if π(e) = e ∈ H(G ′), then π�(|e|) = |π(e)|.

Let g,n � 0 such that 2g− 2+ n > 0. By [23, Proposition 2.3], there is a unique
stack Mtrop

g,n over (RPCC, τstrict), whose fiber over a cone σ is the groupoid of
stable tropical curves of genus gwithnmarked legs.We refer toMtrop

g,n as themoduli
stack of tropical curves (of genus g with n marked points).

Theorem 1.9 ([23] Theorem 1) The stack Mtrop
g,n is a cone stack.

In fact, one way to prove this, is to realize that Mtrop
g,n is the cone stack associated

to the combinatorial cone stack, defined by the functor

Jop
g,n −→ RPCf

G �−→ σG = R
E
�0(G) ,

where aweighted edge contractionG → G ′ naturally induces a facemorphismσG ′ →
σG.

The moduli stack Mtrop
g,n does not have faithful monodromy, since there are non-

trivial automorphisms of graphs that only induces a trivial permutation of the set of
edges. Nevertheless, the image of Jg,n in RPCf has faithful monodromy and, by
[77, Theorem 1.3] the resulting cone stack (with faithful monodromy) functions as a
coarsemoduli space forMtrop

g,n , in the sense that it is initial among all strictmorphisms
Mtrop

g,n → C to cone stacks with faithful monodromy. In a slight abuse of notation
we denote by M

trop
g,n both the coarse moduli space of Mtrop

g,n and the associated
generalized cone complex.
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2 Uniformization in the tropics

In this section we first recall from [13,72] the theory of graphs of groups and their
fundamental groups. We then use these techniques to expand on [26] and construct
tropical Teichmüller space Ttrop

g as a cone stack that is representable by a cone
complex T

trop
g .

2.1 Graphs of groups

Definition 2.1 A graph of groups G is a graph G = (V,E,L) together with

• a group Gv for every vertex v of G;
• a group Gf for every half-edge f of G together with an isomorphism Gf

∼−→ Gi(f)

denoted by g �→ g; and
• monomorphisms Gf → Gr(f) for every half-edge f of G denoted by g �→ ag.

The group Gv is called the vertex group of the vertex v ∈ V(G) and Gf the edge
group of f ∈ F(G).

A word in a graph of groups G is a pair (γ, g) consisting of a path γ = (v0;
e1, . . . , en) in G consisting of ordered edges ei =

[
fi < f̃i

]
connecting vi−1 to vi

(with 1 � i � n) and a tuple g = (g0, . . . ,gn) of elements gi ∈ Gvi
. Let (γ, g) and

(γ ′, g ′) be two words in G such that the path γ ′ starts at the end point of γ, i.e. for
which we have v ′

0 = vn+1. The concatenation of (γ, g) and (γ ′, g ′) is given by the
concatenation γ ◦ γ ′ of γ and γ ′ and the tuple

g ◦ g ′ = (g0, . . . ,gn−1,gn · g ′
0,g ′

1, . . . ,g ′
n ′) .

Concatenation of words is associative and, writing (v, 1Gv) for the trival word at the
vertex v, we have (v0, 1Gv0

) ◦ (γ, g) = (γ, g) = (γ, g) ◦ (vn, 1Gvn
). Moreover,

for every word (γ, g), there is an inverse word (γ−1, g−1) given by the inverse
γ−1 = (e−1

n , . . . , e−1
1 ) of γ and the vector g−1 = (g−1

n , . . . ,g−1
0 ).

Definition 2.2 Let G be a graph of groups and v ∈ V(G). The fundamental groupoid
π1(G) of G is the groupoid defined as follows:

• Its objects are the vertices of G.
• The set of morphisms between two vertices v and v ′ is the set of words (γ, g) in
G modulo the relations generated by

e = e−1 and eage−1 = ag

for all oriented edges e =
[
f < f̃

]
and g ∈ Gf. The composition of twomorphisms

is given by the concatenation of words in G.

For a vertex v ∈ V(G) the fundamental group π1(G, v) of G based at v is the group
of automorphism of v in π1(G).
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Suppose that G is a graph and G = (G, 1) is the trivial graph of groups on G, i.e.
the groupsGv andGh are all trivial. Then π1(G) = π1(G), the classical fundamental
groupoid of the graph G (defined combinatorially). For every graph of groups G

with underlying graph G, the canonical morphism G → (G, 1) induces a surjective
homomorphism π1(G) � π1(G); its kernel is the normal subgroupoid generated by
all the Gv.

Let w ∈ V(G) be another base point of G. Let γ be a path connecting v to w. Then
there is a natural isomorphism

π1(G, v)
∼−−→ π1(G,w)

a �−→ γ−1aγ .

2.2 Fromweighted graphs to graphs of groups

To a weighted graph (G,h) we associate a graph of groups G(G,h) with underlying
graph G by endowing every vertex with the free group Fh(v) on h(v) generators and
every half-edge f with the trivial group (together with the unique monomorphisms
Gf = 1 ↪→ Gr(f)). We refer to π1

(
G(G,h)

)
as well as to π1

(
G(G,h), v

)
for a

base point v ∈ V(G) as the fundamental groupoid of (G,h) and respectively the
fundamental group π1(G,hI v) of (G,h) with base point v).

Proposition 2.3 For a weighted edge contraction φ : (G ′,h ′) → (G,h) there is an
equivalence

π1

(
G(G ′,h ′)

)
� π1

(
G(G,h)

)
.

Proof Let φ : (G ′,h ′) → (G,h) be a weighted edge contraction. Choose base
points v ′ ∈ V(π−1(v)) for every v ∈ V(G ′) and denote by G(π) the graph of
groups (with underlying graph G) whose group at a vertex v ∈ V(G) is given by
π1

(
G(π−1(v))I v ′) (and trivial groups along all edges). The choice of an isomor-

phism π1

(
G(π−1(v))I v ′) � Fh(v) induces the desired equivalence π1(G

′,h ′) �
π1

(
G(G,h)

)
. �	

Corollary 2.4 For a finite weighted graph (G,h) of genus g there is an equivalence

π1

(
G(G,h)

)
� Fg.

Proof Apply Proposition 2.3 to the weighted edge contraction (G,h) → (∗,g) that
contract G to a point with vertex weight g = g(G,h). �	

This allows us to define the following.

Definition 2.5 Let (G,h) be a finite weighted graph. A Teichmüller marking on (G,h)
is an equivalence

φ : π1

(
G(G,h)

) ∼−−→ Fg.
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In otherwords, aTeichmüllermarking is anouter isomorphismclassφv : π1(G, v)
∼−→

Fg for one (and, since G is connected, all) v ∈ V(G).

Definition 2.6 Let (G,h) be a finite weighted graph of genus g. Two equivalences
φi : π1(G,h)

∼−→ Fg (for i = 1, 2) are said to be topologically equivalent, if for one
(and therefore all) v ∈ V(G) the induced surjective homomorphisms

Fg
φi−−→ π1

(
G(G,h), v

)
−� π1(G, v)

for i = 1, 2 are equal.

Topological equivalence defines an equivalence relation on the class of all Teich-
müller markings; we write

[
φ : G(Γ)

∼−→ Fg

]
for the topological equivalence class

associated to a Teichmüller marking.

2.3 Tropical Teichmüller space

Given a tropical curve Γ (over a monoid P), we write G(Γ) for the graph of groups
associated to the underlyingweighted graph (G,h)of Γ .Moreover,wedenoteπ1(Γ) =
π1

(
G(Γ)

)
and π1(Γ , v) = π1

(
G(Γ), v

)
for v ∈ V(G). A Teichmüller marking on

a tropical curve Γ is a Teichmüller marking on the underlying finite weighted graph
G(Γ).

Let g � 2. By [23, Proposition 2.3] there is a unique stack Ttrop
g over(

RPCC, τstrict

)
whose fiber over a rational polyhedral cone σ is the groupoid of

pairs consisting of a stable tropical curve Γ of genus g together with a topological
equivalence class of Teichmüller marking

[
φ : G(Γ)

∼−→ Fg

]
.

Theorem 2.7 The space Ttrop
g is representable by a cone complex T

trop
g .

Following [26] we introduce the following terminology.

Definition 2.8 The cone complex T
trop
g is called tropical Teichmüller space.

Proof of Theorem 2.7 Consider the category J̃g whose objects are tuples
(
G,h, [φ]

)

consisting of a vertex-weighted graph (G,h) of genus g and a topological equiva-
lence class of a Teichmüller marking

[
φ : G(G,h)

∼−→ Fg

]
and whose morphism are

weighted edge contractions. We note that, for a weighted edge contraction (G,h) →
(G ′,h ′), a Teichmüller marking φ : π1

(
G(G,h)

) ∼−→ Fg naturally induces a Teich-

müller marking of (G ′,h ′) by Proposition 2.3. The natural function J̃g → RPCf

given by
(
G,h, [φ]

)
�→ σ(G,h,[φ]) = R

E(G)
�0 makes J̃g into a category fibered in

groupoids over RPCf, i.e. into a combinatorial cone stack. The associated cone stack
is equivalent to Ttrop

g , since strict morphisms σ → Ttrop
g from rational polyhedral

cones naturally correspond to objects in J̃g.
We now show that J̃g → RPCf defines a cone complex: The operation of the

automorphismgroupof a finite graph on its fundamental groupoid is faithful. Therefore
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the automorphism group of
(
G,h, [φ]

)
in J̃g is trivial and thus J̃g → RPCf is fibered

in sets (and not groupoids). It is a poset, since, whenever we have two weighted edge
contraction (G,h) ⇒ (G ′,h ′), there already is an automorphismof (G,h) thatmakes
the diagram

(G,h) (G,h)

(G ′,h ′)

�

commute. Thus the colimit of the diagram J̃g → RPCf is a cone complex T
trop
g . �	

Remark 2.9 The locus of pairs
(
Γ , [φ

])
in T

trop
g where the vertex weight function

is trivial is precisely the equal to space of metric graphs together with a Teichmüller
marking φ : π1(Γ)

∼−→ Fg (without reference to topological equivalence, since all
vertex groups of G(Γ) are trivial). As explained in [26, Section 3.2] this space is
naturally homeomorphic to the (not volume-normalized) Outer space in the sense of
Culler and Vogtmann [28]. In [28] the authors impose the that for metric graphs Γ in
CVg the condition

∑

e∈E(Γ)

|e| = 1

on the total length of Γ holds. As in [26], we do not follow this convention.

2.4 The quotient byOut(Fg)Out(Fg)Out(Fg)

There is natural operation of the group Aut(Fg) on Ttrop
g that is given by send-

ing
(
Γ , [φ]

)
to

(
Γ , [g ◦ φ]

)
for g ∈ Aut(Fg). An equivalence φ : π1(Γ)

∼−→ Fg is
determined only up to inner automorphisms of Fg and so the group Inn(Fg) of inner
automorphisms of Fg acts trivially on Ttrop

g . Thus there is a natural induced operation
of Out(Fg) = Aut(Fg)/ Inn(Fg) on Ttrop

g .
Consider now the natural morphism Ttrop

g → Mtrop
g that is given by forgetting

the Teichmüller marking. Since Out(Fg) only operates on the markings, the map
Ttrop

g → Mtrop
g is invariant under this operation and there is an induced morphism[

Ttrop
g

/
Out(Fg)

]
→ Mtrop

g .

Theorem 2.10 The relative coarse moduli space of
[
Ttrop

g

/
Out(Fg)

]
over Mtrop

g

is naturally equivalent to Mtrop
g .

Proof The induced morphism
[
Ttrop

g

/
Out(Fg)

]
→ Mtrop

g is essentially surjective,

since every tropical curve Γ can be endowed with a Teichmüller markingφ : π1(Γ)
∼−→

Fg. It is full, since every weighted edge contractionφ : Γ → Γ ′ induces an equivalence
π1(Γ)

∼−→ π1(Γ
′) by Proposition 2.3. Going from

[
Ttrop

g

/
Out(Fg)

]
to the relative
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coarse moduli space over Mtrop
g makes the induced map also faithful and thus the

result follows. �	

3 Lifting via Artin fans

In this section we use methods from logarithmic geometry in the sense of Kato-
Fontaine-Illusie [44] and, in particular, the theory of Artin fans (as in [5,6,12,23,77]),
to lift tropical Teichmüller space to the world of algebraic geometry and to study the
process of tropicalization.

3.1 Logarithmic structures

Recall from [44] that a logarithmic structure on a scheme X is a pair (MX,αX)
consisting of

• a sheaf of monoids MX defined on the étale topology on X, and
• a monoid homomorphism αX : MX → (OX, ·) that induces an isomorphism

α−1
X O∗

X � O∗
X.

We refer to the tuple X = (X,MX,αX) consisting of a scheme X and a logarithmic
structure (MX,αX) as a logarithmic scheme. Whenever convenient we drop the ref-
erence to αX and simply write X = (X,αX) for a logarithmic scheme. We write MX

for the quotient MX = MX/M∗
X, which is known as the characteristic monoid of X.

A logarithmic scheme X is called fine and saturated if étale locally there is a
homomorphism PX → (OX, ·) from the constant sheaf PX associated to a fine and
saturated monoid P to (OX, ·) such that the logarithmic structure MX is given via the
pushout square

P∗
X O∗

X

PX MX

⊆

For further details on logarithmic geometry we refer the avid reader to [44], [2],
and [60]. From now on the terms logarithmic scheme or logarithmic stack will always
refer to a fine and saturated logarithmic scheme or logarithmic stack. We denote the
category of (fine and saturated) logarithmic scheme by LSch and the category of (fine
and saturated) logarithmic stacks by LSt.

3.2 Logarithmic curves

A logarithmic curve over a logarithmic base scheme S is a logarithmically smooth
morphism X → S that is proper, integral, saturated, and has geometrically connected
fibers of dimension one.
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Theorem 3.1 ([46] Theorem 1.3) Let X → S be a logarithmic curve. Then, étale
locally on S, every point x of X has an étale neighborhood V together with a morphism
π : V → S such that one of the following holds:

(i) V = SpecOS[u] with MV = π∗MS;
(ii) V = SpecOS[u] with MV = π∗MS ⊕ Nv with αV (v) = u; or

(iii) V = SpecOS[x,y]
/
(xy − t) for some t ∈ OS and

MV = π∗MS ⊕ Nα ⊕ Nβ
/
(α + β = δ)

for some δ ∈ π∗MS with εV (α) = x, εV (β) = y, and εS(δ) = t.

So the underlying family of curves X → S is flat and proper, and each fiber is a
nodal curve with a finite number of (a priori unordered) sections that do not meet the
singularities in each fiber. We define the moduli stack Mlog

g,n of logarithmic curves to
be the unique stack over LSch whose fiber over a logarithmic base scheme S is the
groupoid of stable logarithmic curves of genus g with n marked sections.

The connection with the classical Deligne-Knudsen-Mumford moduli stackMg,n

is established by the following:

Theorem 3.2 ([46] Theorem 4.5) The moduli stack is represented by the pair
(Mg,n,Mg,n) where MMg,n

is the divisorial logarithmic structure associated to

the boundary divisor of Mg,n, i.e. the complement of the locus Mg,n of smooth
n-marked curves of genus g in Mg,n.

3.3 From cone stacks to Artin fans

Let σ be a rational polyhedral cone. Denote by Aσ the quotient stack

Aσ =
[
SpecZ[Sσ]

/
SpecZ[Sgp

σ ]
]

of the affine toric variety SpecZ[Sσ] by the diagonalizable group SpecZ[Sgp
σ ]. By

[61, Proposition 5.17], for every logarithmic scheme X there is a natural isomorphism

HomLSt
(
X,Aσ

)
= HomMon

(
Sσ,MX

)
.

As in [77] this observation implies that the associationσ �→ Aσ defines full and faithful
functor fromRPC to the category of logarithmic stacks.We refer to a logarithmic stack
of the form Aσ as an Artin cone.

Definition 3.3 An Artin fan is a logarithmic algebraic stack that admits a cover by a
disjoint union of Artin cones that is strict and étale.

In [23] we have seen the following:

Theorem 3.4 ([23] Theorem 3) The category of Artin fans is naturally equivalent to
the category of cone stacks.
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When τ is a face of a rational polyhedral cone σ, the induced homomorphism
Sσ → Sτ determines an open immersion Aτ ⊆ Aσ. So, if Σ is a rational polyhedral
cone complex, then we may construct the associated Artin fan AΣ as

AΣ =
⋃

σ⊆Σ

Aσ.

In general, given a cone stackC,wemay choose a strict groupoid presentation
[
U

/
R
]

�
C in RPCC and construct the associated Artin fan AC as the quotient of the induced
strict étale groupoid

AR ⇒ AU.

Remark 3.5 In [23] the proof of Theorem 3.4 is only written for logarithmic schemes
over a field k. It, however, directly generalizes to logarithmic schemes over Z (and in
fact to any other logarithmic base scheme with trivial logarithmic structure).

In order to keep our notation less bulky, we usually denote both the cone stack C
and the associated Artin fan AC with the same letter C.

3.4 Construction ofTlog
g

Let g,n � 0 such that 2g − 2 + n > 0. By [23, Theorem 4] the Artin fan associated
to the tropical moduli stack Mtrop

g,n is the category whose fiber over a logarithmic
scheme S is the groupoid of families of tropical curves over S. A family of tropical
curves over S consists of

• a collection (Γs) of tropical curves Γs ∈ Mtrop
g,n (MS) with edge lengths in the

characteristic monoid MS indexed by all geometric points s of S; and
• for every étale specialization t � s of geometric points of S a weighted edge
contraction Γs → Γt such that, whenever Γs is metrized via the composition
|.|t�s : E(Γ) → MS,s → MS,t, the tropical curve Γt is given by contracting
those edges e in Γs for which |e|t�s = 0.

Again by [23, Theorem 4], there is a natural modular logarithmic tropicalization
morphism

troplog
g,n : Mlog

g,n −→ Mtrop
g,n

that is strict, smooth, and surjective. It is given by associating to a logarithmic curve
X → S the family (ΓXs) of dual tropical curves of each fiber Xs over a geometric
point s of S. The dual tropical curve ΓX of a logarithmic curve X over a logarithmic
point S is defined as follows:

• the underlying graphGX is the dual graph of the stable curveX, so that its vertices v

correspond to the irreducible componentsXv ofX, an edge connecting two vertices
v, v ′ to a node connecting the two components Xv and Xv ′ and the legs of GX

emanating from v correspond to the marked points on Xv;
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• the vertex weight h(v) is the genus of the normalization X̃v of Xv; and
• the edge length |e| ∈ MS,s of an edge e of G(X) is the logarithmic deformation
parameter δe ∈ MS,s at the node pe, as explained in Theorem 3.1 (ii) above.

Definition 3.6 We define Tlog
g to be the fiber product

Tlog
g = Mlog

g ×Mtrop
g

Ttrop
g

over the logarithmic tropicalization morphism troplog
g : Mlog

g → Mtrop
g and the

natural morphism Ttrop
g → Mtrop

g that forgets the Teichmüller marking.

Using the above description of Mtrop
g as a stack over LSch the stack Tlog

g is
the category whose fiber over a logarithmic scheme S is the groupoid of logarithmic
curves X → S in Mlog

g (S) together with a topological equivalence class of a Teich-

müller marking
[
φs : π1(Γs)

∼−→ Fg

]
on every dual tropical curve Γs (where s are the

geometric points of S) that are compatible with étale specialization.

Theorem 3.7 The logarithmic stack Tlog
g is representable by a pair

(
Tlog

g ,MSlog
g,n

)

consisting of:

(i) a Deligne-Mumford stack Tlog
g , that is smooth, universally closed, and locally

of finite type over Z; and
(ii) a fine and saturated logarithmic structure MTlog

g
that is associated to the com-

plement of the locus of smooth curves in Tlog
g , which has normal crossings over

Z.

Proof We may define Tlog
g as the fibered product

Tlog
g = Mg ×Mtrop

g
Ttrop

g .

Since Ttrop
g → Mtrop

g is strict and surjective, it immediately follows that Tlog
g is

smooth, universally closed, and locally of finite type over Z. We endow Tlog
g with

the logarithmic structure MTlog
g

that is associated to the pullback of the boundary

divisor of Mg, which has normal crossings, since the boundary divisor on Mg has
normal crossings on the map Ttrop

g → Mtrop
g is strict and therefore also smooth (in

fact, étale locally an isomorphism). By [23, Theorem 4], the tropicalization morphism
Mlog

g → Mtrop
g is strict and therefore we have

Tlog
g � Mlog

g ×Mtrop
g

Ttrop
g .

This, together with [46, Theorem 4.5], i.e. Theorem 3.2 above, implies our claim. �	

Remark 3.8 The moduli stack Tlog
g is not separated. The reason is that e.g. in a stable

degeneration of a smooth curve, we have exactly one equivalence class of Teichmüller
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markings in the generic fiber and very many in the special fiber, whenever its dual
graph has non-trivial cycles.

Remark 3.9 It follows a posteriori from Theorem 3.14 that the boundary divisor of
Sg even has simple normal crossings, i.e. that all strata of the boundary divisor are
smooth over Z.

The following Theorem 3.10 lifts Theorem 2.10 to the logarithmic category.

Theorem 3.10 The relative coarse moduli space of the stack quotient
[
Tlog

g

/
Out(Fg)

]

over Mlog
g is equivalent to Mlog

g .

Proof By Theorem 2.10 the relative coarse moduli space of the stack quotient[
Ttrop

g

/
Out(Fg)

]
over Mtrop

g is equivalent to Mtrop
g . The claim is an immediate

consequence of this and of the definition of Tlog
g as a fibered product Mlog

g ×Mtrop
g

Ttrop
g . �	

3.5 From the fundamental category of a logarithmic stack to its tropicalization

Let X be a logarithmic algebraic stack. Denote by Π̃1(X) the category whose objects
are the geometric points x → X and whose morphisms are étale specializations x � y

in X. We say that an étale specialization x � y is strict, if the induced map MX,y →
MX,x is an isomorphism.

Definition 3.11 The fundamental category Π1(X) of a logarithmic stack X is defined
to be the localization of Π̃1(X) along the class of strict specializations.

For a geometric point x → X we write σx for the rational polyhedral cone
Hom

(
MX,x,R�0

)
. For an étale specialization x � y the induced morphism

σx → σy is a face morphism and, whenever x � y is strict, this map is an iso-
morphism. So there is a natural functor Π1(X) → RPCf given by the association
x �→ σx.

Proposition 3.12 If X is a logarithmically smooth (over a base scheme S with trivial
logarithmic structure), then the functor x �→ σx makes Π1(X) into a category fibered
in groupoids over RPCf.

Proof We may check the two axioms of a category fibered in groupoids étale locally
on X and so we may assume that X is an affine toric variety SpecOS[P] over S (where
P is a fine and saturated monoid). In this case Π1

(
SpecOS[P]

)
is equivalent to the

poset of (generic points of) torus orbits of SpecOS[P]. Then the statement follows
from the order-reversing correspondence between torus orbits of SpecOS[P] and faces
of σP = Hom(P,R�0).

�	

In other words, Proposition 3.12 tells us that Π1(X) is a combinatorial cone stack.
As explained in Proposition 1.6 above, we may associate to Π1(X) its coarse moduli
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space CX. So the combinatorial cone stack Ccomb
X with faithfulmonodromy and comes

with a strict morphism Π1(X) → CX that is initial among all strict morphisms to cone
stacks with faithful monodromy.

Proposition 3.13 Let X be logarithmically smooth (over a base scheme S with trivial
logarithmic structure). Then there is a strict morphism X → CX that is initial among
strict morphism to cone stacks with faithful monodromy.

Here, we again lift CX to the category of logarithmic stacks as an Artin fan. In [6,
Propositon 3.1.1] we see that every (reasonable) logarithmic stack X admits a strict
morphism X → AX to an Artin fan with faithful monodromy that is initial among all
strict morphisms to Artin fans with faithful monodromy. When X is logarithmically
smooth, Proposition 3.13 tells us that the Artin fan associated to CX is equivalent to
AX so that the diagram

X

CX AX
�

commutes. We refer to tropX : X → CX as the logarithmic tropicalization morphism
associated to X and to CX as the logarithmic tropicalization of X.

Proof of Proposition 3.13 Let us first assume thatX is represented by a logarithmically
smooth scheme X that is small, i.e. that X has a unique closed logarithmic stratum.
In this case, the lift of CX is given by Aσ where σ is the rational polyhedral cone
Hom(MX,R�0) dual to the characteristicmonoid ofX. The strictmorphismX → Aσ

is the one associated to the identity under the natural correspondence

HomLSt
(
X,Aσ

)
= HomMon

(
Sσ,MX

)

from [61, Proposition 5.17]. We may now continue our argument as in [6, Proposition
3.1.1] and show that this morphism is initial among strict morphisms to Artin fans
with faithful monodromy. In the general situation (when X is not small), both AX
and CX arises as colimits of representable morphisms over Olsson’s stack LOGS of
logarithmic structures over S (as introduced in [61]) and therefore both constructions
agree. �	

3.6 Tropicalization ofMlog
g andTlog

g

The following Theorem 3.14 will imply Theorem B from the introduction (see Theo-
rem 4.4 below). In the case of Mlog

g it also rephrases [77, Theorem 1.3].

Theorem 3.14 The logarithmic tropicalization of Mlog
g is isomorphic to the coarse

moduli space M
trop
g and the logarithmic tropicalization of Tlog

g is equivalent to
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Ttrop
g so that the natural diagram

Tlog
g

Ttrop
g CTlog

g

Mlog
g

Mtrop
g C

Mlog
g

tropg
trop

Tlog
g

�

tropg
trop

Mlog
g

(2)

commutes.

Proof The first step of the proof consists of a stack-theoretic and logarithmic reinter-
pretation of the proof of the main result in [7]. It is based on the following facts, which
be found e.g. in [1] and [7]:

• The boundary strata of Mg are in natural one-to-one correspondence with stable
weighted graphs of genus g.

• An étale specialization ηG � ηG ′ of generic points of boundary strata that is not
an isomorphism corresponds to a weighted edge contraction G → G ′.

• There is an isomorphism MηG
� N

E(G) such that the group of automorphisms

of MηG
induced by self-specializations ηG

∼−→ ηG (called the monodromy group
of the stratum in [7]) agrees with the group of permutations of NE(G) induced by
automorphisms of G.

These three facts together imply that there is a natural equivalence between the coarse
moduli space of Mtrop

g and CMlog
g

. Since, by [23, Theorem 4] the tropicalization

map tropg is strict, the lower triangular diagram in (2) commutes by the universal
property from Proposition 3.13.

In the second step we notice that by construction of Tlog
g as a fiber product

Mlog
g ×Mtrop

g
Ttrop

g , we also have the following facts:

• The logarithmic strata of Tlog
g are in a natural one-to-one correspondence with

pairs consisting of a stableweighted graph of genusg and a topological equivalence
class of Teichmüller markings;

• An étale specialization ηG,[φ] � ηG ′,[φ ′] of generic points of boundary strata
that is not an isomorphism corresponds to a weighted edge contraction G → G ′
that makes the resulting diagram of Teichmüller markings commute up to inner
automorphisms.

• Both the monodromy group and the automorphism group of (G, [φ]) are trivial.

Thus there is a natural equivalence between Ttrop
g and the CTlog

g
. Since the tropical-

ization map tropg is strict, as a base change of a strict tropicalization map, the upper
triangular diagram is commutative by the universal property in Proposition 3.13.
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Finally, we observe that the two back squares in (2) commute by construction and
thus the front square commutes, since tropg is surjective. �	

4 Skeletons and tropicalization

Throughout this section let K be an algebraically closed non-Archimedean field with
valuation ring R. In this section we construct Sg by applying Raynaud’s generic fiber

functor to Slog
g and identify its non-Archimedean tropicalization map with a strong

deformation retraction onto the skeleton.

4.1 Extended (generalized) cone complexes

Given a rational polyhedral cone σ, its canonical extension is defined to be

σ = Hom(Sσ,R�0) .

Here wewriteR�0 for the additive monoidR�0 = R�0	{∞}. Onemay think of σ as
a compactification of σ given by adding further faces at infinity (see e.g. [64, Section
5] for details). As in [7,75], we define the canonical extension Σ of a (generalized)
cone complex Σ as the colimit of the diagram that arises when we replace all cones in
the defining diagram by their canonical extensions.

In the followingwewriteM
trop
g and T

trop
g for the coarsemoduli spaces ofMtrop

g

and Ttrop
g in the sense of Sect. 1.3 respectively. Both M

trop
g and T

trop
g are objects

in the 2-category of cone stacks with faithful monodromy and in the category of
generalized cone complexes. Denote byM

trop
g and T

trop
g their canonical extensions.

The points of M
trop
g are in natural one-to-one correspondence with stable tropical

curves of genus gwith real edge lengths and the points of Ttrop
g are pairs consisting of

a stable tropical curve of genus g and a topological equivalence class of Teichmüller
markings. Their canonical extensions parametrize the same data, only we allow the
edge lengths of the tropical curves to take non-zero values in the additive monoid
R�0 = R�0 	 {∞} (see [7, Section 4] for details). Outer space CVtrop

g in the sense
of Culler–Vogtmann [28] is the locus of metric graphs in T

trop
g , i.e. as the locus of

tropical curves with all vertex weights equal to zero.

4.2 Non-Archimedean tropicalization ofMg

Denote by Man
g the non-Archimedean analytic stack associated to Mg,K. We refer

the reader to [76,80] for the basic definitions of non-Archimedean analytic stacks and
implicitly identify Man

g with its underlying topological space, as introduced in [76,
Section 3].

There is a natural non-Archimedean tropicalization map

tropg : Man
g −→ M

trop
g
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that associates to a point in Man
g , corresponding to a stable curve X over a non-

Archimedean extension L of K, its dual tropical curve ΓX. Let us explain this:
The valuative criterion for properness, applied to Mg tells us that there is a finite

extension L ′ of L such that the base change XL ′ admits a stable model X over the
valuation ring R ′ of L ′. In other words, there is a proper and flat scheme X over R ′
with reduced fibers of dimension one such that the generic fiber is isomorphic to XL ′
and the special fiber X0 is a stable nodal curve over the residue field of R ′. The dual
graph GX0

ofX0 is the graphwith vertices are the irreducible components ofX0 and an
edge between two vertices for every node connecting the corresponding components.
A vertex weight h : V(GX0

) → Z�0 on GX0
associates to a vertex the genus of the

normalization of the corresponding component. Étale locally around every node, the
scheme X is given by xy = re for two coordinates x and y and an element r ∈ R ′.
The edge length on GX0

is given by |e| = val(re). Notice hereby that for the edges e

corresponding to nodes that were already present in the generic fiber, we always have
|e| = 0. The dual tropical curve ΓX is the tropical curve given by the tuple (GX0

,h, |.|)

(with edge lengths in R�0).
It follows a posteriori from the identification of thismapwith the strong deformation

retraction onto the non-Archimedean skeleton in Theorem 4.4 below that tropg is well-
defined and continuous.

4.3 Raynaud’s generic fiber functor

Berkovich analytification defines a functor from the category of schemes locally of
finite type over K to the category of non-Archimedean analytic spaces. By [15] a
scheme X locally of finite type over K is separated if and only Xan is a Hausdorff
space. Since we are considering the non-separated stack Slog

g , we therefore want to
workwith a different analytification functor, known asRaynaud’s generic fiber functor
(as introduced in [16]).

It associates to a flat scheme X locally of finite type over R a Berkovich analytic
space Xη that functions as an analytic generic fiber of the formal completion of
X along the maximal ideal of R. Suppose that X = SpecA is affine and write
X = SpecA for its generic fiber, where A = A ⊗R K. In this case, the Raynaud
generic fiber is the affinoid domain in Xan whose points are those seminorms |.|x on
A for which |a|x � 1 for all a ∈ A , i.e. those seminorms that extend to a bounded
seminorm on A .

In general, whenX is not affine, the Raynaud generic fiberXη is given by glueing
the affine patches ofX . A point inXη may be represented by a morphism SpecR ′ →
X from a valuation ring R ′ that extends R. Two morphisms SpecR ′ → X and
SpecR ′′ → X represent the same point if and only if there is a valuation ring Ω that
extends both R ′ and R ′′ such that the induced diagram

SpecΩ SpecR ′

SpecR ′′ X



39 Page 26 of 34 M. Ulirsch

commutes. By the valuative criteria, the Raynaud generic fiber Xη is an analytic
domain in the Berkovich analytic space X an

K associated to the algebraic geometric
generic fiber XK of X if and only if X is separated over R, and Xη is isomorphic
toX an

K if and only ifX is proper over R.
In [80], Yu has extended the generic fiber functor (.)η to a functor

(.)η : Alg.Stacksflat, loc.f.t./k −→ An.Stacksk

such that, whenever X =
[
U

/
R

]
is a groupoid presentation of an algebraic stack

X that is flat and locally of finite type over R, we have

Xη �
[
Uη/Rη

]
.

Again a point in Xη may be represented by a morphism SpecR ′ → X from a
valuation ring R ′ that extends R. Two morphisms SpecR ′ → X and SpecR ′′ → X
then represent the same point if and only if there is a valuation ring Ω that extends
both R ′ and R ′′ such that the induced diagram

SpecΩ SpecR ′

SpecR ′′ X

is 2-commutative. Yet again, by the valuative criteria, the Raynaud generic fiberXη is
an analytic domain in the Berkovich analytic stackX an

K if and only ifX is separated
over R, and Xη is equivalent toX an

K if and only ifX is proper over R.

4.4 Non-Archimedean Teichmüller space and its tropicalization

Recall from Sect. 3.4 that Tlog
g is the underlying algebraic stack of Tlog

g =

Mlog
g ×Mtrop

g
Ttrop

g . It is a smooth and universally closed, but not separatedDeligne-

Mumford stack over SpecZ.WewriteTlog
g,R for the base change ofTlog

g to the valuation
ring R.

Definition 4.1 The extended non-Archimedean Teichmüller space Tg overK is defined
to be

Tg = Tlog
g,R,η .

A point in Tg is represented by a tuple (X,φ) where X is a stable curve of genus
g over a non-Archimedean extension L of K together with a Teichmüller marking of
the dual tropical curve ΓX of its stable reduction. It is well-known that the geometric
realization |ΓX| of ΓX as a metric space arises as the minimal skeleton of the non-
Archimedean analytic space Xan

L (see [15,18] for details). A Teichmüller marking on
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ΓX amounts to the choice of an equivalence π1(X
an) = π1

(
|ΓX|

) ∼−→ Fb1
where b1

is the Betti number of both Xan and its minimal skeleton |ΓX|. So, in particular, we
have a natural non-Archimedean tropicalization map

tropg : Tg −→ T
trop
g(

X,φ : π1

(
Xan

) ∼−→ Fb1

)
�−→

(
ΓX,φ : π1

(
|ΓX|

) ∼−→ Fb1

)
.

We define Tg as the locus of pairs (X,φ) where X is a smooth curve and refer to
it as the non-Archimedean Teichmüller space over K. It also arises as the preimage
trop−1

g (T
trop
g ) of the locus of non-extended tropical curves (with edge lengths only

in R�0 instead of R�0 = R�0 	 {∞}) and as the preimage of the analytification
Man

g of Mg under the natural map Tg → Man
g that forgets the marking.

Proof of TheoremA Since Tlog
g is smooth overZ, its base change toR is smooth overR

and therefore the Raynaud generic fiber isG-smooth over K. LetG be stable weighted

graph of genus g and consider the rational polyhedral cone σG = R
E(G)
�0 , which

parametrizes all tropical curveswhose underlying graph is aweighted edge contraction
of G. Write UσG

for the affine toric variety SpecZ[SσG
] associated to σG. There is a

natural morphism σG → Mtrop
g that induces a morphism Uσ → Mtrop

g (here the
right hand side is the really the Artin fan AMtrop

g
). The base change

ŨσG
= UσG

×Mtrop
g

Ttrop
g

is a non-separated toric variety. Each of its maximal torus-invariant open affine subsets
is isomorphic to UσG

, since Ttrop
g → Mtrop

g is a strict cover. Thus, applying the
Raynaud generic fiber functor, we obtain a morphism ŨσG,R,η → UσG,R,η without
boundary. Since Tg → Man

g arises étale locally as a base change of such morphisms,

it also without boundary. This proves that Tg is without boundary over K, since Man
g

is. Since Tg is G-smooth and without boundary, it is also smooth.
In order to show that Tg is separated we show that the diagonal morphismΔ : Tg →

Tg×Tg is proper. LetU → Tg×Tg be amorphism from a strict analytic spaceU. This
corresponds to a flat and proper analytic family X → U of stable curves together with
a family of Teichmüller markings of the dual tropical curves, compatible with étale
specialization. The fiber product Tg ×Tg×Tg

U is representable by an analytic space

V whose points are exactly the triples (x,y,φ) consisting of two points x,y ∈ U

and an isomorphism φ : Xx
∼−→ Xy that is compatible with the Teichmüller markings

on the dual tropical curves. Since the diagonal morphism Man
g → Man

g × Man
g

is proper, the base change of V → U to any affinoid domain in U is finite and this
implies that V → U is without boundary. Any compact subset A in U will be a subset
of a finite union of affinoid domains and thus this also implies that the preimage of A

in V is compact. Therefore V → U is a proper morphism and, since U was chosen
arbitrarily, this implies that the diagonal morphism Δ : Tg → Tg × Tg is proper. �	
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Proof of TheoremD This immediately follows from Theorem 3.10 and the fact that
both the functors (.) ⊗ SpecR and (.)η preserve (2-)colimits. �	

4.5 Non-Archimedean skeletons of stacky normal crossing pairs with good
reduction

Let (X ,D) be a strictly semistable pair over R, consisting of a flat scheme X
locally of finite type over SpecR whose generic fiber is smooth and whose special
fiber has strict normal crossings and an effective strict normal crossing divisor D =
D1 + · · · + Ds on X which includes the special fiber. In [34, Section 4] the authors
expand on a construction of Berkovich in [17] and show that the generic fiber Xη

admits a strong deformation retraction ρ(X ,D) : Xη → Xη onto a closed subset

Σ(X ,D) of Xη, the skeleton of the strictly semistable pair (X ,D).

Remark 4.2 In [34] the authors always require thatX be proper over R. This assump-
tion is not necessary, if we work with the Raynaud generic fiber Xη instead of the
Berkovich analytic space of the algebraic generic fiber of X .

For the purpose of this article we assume that X is smooth over R, i.e. that X
has good reduction. In this case, the skeleton Σ(X ,D) canonically has the structure
of an extended cone complex: The space X is naturally stratified by locally closed
subschemes; the strata are the connected components of the smooth locus ofDi1

∩· · ·∩
Dik

. IfU ⊆ X is small open subset ofX (or a building block in the terminology of
[34, Section 4.3]), i.e. if it contains a unique closed stratum, the skeleton is naturally
homeomorphic to the extended cone σX = Hom

(
MD ,R�0

)
and the retraction

ρ(X ,D) is given by

x �−→
(
MD → OU /O∗

U
− log |.|x−−−−−→ R�0

)
. (3)

Here MD denotes the natural divisorial logarithmic structure on X associated to
the divisor D , i.e. the sheaf of sections of s ∈ OX such that s|U −D ∈ O∗

X; this way
MD = MD/O∗

X is identified with the sheaf of effective Cartier divisors with support
in D . In general, for every strictly semistable pair (X ,D) there is a cover by small
open subsets Ui as well as a cover V

ij
k of Ui ∩ Uj by small open subsets V ij

k . Then
the extended cone complex Σ(X ,D) is the colimit of the induced diagram of proper
face morphisms σ

Vij
k

↪→ σUi
and the retraction map is defined by (3) on every small

open subset U ⊆ X .
In the following Lemma 4.3, we generalize this construction to the case of a stacky

normal crossing pair (X ,D) with good reduction, i.e. to the case of a Deligne-
Mumford stackX that is smooth over SpecR together with an effective Cartier divisor
D onX that has (stack-theoertically) normal crossings.We say that an étalemorphism
f : U → X is small, if (U , f∗D) is a strictly semistable pair with good reduction
that is small.

Lemma 4.3 Let X be a Deligne-Mumford stack that is smooth over R and let D be
an effective Cartier divisor on X with (stack-theoretically) normal crossings. Then
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there is a strong deformation retraction ρ(X ,D) : Xη → Xη onto a closed sub-

set Σ(X ,D), the non-Archimedean skeleton associated to (X ,D). The skeleton
Σ(X ,D) is naturally homeomorphic to the extended generalized cone complex asso-
ciated to C(X ,D) and, on a small étale neighborhood U → X , the retraction map
ρ(X ,D) is given by the non-Archimedean tropicalization map

Uη −→ σU = Hom(MU ,R�0)

x �−→
(
MU → OU /O∗

U
− log |.|x−−−−−→ R�0

)
.

Proof Consider the category Q(X ,D) whose objects are small étale morphisms
f : U → X and whose morphisms are commutative diagrams

U V

X
f

h

g
(4)

such that f∗D = (g◦h)∗D . There is a natural functorQ(X ,D) → RPCf that is given
by U �→ σU. Denote by MD the divisorial logarithmic structure on X associated
to D and note that (X ,MD ) is logarithmically smooth over SpecR (with the trivial
logarithmic structure). The generalized cone complex associated to C(X ,MD ) is
precisely the colimit over the diagram of all σU in Q(X ,D), since every geometric
point has of X has a small open étale neighborhood, in which it is in the deepest
stratum.

The underlying topological space of Xη is the colimit of all fη : Uη → Xη for
f : U → X in Q(X ,D). Moverover, for every diagram (4) the induced diagram of
retraction maps

Uη Uη

Vη Vη

ρU

hη hη

ρV

is commutative. So the ρU descend to a retraction map Xη → Xη, whose image
is defined to be the skeleton Σ(X ,D) of X . It is precisely the colimit of all σU ,
taken over the small étale neighborhoods f : U → X in Q(X ,D) and therefore
isomorphic to the canonical extension of the generalzed cone complex associated to
C(X ,MD ).

In order to show that there is a strong homotopy equivalence between ρX and the
identity onXη, we need to observe that the induced diagram of homotopies on (4) is
commutative. This argument has already been carried out in [73, Section 3.3] and [7,
Proposition 6.1.4] over base fields with trivial absolute; it carries over to our situation
without any changes. �	
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4.6 Skeletons ofTg andMan
g

The following Theorem 4.4 expands on Theorem B from the introduction and gener-
alizes the main result of [7] to the case of a non-trivially valued base field.

Theorem 4.4 The skeleton of Man
g is isomorphic to M

trop
g and the skeleton of Tg is

isomorphic to Ttrop
g so that the natural diagram

Tg

Ttrop
g Σ(Tg)

Man
g

M
trop
g Σ(Mg)

tropg
ρTg

�

tropg
ρMg

�

(5)

commutes.

Proof of Theorem 4.4 Use Theorem 3.14 together with Lemma 4.3 applied to Man
g

and Tg. The commutativity of diagram (5) follows form the commutativity of diagram
(2) in Theorem 3.14. �	

Proof of Corollary C For a stacky normal crossing pair (X,D), the homotopy between
ρ(X,D) and identity preserves the fibers of ρ(X,D); this may be checked étale locally
only toric varieties, on which the homotopy is defined via the torus operation. Using
Theorem 4.4, we may therefore restrict the homotopy to the locus of smoothMumford
curves in Tg and find that the tropicalization defines a strong deformation retraction
onto Culler–Vogtmann Outer space CVg. �	

Remark 4.5 Denote by CVg the canonical extension of Culler–VogtmannOuter space,
where we allow the edge lengths of graphs to attain value ∞ (i.e. the closure of CVg

in T
trop
g ). The same argument as in the proof of Corollary C shows that CVg is a

strong deformation retract of the locus TMum
g of stable Mumford curves in Tg.
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